第六章-虚拟解释变量模型(蓝色)PPT课件

合集下载

第六章(09虚拟变量)

第六章(09虚拟变量)
研究生 α2 -α1 α1 本科 大专以下
工龄
上图直观地描述了三类年薪函数的差异情况,通过检验、 α1 、α2的显著性,可以判断学历层次对职员的年薪是否 有显著影响。
2、多个因素各两种类型 如果有m个定性因素,且每个因素各有两个不同的属性 类型,则引入 m 个虚拟变量。 例如,研究居民住房消费函数时,考虑到城乡的差异以 及不同收入层次的影响,将消费函数取成: Yi=a+bxi+ α1D1i+ α2D2i +μi 其中y , x分别是居民住房消费支出和可支配收入,虚拟 变量 1 农村居民 1 高收入家庭
其他 其他 而将年薪模型取成(假设以加法方式引入): Yi=a+bxi+ α1D1i+ α2D2i +μi
1 D1 0
本科
1 D2 0
研究生
其等价于:
Yi=a+bxi+ μi Yi=(a+α1)+ bxi+μi Yi=(a+α2)+ bxi+μi
年薪
大专以下(D1=D2=0) 本科(D1=1,D2=0) 研究生(D1=0,D2=1)
1 D 0
政策紧缩 政策宽松
1 D 0
本科以上学历 本科以下学历
一般地,在虚拟变量的设置中: 基础类型、肯定类型取值为1; 比较类型,否定类型取值为0。 0和1只是符号而已,不代表高低意义。 变量的划分应遵循穷举与互斥原则。
二、作用:
1、可以描述和测量定性因素的影响。
这是计量经济学研究的重点。
D1 0
城镇居民
D2 0
低收入家庭
这样可以反映各类居民家庭的住房消费情况:
城市低收入家庭

金融计量经济第五讲虚拟变量模型和Probit、Logit模型

金融计量经济第五讲虚拟变量模型和Probit、Logit模型
精品课件
原始模型:
YX (5.8)
• 其中Y为观测值取1和0的虚拟被解释变量,X为 解释变量。
• 模型的样本形式: yi Xii
(5.9)
• 因为E(i)0
,E所(y以i)Xi
• 令: p i P ( y i 1 ) 1 p i P ( y i 0 )
• 于是有: E ( y i) 1 P ( y i 1 ) 0 P ( y i 0 ) p i
其它季度
1, 三季度
D3
0,
其它季度
• 小心“虚拟变量陷阱”!
精品课件
三、虚拟变量的应用
• 1、在常数项引入虚拟变量,改变截距。
y i0D 1 x 1 i kx k iu i (5.1)
• 对上式作OLS,得到参数估计值和回归模型:
y ˆiˆ0ˆD ˆ1 x 1 i ˆkx ki(5.2)
金融计量经济第五讲
虚拟变量模型和Probit、Logit模 型
精品课件
第一节 虚拟变量的一般应用
一、虚拟变量及其作用 1.定义:取值为0和1的人工变量,表示非量化
(定性)因素对模型的影响,一般用符号D表 示。例如:政策因素、地区因素、心理因素、 季节因素等。 2.作用: ⑴描述和测量定性因素的影响; ⑵正确反映经济变量之间的相互关系,提高模型 的精度; ⑶便于处理异常数据。
yˆt ˆ ˆxt yˆt ˆ ˆxt ˆ2 yˆt ˆ ˆxt ˆ3 yˆt ˆ ˆxt ˆ4
精品课件
一季度 二季度 三季度 四季度
例题:美国制造业的利润—销售额行为
• 模型:利 t 1 润 2 D 2 t 3 D 3 t 4 D 4 t ( 销 ) t u t售
0.503543 0.500354 1.13E+03 1.99E+09 -13241.74 1.648066

虚拟变量模型.最全优质PPT

虚拟变量模型.最全优质PPT
E ( Y i|X i,D 2 i 0 ,D 3 i 1 ) (1 3 ) X i
设 Y i 为消费支出;X i 为收入;D i 为虚拟变量, 即
1,城镇居民
Di 0,农村居民 i1,2,3, ,n
上述表达式的意义在于,在收入不变的条件下,研 究城镇居民和农村居民对消Y i 费的不同影响,即判断 城乡居民在消费上是否存在显著性差异。 农村居民年平均消费:
E (Y i,|X i,D i0)12X i
1.2 二态变量的作用
引入虚拟变量的作用,在于将定性因素或属性因素 对因变量的影响数量化。 1.可以描述和测量定性(或属性)因素的影响。 2.能够正确反映经济变量之间的相互关系,提高模 型的精度;例如在分段回归中的应用。 3.便于处理异常数据。由于某些突发事件的存在, 如战争、自然灾害,使原本比较稳定的经济关系发 生一段时间的混乱,此时可以利用虚拟变量。
设变量D表示某种属性,该属性有两种类型,即当 属性存在时D取值为1;当属性不存在时D取值为0。 记为
1 具有某种属性 D0 不具有该属性
该变量D即为二态变量。二态变量又称虚拟变量、 名义变量或哑变量,是用以反映质的属性的一个人 工变量,是量化了的质变量,通常取值为0或1, 一般“1”代表某一属性存在,“0”代表某一属 性不存在, 即“是”或“否”,“男”或“女”等。
对上述模型进行回归,利用样本统计量对假 设作出判断(t检验)。只有一个定性解释变 量往往可用于检验一个属性因素对被解释变 量的影响是否显著性存在。
2.1.2 模型中有一个定量解释变量和一
个定性解释变量
设模型形式为
Y i12Xi3D iui
式中,X i 为定量变量,D i 为具有两个属性类型 的定性变量。
设模型形式为

第六章计量经济学

第六章计量经济学

第六章 虚拟变量的回归模型第一部分 学习目标和要求本章主要介绍虚拟变量的基本概念及其应用。

需要掌握并理解以下内容:(1) 虚拟变量的基本概念、虚拟变量分别作为解释变量和被解释变量的情形、虚拟变量回归模型的类型和解释变量个数选取规则; (2) 定量变量与不同数量定性变量(一对一、一对多和多对多)虚拟变量模型; (3) 应用虚拟变量改变回归直线的截距或斜率; (4) 分段线性回归;(5) 应用虚拟变量检验回归模型的结构稳定性、传统判别结构稳定性的方法及存在的缺陷、虚拟变量法比较两个回归方程的结构方法。

第二部分 练习题一、解释下列概念:1.虚拟变量2.方差分析模型(ANOV A ) 3.协方差模型(ANOCV A ) 4.基底5.级差截距系数 6.虚拟变量陷阱二、简要回答下列问题:1.虚拟变量在线性回归模型中的作用是什么?举例说明。

2.回归模型中虚拟变量个数的选取原则是什么?为什么?3.如果现在有月度数据,在对下面的假设进行检验时,你将引入几个虚拟变量? A) 一年中的每月均呈现季节性波动趋势;B) 只有双数月份呈现季节性波动趋势。

4.如果现在让你着手检验上海和深圳两个股票市场在过去5年内的收益率是否有显著差异,如何使用虚拟变量进行?三、考虑如下模型:12i i i Y D u ββ=++其中,i D 对前20个观察值取0,对后30个观察值取1。

已知2()300i Var u =。

(1) 如何解释1β和2β? (2) 这两组的均值分别是多少?(3) 已知12()15Cov ββ∧∧+=-。

如何计算12()ββ∧∧+的方差?四、考虑如下模型:12i i i i Y D X u ααβ=+++ 其中Y 代表一位大学教授的年薪; X 为从教年限; D 为性别虚拟变量。

考虑定义虚拟变量的三种方式:(1)D 对男性取值1,对女性取值0; (2)D 对女性取值1,对男性取值2; (3)D 对女性取值1,对男性取值-1;对每种虚拟变量定义解释上述回归模型。

《虚拟解释变量模型》课件

《虚拟解释变量模型》课件

残差检验
对模型的残差进行检验,以评估模型的拟合效果和误差项的正态 性。
诊断检验
进行诊断检验,以检查模型是否存在异常值、自相关、异方差性等 问题。
模型评估
使用统计量(如R方、调整R方、F统计量等)对模型进行评估,以 确定模型的拟合效果和预测能力。
04
虚拟解释变量模型的应用
在经济领域的应用
预测经济趋势
地服务于各学科的发展。
未来发展方向
01
集成其他统计方法
未来研究可以探索如何将虚拟解释变 量模型与其他统计方法进行集成,以 实现优势互补,提高模型的预测和解 释能力。
02
结合机器学习方法
随着机器学习技术的发展,未来研究 可以尝试将虚拟解释变量模型与机器 学习方法相结合,以实现更高效和准 确的变量选择和预测。
在其他领域的应用
环境监测
虚拟解释变量模型可以用于环境 监测,分析环境变化趋势和影响 因素,为环境保护提供依据。
健康研究
虚拟解释变量模型可以用于健康 研究,分析健康问题的影响因素 和预防措施的有效性。
农业研究
虚拟解释变量模型可以用于农业 研究,分析气候、土壤等因素对 农作物产展与展望
引入虚拟变量的目的
在回归分析中,当自变量为分类变量 时,为了准确估计回归系数,通常需 要将分类变量转换为虚拟变量。
虚拟解释变量模型的基本原理
原理概述
虚拟解释变量模型是一种回归分析方法,通过引入虚拟变量来解释分类自变量对因变量的影响。通过设置一系列 二元虚拟变量,可以估计每个类别的效应。
虚拟变量的设定
意义
通过引入虚拟变量,该模型能够更好地捕捉分类变量的经济含义,为经济、金融 等领域的研究提供更为准确和可靠的模型基础。此外,该模型的应用范围广泛, 可以适用于各种领域的数据分析,具有重要的理论和实践意义。

第六章 虚拟变量回归模型

第六章 虚拟变量回归模型

ˆ 3176 Y .83 503.17Di i se ( 233.04) (329.57) t (13.63) ( 1.53) r 2 0.189
以上回归结果中,截距的估计值恰好等于男性 食品支出的平均值,而2674恰好等于女性的平 均值,所以虚拟变量回归式是用来对两组均值 是否不同进行判断的工具。 虚拟变量回归式中,取0的一类被称为基准类、 基础类或者参照类。 3.为什么不引入两个虚拟变量? 对模型(1)如果设置两个虚拟变量,则存在 完全共线性,无法估计。所以,如果定性变量 有m种分类,则只需引入m-1个虚拟变量。
B2 代表了东北和中 B1 代表了南部地区的平均接受率, 所以, 北部地区与南部地区的差异,B3 代表了西部地区与南部地区 的差异。
2.模型的估计与假设检验
包含多分定型变量模型的估计和假设检验与以前没有什么 不同。例如,研究生接受率一例,利用Eviews回归得到:
其回归方程为:
Accepi 44.54 10.68D2i 12.50 D3i
E(Yi | Di 0) B1
E(Yi | Di 1) B1 B2
B2 由以上两式可以看出,B1 表示男性平均食品支出, 表示女性平均食品支出与男性的差异。B1 B2 表示 女性平均食品支出。由此,B2 称为差别截距系数。 通过以上的分析也可知,虚拟变量系数的含义与定量 变量系数的含义有很大不同。它表示两组某个变量均 值的差距,而不是变化量的意思。 2.ANOVA模型的估计与假设检验 ANOVA模型的估计与假设检验同定量变量模型没有差 异。比如,对男女食品消费支出一例(例:6-1)进行 估计可得到:
t (14.38) P (0.00) ( 2.67) (0.010) ( 2.25) (0.028)

计量经济学(共33张PPT)

计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在

《虚拟变量模型 》课件

《虚拟变量模型 》课件

业类型的效应,可以使用虚拟变量模型。理分类变量对连续结果的影响,能够同时分析多个分类变量的效应,有助于更好地理解数据之 间的关系。
缺点
当分类变量类别过多时,会导致虚拟变量的数量增加,从而增加模型的复杂性和计算负担。此外,虚 拟变量模型对于非线性关系的处理能力有限,可能无法准确捕捉数据之间的关系。
虚拟变量模型
目录
• 虚拟变量模型概述 • 虚拟变量模型的建立 • 虚拟变量模型的参数估计与检验 • 虚拟变量模型的应用案例 • 虚拟变量模型的局限性及未来研究方向 • 结论
01
虚拟变量模型概述
定义与特点
定义
虚拟变量模型是一种统计学方法,用于处理分类变量对连续结果的影响。它通过引入一系列二进制(或多元)虚 拟变量来代表分类变量的不同类别。
详细描述
通过引入虚拟变量,研究者可以控制和比较不同类别消费者之间的差异,例如 不同年龄、性别、收入水平的消费者在产品选择、品牌忠诚度和价格敏感度等 方面的表现。
案例二:市场细分研究
总结词
虚拟变量模型在市场细分研究中起到关 键作用,帮助企业了解不同客户群体的 需求和行为特征,从而制定更精准的市 场策略。
确定虚拟变量的数量
根据分类变量的数量,确定需要创建的虚拟变量的数量。
命名虚拟变量
为每个虚拟变量选择一个有意义的名称,以便在模型中使用。
构建虚拟变量模型
确定模型的形式
根据研究假设和问题,选择适合的模型形式 ,如线性回归、逻辑回归等。
引入虚拟变量
将选定的虚拟变量引入到模型中,并根据模 型的要求设置相应的参数。
特点
虚拟变量模型能够揭示分类变量对连续结果的影响,同时能够处理多个分类变量对结果的影响。它通过引入虚拟 变量来控制分类变量的效应,从而更好地理解数据之间的关系。

计量经济学第二版第8章-虚拟变量ppt课件

计量经济学第二版第8章-虚拟变量ppt课件

表1 我国各地区城乡居民收入 单位:元、人
地区 城镇居民
农村居民
人均可支配收入
人均纯收入
北 京 26738.48
11668.59
天 津 21402.01
8687.56
河 北 14718.25
5149.67
山 西 13996.55
4244.10
内蒙古 15849.19
4937.80
辽 宁 15761.38
➢ 了解线性概率模型、Logit模型和Probit模型的基 本思想和估计方法。
精品课件
引例:男女大学生的消费差异
在校大学生的消费行为越来越受到社会的关 注,学生家长也很关心自己的子女上大学的 花费问题。由共青团、全国学联共同发布的 《2004中国大学生消费与生活形态研究报告》 显示,当代大学生在消费结构方面呈现多元 化趋势。大学生除了日常生活费开支以外, 还有人际交往、网络通信、书报、衣着类、 化妆品类、电脑类、旅游类、食品类、学习 用品类、各类考证类等多重消费。
Yi=(a+α2)+ bxi+εi 研究生(D1=0,D2=1)
三类年薪函数的差异情况如下图所示:
上图直观地描述了三类 年薪函数的差异情况, 通过检验、 α1 、α2的 显著性,可以判断学历 层次对职员的年薪是否 有显著影响。
年薪
α1
精品课件
α2 -α1
研究生 本科 大专以下
工龄
虚拟变量数量的设置规则
4478.35
四 川 13839.40
4462.05
贵 州 12862.53
3005.41
云 南 14423.93
3369.34
西 藏 13544.41
3531.72

虚拟变量回归模型课件.ppt

虚拟变量回归模型课件.ppt
第7章 单方程回归模型的几个专门问题
7.1 虚拟变量
7.1.1 虚拟变量的概念及作用
1.虚拟变量的内涵 在计量经济学中,我们把反映定性(或属性)因素变化,取值为0和1的人工变量称为 虚拟变量(Dummy Variable),或称为哑变量、虚设变量、属性变量、双值变量、类型变量、 定性变量、二元型变量、名义变量等,习惯上用字母D表示。例如
第2页,共32页。
虚拟变量
为什么要引入“虚拟变量” ?? 许多经济变量是可以定量度量的或者说是可以直接观测的
如商品需求量、价格、收入、产量等
但是也有一些影响经济变量的因素无法定量度量或者说无法直接观测
如职业、性别对收入的影响,战争、自然灾害对GDP的影响,季节 对某些产品(如冷饮)销售的影响等。
第3页,共32页。
第29页,共32页。
临界指标的虚拟变量的引入
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
第30页,共32页。
第31页,共32页。
当截距与斜率发生变化时,则需要同时引入加法与乘 法形式的虚拟变量。
OLS法得到该模型的回归方程为
则两时期进口消费品函数分别为:
当t<t*=1978年, Dt = 0
•女职工本科以上学历的平均薪金: E(Yt | Xt , D1 = 0, D2 = 1) = (b 0 + b3 ) + b1 Xt
•男职工本科以上学历的平均薪金:
E(Yt | Xt , D1 = 1, D2 = 1) = (b0 + b 2 + b3 ) + b1 Xt
第23页,共32页。
2、乘法方式
第8页,共32页。
这种“量化”通常是通过引入“虚拟变量”来完成的。根据这些

虚拟变量与面板数据回归模型

虚拟变量与面板数据回归模型
E Yi | Xi , Di 1 1 2 1 2 Xi
• 农村家庭平均消费支出:
E Yi | Xi , Di 0 1 1 Xi
式中 2 和 2 分别表示城镇居民家庭不农村居民家庭的 消费函数在戔距和斜率上的差异。 2 称为级差斜率系 数。
性发量有 m个类别,则仅引入m-1 个虚拟发量。但如果 回归模型中丌含戔距项, 则m种特征需引入m个虚拟发 量。 如果我们丌遵从这一觃则,则有落入虚拟发量陷 阱乊虞。 •
《经济计量学》高等院校统计学精品教材 2014
9
第一节 虚拟解释变量回归模型
• 1、虚拟解释变量回归模型的类型 • (2) 以“0”和“1”为叏值的虚拟发量所反映的内
• 在经济关系中常有这样的现象:当解释发量X的值达到
某一门槛值 X 乊前,不被解释发量Y 存在某种线性 关系;当达到 X 乊后,不被解释发量Y 的关系就会収 生发化。此时,如果门槛值 X 已知,我们就可以用
虚拟发量来估计每段的斜率,这就是所谓的分段线性 回归。

《经济计量学》高等院校统计学精品教材 2014
21
第一节 虚拟解释变量回归模型
• 2、虚拟解释变量回归模型的应用 • 设某公司对其销售人员在销售额的基础上按如下斱式
支付佣金:在销售额达到目标戒门槛水平 X 前采叏 一种佣金结构,超过水平 X 后又是另一种佣金结构。
这里把影响销售佣金的其他因素由随机干扰项代表。 •
《经济计量学》高等院校统计学精品教材 2014
Yi 1 2 Di2 3Di3 Xi ui • 其中 Yi =大学教授薪金; X i =教龄;

1 男
D2 0 女
1 白色 D3 0 其他

最新§5.1-虚拟变量模型PPT课件

最新§5.1-虚拟变量模型PPT课件

年 薪 Y
2 0
男 职 工 女 职 工
工 龄 X
又例:在横截面数据基础上,考虑个人保健支出 对个人收入和教育水平的回归。
教育水平考虑三个层次:高中以下, 高中, 大学及其以上
这时需要引入两个虚拟变量:
1 高中 1 大学及
D 1 0 其他 D 2 0
其他
模型可设定如下:
Y i 0 1 X i 2 D 1 3 D 2 i
当截距与斜率发生变化时,则需要同时引入加 法与乘法形式的虚拟变量。
• 例5.1.1,考察1990年前后的中国居民的总储蓄-收 入关系是否已发生变化。
表5.1.1中给出了中国1979~2001年以城乡储蓄存 款余额代表的居民储蓄以及以GNP代表的居民收入 的数据。
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
假定3>2,其几何意义:
大 学 教 育
保 健
高 中 教 育
支 出
低 于 中 学 教 育
收 入
• 还可将多个虚拟变量引入模型中以考察多种“定 性”因素的影响。
如在上述职工薪金的例中,再引入代表学历的虚拟 变量D2:
1
D2
0
本科及以上学历 本科以下学历
职工薪金的回归模型可设计为:
Y i 0 1 X i 2 D 1 3 D 2 i
• 为了在模型中能够反映这些因素的影响,并提高 模型的精度,需要将它们“量化”,
几何意义:
• 假定2>0,则两个函数有相同的斜率,但有不同 的截距。意即,男女职工平均薪金对教龄的变化 率是一样的,但两者的平均薪金水平相差2。
• 可以通过传统的回归检验,对2的统计显著性进 行检验,以判断企业男女职工的平均薪金水平是 否有显著差异。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-
11
一 、截距变动模型和斜率变动模型
(一)包含一个虚拟变量的截距变动模型 假设只有一个定性因素影响被解释变量
的变化,而且这个因素仅有两种特征,这时 候只需要引入一个虚拟变量。
-
12
【例8.1】假设有一个包括正常年份和非 正常年份(亚洲金融危机或SARS的影响) 居民消费的样本,并打算用这些数据估计 消费函数。由于在正常年份和非正常年份 居民在消费水平上存在明显差异,所以一 些外界的影响是一个重要的解释变量。
-
20
模型中的系数β0 为基础类型的截 距项,称为公共截距项;系数β1 称
为差别截距系数,指的是 D 取 1 时截 距系数和基础类型的截距系数的差异。
-
21
3.如果一个回归模型有截距项,而 且这个质的因素又有两种特征,也就是 将其分两类,则我们只需要引入一个虚 拟变量。如我们的例8.1所示。如果一个 回归方程有截距项,只有一个质的因素
(1)对有截距项的情况,我们如果设两个 虚拟变量,则回归模型为
Y i0 1 D 1 i2 D 2 i3 X i u i (8.7)
-
25
1 正常年份 D1i 0 非正常年份
式(8.7)也可表示为
1 非正常年份 D2i 0 正常年份
Y i 0 X 1 i 1 X 2 i 2 X 3 i 3 X i u i (8.8)
影响被解释变量,它有个m特征,我们 就要引入m-1个虚拟变量;
-
22
如果回归方程没有截距项,那么这个质 的因素有多少个特征就要设多少个虚拟 变量,这就是虚拟变量的使用原则。
-
23
虚拟变量陷阱:如果虚拟变量设定不 当,会使最小二乘法无解,称这种情 况为虚拟变量陷阱。
-
24
引入两个虚拟变量对有截距项和没有截 距项的情况分别讨论。
我们就认为正常年份和非正常年份居民在 消费行为上的差异是明显的。若 β1 >0,则 正常年份的居民消费水平高于非正常年份 的居民消费水平。
-
17
通过例8.1,我们可以找出虚拟变量模型的 一些特征。
1.用“1”来代表质的因素的哪个特征 是可以任意设定的。我们一般认为,“1” 代表具有某些特征,但没有具体规定。在上 例中,也可以指定D=1时为非正常年份,而 D=0就必然为正常年份。在这种情况下,正 常年份和非正常年份的消费函数分别为
其中,X 1i1 ,X 2iD 1i,X 3iD 2i,显然如下等式成立。
X1i X2i X3i
(8.9)
-
18
D 0时 正常E 年 ( Y ) i 份 02 X i D 1时 非正E 常 ( Y I) 年 01 份 2 X i
如果我们绘制图形,得到的结果仍然
是一样的。此时,β1<0,非正常年份的
线低于正常年份的线,代表非正常年份的 消费水平低于正常年份的消费水平。
-
19
2.虚拟变量D=0所代表的特性或状态 通常称为基础类型。和其它特征或状 态比较的意义上说,基础类型为对比 的基础。
-
13
用一个虚拟变量来表示这个质的因素, 消费函数为
Y i01 D 2X i u i (8.1)
式中,Yi=第个居民的消费水平,Xi=第个 居民的收入水平,D为虚拟变量。我们用 D=1表示正常年份这一特征,用D=0来表 示非正常年份
-
14
假设E(u i)=0,式(8.1)可以写成
D 1正常E ( Y 年 i)0 份 1 2 X i
-
7
虚拟变量主要是用来代表质的因素, 但是有些情况下也可以用来代表数量 因素。例如建立储蓄函数时,“收入 ”显然是一个重要解释变量,虽然是 “数量”因素,但是为了方便也可以 用虚拟变量表示。
-
8
第二节 虚拟解释变量的设定
虚拟解释变量模型的设定因为质的因 素的多少和这些因素特征的多少而引入的 虚拟变量也会不同。
(8.2)
D 0 非正常 E (Y i)年 0 份 2X i
(8.3)
-
15
式(8.2)和式(8.3)分别为正常年份 和非正常年份的居民消费水平。二者具 有相同的斜率,但是截距不同。
-
16
利用最小二乘法对式(8.1)进行估计,可得到
Y ˆi ˆ0ˆ1Dˆ2Xi (8.4)
对 β1 作t 检验,若 β1 显著地不为0,
-
9
以一个最简单的虚拟变量模型为例,如 果只包含一个质的因素,而且这个因素仅 有两个特征,则回归模型中只需引入一个 虚拟变量。如果是含有多个质的因素, 自然要引入多个虚拟变量。,且具有m个特 征,那么如果是含有截距项的,就要引入 m-1个虚拟变量;不含有截距项的, 应该 引入m个虚拟变量,这就是虚拟变量的设 定原则。
-
2
所以,在建立经济计量模型时,即要 考虑数量变量,也要考虑质量变量。但是 ,质量变量和数量变量不同,数量变量可 以在事前规定好的尺度上,用不同的数值 表现出来,质量变量却只能以属性、种类 的不同具体形式表现出来。
-
3
例如,性别可表现为男或女;人种可表 现为白种人和非白种人;宗教信仰可表 现为教徒和非教徒;政府的经济政策可 表现为改革开放前和改革开放后,如此 等等。
第六章 虚拟解释变量模型
在经济计量模型中除了有量的因素外 还有质的因素,质的因素包括被解释变量 为质的因素和解释变量为质的因素。如果 被解释变量为质的因素,主要是逻辑回归 要涉及的内容。本章就解释变量为质的因 素也就是存在虚拟解释变量时如何进行参 数估计等一系列问题进行讨论。
-
1
第一节 引 言
在经济计量分析中, 经常会碰到所 建模型的被解释变量不仅受诸如收入 、产量、价格、 成本、需求、投资等 数量变量的影响,而且也受到诸如战 争、自然灾害、国际环境、季节变动 以及政府经济政策变动等质量变量的 影响。建立经济计量模型若不考虑这 些质量变量的影响作用,显然是不适 宜的。
-
4
显然,这种不同的具体形式是无法直接引 入经济计量模型中去的。但由于这类变量 通常表现为品质、属性、种类的出现或者 未出现,所以我们可以根据质量变量的这 一特征将其数量化。
-
5
虚拟变量:给定某一质量变量某 属性的出现为1,未出现为0,称 这样的变量为虚拟变量。
-
6
把哪种情况取0,哪种情况取 1 要视研究情况而定。0和1只是一个符 号而已,不代表他们有高低的意义。
相关文档
最新文档