矢量信号分析仪FSQ和测量功能介绍

合集下载

矢量网络分析仪原理和使用方法课件

矢量网络分析仪原理和使用方法课件

THANK YOU
矢量网分析原理和使用法
• 矢量网络分析仪工作原理 • 矢量网络分析仪使用方法 • 矢量网络分析仪应用实例 • 矢量网络分析仪常见问题及解决方
案 • 矢量网络分析仪未来发展趋势
01
矢量网络分析仪概述
定义与特点
定义 特点
矢量网络分析仪的用途
电子设备测试与调试
材料电磁特性测量
用于测试和调试电子设备的网络参数, 如放大器、滤波器、混频器等。
01
信号分离
02
信号分离方式
03
信号分离原理
矢量测量原理
矢量测量 矢量测量方式 矢量测量原理
03
矢量网络分析仪使用方法
开箱与安装
01
02
03
打开包装
安装
校准
操作界面与设置
界面介绍
设置参数
保存设置
数据采集与分析
数据采集 数据处理 结果解读
04
矢量网络分析仪应用实例
通信系统测试
通信系统测试 信号完整性分析 无线通信测试
详细描述
为了解决数据失真问题,需要对仪器进行定期校准和维护,确保仪器处于良好的 工作状态。同时,在测试过程中,可以采用一些补偿算法和技术来减小数据失真。
仪器校准问题
总结词 详细描述
06
矢量网络分析仪未来发展趋势
高频率测试技术
毫米波和太赫兹频段测试
随着通信技术的发展,毫米波和太赫兹频段的应用越来越广泛,对矢量网络分析仪的高频率测试技术提出了更高 的要求。
电子元件性能测试
元件参数测量
1
微波元件测试
2
可靠性分析
3
雷达系统测试
雷达散射特性测试

矢量网络分析仪学习

矢量网络分析仪学习

矢量网络分析仪学习矢量网络分析仪(Vector Network Analyzer,VNA)是一种用来测量网络参数的仪器,主要用于研究和设计微波和射频电路。

它能够精确测量反射系数、传输系数、相位和群延时等参数,为电路设计和信号分析提供重要的工具。

本文将对矢量网络分析仪的原理、应用和使用方法进行详细介绍。

一、矢量网络分析仪的原理矢量网络分析仪的信号源产生高度稳定的射频信号,并通过测试通道将信号发送给被测设备。

测试通道通常由方向耦合器和同轴、微带线等传输线组成,用于控制和分配信号。

接收器接收来自被测设备的反射和透射信号,并将其转换为电压或功率信号。

计算机对接收到的信号进行处理和分析,通过数学算法计算出被测试设备的网络参数。

二、矢量网络分析仪的应用1.网络分析:矢量网络分析仪可以测量和分析被测试设备的频率响应、增益和相位等参数,帮助工程师设计和优化电路。

2.频率响应测试:矢量网络分析仪可以测量被测设备在特定频率范围内的频率响应,帮助工程师分析和解决信号衰减、失真和干扰等问题。

3.滤波器设计:矢量网络分析仪可以通过测量和分析滤波器的传输系数和反射系数,帮助工程师设计和调整滤波器的性能。

4.天线测试:矢量网络分析仪可以测量天线的增益、驻波比和波束宽度等参数,帮助工程师优化天线设计和性能。

5.信号分析:矢量网络分析仪可以测量和分析信号的相位、群延时和频率特性,帮助工程师了解信号的传播和失真情况。

三、矢量网络分析仪的使用方法1.设备连接:将测试端口与被测试设备连接,并确保连接可靠和稳定。

2.仪器校准:在进行测量之前,需要对矢量网络分析仪进行校准。

常见的校准方法包括开路校准、短路校准和负载校准等。

校准操作将确定参考平面和参考电阻等参数,确保测量的准确性。

3.参数设置:根据具体需求,设置待测设备的频率范围、功率级别和测量模式等参数。

4.数据采集:通过控制软件或前面板操作,启动测量并收集数据。

矢量网络分析仪将发送射频信号,并接收被测设备的反射和透射信号。

矢量网络分析仪

矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种广泛应用于通信、无线电设备和电子电路实验的精密测试仪器。

它可以测量电路中各种参数,如反射系数、传输系数和阻抗等,并为分析电路的性能提供数学模型。

本文将对矢量网络分析仪的原理、结构和应用进行详尽介绍。

一、矢量网络分析仪的原理矢量网络分析仪的原理是基于麦克斯韦方程组和电磁场理论。

在基础电磁理论的基础上,矢量网络分析仪将电信号分为正弦波和相位两部分进行测量,通过计算这些部分的幅度和相位差异,可以确定电路中各种参数的值。

这里简单介绍一下矢量网络分析仪的基本工作原理。

1.1 反射系数的测量反射系数是指信号在电路中反射时与源信号之间的关系。

在矢量网络分析仪的测量中,反射系数的测量可以通过向电路输入一个特定频率的正弦信号,并在电路的接收端检测到其反射信号,然后测量两个信号之间的相位和振幅差异,来计算反射系数的值。

1.2 传输系数的测量传输系数是指信号从电路的输入端到输出端的传输效率。

在矢量网络分析仪的测量中,传输系数可以通过在电路的输入端和输出端分别加入正弦信号,并测量两个信号之间的相位和振幅差异,来计算传输系数的值。

1.3 阻抗的测量阻抗是指电路对电流和电势差的响应,其强度和方向受到电路的各种参数的影响。

在矢量网络分析仪的测量中,阻抗可以通过向电路输入一个特定频率的正弦信号,并通过测量电路中的电流和电势差,来计算阻抗的值。

二、矢量网络分析仪的结构矢量网络分析仪的结构主要分为三部分:源信号、接收器和计算机控制系统。

源信号负责向电路中输入正弦信号,接收器负责检测电路中的反射和传输信号,计算机控制系统则负责数据处理和分析。

下面将对这些部分的结构和功能进行详细介绍。

2.1 源信号源信号是矢量网络分析仪的核心部分之一。

它主要通过向电路中输入不同频率和振幅的信号来测量电路的性能。

源信号通常由射频信号发生器(RF signal generator)或特定的示波器(oscilloscope)提供,其输出功率和波形必须具有高度稳定性和可控制性。

矢量信号分析仪FSQ和测量功能介绍

矢量信号分析仪FSQ和测量功能介绍
filter coefficients
I 2+ Q 2
IF envelope voltage
Quadrature Host Memory 512 k
NCO
FFT滤波器
信道滤波器
谱域测量功能
l CP/ACP:信道功率/邻道功率 l OBW:占用带宽 l APD/CCDF:幅度分布函数/互补累计分布函数 l Power measurement in time domain:时域功率测量 l Trigger funtion-IF power trigger:中频功率触发 l Gated sweep:门限触发 l :三阶截止点 l Noise marker, phase noise marker:噪声标记和相位
DC
20.4 MHz
40/40.8 MHz
fSample 80/81.6 MHz
矢量信号分析 50MHz RBW 对应的幅度/相位/群延时特性
2 0
ns 0
-
20
-15
-10
2
grad 0
2
-15
-10
2
0
dB -
2
-
4-15
-10
Group Delay
4
-5 Phas0e
5
10
15
-5
0
5
Amplitude
with FSQ-B72
120 MHz for >3.6 GHz Baseband input FSQ-B71 频率范围:DC~36MHz IQ 存储器
16 MSamples. each I and Q
矢量信号分析
标配
fIF
WCDMA Channel

矢量网络分析仪的原理及测试方法

矢量网络分析仪的原理及测试方法
为了实现最大功率传输和最小反射,需要对传输线进行阻抗匹配。
矢量网络分析仪在通信测试中的应用
1 2
S参数测量
矢量网络分析仪可以测量散射参数(S参数), 用于描述线性微波网络的反射和传输特性。
阻抗测量
通过测量S参数,可以进一步计算得到设备的阻 抗特性,包括输入阻抗、输出阻抗和特性阻抗等。
3
相位测量
矢量网络分析仪可以测量信号的相位信息,用于 分析信号的传播延迟和相位失真等。
PART 04
矢量网络分析仪在通信领 域的应用
通信系统中的传输线效应
传输线的分布参数特性
传输线具有电阻、电感、电容和电导等分布参数,这些参数会影响 信号的传输性能。
传输线的反射和传输
当信号在传输线上传播时,会遇到反射和传输两种现象,反射系数 和传输系数是描述这两种现象的重要参数。
传输线的阻抗匹配
连接测试设备
将矢量网络分析仪、测试电缆、连接器 等设备和配件按照测试要求连接好,确
保连接稳定可靠。
进行测试
启动矢量网络分析仪,按照设定的测 试参数进行测试,记录测试结果。
设置测试参数
根据测试目标和要求,设置矢量网络 分析仪的测试参数,如频率范围、扫 描点数、中频带宽等。
重复测试
根据需要,对同一测试对象进行多次 重复测试,以获得更准确的测试结果。
接收机对反射信号和传输信号进行幅 度和相位测量,并将测量结果送至处 理器。
DUT对入射信号进行反射和传输,反 射信号和传输信号分别被定向耦合器 接收并送至接收机。
处理器对测量结果进行数字信号处理, 提取幅度和相位信息,并根据需要进 行校准和误差修正,最终输出测试结 果。
关键性能指标解析
频率范围
矢量网络分析仪能够测量的频率范围, 通常覆盖多个频段,如微波、毫米波 等。

矢量网络分析仪使用教程

矢量网络分析仪使用教程

矢量网络分析仪使用教程矢量网络分析仪(Vector Network Analyzer,简称VNA)是一种用于测量和分析电磁网络参数的高精度仪器。

它主要用于测试和优化射频和微波器件的性能,如天线、滤波器、放大器、集成电路等。

本文将为您提供一份针对矢量网络分析仪的使用教程,帮助您快速上手使用该仪器。

一、仪器介绍矢量网络分析仪是一种精密仪器,主要由信号源、接收器和调制器等组成。

它能够通过在被测设备上施加相应的输入信号,并测量输出信号的幅度和相位,从而计算出设备的散射参数(S-parameters)。

矢量网络分析仪通常具有高精度、宽频率范围和高灵敏度等特点,能够提供准确的测量结果。

二、基本操作1. 连接被测设备:首先,将矢量网络分析仪的输出端口与被测设备的输入端口连接,确保连接牢固。

如果被测设备具有多个端口,需要逐个连接。

2. 仪器校准:在测量之前,需要对矢量网络分析仪进行校准,以确保测量结果的准确性。

通常有三种常见的校准方法:全开路校准、全短路校准和全负载校准。

具体的校准方法可以根据被测设备的性质和实际需求进行选择。

3. 设置测量参数:在测量之前,需要设置一些测量参数,如频率范围、功率级别、测量类型等。

这些参数可以根据被测设备的特性和实际需求进行调整。

4. 启动测量:配置好测量参数后,可以开始进行测量。

在测量过程中,矢量网络分析仪会自动控制信号源和接收器,并采集输入和输出信号的数据。

5. 数据分析:测量完成后,可以通过矢量网络分析仪的软件对测量数据进行分析和处理。

常见的数据处理操作包括绘制频率响应图、计算散射参数、优化器件设计等。

三、注意事项1. 确保连接正确:在使用矢量网络分析仪进行测量前,需要确保所有连接正确无误,以避免测量误差的发生。

同时,还需要确保连接的电缆和连接器的质量良好,以减小测量误差。

2. 避免干扰源:在进行测量时,需要避免与其他无关信号源相互干扰,如电源噪音、射频噪声等。

可以通过在实验室中采取屏蔽措施来减小干扰。

矢量网络分析仪简单操作手册

矢量网络分析仪简单操作手册

矢量网络分析仪简单操作手册矢量网络分析仪是现代测试仪器的重要组成部分,它能够对电路、天线系统、微波元器件等进行频率域分析,并且能够有效地对电路进行仿真与优化。

但是对于初学者来说,操作起来可能会有些困难。

本文将为大家介绍矢量网络分析仪的简单操作手册,方便大家更好地掌握这一设备的使用方法。

一、矢量网络分析仪基本原理矢量网络分析仪(Vector Network Analyzer,VNA)是用于测量高频电磁信号传输、反射、损耗等特性的测试仪器。

矢量网络分析仪将测试信号分为两路,一路称为正向信号,一路称为反向信号,通过正反两路信号的相位差和幅度差,可以准确地测量出样品在频率范围内的反射系数、传输系数、阻抗等参数。

矢量网络分析仪的工作频率通常在几千兆赫至数十吉赫之间,是一种高频仪器。

二、矢量网络分析仪的基本操作方法矢量网络分析仪的基本操作方法分为以下几步:1、打开电源:启动仪器时,需要首先打开电源开关,待仪器自检过程完成后,可以进入相关测试操作。

2、连接测试样品:将测试样品接入机器测试接口,最好选用高质量的测试线缆,并确保线缆的末端没有过长,以保证测试的精度。

3、设置测试参数:在进行测试前,需要设定相应的测试参数,例如频率范围、增益、测量模式、环境温度等,以便仪器能够对测试样品进行正确的测试。

4、执行测试:按下测试按钮开始测试,矢量网络分析仪会通过正反两路信号的相位差和幅度差计算出测试样品的反射系数、传输系数、阻抗等参数。

5、记录测试结果:测试完成后,需要记录测试结果,并根据测试结果进行分析及优化。

三、矢量网络分析仪的应用场景矢量网络分析仪广泛应用于电磁场测量、微波元器件测试、天线系统测试、电子设备测试、通信系统测试等领域。

在电路设计和测试中,矢量网络分析仪可以帮助工程师精确地分析、优化和改进电路性能,提高电路设计的可靠性和稳定性;在通信领域,矢量网络分析仪可以用于测试天线系统的性能,优化信号传输效果,提高通信的可靠性和稳定性。

矢网分析仪原理解析

矢网分析仪原理解析

矢网分析仪原理解析目录一、矢网分析仪概述 (2)1. 定义与功能介绍 (2)2. 常见应用场景 (4)3. 发展历程及现状 (5)二、矢网分析仪基本原理 (6)1. 信号传输与接收原理 (8)2. 信号分析与处理技术 (9)3. 矢量调制与解调原理 (10)三、矢网分析仪主要组成部分 (12)1. 信号输入与输出模块 (13)2. 信号处理与分析模块 (14)3. 控制与显示模块 (16)四、矢网分析仪工作流程解析 (17)1. 信号接收与处理流程 (18)2. 数据分析与处理流程 (19)3. 结果展示与输出流程 (20)五、矢网分析仪关键技术探讨 (21)1. 矢量校准技术 (22)2. 动态范围与灵敏度技术 (24)3. 实时分析处理技术 (25)六、矢网分析仪应用实例分析 (26)1. 通信系统测试应用实例 (27)2. 雷达系统测试应用实例 (28)3. 电子对抗应用实例 (30)七、矢网分析仪发展趋势与展望 (31)1. 技术发展趋势分析 (32)2. 市场发展与应用前景展望 (34)八、实验与操作指导 (35)1. 实验环境与设备介绍 (36)2. 实验操作流程介绍 (37)3. 实验数据处理与分析方法介绍 (38)九、常见问题与解决方案 (39)1. 常见故障类型及排查方法介绍 (39)2. 常见误差来源及校正方法介绍 (40)3. 用户操作注意事项及维护保养建议 (41)一、矢网分析仪概述矢网分析仪,又称为网络分析仪或微波网络分析仪,是一种用于测量和模拟复杂电磁波信号的强大工具。

它结合了频谱分析、网络分析和信号分析的功能,广泛应用于雷达、通信、电子对抗、航空航天等领域。

矢网分析仪的基本工作原理是通过发送和接收信号,测量信号的幅度、相位、频率等参数,以及信号在传输过程中的衰减、反射、传输损耗等特性。

通过对这些参数的分析,可以评估系统的性能,优化设计方案,提高系统的可靠性和稳定性。

矢量网络分析仪使用说明书

矢量网络分析仪使用说明书

矢量网络分析仪使用说明书第一章前言1. E836B网络分析仪具有以下技术特点:①高性能测量接收机E8362A网络分析仪采用基于混频器的实现方式,使该仪表具有当今微波网络分析仪中最高的测量灵敏度度。

测量频率范围:10M~20GHz;接收机数量:4台接收机测量灵敏度:-120dBm接收机测量参数;幅度和相位。

迹线噪声:0.005dB(在中频带宽为10KHz时)②完整的测量能力该网络分析可以工作在以下测量状态:频域扫描状态:测量激励信号为功率固定,频率变化信号。

考察被测在不同频率激励状态下等离子参数的变化;功率扫描状态:测量激励信号为频率固定,功率扫描变化信号。

考察被测在不同功率激励状态下参数的变化;连续波状态:测量激励信号为频率固定,功率固定信号。

考察被测等离子在固定激励状态下,响应状态参数的波动变化,E8362A最大测量时间长度可达到3000秒;时间域测量状态:通过将被测的频率响应通过IFFT变化到时间域得到其时域冲击响应,考察被测等离子响应信号的空中分布特性。

E8362AIFFT运算点数为160001点,可保证时域测量的分辨率和测量时间宽度。

③强大的分析能力E8362A基于PC的window2000操作平台,可内置各种分析软件,不需要外置PC 进行数据处理,编程方式为COM/DCOM,保证测试的速度。

仪表内置嵌入、去嵌入及端口延伸等功能,可直接消除测量天线对测量结果的影响,或进行其它补偿运算处理。

④高测量速度E8262A高性能接收机可确保高测量精度的同时具有快测量速度,具体指标为:35us/测量点,14ms/刷新(400点)。

保证对被测等离子的瞬态响应进行捕捉分析。

⑤多测试状态同时完成E8262A可支持16个测试通道,各通道可工作在不同的测量状态。

利用该功能,可以综合不同分析方法从不同角度来对一个现象进行研究。

⑥良好的可扩展性E8263A采用开放的发射/接收组成框架,用户可以根据测量的具体要求改变仪表的测量连接状态,还可以把需要的外部信号处理过程组合到仪表内部,例如:当被测需要更大激励功率时,可将推动方法器连接到仪表相应端口,该放大器引起的测试误差可以通过仪表的校准过程消除。

矢量信号分析仪

矢量信号分析仪

矢量信号分析仪简介矢量信号分析仪(Vector Signal Analyzer,VSA)是一种用于分析无线通信信号的测试仪器。

VSA可以对信号的幅度、相位、频率和调制等参数进行精确测量和分析。

通过对信号进行深入的分析,VSA可以用来解决很多无线通信领域的技术问题。

原理VSA的原理基于两个基本公式:傅里叶变换和IQ分解。

傅里叶变换被用于将时间域数据转换为频域数据,通过分析这些频域数据可以得到信号特性如频率和带宽等。

而IQ分解则是将复杂数据信号分解成两个分别表示振幅和相位的信号。

这使得VSA能够分离并分析调制信号中的振幅和相位部分,从而可以对调制信号进行更精确的测量和分析。

功能VSA具有许多有用的功能,主要包括:1. 频谱分析VSA可以对输入信号进行频谱分析,以确定信号的频率构成。

这个功能对于分析复杂调制信号的频谱特性非常重要。

VSA可以确定信号的中心频率、带宽、谱形等参数。

通过精确的频谱分析,可以确定信号的带宽和功率等重要参数。

2. 时域分析VSA可以将信号转换到时域进行分析。

这使得用户可以对信号的时域特性进行监测和评估。

这包括信号的峰值、波形、时延和脉冲响应等参数。

通过时域分析,用户可以精确了解信号的内容和特性,从而更好的对信号进行分析和处理。

3. 调制分析调制分析是VSA的核心功能之一。

通过将信号进行IQ分解,用户可以准确测量和分析信号中的调制参数。

这包括信号的带宽、调制深度、调制类型、调制误差等。

通过精确的调制分析,用户可以对调制信号进行更好的评估和优化。

4. 无线协议分析VSA可以对多种无线通信协议进行分析,如LTE、WCDMA、Wi-Fi、Bluetooth 等。

通过对协议进行解码和分析,用户可以深入理解无线通信的内部机制和运作方式。

这个功能对于无线通信开发和协议优化非常重要。

应用VSA在无线通信领域有着广泛的应用。

以下是一些常见的应用场景:1. 信号测量和分析VSA主要用于对无线通信信号的测量和分析。

矢量网络分析仪的原理及测

矢量网络分析仪的原理及测

矢量网络分析仪是一种电子测量设备, 用于测量电子元件和系统的网络参数, 如阻抗、导纳、增益、相位等。
矢量网络分析仪具有测量精度高、动 态范围大、频率范围宽等优点,广泛 应用于电子、通信、雷达、航空航天 等领域。
它通过向被测件发送激励信号,并测 量激励信号和反射信号或传输信号之 间的相位和幅度关系,来获取被测件 的网络参数。
智能化
随着人工智能和机器学习技 术的发展,矢量网络分析仪 将实现智能化,能够自动进 行故障诊断和预测性维护。
云服务和远程测量
未来矢量网络分析仪将与云 服务结合,实现远程测量和 控制,进一步拓展应用领域 和市场。
THANKS FOR WATCHING
感谢您的观看
矢量网络分析仪的原理及测量
contents
目录
• 引言 • 矢量网络分析仪的原理 • 矢量网络分析仪的主要技术指标 • 矢量网络分析仪的应用 • 矢量网络分析仪的发展趋势和挑战 • 结论
01 引言
目的和背景
研究矢量网络分析仪 的基本原理和应用。
分析矢量网络分析仪 的发展趋势和未来展 望。
探讨矢量网络分析仪 在电子工程和通信领 域的重要性。
矢量网络分析仪简介
矢量网络分析仪是一种用于测 量电子设备和系统的频率响应、 增益、相位等参数的仪器。
它能够同时测量幅度和相位响 应,因此被称为矢量网络分析 仪。
矢量网络分析仪广泛应用于电 子工程、通信、雷达、导航等 领域,是现代电子系统测试的 重要工具之一。
02 矢量网络分析仪的原理
矢量网络分析仪的基本原理
测试速度
总结词
测试速度是矢量网络分析仪的一个重要技术指标,它决定了 仪器的测量效率。
详细描述
测试速度是指矢量网络分析仪完成一次测量所需要的时间。 测试速度越快,表明仪器的测量效率越高,能够更快地完成 测量任务。对于需要大量测量的应用场景,高测试速度的矢 量网络分析仪能够大大提高工作效率。

矢量网络分析仪的功能要点都有哪些呢

矢量网络分析仪的功能要点都有哪些呢

矢量网络分析仪的功能要点都有哪些呢矢量网络分析仪(Vector Network Analyzer,VNA)是一种广泛应用于射频(RF)和微波领域的仪器,用于测量和分析线性电路中的传输和反射特性。

它可以测量信号的传输、驻波比(VSWR)、S参数(散射参数)、衰减、相位延迟等,是RF工程师进行射频器件和系统分析以及测试的重要工具。

以下是矢量网络分析仪的主要功能要点:1.高精度的测量:矢量网络分析仪可以实现高达10位以上的测量精度,可以对微小的信号和相位差异进行测量和分析。

它可以提供非常准确的频率、幅度和相位的测量结果。

2.宽频率范围:矢量网络分析仪可以覆盖从几kHz到数十GHz的宽频率范围,并且可以非常方便地切换和选择测试频率。

这使得它适用于不同频率范围的应用,包括射频通信、微波器件、卫星通信等。

3.双向测量:矢量网络分析仪可以同时测量信号在正向和反向方向的传输和反射特性。

这样可以更全面地了解电路的特性,包括信号的损耗、反射以及功率传输效率等。

4.散射参数分析:矢量网络分析仪可以测量和分析电路的S参数,包括S11、S21、S12和S22、这些S参数可以描述信号在电路中的传输和反射特性,是电路设计和分析中非常重要的参数。

5.驻波比测量:矢量网络分析仪可以测量信号的驻波比(VSWR),用于评估电路中的匹配情况和损耗程度。

它可以帮助工程师找出传输线路和电路中的匹配问题,并进行相应的调整和优化。

6.相位延迟测量:矢量网络分析仪可以准确测量信号在电路中的相位延迟,包括群延迟和相对延迟等。

这对于设计和分析相干系统、滤波器、延迟线路等非常重要。

7.校准和校正:矢量网络分析仪可以进行校准和校正,以确保测量结果的准确性。

常见的校准方法包括开路、短路和负载校准,以及用参考标准进行插入损耗和相位校准等。

8.数据分析和图形显示:矢量网络分析仪可以将测量结果以图形和数据表格的形式显示出来,以便工程师进行数据分析和处理。

它可以绘制频率响应曲线、相位曲线、功率图等,方便用户对不同参数进行比较和评估。

矢量网络分析仪的原理及测试方法ppt课件

矢量网络分析仪的原理及测试方法ppt课件

RF Filter
RF AMP
RF Filter IF Filter
RF AMP
VHF NA RF NA (R3765/R3767CG)
DEM
MAIN CPU
SPEAKER
DPX
Duplexer
RX SYNTHE
RX SYNTHE
RF Filter VCO
TCXO
VCO
VCO
DATA CONT.
MEMORY
DFr1
DFl2
Spurious
level
DFr2
Band width DLF DHF
Pass Reject Spurious
P0le x1
m1 DLF2 DHF2 m2
p0
p1
Nominal Frequency fcent
P0le stim1 P0le x2
P0le stim2
: Insertion loss : Constant loss : x1dB bandwidth : Center frequency : Lower frequency at the point
傳輸特性: 用直通標准器連接並做直通短路校正.
13
Advantest 网絡分析仪的應用範圍
應用 元器件
通信
車用电子
IT 設备
VHA N/A RF NA
游戲机
TV/DVD
晶体諧振器 晶体濾波器 陶瓷振盪器 陶瓷濾波器
SAW 濾波器 介貭濾波器
14
蜂巢式手机的电路框图与使用的主要元器件
ANT
高頻器件
0.02dB (傳統型仪器)
RBW 10kHz
0.01dB (R3754) RBW 10kHz

安捷伦89600矢量信号分析软件功能概述及测量指南

安捷伦89600矢量信号分析软件功能概述及测量指南

安捷伦89600矢量信号分析软件功能概述及测量指南2009年4月© Copyright 2009Agilent Technologies, Inc.通告本文档所含内容如有修改,恕不另行通知。

安捷伦对本资料不作任何形式的保证,包括但不限于为特定目的的适销性和适用性所作的暗示保证。

对其中包含的错误或由供给、使用本资料或由本资料的实用性而引起的偶然或继发的损失,安捷伦不承担任何责任。

© Agilent Technologies, Inc. 2009在安捷伦没有预先同意之前。

不得以任何形式复制本手册中的任何部分(包括电子存储和检索或翻译为其它语言)。

简介本手册介绍了安捷伦89600矢量信号分析软件的基本功能并重点说明了其数字解调分析功能及操作流程。

同时给出89600 矢量信号分析软件的多种数字解调分析工具和故障诊断方法。

通过对QPSK和W-CDMA信号的测量举例,详细描述了使用89600 矢量信号分析软件进行解调分析的测量过程和操作步骤。

其它信息欲获得更多信息,包括最新的产品信息、软件升级和应用信息,请访问下列网址:/find/89600目录Agilent 89600 VSA软件描述 (5)配置 (5)包含两个应用模式 (5)可接收多个测量前端的数据 (5)设计流程中应用Agilent 89600 VSA软件 (6)软件编程 (6)Agilent 89600 VSA软件功能举例 (7)宽频带测量 (7)窄扫宽超高分辨率测量 (7)捕获完整信号 (7)使用Bandpower Markers简化信道功率测量 (8)录制信号以延展分析能力 (9)使用模拟解调分析信号的建立过程 (9)使用模拟解调定位残余调制 (9)使用数字解调隔离符号时钟错误 (10)使用数字解调更容易地发现滤波问题 (10)使用窗口灵活配置用户化工具栏和显示 (11)结合Agilent ADS的分析 (12)数字解调分析 (13)数字解调器工作原理 (13)数字解调器设置十步骤 (13)QPSK解调分析步骤 (13)分析工具 (16)矢量图 (17)星座图 (17)眼图 (18)I/Q vs时间 (18)解调频谱 (19)误差矢量幅度 (19)幅度和相位误差 (20)误差矢量频谱 (21)符号表/错误摘要 (21)自适应均衡结果:脉冲响应和信道响应 (22)故障诊断 (22)诊断测试流程 (22)诊断:I/Q增益不平衡 (23)诊断:正交误差 (23)诊断:I/Q偏移 (24)诊断:符号速率错误 (25)诊断:滤波错误 (25)诊断:杂散和干扰信号 (30)诊断:压缩 (32)无线测量举例 – W-CDMA(3GPP)/HSPA (34)W-CDMA (3GPP)/HSPA 概览 (34)进行W-CDMA测量 (34)解调下行信号 (35)解调上行信号 (37)分析W-CDMA信号 (40)选择所分析的时隙 (43)测量诊断 (45)Agilent 89600 VSA软件描述Agilent 89600 VSA(Vector Signal Analysis)矢量信号分析软件提供基于Windows用户界面的矢量信号分析。

矢量网络分析仪

矢量网络分析仪

矢量网络分析仪矢量网络分析仪是一种用于测量电路参数并分析信号传输性能的仪器。

它通常用于测试无线电频率器件、天线和电缆等。

工作原理矢量网络分析仪通过在设备端口发送测试信号并测量信号在设备输入端口处的幅度和相位响应来评估设备性能。

该仪器能够测量设备的反射损耗、传输损耗、驻波比等参数,从而帮助工程师优化电路设计。

矢量网络分析仪通过控制测试频率和功率等参数,可以测量各种射频和微波设备的性能。

应用领域矢量网络分析仪在通信、雷达、卫星通信等领域都得到广泛应用。

在通信系统中,矢量网络分析仪可用于评估天线性能、分析信号传输特性,从而提高系统性能和稳定性。

在雷达系统中,矢量网络分析仪可以用于测试反射损耗、驻波比等参数,帮助工程师调试和优化系统。

在卫星通信系统中,矢量网络分析仪可以用于测试信号传输质量,确保通信系统正常运行。

常见类型根据测试频率范围不同,矢量网络分析仪可以分为LF、HF、VHF、UHF、SHF、EHF等不同类型。

同时,根据测试端口数量,还可以分为单口和多口矢量网络分析仪。

一般来说,多口矢量网络分析仪可同时测量多个端口之间的相互作用,适用于复杂系统的测试和分析。

矢量网络分析仪的发展趋势随着通信技术的发展和射频微波领域的不断创新,矢量网络分析仪的性能要求也越来越高。

未来,矢量网络分析仪将更加智能化,具有更高的测量精度和频率覆盖范围,以满足日益复杂的电路设计和测试需求。

同时,随着5G技术的广泛应用,矢量网络分析仪在通信系统中的重要性将进一步提升。

总结矢量网络分析仪作为一种重要的电子测量仪器,在射频微波领域有着广泛的应用。

它可以帮助工程师评估设备性能,优化电路设计,提高系统性能和稳定性。

随着技术的不断进步,矢量网络分析仪将不断演化,更好地满足工程师对电路测试的需求。

矢量网络分析仪简单操作手册(一)

矢量网络分析仪简单操作手册(一)

矢量网络分析仪简单操作手册(一)本周我们给大家带来的是网络分析仪的入门操作,图文并茂,拿着说明就能对网分进行简单的操作。

当然每个仪器都有非常多的功能,本次系列主要涉及S11参数查看和常用功能操作。

仪器操作说明----初级版仪器信息如下图:一、面板说明:1、功能面板分区如下2、区域一:测试通道,通过以下4个按钮可以进行测试通道的切换与选择。

按键说明:a) Channel Prev:选择上一个通道b) Channel Next:选择下一个通道c) Trace Prev:选择上一个轨迹d) Trace Next:选择下一个轨迹3、区域二:常用功能操作栏。

按键说明:a) ChannelMax: 通道最大化b) TraceMax: 轨迹最大化c) Meas 测量类型:S11\S21\S12\S22 转换调整d) Format 格式:LOG、PH、DELAY、SMITH 、POLAR 、LINMAG、SWR 、REAL 、IMAGe) Scale 标尺:扫描线、基准、位置、参考线的设定f) Display显示:显示窗口的设定、测试扫描线的模拟参照等g) Avg 平均值、平滑系数的设定h) CAL:校准菜单4、区域三:常用功能操作栏按键说明:a) Start:起始频率设定b) Stop::终止频率设定c) Center:中心频率的设定d) Span:扫描频宽的设定e) Sweepsetup:扫描设置f) Trigger:触发5、区域四:选择栏,上下左右以及确认操作6、区域五:按键说明:a) Marker: Marker点的设定菜单b) Markersearch: Marker搜查c) Markerfctn: Marker 光标功能d) Analysis:仿真功能7、区域六:数字键操作区域8、区域七:按键说明:a) Save/Recall:贮存、调取键b) System:系统菜单设定键c) Preset:系统复位键。

矢量信号分析仪的使用及参数分析

矢量信号分析仪的使用及参数分析
我们 町以看 到相 应 的解 效 果 , 如冈 1 所示。
收 稿 日期 : 2 0 1 6—0 8—2 3
计量 与I 科试 技术》 2 0 1 6丰 第4 3基 第J 2期
3 显 示方 式
矢量信 号分 析仪 除 了定 性 的 图形 化 显 示 外 , 还 可 以 定 量对 调 制 参 数 进 行 分 析 输 出 , 给出调制质量参数表。 调 制质 量参 数 的定 义如 下 图 3所 示 , 矢 量 信 号 分 析仪 通 过 比较 测量 信 号和 内部产 生 的理想 参考 信号来 计算 调制
用矢量 信 号分 析 仪测 试 一 个 数 字调 制信 号 , 需 要 对 矢 量信 号分 析仪进 行与 调制 信号 相 对应 的解调 参数 的设
解 凋 …相应 的信 号 , 我 们 设 置调 制方 式 为 Q P S K, 码 速率
为3 . 8 4 Mb p s , 选 择 根 生 余 弦滤 波 器 , 滤波系数 为 0 . 2 2 。
内中周电子科技集 团第 4 1 研 究所研 制 的 A V 5 2 6 4 型 矢量 信号分析仪 , 等均实现了调制信 号分析的功能。
对 于不 同厂商 , 不 同型号 的仪 器 , 在使 用上 可能 存在 差异 , 但在参数配置和调制信号分析功能上 , 都 大 同 小
异 。作 为矢 量信 号分 析仪 , 具 有 时域 分析 、 频域 分 析和 调
伴随 数字通 信技 术 的发 展 , 调 制 信 号分 析 测 试 需 求 的提 升 , 对于 能精确 测 量 和分 析 调 制 信 号 的矢 量信 号 分
析 的需求 也越来越 明 显。 为此 , 全 球 ห้องสมุดไป่ตู้ 大仪 器 厂 商也 纷

矢量分析仪

矢量分析仪

矢量分析仪矢量分析仪是一种广泛应用于科学研究、工程设计和数据分析等领域的仪器设备。

它能够对矢量量进行测量和分析,提供准确的数据结果和可视化图像,为用户提供可靠的参考和决策依据。

本文将介绍矢量分析仪的原理、分类、应用以及未来发展趋势。

矢量分析仪的原理是基于电磁场的测量和分析。

它通过使用电场、磁场和频率等相关参数来描述矢量量,并将其转化为数字信号进行处理。

矢量分析仪采用了先进的传感器技术和信号处理算法,能够对矢量量进行高精度的测量和分析。

根据使用的原理和测量对象的不同,矢量分析仪可以分为多种类型。

常见的包括频谱矢量分析仪、网络矢量分析仪、功率矢量分析仪等。

频谱矢量分析仪主要用于分析和测试信号的频谱特性,可以对信号的频率、幅度、相位等进行准确的测量和分析。

网络矢量分析仪主要用于测试和分析网络参数,可以测量和分析网络的传输特性和阻抗匹配等关键指标。

功率矢量分析仪主要用于测量和分析功率信号的相关参数,可以对功率的分布、增益、损耗等进行精确的测量和分析。

矢量分析仪在科学研究、工程设计和数据分析等领域有着广泛的应用。

在科学研究中,矢量分析仪可以用于分析和测试天文信号、无线电信号和光学信号等,为科学家提供准确的观测数据和研究结果。

在工程设计中,矢量分析仪可以用于测试和分析电路、无线通信系统和雷达等设备的性能和参数,为工程师提供设计和优化的参考依据。

在数据分析中,矢量分析仪可以对大量的矢量量进行测量和分析,提取有用的信息和模式,并为数据科学家提供重要的分析工具和方法。

随着科学技术的不断进步和应用需求的不断增加,矢量分析仪也在不断发展和完善。

未来,矢量分析仪将朝着更高精度、更宽频率范围和更多功能的方向发展。

同时,随着智能化技术的快速发展,矢量分析仪也将与人工智能等先进技术相结合,提供更智能化的数据分析和决策支持。

例如,矢量分析仪可以通过机器学习算法对海量数据进行深度学习和模式识别,从而提高数据分析和预测的准确性和效率。

矢量网络分析仪介绍

矢量网络分析仪介绍

矢量网络分析仪介绍矢量网络分析仪(Vector Network Analyzer,VNA)是现代无线通信领域中不可或缺的测试设备之一,用来测量网络中各个点之间的复数反射系数、传输系数、延迟等特征参数。

它的应用场景非常广泛,包括电磁兼容性测试,毫米波通信测试,天线设计优化,信号测量分析,信号灵敏度研究等。

矢量网络分析仪一般是由频率源,微波信号传输和接收件,数据处理与显示设备组成。

通过矢量网络分析仪可以获得电路中各个测试端口的传输参数,包括S参数,即散射参数。

S参数是指有源器件或无源器件中存在的散射系数,包括反射系数(S11,S22)和传输系数(S21,S12)两种。

反射系数和传输系数是矢量网络分析仪的明星参数,因为它们能够完整地描述某个端口的性能,并可以用它们来计算其他参数,如误差系数、电功率、噪声系数等。

S11反射系数表征能量从端口1反射回同一端口1的程度,S22反射系数则是表征能量从端口2反射回同一端口2的程度。

而S21传输系数则反映了从端口1到端口2的传输效率,S12则反映了从端口2到端口1的传输效率。

除了S参数,矢量网络分析仪还可以进行时域仿真,即测量电路中不同信号随时间的变化情况。

矢量网络分析仪还可以进行功率扫描测试,测试器件的故障情况。

除了传统的基础测试外,矢量网络分析仪还有一些应用领域的拓展。

电磁兼容性测试:电磁兼容性是指不同设备之间共享和保护电磁环境的能力。

矢量网络分析仪可以用于电磁兼容性测试中,测量不同设备之间的干扰和抗干扰能力。

毫米波通信测试:毫米波通信是5G通信的关键技术之一,用于实现高速数据传输。

矢量网络分析仪可以在毫米波波段进行测试,测量毫米波通信信号的传输和反射特性。

天线设计优化:天线是无线通信领域中的关键组件之一,它的性能直接影响到通信质量。

矢量网络分析仪可以测量不同天线设计的反射系数、辐射模式和带宽等特征参数,来实现天线设计的优化。

信号测量分析:在实际应用场景中,矢量网络分析仪可以用于测量和分析信号的特性,如时域特性、频域特性、噪声特性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fNyquist
28 MHz BW
DC
20.4 MHz
40/40.8 MHz
fSample 80/81.6 MHz
矢量信号分析 50MHz RBW 对应的幅度/相位/群延时特性
2 0
ns 0
-
20
-15
-10
2
grad 0
2
-15
-10
2
0
dB -
2
-
4-15
-10
Group Delay
4
-5 Phas0e
5
10
15
-5
0
5
Amplitude
10
15
-5
0
5
10
15
Frequency offset in MHz
矢量信号分析的性能参数 支持的调制方式
符号速率 25Msps, 标配 with raised cosine filtering, max symbol rate 28 MHz/(1+alpha) example for a= 0.22 -> max. symbol rate = 22.95 MS/s 81.6Msps (at 4 points/symbol) with FSQ-B72
14 bit A
D
32 MHz
Q mixer IF
Digital Resolution Bandwidths
Lowpass filter
I
Inphase Host Memory
512 k
LO 90°
I mixer
Q
IF LO
filter coefficients Lowpass filter
filter coefficients
误差矢量(ErrorVector)
矢量和标量误差 误差矢量幅度(EVM),相位误差(PE),幅度误差(ME)
矢量和标量误差 IQ Offset
矢量和标量误差 Gain Inbalance
矢量和标量误差 Quadrature Offset
矢量和标量误差 增益失真
矢量和标量误差 相位失真
优良的RF性能指标 l 显示噪声电平DANL(关闭预放大器): -148 dBm (RBW 10Hz) 即-158 dBm (RBW 1Hz) 打开预放大器时:-168dBm (RBW 1Hz) l SSB相位噪声: -123 dBc/Hz @ 10 kHz offset l SSB相位噪声:-160 dBc/Hz @ 10 MHz offset l 三阶截止点TOI: 25 dBm l 1dB压缩点: + 13 dBm l 3GPP ACLR: 77 dBc l 总的电平不确定度:0.3 dB up to 3.6 GHz
1000
10000
carrier offset /kHz
分辨率带宽
l 10, 20, 50 MHz 固定调谐滤波
l 200 kHz to 3 MHz 5阶同步调谐滤波器
l 10 Hz to 100 kHz 数字滤波器
l 1 Hz to 3IF 20.4 MHz
Anti aliasing bandpass
I 2+ Q 2
IF envelope voltage
Quadrature Host Memory 512 k
NCO
FFT滤波器
信道滤波器
谱域测量功能
l CP/ACP:信道功率/邻道功率 l OBW:占用带宽 l APD/CCDF:幅度分布函数/互补累计分布函数 l Power measurement in time domain:时域功率测量 l Trigger funtion-IF power trigger:中频功率触发 l Gated sweep:门限触发 l T.O.I:三阶截止点 l Noise marker, phase noise marker:噪声标记和相位
60 MHz for <3.6 GHz
with FSQ-B72
120 MHz for >3.6 GHz
Baseband input FSQ-B71 频率范围:DC~36MHz
IQ 存储器
16 MSamples. each I and Q
矢量信号分析
标配
fIF
WCDMA Channel
B = 5 MHz
噪声标记
CP/ACP measurement
快速ACP measurement
OBW measurement
APD/CCDF measurement
Gated sweep
TOI measurement
Phase noise measurement
矢量和标量误差
发射机误差模型
矢量和标量误差
矢量信号分析仪FSQ和测量功能介绍
主要内容
概述 频域测量功能 矢量信号分析
频谱分析仪框图
低通 滤波器
a(t) H f
衰减器
混频器
中频 放大器
RF
IF
中频 滤波器
对数 放大器
f LO
压控 振荡器
参考振荡器
延迟
锯齿波 发生器
包络检波器 视频滤波器
检波器
显示
中频滤波器
模拟滤波器
包络检波器
平均显示噪声电平
l DANL@ 10 Hz
无交调和谐波失真范围
相位噪声 phase noise / dBc/(1 Hz)
-70
-80
FSIQ7 (spec)
-90
-100
-110
-120 -130 -140 -150 -160 -170
0.1
1
10
specification
typical
100
矢量和标量误差 噪声
矢量信号分析
矢量信号分析
IQ 解调
采样参数
14 bit, 10KHz~81.6 MHz (20.4 MHz IF) 标配
8 bit, 81.6MHz~326.4MHz(404MHz IF) with FSQ-B72
步进 0.1Hz
解调带宽 (RF)
28 MHz 标配
视频滤波器
混频器
数字滤波器
对数放大器 放大器
输入
中频放大器 本地振荡器
FFT 滤波器
锯齿波发生器
检波器 y
x 显示
FSQ型号
FSQ3 FSQ8
FSQ26
FSQ40
9 kHz
3.6 GHz
8 GHz
26 GHz
40GHz
特点 二合一的信号分析仪:谱分析和矢量信号分析 优良的RF性能 1Hz~50MHz的RBW范围 丰富的谱测量功能 120MHz解调带宽,81.6Msps符号速率 支持众多数字调制类型以及自定义类型 全面的数字调制质量分析结果显示 众多的扩展功能
过采样 1,2,4,8,16
Mapwiz 自定义调制方式软件
Filtwiz 用户自定义滤波器软件
相关文档
最新文档