光合作用知识点

合集下载

光合作用知识点总结

光合作用知识点总结

光合作用知识点总结光合作用是植物体内一种非常重要的化学反应,它把太阳能、CO2和H2O结合起来,生成糖和氧气。

光合作用是植物体内生成维生素、脂肪酸、碳水化合物和细胞结构等有机物质的重要基石,是植物体内重要的能量来源。

光合作用的基本知识包括以下几个方面:1.合作用的反应原料和产物光合作用的反应原料包括 CO2 H2O,产物是糖和氧气。

2.合作用的反应化学方程式光合作用的反应化学方程式为: 6CO2 + 6H2O C6H12O6 + 6O2。

3.合作用的主要反应机制光合作用是由复杂的光化学反应和酶反应机制组成的,其中光化学反应包括受光反应、光动力反应和光强化反应,酶反应包括无机磷酸化酶反应、脱羧酶反应和糖合成酶反应。

4.合作用的物质的缓冲由于光合作用的反应涉及高能量的光子,因此植物体内必须形成一种“物质缓冲”系统来缓冲光子能量的影响,维持植物体内光合作用能量的稳定性。

这种物质缓冲系统主要包括叶绿素、chlorophyllide A、类胡萝卜素、pigment-binding proteins,以及其他复杂系统,他们可以吸收太阳光的能量,缓冲太阳能的突变。

5.合作用的调控机制光合作用的调控机制主要是共调控和半共调控。

共调控机制通过释放不同量的糖和抑制糖合成酶来调控光合作用,而半共调控机制则主要是通过抑制受光反应和氧化阶段细胞内反应物的含量化,从而调控光合作用。

6.合作用的生物意义光合作用是植物体内理想环境下维持生命活动所需的活动能源。

通过光合作用,植物体可以利用太阳能和 CO2成有机物质,这些有机物质又可以成为植物体其他生命活动的能量来源。

同时,光合作用也可以释放大量的氧气,维持植物体内的氧气水平,维护地球的自然环境。

总之,光合作用是植物体内非常重要的一个化学反应,它是植物体内重要的能量来源,它包括反应原料和产物、反应化学方程式、主要反应机制、物质缓冲系统、调控机制以及它所带来的生物意义等。

通过加强对光合作用的研究,未来可以更好地开发利用这种化学反应,提高植物体内的生产能力,有助于改善人类的生活。

光合作用核心知识点列表梳理

光合作用核心知识点列表梳理
光合作用核心知识点列表梳理
山东省青岛第九中学 辛建福
1.光合作用的概念
绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程。
CO2+ H2O (CH2O)+ O2
组成要素
内涵
场所
叶绿体
条件
光照
反应物
CO2和H2O
产物
有机物和O2
能量
光能转变化学能
主要影响因素
CO2、பைடு நூலகம்能等
2.叶绿体中的色素
色素种类
颜色
定性滤纸条上显现的色素层析图谱
吸收光谱
主要功能
化学性质
类胡萝卜素
胡萝卜素
橙黄色
①橙黄色
蓝紫光
吸收、传递光能
①四种色素均不溶于水,而溶于酒精等有机溶剂中,
②叶绿素的化学性质没有类胡萝卜素稳定,其合成易受温度、光照和Mg等的影响
叶黄素
黄色
②黄色
吸收、传递光能

绿

叶绿素a
蓝绿色
多种酶
反应物
H2O、ADP、Pi
[H]、ATP、CO2、C5
产物
O2、[H]、ATP
(CH2O)等
物质转化
①水的光解
2H2O 4[H] + O2
②ATP的生成
ADP + Pi ATP
①CO2的固定
CO2+ C5 2C3
②CO2的还原
2C3 (CH2O)+ C5+ H2O
能量转化
光能→ATP中活跃化学能
(2)影响光合作用的主要环境因素分析
条件
C3
C5
[H]和ATP

光合作用知识点

光合作用知识点

光合作用知识点光合作用是指植物利用太阳能将二氧化碳和水转化成有机物的过程。

这个过程中,光能被光合色素吸收,通过光合电位活化电子传递链,产生的电子转移和能量转移最终促使NADPH的产生和ATP的合成,进而用于卡尔文循环。

光合作用发生在叶绿体中的叶绿体膜和光合体中。

光合作用是生物体的一个重要代谢过程,对整个生态系统有着重要的贡献。

下面是光合作用的一些主要知识点。

1.光合作用的反应方程式:光合作用的反应方程式可以简记为:6CO2+6H2O+光能→C6H12O6+6O2这个方程式表示了光合作用的基本过程,即通过光合作用,植物从二氧化碳和水中合成有机物(葡萄糖),同时释放出氧气。

2.光合作用的发生地点:光合作用主要发生在植物的叶绿体中。

叶绿体是植物细胞中的一种特殊细胞器,其中含有丰富的叶绿素,能够吸收光能并参与光合作用。

叶绿体内部有许多叶绿体膜,叶绿体膜上有光合色素(主要是叶绿素)和其他光合作用相关的蛋白质,它们共同组成了光合体。

3.光合作用的光合色素:光合作用中的光能主要由叶绿体中的光合色素吸收。

叶绿素是一种具有绿色的色素,主要存在于叶绿体的叶绿体膜中。

除了叶绿素外,还存在着其他的光合色素,如类胡萝卜素(如胡萝卜素和类黄酮素等)。

光合色素能够吸收不同波长的光,将光能转化为化学能。

4.光合作用的光合电位:光合电位是光合作用中的一环节,它是指通过光合色素吸收的光能产生的能量传递过程。

光合电位包括两个部分:光系统Ⅰ和光系统Ⅱ。

光系统Ⅰ位于光合色素的反射中心P700附近,它能将光能转化为能量带负电效应。

光系统Ⅱ位于反射中心P680附近,它可以将光能转化为能量带正电效应。

5.光合作用的电子传递链:光合作用的电子传递链是指光合电位产生的能量传递过程,其中光能转化为化学能。

电子传递链的过程中,光合电位通过叶绿体膜上的电子传递体传递,并经过一系列的反应将电子传递到NADPH。

在电子传递链中,还会产生一些能量来合成ATP,这个过程称为光合磷酸化。

光合作用知识点总结

光合作用知识点总结

光合作用知识点总结光合作用是植物、某些细菌和藻类利用太阳能将二氧化碳和水转化为氧气和葡萄糖的过程。

以下是光合作用的主要知识点总结:1. 光合作用的定义:光合作用是生物体通过光能将无机物质转化为有机物质的过程,同时释放氧气。

2. 光合作用发生的场所:主要在植物的叶绿体中进行。

3. 光合作用的过程:分为光反应和暗反应两个阶段。

- 光反应:在叶绿体的类囊体膜上进行,需要光能,产生ATP和NADPH。

- 暗反应(也称为Calvin循环):在叶绿体的基质中进行,不直接需要光能,利用ATP和NADPH将二氧化碳转化为葡萄糖。

4. 光合作用的关键分子:- 叶绿素:光合作用中捕获光能的主要色素。

- ATP(三磷酸腺苷):细胞能量的通用货币。

- NADPH:一种电子载体,参与暗反应。

5. 光合作用的化学方程式:6CO2 + 6H2O + 光能→ C6H12O6 + 6O26. 光合作用的意义:- 为地球生态系统提供氧气。

- 为生物体提供能量和有机物质。

- 是地球上碳循环和能量流动的基础。

7. 影响光合作用的因素:- 光照强度:光强增加,光合作用速率增加,但达到饱和点后不再增加。

- 二氧化碳浓度:二氧化碳浓度增加,光合作用速率增加,直到达到饱和点。

- 温度:在一定范围内,温度升高,光合作用速率增加,但过高的温度会抑制光合作用。

- 水分:水分是光合作用的必要条件,干旱会影响光合作用的进行。

8. 光合作用的局限性:光合作用受到环境条件的限制,如光照、温度、水分等,这些因素的变化会影响光合作用的效率。

9. 光合作用与全球气候变化的关系:光合作用是自然界中重要的碳汇,通过吸收大气中的二氧化碳,有助于减缓全球气候变化。

10. 光合作用在农业中的应用:通过改良作物的光合作用效率,可以提高作物的产量和抗逆性。

光合作用是自然界中一个复杂而精细的过程,对维持地球生态系统平衡具有至关重要的作用。

了解光合作用的机制和影响因素,有助于我们更好地保护和利用这一自然资源。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是高中生物中非常重要的一个知识点,对于理解生命活动和生态系统的能量流动具有关键意义。

一、光合作用的概念光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。

从物质变化的角度来看,光合作用将无机物(二氧化碳和水)转化为有机物(如葡萄糖等);从能量变化的角度,它将光能转化为化学能,储存在有机物中。

二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。

它具有双层膜结构,内部含有由类囊体堆叠而成的基粒,基粒上分布着与光合作用有关的色素和酶。

叶绿体基质中也含有多种酶,参与光合作用的暗反应过程。

其中,叶绿体中的色素分为两类:叶绿素(包括叶绿素 a 和叶绿素b)和类胡萝卜素(包括胡萝卜素和叶黄素)。

叶绿素主要吸收红光和蓝紫光,类胡萝卜素主要吸收蓝紫光。

这些色素能够吸收光能,为光合作用提供能量基础。

三、光合作用的过程光合作用分为光反应和暗反应两个阶段。

1、光反应光反应发生在类囊体薄膜上,需要光的参与。

条件:光照、光合色素、酶。

物质变化:(1)水的光解:水在光的作用下分解为氧气和H(还原型辅酶Ⅱ)。

(2)ATP 的合成:ADP 和磷酸在酶的作用下,利用光能合成 ATP。

能量变化:光能转化为 ATP 中活跃的化学能。

2、暗反应暗反应发生在叶绿体基质中,有没有光都可以进行。

条件:多种酶。

物质变化:(1)二氧化碳的固定:二氧化碳与五碳化合物结合,生成两个三碳化合物。

(2)三碳化合物的还原:三碳化合物在H和 ATP 的作用下,被还原成有机物(如葡萄糖),同时五碳化合物得以再生。

能量变化:ATP 中活跃的化学能转化为有机物中稳定的化学能。

光反应和暗反应相互依存,光反应为暗反应提供H和 ATP,暗反应为光反应提供 ADP、Pi 和 NADP+(氧化型辅酶Ⅱ)。

四、影响光合作用的因素1、光照强度在一定范围内,光照强度增强,光合作用速率加快;当光照强度达到一定值时,光合作用速率不再增加。

关于光合作用的知识点

关于光合作用的知识点

关于光合作用的知识点1. 光合作用可神奇啦!就好像是大自然的魔法厨房一样,植物就是里面的大厨。

你看,叶子就像是魔法锅,阳光就是那神奇的燃料,而二氧化碳和水经过这个魔法过程,就变成了我们需要的氧气和有机物。

比如,你在森林里呼吸到的新鲜氧气,不就是植物们通过光合作用变出来的嘛!2. 嘿,你知道吗,光合作用可是生命的超级动力源呢!它就好比是一个超级能量站,持续不断地为地球上的生物提供着能量。

想想看啊,那些美丽的花朵、高大的树木,如果没有光合作用,怎么能生长得那么好呢。

就像我们吃的食物,很多不也是靠着植物光合作用积累下来的营养吗!3. 哇塞,光合作用真的太重要啦!它简直就是地球的大救星呀!植物们利用光合作用把二氧化碳吸收掉,这可解决了大问题呢。

这不就像是环保小卫士在努力工作嘛,努力让我们的地球更美好。

如果没有光合作用,那地球上的二氧化碳得多到啥程度呀,难以想象!你说是不是很厉害呢?4. 光合作用啊,那可是植物的生存绝技呀!就好像我们人类有自己的特长一样。

植物靠着它来制造自己需要的东西,多了不起。

比如说小草,虽然看起来小小的,可就是因为有光合作用,它才能顽强地生长啊。

这是不是很让人钦佩呢!5. 哎呀呀,光合作用真的是太有意思啦!它就如同一个神秘的转化机器,把那些看似普通的东西变成了宝贝。

树叶通过光合作用产生的有机物,能让植物茁壮成长,这多神奇呀。

就跟变魔术一样,一下子就有了大变化。

你难道不觉得很奇妙吗?6. 不得不说,光合作用绝对是大自然的一大奇迹呀!它就好像是个无私的奉献者,默默为我们服务着。

没有它,我们的生活可就完全不一样啦。

想想那些没有植物、没有氧气的世界,多可怕呀。

所以说,光合作用真的超级重要,我们可一定要好好珍惜呀!我的观点结论:光合作用真的是非常神奇且至关重要的自然过程,我们应该重视和保护它,让它为我们的地球和生命持续发挥作用。

光合作用必背知识点

光合作用必背知识点

光合作用必背知识点一、光合作用的概念。

1. 光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。

反应式为:6CO_2 + 12H_2O →(光能, 叶绿体) C_6H_12O_6+6O_2 + 6H_2O。

二、光合作用的场所 - 叶绿体。

1. 结构。

- 双层膜结构。

- 内部有许多基粒,基粒由类囊体堆叠而成。

类囊体薄膜上分布着光合色素(叶绿素和类胡萝卜素)和与光反应有关的酶。

- 叶绿体基质中含有与暗反应有关的酶,还有少量的DNA和RNA。

2. 光合色素。

- 叶绿素(叶绿素a和叶绿素b):主要吸收红光和蓝紫光。

叶绿素a呈蓝绿色,叶绿素b呈黄绿色。

- 类胡萝卜素(胡萝卜素和叶黄素):主要吸收蓝紫光。

胡萝卜素呈橙黄色,叶黄素呈黄色。

三、光合作用的过程。

1. 光反应阶段。

- 场所:叶绿体的类囊体薄膜上。

- 条件:光、色素、酶。

- 物质变化。

- 水的光解:2H_2O →(光能) 4[H]+O_2。

- ATP的合成:ADP + Pi+能量 →(酶) ATP(此能量来自光能)。

- 能量变化:光能转变为活跃的化学能(储存在ATP和[H]中)。

2. 暗反应阶段(卡尔文循环)- 场所:叶绿体基质。

- 条件:酶、[H]、ATP、CO_2。

- 物质变化。

- CO_2的固定:CO_2 + C_5 →(酶) 2C_3。

- C_3的还原:2C_3 →([H]、ATP、酶) (CH_2O)+C_5。

- 能量变化:活跃的化学能转变为稳定的化学能(储存在有机物中)。

四、影响光合作用的因素。

1. 光照强度。

- 在一定范围内,光合作用强度随光照强度的增强而增强。

当光照强度达到一定值时,光合作用强度不再随光照强度的增强而增加,此时达到光饱和点。

- 光照强度较低时,植物只进行呼吸作用,随着光照强度增强,光合作用强度与呼吸作用强度相等时的光照强度称为光补偿点。

2. 温度。

- 温度通过影响酶的活性来影响光合作用。

光合作用的生物知识点总结

光合作用的生物知识点总结

光合作用的生物知识点总结一、光合作用的基本过程光合作用是一种复杂的生物化学反应,其基本过程包括光能的吸收、光能的转化、光合色素的参与、光合产物的合成等多个步骤。

1.1 光合作用的发生地点光合作用的主要发生在植物叶绿体的叶绿体内膜系统中的光合膜上,其中主要包括光合色素、载体蛋白和光合酶等。

1.2 光能的吸收光合色素是植物叶绿体内的色素颗粒,其中包括叶绿素a、叶绿素b、类胡萝卜素等光合色素分子。

这些分子能够吸收来自太阳的光能,并将其转化为化学能。

1.3 光能的转化当光合色素吸收到光能后,会激发其中的电子,使得这些电子跃迁至更高的能级。

接着,这些高能电子在光合作用的电子传递链中逐步失去能量,并最终被用来合成光合产物。

1.4 光合产物的合成光合作用最终产生的是ATP和NADPH。

这些物质是植物进行生长发育和代谢活动所需的能量与电子供体。

二、光合作用的过程与途径光合作用的过程及途径主要包括光合作用的两个阶段和不同环境条件下的适应性变化。

2.1 光合作用的两个阶段光合作用可以分为光反应与暗反应两个阶段。

光合作用的光反应阶段是在光下进行的,其中光能被转化为ATP和NADPH。

而暗反应阶段则利用这些能量和电子来合成有机物质。

2.2 光合作用的适应性变化光合作用的进行受到光照、温度、二氧化碳浓度以及水分等多个环境因素的影响。

植物在不同环境条件下,会通过调节叶片的气孔开闭、调节叶绿体和光合酶的产生等途径来适应外界环境的变化。

三、光合作用的生物学意义和应用价值光合作用在生物界中具有重要的生物学意义和应用价值,包括对生物能量转化、资源利用、生态环境以及农业生产等方面的影响。

3.1 生物能量转化光合作用是地球上生物界中最重要的能量来源之一,通过光合作用,植物能够将太阳光能转化为化学能,并利用这些能量来维持生长发育和代谢活动。

3.2 资源利用光合作用参与了植物中的碳水化合物(如葡萄糖、淀粉等)的合成,这些有机物质是植物的主要养分来源,也是人类和其他动物的食物来源。

光合呼吸生物知识点

光合呼吸生物知识点

光合呼吸生物知识点一、光合作用。

(一)概念。

绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。

(二)反应式。

1. 总反应式。

6CO_2+12H_2O →(光能, 叶绿体) C_6H_12O_6+6H_2O + 6O_22. 分步反应式(光反应和暗反应)- 光反应。

- 场所:叶绿体的类囊体薄膜上。

- 反应式:2H_2O →(光能, 叶绿体) 4[H]+O_2;ADP + Pi+能量 →(光能,叶绿体) ATP- 物质变化:水的光解产生[H]和O_2;ADP合成ATP。

- 能量变化:光能转化为ATP中活跃的化学能。

- 暗反应(卡尔文循环)- 场所:叶绿体基质。

- 反应式:CO_2+C_5→(酶, )2C_3;2C_3→(酶, ATP、[H])(CH_2O)+C_5- 物质变化:CO_2的固定(CO_2与C_5结合生成C_3);C_3的还原(C_3在[H]和ATP的作用下生成有机物和C_5)。

- 能量变化:ATP中活跃的化学能转化为有机物中稳定的化学能。

(三)影响光合作用的因素。

1. 光照强度。

- 在一定范围内,光合速率随光照强度的增加而加快。

当光照强度达到一定值时,光合速率不再增加,此时的光照强度称为光饱和点。

- 光照强度低于某一值时,植物只进行呼吸作用,不进行光合作用,这个光照强度称为光补偿点。

2. 温度。

- 温度通过影响酶的活性来影响光合作用。

不同植物光合作用的最适温度不同,一般在25 - 30℃左右。

3. CO_2浓度。

- 在一定范围内,光合速率随CO_2浓度的增加而加快。

当CO_2浓度达到一定值时,光合速率不再增加,此时的CO_2浓度称为CO_2饱和点。

- CO_2浓度低于某一值时,光合速率会明显下降,这个CO_2浓度称为CO_2补偿点。

4. 水分。

- 水是光合作用的原料,同时水分的供应影响气孔的开闭,从而影响CO_2的进入。

当植物缺水时,气孔关闭,CO_2进入减少,光合速率下降。

光合作用知识点总结

光合作用知识点总结

光合作用知识点总结
光合作用是生物界中最为重要的生命过程之一,是植物利用太阳能合成有机物质的过程。

下面将从光合作用的基本过程、植物叶片结构、影响光合作用的因素以及光合作用在生态系统中的作用等方面进行详细的知识点总结。

基本过程
•光反应:光合作用起源于叶绿体内的光反应。

在光反应中,叶绿体内的叶绿体色素吸收光能,产生光合作用所需的能量。

•暗反应:光合作用的暗反应发生在叶绿体基质中,通过卡尔文循环逐步合成有机物。

植物叶片结构
•上表皮:植物叶片的上表皮主要起到覆盖和保护作用。

•下表皮:植物叶片的下表皮上有气孔,有助于气体交换和蒸腾作用的进行。

•叶肉层:叶片的主要组织,含有叶绿体进行光合作用。

影响因素
•光照:光合作用的速率会随着光照的增强而增加,但光强过高或过低都会抑制光合作用的进行。

•温度:适宜的温度有利于光合作用,过高或过低的温度会影响酶的活性,从而影响光合作用的进行。

在生态系统中的作用
•氧气的释放:光合作用过程中会释放氧气,对地球大气氧含量的维持起到至关重要的作用。

•固碳:光合作用可以将二氧化碳转化为有机物,是生态系统中最主要的固碳方式。

•食物链中的位置:植物通过光合作用合成有机物,为生态系统中的其他生物提供能量来源。

综上所述,光合作用是植物生长发育的基础,也是整个生态系统运转的重要过程。

通过深入了解光合作用的基本过程、植物叶片结构、影响因素以及在生态系统中的作用,可以更好地理解生物界中这一重要的生命过程。

高中生物知识点:光合作用

高中生物知识点:光合作用

高中生物知识点:光合作用
1. 光合作用的定义
光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。

它是地球生物圈中最为重要的能量转化过程之一。

2. 光合作用的反应方程式
光合作用的反应方程式如下:
光合作用:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2
该方程式表示,光合作用将光能转化为葡萄糖(C6H12O6)和氧气(O2),同时消耗二氧化碳(CO2)和水(H2O)。

3. 光合作用的过程
光合作用可以分为光能捕捉和光化学反应两个阶段。

光能捕捉阶段
光能捕捉阶段发生在叶绿素分子中的光合色素复合物中。

在这个阶段中,叶绿素分子吸收光能并将其转化为化学能,进而激发电子。

光化学反应阶段
光化学反应阶段发生在叶绿体中的光合体系中。

在这个阶段中,激发的电子经过光合色素分子间的传递,最终用于还原NADP+和
生成ATP。

4. 光合作用的条件
光合作用需要一定的条件才能正常进行:
- 光能:光合作用依赖于阳光提供的光能,因此只能在光照充
足的环境中进行。

- 光合色素:植物细胞内的叶绿素是光合作用的关键色素,它
能够吸收光能并驱动光合作用的进行。

- 二氧化碳和水:光合作用需要二氧化碳和水作为反应物质。

二氧化碳在植物叶片的气孔中进入叶绿体,水则从植物根部吸收,
并通过管道输送到叶绿体中。

高中生物光合作用知识点

高中生物光合作用知识点

高中生物光合作用知识点一、引言光合作用是生物学中的一个核心概念,它是植物、藻类以及某些细菌通过太阳能将二氧化碳和水转化为有机物和氧气的过程。

本文将总结高中生物课程中关于光合作用的关键知识点。

二、光合作用的基本理解1. 光合作用的定义:光合作用是生物体利用太阳光能将无机物质(二氧化碳和水)转化为有机物质(如葡萄糖)并释放氧气的过程。

2. 光合作用的重要性:光合作用是地球上生命存在的基础,它不仅为植物自身提供能量,而且是几乎所有生物能量的来源。

三、光合作用的类型1. 光依赖性反应(光反应):发生在叶绿体的类囊体膜上,依赖光能进行。

2. 光合磷酸化:在光反应中,通过电子传递链产生ATP的过程。

3. 光独立性反应(暗反应):发生在叶绿体的基质中,不依赖光能,通过固定二氧化碳合成有机物。

四、光合作用的过程1. 光反应:- 光系统II(PSII):水分子分解产生氧气、质子和电子。

- 电子传递链:电子通过一系列载体传递,产生ATP和NADPH。

- 光系统I(PSI):利用NADP+和ADP生成NADPH和ATP。

2. 暗反应(Calvin循环):- 二氧化碳的固定:通过RuBisCO酶将二氧化碳与RuBP结合形成3-磷酸甘油酸。

- ATP和NADPH的消耗:用于将3-磷酸甘油酸转化为葡萄糖等有机物。

五、光合作用的效率1. 光合作用效率的影响因素:光照强度、二氧化碳浓度、温度、水分等。

2. 光饱和点:光照强度达到一定水平后,光合作用速率不再增加。

3. 光补偿点:植物进行光合作用与呼吸作用相抵消时的光照强度。

六、光合作用的应用1. 农业生产:通过控制光照、温度和二氧化碳浓度提高作物产量。

2. 生态系统研究:了解不同生态系统中光合作用的变化,评估生态系统的生产力。

3. 气候变化研究:研究植物对气候变化的适应性和反馈机制。

七、结论光合作用是维持地球生态系统平衡的关键过程,对人类生活和生产具有重要意义。

了解光合作用的基本原理和过程,有助于我们更好地利用自然资源,保护生态环境,促进可持续发展。

光合作用知识点总结

光合作用知识点总结

光合作用知识点总结一、光合作用概述光合作用是植物、藻类和某些细菌利用光能将无机物转化为有机物的过程。

这个过程在地球上是生命存在的基础,因为它是能量流和物质循环的关键环节。

二、光合作用的基本原理1. 光依赖性反应:发生在叶绿体的类囊体膜上,需要光能,产生ATP 和NADPH。

2. 光合磷酸化:光能转化为化学能,形成ATP。

3. Calvin循环:不依赖光的暗反应,利用ATP和NADPH将CO2固定成有机物质。

三、光合作用的阶段1. 光反应阶段:- 发光阶段:光子被叶绿素分子吸收,产生激发态叶绿素。

- 电子传递阶段:激发态叶绿素将电子传递给电子受体,形成质子梯度。

- ATP合成阶段:质子通过ATP合酶回到叶绿体基质,带动ADP与磷酸结合形成ATP。

2. 暗反应阶段(Calvin循环):- 固定CO2:CO2与5碳糖醛RuBP结合形成2个3碳磷酸甘油酸(3-PGA)。

- 还原3-PGA:3-PGA利用ATP和NADPH还原成G3P。

- 再生RuBP:部分G3P通过一系列酶促反应再生为RuBP,继续固定CO2。

四、光合作用的影响因素1. 光照强度:光照强度增加,光合作用速率增加,但超过一定强度后速率不再增加。

2. 温度:温度对酶活性有影响,过低或过高都会降低光合作用效率。

3. CO2浓度:CO2浓度增加,光合作用速率增加,直到达到饱和点。

4. 水分:水分不足会导致气孔关闭,影响CO2的进入和O2的释放。

五、光合作用的效率1. 光能利用效率:植物将光能转化为化学能的效率。

2. 生物量产量:单位面积或体积内植物通过光合作用产生的有机物量。

3. 经济系数:植物生长过程中,光合产物分配到经济部位的比例。

六、光合作用的应用1. 农业:通过育种和栽培技术提高作物的光合作用效率,增加产量。

2. 生物能源:利用光合作用原理开发生物能源,如生物柴油和生物乙醇。

3. 环境保护:通过植物光合作用吸收CO2,减少温室气体排放。

植物的光合与呼吸作用知识点总结

植物的光合与呼吸作用知识点总结

植物的光合与呼吸作用知识点总结一、植物的光合作用光合作用是指植物利用光能将二氧化碳和水转化为有机物质(如葡萄糖)和氧气的过程。

光合作用发生在植物的叶绿体中,主要包括光合色素吸收光能、光合电子传递、光合磷酸化和光合碳合成等过程。

1. 光合色素吸收光能:植物的叶绿体中含有多种光合色素,其中最重要的是叶绿素。

叶绿素能够吸收太阳光中的光能,然后将其转化为植物能够利用的化学能。

2. 光合电子传递:光合作用中,光能被光合色素吸收后,通过电子传递链的传递,光能转化为化学能。

在这个过程中,水分子被分解为氢离子和氧气。

3. 光合磷酸化:光合电子传递产生的能量被用于将ADP(腺苷二磷酸)和磷酸转化为ATP(三磷酸腺苷)。

这个过程称为光合磷酸化,它提供了植物合成有机物质所需的能量。

4. 光合碳合成:光合作用的最终产物是有机物质,主要是葡萄糖。

通过光合碳合成,植物将二氧化碳和水转化为葡萄糖。

这个过程需要光合色素、酶以及其他辅酶的参与。

二、植物的呼吸作用呼吸作用是指植物将有机物质分解为二氧化碳和水释放出能量的过程。

植物的呼吸作用有两种形式:细胞呼吸和植物器官呼吸。

1. 细胞呼吸:细胞呼吸是植物的细胞发生的呼吸作用。

它包括三个主要阶段:糖解(将葡萄糖分解为丙酮酸)、线粒体呼吸(将丙酮酸氧化为二氧化碳和水释放出能量)、氧化磷酸化(将释放的能量转化为ATP)。

细胞呼吸过程中产生的能量被用于植物的生长、维持生命等活动。

2. 植物器官呼吸:植物的根、茎、叶等器官也进行呼吸作用。

这种呼吸作用主要是指这些器官中的细胞进行呼吸产生的CO2释放。

通过呼吸,植物器官能够获得所需的能量,同时也释放出二氧化碳。

三、光合与呼吸的关系光合作用和呼吸作用是植物生命活动的两个重要过程。

它们之间存在一定的联系和互补关系。

1. 光合与呼吸的能量转化关系:光合作用吸收太阳能并将其转化为植物能够利用的化学能,提供了呼吸作用所需的能量(ATP)。

同时,呼吸作用中产生的二氧化碳也为光合作用提供原料。

高中生物光合作用知识点(精选5篇)

高中生物光合作用知识点(精选5篇)

高中生物光合作用知识点(精选5篇)学习有如母亲一般慈爱,它用纯洁和温柔的欢乐来哺育孩子,如果向它要求额外的报酬,也许就是罪过。

以下这5篇高中生物光合作用知识点是来自于作者的光合作用的范文范本,欢迎参考阅读。

生物光合作用知识点篇一光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。

(一)光合作用的产物1. 有机物:绿色植物在光照条件下进行光合作用,主要产生淀粉,并可进一步合成其他有机物。

2. 氧气:动植物和人的呼吸及燃料燃烧消耗的氧气,都是光合作用产生的'。

(二)光合作用的原料1. 二氧化碳:在缺少二氧化碳的情况下,植物不能制造出光合作用的产物(淀粉),说明二氧化碳是光合作用的原料。

2. 水:光合作用放出的氧来自参与光合作用的水,这说明水也是光合作用不可缺少的原料。

总结:光合作用,即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素。

生物光合作用知识点篇二1、光合作用概念:绿色植物利用光提供的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。

2、光合作用实质:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧气的过程。

3、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的。

食物来源、氧气来源、能量来源。

4、绿色植物对有机物的利用用来构建之物体;为植物的生命活动提供能量5、呼吸作用的概念:细胞利用氧,将有机物分解成二氧化碳和水,并且将储存在有机物中的能量释放出来,供给生命活动的需要,这个过程叫呼吸作用。

6、呼吸作用意义:呼吸作用释放出来的能量,一部分是植物进行各项生命活动(如:细胞分裂、吸收无机盐、运输有机物等)不可缺少的动力,一部分转变成热散发出去。

总结:光合作用给植物提供能量,让绿色植物生存下来。

生物光合作用知识点

生物光合作用知识点

生物光合作用知识点一、物质参与者物质参与者是光合作用的关键因素,它们可以为光合作用提供能量和原料。

包括大气中的二氧化碳(CO2)和水,来自土壤中的养分如氮、磷、钾、钙、镁和硅,以及营养液中添加的养分。

二、光光是光合作用过程中所需要的一种能量来源,它在光合作用反应中被负责物质能量转化的光合作用器官中扮演着关键作用。

光照强度越大,光合作用产物也就越多。

三、酶酶是发生光合作用的必备物质,它在受光刺激后才能启动光恢复过程,酶将有机物质转化为无机物质,从而得到所需的能量及原料,其中包括无机汞酶、水果酶等特殊的酶。

四、二氧化碳固定二氧化碳固定是指二氧化碳在光合作用中与水反应后形成糖分子,它是光合作用过程中重要的化学反应,它要求光照强度达到一定值。

当光照强度越强、气温升高或湿度升高时,糖分子的形成速率会明显升高,但二氧化碳的摄取速率也会下降。

五、光照代谢光照代谢是指在生物体内由光能转化为其他能量的过程,它包括光捕集(包括叶绿素、花色素)过程和由此而产生的各种光效应。

光合作用的光效应可以被用来产生新物质,如糖分子和其他物质,也可以用来释放能量,控制环境因子和激活极性受体,从而影响植物生长发育和构成气候变化等生物学过程,它也是一种状态控制。

六、氧化还原反应氧化还原反应是指在光合反应中,氧占主导地位,并激活一系列氧化还原反应,其中包括水解、胞质电子转移及醛基糖分解过程。

这些反应被设计为产生有用的能量来支持光合作用反应,它也是一种影响和调节生命过程的关键反应。

七、产物光合作用的产物是植物生物学研究的核心内容,其产物主要有糖分子(即葡萄糖)、植物激素、核酸和胆碱等,他们的合成及分解均伴随着光合作用的反应产生而形成,它们不仅是植物在复杂生理过程中的激活剂,而且也是参与了各种生物过程,如生长发育、机体抗病能力、光响应性和抗逆性遗传变异等等。

初中植物光合作用呼吸作用知识点总结

初中植物光合作用呼吸作用知识点总结

植物光合作用呼吸作用知识点总结一、光合作用的概念及反应式1.光合作用的概念:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物(如淀粉),并且释放出氧的过程,就叫光合作用。

二氧化碳 +水有机物+气2.光合作用的原料、条件、产物、场所① 原料:二氧化碳+水③ 产物:有机物+氧② 条件:光能④场所:叶绿体中二、光合作用的意义:1. 光合作用的意义①构建植物体 ②养育了生物圈中的其他生物2. 制造的有机物为自身提供营养物质,也是动物和人的食物来源3. 有机物中储存的能量,是地球上一切生命所必需的最终能量来源。

4. 产生氧气,吸收二氧化碳,维持生物圈中氧气和二氧化碳的平衡(碳--氧平衡)。

5.其他(1)从细胞水平看:细胞壁—— 纤维素,细胞膜—— 蛋白质和脂质,细胞核—— DNA 。

光叶绿体三、实验:绿叶在光下制造有机物1.为什么要把天竺葵放在黑暗处一昼夜?消耗掉植物原有的淀粉。

2.为什么要用黑纸片把叶片的一部分遮盖起来 ?提供遮光和光照两种环境,形成对照。

3.绿色植物制造的有机物是什么? 淀粉4.见光(实验) 摘取一个叶片放在培养皿中,滴加碘液,观察叶片颜色:变蓝。

5..如何加快酒精溶解叶绿素的速度? 加热能直接加热吗? 不能为什么?6.请把“绿叶在光下制造有机物”的实验步骤排序。

D---C---E---B---A---F 。

A.将叶片放在酒精中,隔水加热(水浴加热)B.摘取叶片C.设计对照实验并做遮光处理D.在黑暗处放置一昼夜E.移到阳光下照射几小时F.冲洗叶片,滴加碘液注意:①酒精易燃,不可直接在酒精灯上加热;不可用燃着的酒精灯去给另一个酒精灯点火。

②加热时应用酒精灯的外焰;熄灭酒精灯时应用灯帽盖灭,然后再将灯帽提起一下。

③酒精灯不用时应及时熄灭,盖好灯帽,以免酒精挥发。

7.实验说明题(1) 叶片见光部分遇碘液变蓝,说明叶片见光部分产生什么? 淀粉,这说明了(2) 叶片遮光部分遇到碘液不变色,说明什么? 无淀粉,说明什么是光合作用(3)银边天竺葵叶片银边部分遇碘液变成蓝色了吗? 不变蓝,为什么? 无叶绿四、绿色植物与生物圈中的碳—氧平衡2.光合作用在农业生产上的应用:①增加光照强度,延长光照时间时间,合理密植。

高中生物光合作用知识点总结

高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是高中生物中非常重要的一个知识点,它是地球上几乎所有生命存在和发展的基础。

接下来,让我们系统地梳理一下光合作用的相关内容。

一、光合作用的概念光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。

简单来说,就是植物把无机物变成有机物,同时把光能转化为化学能并储存起来。

二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。

它具有双层膜结构,内部含有由类囊体堆叠而成的基粒,基粒上分布着与光合作用有关的色素和酶。

叶绿体基质中也含有许多与光合作用有关的酶。

三、光合作用的过程光合作用包括光反应和暗反应两个阶段。

1、光反应(1)场所:类囊体薄膜上。

(2)条件:光照、色素、酶。

(3)物质变化:水的光解:水分子在光的作用下分解成氧和氢离子(H⁺)。

ATP 的合成:ADP 和磷酸在酶的作用下结合生成 ATP。

(4)能量变化:光能转化为活跃的化学能(ATP 和NADPH 中)。

2、暗反应(1)场所:叶绿体基质。

(2)条件:多种酶参与。

(3)物质变化:二氧化碳的固定:二氧化碳与五碳化合物结合生成两个三碳化合物。

三碳化合物的还原:三碳化合物在酶的作用下,接受 ATP 释放的能量并且被 NADPH 还原,经过一系列变化,形成糖类等有机物。

(4)能量变化:ATP 中活跃的化学能转化为有机物中稳定的化学能。

光反应为暗反应提供了 ATP 和 NADPH,暗反应为光反应提供了ADP、Pi 和 NADP⁺,二者相互依存,共同完成光合作用的过程。

四、影响光合作用的因素1、光照强度在一定范围内,光照强度增强,光合作用速率加快;当光照强度达到一定值后,光合作用速率不再增加。

2、二氧化碳浓度二氧化碳是光合作用的原料之一。

在一定范围内,增加二氧化碳浓度可以提高光合作用速率。

3、温度温度通过影响酶的活性来影响光合作用。

一般来说,在最适温度之前,随着温度的升高,光合作用速率加快;超过最适温度,光合作用速率下降。

农业应用物理学知识点总结

农业应用物理学知识点总结

农业应用物理学知识点总结一、光合作用及光合作用测定1. 光合作用的概念光合作用是植物利用光能将二氧化碳和水转化为有机物质的过程,是维持植物生命活动的重要能源来源。

光合作用的发生需要光能、叶绿素和二氧化碳等元素的参与。

2. 光合作用的原理光合作用是一种化学反应,其原理是在叶绿体内,叶绿素吸收光能后,激发电子从低能级跃迁到高能级,再释放能量进行化学反应。

通过这一过程,植物能够将光能转化为化学能,并最终形成有机物质。

3. 光合作用的测定方法光合作用的测定方法有多种,常用的包括测定氧气释放量、二氧化碳吸收量、叶绿素含量等。

这些方法可以帮助农民和科研人员了解植物的生长状态,指导农业生产。

二、光照对植物生长的影响1. 光照对植物生长的影响光照是植物生长发育的重要环境因素,它不仅影响植物的光合作用,还会对植物的生长速度、营养合成、花期和结果等产生影响。

2. 光周期控制不同植物对光照的要求不同,有些植物需要长时间的光照才能开花结果,有些植物则需要较短的光照并具有一定的光周期要求。

了解植物的光周期性对于合理安排植物的生长周期和产量具有重要意义。

3. 光照强度的调节光照强度对植物的生长和光合作用效率有显著影响,因此要根据不同植物对光照强度的要求进行调节,以满足植物的生长需求。

三、温度对植物生长的影响1. 温度的影响温度对植物生长有明显的影响,温度过高或过低都会导致植物生长受阻,甚至引起植物生理病害。

因此,控制温度对植物生长是非常重要的。

2. 温室环境控制温室是一种用于培育植物的人工环境,对温室内温度的控制至关重要,既要防止温度过高导致植物生长不良,又要避免温度过低影响植物的生长。

3. 温度调节通过加热、通风、遮荫等方法,可以对植物生长环境中的温度进行调节,满足植物的生长要求。

四、土壤物理学在农业生产中的应用1. 土壤物理学的概念土壤物理学研究土壤中的物理性质,如土壤颗粒的大小、结构、孔隙度、密度等,它与土壤的保水、透气、保肥性能紧密相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光合作用和呼吸作用考点一光合作用与呼吸作用
1.光合作用和细胞呼吸关系图解
图中①~⑩依次为O
2、叶绿体、[H]、C
5
、C
6
H
12
O
6
、O
2

C 2H
5
OH、乳酸、细胞质基质、ATP。

3、光照和CO
2
浓度变化对光合作用物质含量变化的影响
考点二影响光合作用的环境因素及其应用
1.影响光合作用的环境因素
(1)光照强度
②应用:阴生植物的光补偿点和光饱和点都较阳生植物低,如图中虚线所示。

间作套种农作物,可合理利用光能;欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量。

(2)CO2浓度
①曲线分析:图1中A点表示CO
2
补偿点,即光合速率等于呼吸速
率时的CO
2浓度,图2中A'点表示进行光合作用所需CO
2
的最低浓度。

B和
B'点都表示CO
2
饱和点。

②应用:在农业生产上可以通过“正其行,通其风”,增施农家肥等增大CO
2
浓度,提高光合速率。

①温度主要通过影响与光合作用有关的酶的活性而影响光合速率。

②曲线分析:低温使酶的活性降低,导致植物的光合速率降低;在一定
范围内随着温度的升高,酶活性升高,进而导致光合速率增大;温度过高会使酶活性降低,导致植物光合速率减小。

③应用:冬季,温室栽培可适当提高温度;晚上可适当降低温度,以降低细胞呼吸消耗有机物。

(4)矿质元素
①曲线分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合速率,但当超过一定浓度后,会因土壤溶液浓度过高使植物吸水困难,而导致光合速率下降。

②应用:在农业生产上,根据植物的需肥规律,合理施肥,可以提高作物的光合作用。

(5)温度、光照强度、CO
2
浓度综合因素对光合速率的影响
关键点含义:P点时,限制光合速率的因素应为横坐标所表示的因子,随该
因子的不断加强,光合速率不断提高。

当到Q点时,横坐标所表示的因子,不再是影响光合速率的因素,要想提高光合速率,可采取适当提高其他因子的措施。

2.自然环境及密封容器中植物光合作用曲线分析
(1)图1中各点含义及形成原因分析
①A点:凌晨3时左右,温度降低,细胞呼吸减弱,CO
释放减少。

2
②B点:上午5时左右,太阳出来,开始进行光合作用。

③BC段:光合作用<细胞呼吸。

④C点:上午7时左右,光合作用=细胞呼吸。

⑤CE段:光合作用>细胞呼吸。

⑥D点:温度过高,部分气孔关闭,出现“光合午休”现象。

⑦E点:下午6时左右,光合作用=细胞呼吸。

⑧EF段:光合作用< 细胞呼吸。

⑨FG段:太阳落山,停止光合作用,只进行细胞呼吸。

(2)图2中各点含义及形成原因分析
①AB段:无光照,植物只进行细胞呼吸。

②BC段:温度降低,细胞呼吸减弱。

③CD段:5时左右,开始进行光合作用,但光合作用强度<细胞呼吸强度。

④D点:光合作用强度=细胞呼吸强度。

⑤DH段:随着光照不断增强,光合作用强度>细胞呼吸强度,其中FG段表示“光合午休”现象。

⑥H点:光合作用强度=细胞呼吸强度。

⑦HI段:光照继续减弱,光合作用强度<细胞呼吸强度,直至光合作用完全停止。

(3)图2中植物生长与否的判断
①I点低于A点,说明一昼夜,密闭容器中CO
2
浓度减小,即光合作用>细胞呼吸,植物生长。

②若I点高于A点,说明光合作用<细胞呼吸,植物体内有机物总量减少,植物不能生长。

③若I点等于A点,说明光合作用=细胞呼吸,植物体内有机物总量不变,植物不生长。

考点三光合作用与细胞呼吸的关系
1.净光合作用速率、呼吸速率与真正光合作用速率的表示方法
(1)净(表观)光合速率:绿色植物组织在有光的条件下,光合作用与细胞呼吸同时进行时,
测得的实验容器中O
2的增加量或CO
2
的减少量。

(2)呼吸速率:绿色植物组织在黑暗条件下,测得的实验容器中O
2的减少量或CO
2
的增加量。

(3)真正光合速率=净光合速率+呼吸速率。

表示方法
①光合作用产生的O
2量=实测的O
2
释放量+细胞呼吸消耗的O
2

②光合作用固定的CO
2量=实测的CO
2
吸收量+细胞呼吸释放的CO
2

③光合作用产生的葡萄糖量=葡萄糖的积累量(增重部分)+细胞呼吸消耗的葡萄糖量
(5)净光合作用速率与真正光合作用速率的关系

绿色组织在黑暗条件下或非绿色组织测得的数值为呼吸速率(A点)。

②绿色组织在有光条件下,光合作用与
细胞呼吸同时进行,测得的数据为净光合速率。

2.影响净光合速率的因素
所有能影响呼吸速率和光合速率的因素都可以影响净光合速率,如光照强
度、CO
2浓度、O
2
浓度、温度等。

3.净光合速率与植物生长
(1)当净光合速率>0时,植物因积累有机物而生长。

(2)当净光合速率=0时,植物不能生长。

(3)当净光合速率<0时,植物不能生长,长时间
处于此种状态,植物将死亡。

4.净光合速率测定方法的图示及其解读
(1)NaHCO
3溶液作用:保证容器内CO
2
浓度的恒定,满足绿色植物光
合作用的需求。

(2)植物光合速率指标:植物光合作用释放氧气,使容器内气体压强增大,毛细管内的水滴右移。

单位时间内水滴右移的体积就能表示净光合速率。

(3)条件:整个装置必须放在光下。

5.植物光合速率与呼吸速率的实验测定常用方法
(1)装置中溶液的作用:在测细胞呼吸速率时NaOH溶液可吸收容器中的
CO
2;在测净光合速率时NaHCO
3
溶液可提供CO
2
,保证了容器内CO
2
浓度
的恒定。

(2)测定原理
①在黑暗条件下甲装置中的植物只进行细胞呼吸,由于NaOH溶液吸收了细胞呼吸产生的CO
2
,所以单位时间内红色液滴左移的距离表示植物的
O
2
吸收速率,可代表呼吸速率。

②在光照条件下乙装置中的植物进行光合作用和细胞呼吸,由于
NaHCO
3溶液保证了容器内CO
2
浓度的恒定,所以单位时间内红色液滴右移
的距离表示植物的O
2
释放速率,可代表净光合速率。

③真光合速率=净光合速率+呼吸速率。

(3)测定方法
①将植物(甲装置)置于黑暗中一定时间,记录红色液滴移动的距离,计算呼吸速率。

②将同一植物(乙装置)置于光下一定时间,记录红色液滴移动的距离,计算净光合速率。

③根据呼吸速率和净光合速率可计算得到真光合速率。

(4)物理误差的校正:为防止气压、温度等物理因素所引起的误差,应设置对照实验,即用死亡的绿色植物分别进行上述实验,根据红色液滴的移动距离对原实验结果进行校正。

3、光合作用、细胞呼吸曲线中关键点的移动
(1) CO 2(或光)补偿点和饱和点的移动方向:一般有左移、右移之分,
其中CO 2(或光)补偿点(B )是曲线与横轴的交点,CO 2(或光)饱和点(C )则是达到最大光合速率对应的最小CO 2浓度(或最弱光照强度),位于横轴上。

①呼吸速率增加,其他条件不变时,CO2(或光)补偿点B 应右移,反之左移。

②呼吸速率基本不变,相关条件的改变使光合速率下降时,CO2(或光)补偿点B 应右移,反之左移。

③阴生植物与阳生植物相比,CO2(或光)补偿点和饱和点都应向左移动。

(2)曲线上其他点(补偿点之外的点)的移动方向:在外界条件的影响下,通过分析光合速率和呼吸速率的变化,进而对曲线上某一点的纵、横坐标进行具体分析,确定横坐标左移或右移,纵坐标上移或下移,最后得到该点的移动方向。

①呼吸速率增加,其他条件不变时,曲线上的A 点下移,其他点向左下方移动,反之A 点上移,其他点向右上方移动。

②呼吸速率基本不变,相关条件的改变使光合速率下降时,曲线上的A 点不动,其他点向左下方移动,反之向右上方移动。

考点四叶绿素的提取与分离
以上知识点自己再分析一下,想明白了 叶绿素的实验看书上,色素条带自己画书上,含
量也要体现出来。

相关文档
最新文档