《圆锥的体积》教学设计
圆锥的体积教学设计一等奖【4篇】
圆锥的体积教学设计一等奖【精选4篇】一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。
首先对每一个课题的教学内容要有一个整体的把握。
这次漂亮的我为亲带来了4篇《圆锥的体积教学设计一等奖》,希望朋友们参阅后能够文思泉涌。
《圆锥的体积》教学设计篇一一、教学内容:义务教育课程标准实验教科书(人教版版)六年级下册第33~34页。
二、教学目标:1、知识技能目标:通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:(一)创设情境,导入新课投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。
张小虎和爷爷笑得合不拢嘴。
这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?进一步观察、比较、猜测。
教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
《圆锥的体积》教案设计
《圆锥的体积》教案设计•相关推荐《圆锥的体积》教案设计(通用13篇)作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,编写教案有利于我们科学、合理地支配课堂时间。
那么大家知道正规的教案是怎么写的吗?下面是小编为大家整理的《圆锥的体积》教案设计,希望能够帮助到大家。
《圆锥的体积》教案设计篇1教材分析:圆锥的体积是传统的教学内容,对这部分内容的编排,在内容和要求方面没有大的变化,实验教材的编排体现了新的教学理念,使得教材的面貌发生了较大的变化。
具体来说有这样几个变化:(1)加强了所学知识与现实生活的联系。
教材通过列举大量现实生活中具有圆锥体特征实物直观引入,让学生观察思考这些物体形状的共同的特点,并从实物中抽象出它们的几何图形。
当学生认识它们的主要特征后,又让学生从生活中寻找更多的具体如此特征的实物,从而加强所学知识与现实生活的联系,进一步感受几何知识在生活中的广泛应用。
(2)加强了对图形特征,体积、方法的探索过程。
在以往的教学中,这部分内容的编排更侧重于理解和掌握图形的特征、体积的计算方法,而对于促进学生空间观念的发展在学习素材和实践操作方面都显不够。
实验教材加强了动手实践、自主探索、,让学生经历知识的形成过程,使学生获得较多的有关自主探索和空间观念的训练机会。
(3)加强了学生在操作中对空间与图形问题的思考。
学情分析:加强了学习方法的引导,鼓励学生独立思考,培养学生的学习能力。
教材注意鼓励学生运用已有的知识对新学习的内容进行联想和猜测,再通过实验和推理验证,培养学生良好的学习和思考习惯。
如:联系圆柱体公式鼓励学生猜测圆锥体积的计算方法。
圆锥体积的教学是按照引出问题联想、猜测实验探究导出公式的思路设计的,在猜测的基础上进行试验和推理,使学生受到研究方法和思维方式的训练,发展和提高自主学习的能力。
教学目标:1、理解并掌握圆锥的体积的计算方法,能运用公式解决简单的实际问题。
2、提高学生实际应用的能力。
小学六年级数学圆锥的体积教案(优秀5篇)
小学六年级数学圆锥的体积教案(优秀5篇)《圆锥的体积》教学设计篇一教材分析本节课属于空间与图形知识的教学,是小学阶段几何知识的重难点部分,是小学学习立体图形体积计算的飞跃,通过这部分知识的教学,可以发展学生的空间观念、想象能力,较深入地理解几何体体积推导方法的新领域,为学生进一步学习几何知识奠定良好的基础。
本节内容是在学生了解了圆锥的特征,掌握了圆柱体积的计算方法基础上进行教学的,教材重视类比,转化思想的渗透,直观引导学生经历“猜测、类比、观察、实验、探究、推理、总结”的探索过程,理解掌握求圆锥体积的计算公式,会运用公式计算圆锥的体积。
这样不仅帮助学生建立空间观念,还能培养学生抽象的逻辑思维能力,激发学生的想象力。
设计理念数学课程标准中指出:应放手让学生经历探索的过程,在观察、操作、推理、归纳、总结过程中掌握知识、发展空间观念,从而提高学生自主解决问题的能力。
教学目标1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重点:圆锥体积公式的理解,并能运用公式求圆锥的体积。
教学难点:圆锥体积公式的推导学情分析学生已学习了圆柱的体积计算,在教学中采用放手让学生操作、小组合作探讨的形式,让学生在研讨中自主探索,发现问题并运用学过的圆柱知识迁移到圆锥,得出结论。
所以对于新的知识教学,他们一定能表现出极大的热情。
教法学法:试验探究法、小组合作学习法教具学具准备:多媒体课件,等底等高圆柱圆锥各6个,水槽6个(装有适量的水)教学课时:1课时教学流程一、回顾旧知识1、你能计算哪些规则物体的体积?2、你能说出圆锥各部分的名称吗?设计意图通过对旧知识的回顾,进一步为学习新知识作好铺垫。
《圆锥的体积》精彩教学设计(优秀5篇)
《圆锥的体积》精彩教学设计(优秀5篇)作为一名老师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
写教学设计需要注意哪些格式呢?下面是书包范文为大家分享的《圆锥的体积》精彩教学设计(优秀5篇),希望能够对您的写作有一些启发。
一、教学内容:六年制小学数学教材第十二册第25-26页二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:◆培养学生的合作意识和探究意识;三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积方法和推导过程。
教学过程:一、质疑引入1圆锥有什么特征?指名学生回答。
2说一说圆柱体积的计算公式。
(1)已知s、h求v(2)已知r、h求v(3)已知d、h求v3我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积二、新课(一)教学圆锥体积的计算公式1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式----推导圆柱体公式)2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式〈1〉学生独立操作让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。
先在圆锥里装满水,然后倒入圆柱。
看几次正好把圆柱装满?〈2〉教师教具演示巩固学生的操作效果,cai课件演示a屏幕上出示等底、等高b等底、不等高c等高、不等底实验报告单实验器材实验结果等底不等高的圆锥、圆柱等高不等底的圆锥、圆柱等底等高的圆锥、圆柱〈3〉引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)用字母表示圆锥的体积公式。
《圆锥的体积》教案优秀4篇
《圆锥的体积》教案优秀4篇《圆锥的体积》教学设计篇一教学过程:一、情境引入:(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?(2)学生发言:(把它放进盛水的量杯里,看水面升高多少)(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。
真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。
(老师板书课题)设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
二、新课探究(一)、探究圆锥体积的计算公式。
1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)(4)老师拿教具演示等底等高。
拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的。
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。
(把等底等高的放在桌上备用。
)2、试验探究圆锥和圆柱体积之间的关系我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?b、通过实验,你发现了什么?(2)学生分组用等底等高的圆柱圆锥试验,做好记录。
教师在组间巡回指导。
(3)汇报交流:你们的试验结果都一样吗?这个试验说明了什么?(4)老师用等底等高的圆柱圆锥装红色水演示。
小学数学《圆锥体积》公开课教案【优秀8篇】
小学数学《圆锥体积》公开课教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!小学数学《圆锥体积》公开课教案【优秀8篇】作为一名教职工,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
《圆锥的体积》教学设计(精选13篇)
《圆锥的体积》教学设计(精选13篇)《圆锥的体积》篇1指导思想与理论依据:本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
教学背景分析:(一)教学内容分析:1、教材内容:本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。
让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?3、自己的创新认识:首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。
尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
圆锥的体积教学设计【优秀7篇】
圆锥的体积教学设计【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!圆锥的体积教学设计【优秀7篇】作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
圆锥的体积教学设计精品4篇
圆锥的体积教学设计篇1教学目的与要求:(1)掌握锥体的等积定值,锥体的体积公式。
(2)理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。
教学重点与难点:公式的推导过程,即"割补法"求体积。
教学方法:发现式教学教具:三棱柱模型、多媒体1、复习祖暅原理及柱体的体积公式。
2、等底面积等高的任意两个锥体的体积。
(类比于柱体体积公式的得出)。
首先研究等底面积等高的任意两个锥体体积之间的关系。
取任意两个锥体,设它们的底面积都是S,高都是h。
(创造祖暅原理的条件)把这两个锥体放在同一个平面α上。
这时它们的顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:∵S1/S=h12/h2,S2/S=h12/h2,∴S1/S=S2/S,S1=S2。
根据祖日恒原理,这两个锥体的体积相等,由此得到下面的定理:定理,等底面积等高的两个锥体的体积相等。
3、三棱锥的体积公式为研究三棱锥的体积,可类比于初中三角形面积的求法。
在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。
能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?[可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。
也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?(图形没有打印)[引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。
三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。
圆锥的体积教案(通用4篇)
圆锥的体积教案(通用4篇)圆锥的体积篇1教学目标:1、通过动手操作参与实验,发现等底等高的圆柱圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。
教学过程一、创设情境,引发猜想1. 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。
一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。
这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。
小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。
(图中圆柱形和圆锥形的雪糕是等底等高的。
)2. 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。
(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。
二、自主探索,操作实验下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?(2)你们的小组是怎样进行实验的?1. 小组实验。
(1)学生分6组操作实验,教师巡回指导。
(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。
(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。
《圆锥的体积》教案6篇
《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。
圆锥的体积教学设计优秀3篇
圆锥的体积教学设计篇12教学内容:教材第31——32页,练习八第4一10题。
教学目标:使学生进—步掌握圆锥的体积计算方法,能根据不同的条件计算圆锥的体积,能应用圆锥体积解决—些简单的实际问题;教学重点:进—步掌握圆锥的体积计算方法。
教学难点:根据不同的条件计算圆锥的体积。
预习作业:1、一个圆锥的体积是与它等底等高的圆柱体积的();,;2、圆柱的体积是它等底等高的圆锥体积的();3、练习八第4题、第6题、第7题和第8题教学过程:预习效果检测1、一个圆锥的体积是与它等底等高的圆柱体积的();2、圆柱的体积是它等底等高的圆锥体积的();3、把一个圆柱削成最大的圆锥,削去部分的体积相当于圆柱的相当于圆锥的()倍。
二、基本练习1、提问:1)同学们想一想:圆锥的体积怎样计算?2)口答下列各圆锥的体积。
①底面积3平方分米,高2分米。
②底面积4平方厘米,高4.5厘米。
2、完成练习八的第4题。
让学生仔细读题,并独立完成习题。
引导同学相互讨论,并说出解题思路。
3、完成练习八的第5题。
引导学生仔细观察题中的图形,并凭自己的感觉猜想哪个圆柱的体积与圆锥的体积相等。
教师提醒学生:底面直径之间的倍数关系并不等于底面面积之间的倍数关系。
请学生起来回答猜想的答案,给学生几分钟的时间,让学生利用已知的条件进行计算验证。
老师和学生一起找出正确的答案是:底面直径9厘米,高4厘米的圆柱。
4、完成练习八的第6题。
让学生仔细读题,并完成第一小题。
请学生起来说出解题的经过和步骤。
老师根据学生的发言总结:能削成最大的圆锥应是与这个圆形状的木料等底等高。
让学生在小组内讨论第(2)小题。
让学生自由发言,并板书讨论出的有关数学问题再让大家起进行解决,比如:削去的木料体积是多少?削去的木料体积是圆锥体积的几倍?削去的木料体积是整个木料的几分之几?…………5、完成练习八的第7、8、9题。
个别板演,全班齐练,小组讨论,集体评讲与小结。
6、完成练习八的第10题。
圆锥的体积教学设计(优秀6篇)
圆锥的体积教学设计(优秀6篇)《圆锥的体积》教案篇一教学内容教科书第39~40页例1,课堂活动及练习九第1题,第2题。
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
一、圆锥体积的计算公式的推导过程。
圆锥体积计算公式的理解。
小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。
一、情景铺垫,引入课题教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。
圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。
屏幕上出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?教师抽学生回答问题。
可能会出现以下几种情形:第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。
第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。
第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。
教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。
板书课题:圆锥的体积二、自主探究,感悟新知1.提出猜想,大胆质疑教师:谁来猜猜圆锥的体积怎么算?学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……对学生的各种猜想,教师给予肯定和表扬。
2.分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
《圆锥的体积》教案12篇
《圆锥的体积》教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆锥的体积》教案12篇《圆锥的体积》教案1教学内容:练习四第4~12题和第23页思考题教学目标:1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。
圆锥的体积教学设计优秀4篇
圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
同时渗透转化方法在数学学习中的应用。
二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。
汇报实验结果。
先在圆锥里装满水,然后倒入圆柱。
正好3次可以倒满。
多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。
圆锥的体积教学设计精品3篇
圆锥的体积教学设计篇5【教学过程】一、复习1、圆柱的体积公式是什么?用字母怎样表示?2、求下列各圆柱的体积。
(口答)(1)底面积是5平方厘米,高是6厘米。
(2)底面半径4分米,高是10分米。
(3)底面直径2米,高是3米。
师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。
师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。
生:圆锥的底面是圆形的。
生:从圆锥的顶点到底面圆心的距离是圆锥的高。
师:你能上来指出这个圆锥的高吗?师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。
师:你们看到过哪些物体是圆锥形状的?(略)师:对。
在生活中有很多圆锥形的物体。
师:刚才我们已经认识了圆锥。
现在我们再来研究圆锥的体积。
请同学们拿出一对等底等高圆锥和圆柱。
想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。
下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。
现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。
出示小黑板:1、圆锥的体积和同它等底等高的圆柱的体积有什么关系?2、圆锥的体积怎么算?体积公式是怎样的?学生分组做实验,老师巡回指导。
师:我们先来回答第一个问题。
在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?生:圆柱的体积是圆锥体积的3倍。
生:圆锥的体积是同它等底等高的圆柱体权的1/3。
板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。
师:得出这个结论的同学请举手。
(略)你们是怎么得出这个结论的呢?生:我们先在圆锥内装满沙,然后倒人圆柱内。
这样倒了三次,正好将圆柱装满。
所以,圆锥的体积是同它等底等高的圆柱体积的1/3。
师:说得很好。
人教版数学六年级下册第13课圆锥的体积教学设计(精推3篇)
人教版数学六年级下册第13课圆锥的体积教学设计(精推3篇)〖人教版数学六年级下册第13课圆锥的体积教学设计第【1】篇〗教学目标1、推导出圆锥体积的计算公式。
2、会运用圆锥的体积公式计算圆锥的体积。
重点难点圆锥体积公式的推导过程。
教学过程一、板书课题师:同学们,今天我们来学习“圆锥的体积”(板书课题)。
二、出示目标理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。
三、自学指导认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。
想:1、圆锥的体积与圆柱的体积有什么关系?2、圆锥的体积计算公式是什么?用字母如何表示?5分钟后,比谁能正确地回答思考题并能做对检测题!检测题完成课本第34页“做一做”第1、2题。
小组合作,校正答案后教口答一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?小组内互相说。
当堂训练1、必做题:课本第35页第5、6、7题。
(做在作业本上)2、选做题:有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。
把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)〖人教版数学六年级下册第13课圆锥的体积教学设计第【2】篇〗一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。
”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。
五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。
数学《圆锥的体积》教学设计(通用11篇)
数学《圆锥的体积》教学设计数学《圆锥的体积》教学设计(通用11篇)作为一位优秀的人民教师,就有可能用到教学设计,借助教学设计可以更大幅度地提高学生各方面的能力,从而使学生获得良好的发展。
那么问题来了,教学设计应该怎么写?以下是小编为大家整理的数学《圆锥的体积》教学设计,欢迎阅读,希望大家能够喜欢。
数学《圆锥的体积》教学设计篇1教材分析《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。
本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。
为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。
学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。
学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。
因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。
但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。
教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。
3、体会数学与生活的密切联系,感受探究成功的快乐。
教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。
难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。
教学过程教学环节一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。
圆锥的体积教学设计[优秀范文五篇]
圆锥的体积教学设计[优秀范文五篇]第一篇:圆锥的体积教学设计圆锥的体积教学设计【教学内容】圆锥的体积(北师大版小学六年级数学课本第十一页至第十二页)【教材分析】圆锥体积公式的推导及圆锥体积公式的应用,按创设情境--实验探究--导出公式三个层次编排。
学生分组操作时,肯定能借助倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积的3倍关系,但要注意对“等底等高”这一条件的强调。
【教学目标】1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想----验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生自主探究的能力和小组合作学习的能力。
【教学重难点】重点:掌握圆锥体积的计算公式。
难点:正确探索出圆锥体积与圆柱体积之间的关系。
【教具学具】教具:等底等高的圆柱与圆锥、水,课件。
学具:学生自制的等底等高的圆柱与圆锥、细沙或大米【教学过程】一、创设情境,导入新课看,老师手里拿的是什么?(圆锥)回忆一下,圆锥有什么特征?这节课,我们就来研究一下圆锥的体积,齐读课题。
二、操作实验,自主探索1、提出问题:回忆一下我们学过圆柱的体积公式是什么?出示圆柱体,想一想圆柱体积的计算公式是怎样推导出来的?(指名回答,课件简单演示圆柱转化成长方体过程,帮助学生回忆。
)我们是把圆柱转化成已经学过的长方体推导出来的。
圆锥的体积该怎样求呢?能不能也通过学过的图形来推导呢?那应该转化为哪一个立体图形最合适呢?说说你的想法,它们的底面都与圆有关,正如这个同学所说,它们的形状具有一定的相似性,那么它们的体积也应该有着密切的联系。
2、大胆猜想:老师这儿现在就有一个圆柱和一个圆锥,大家观察一下它们有什么特点,对,它们等底等高。
很明显,圆柱的体积要大于圆锥的体积,那么你能不能进行一下大胆的猜测,圆柱和圆锥的体积可能存在着什么关系呢?圆柱体积等于3倍的圆锥体积,刚才大家对圆柱和圆锥的体积进行了大胆的猜测,那么这个猜测是否正确,我们应该怎么办呢?我们分小组验证一下,课前老师让大家准备了圆柱和圆锥,还有沙子。
圆锥的体积教学设计一等奖(优秀5篇)
圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。
本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。
圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。
圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。
通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。
鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥的体积》教学设计
一、教材分析:
圆柱体积的计算方法是探索圆锥体积计算方法的基础。
在探索圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想—验证说明”的探索过程,从而理解圆锥体积的计算方法。
教材先创设了“一堆圆锥形小麦”的简单情境,引导学生结合情境来体会圆锥体积的含义,并提出“怎样计算圆锥的体积”的问题。
接着,教材安排了探索圆锥体积计算方法的内容,引导学生再次经历“类比猜想—验证说明”的探索过程,让学生体会类比等数学思想方法。
教材先呈现了“类比猜想”的过程,引导学生根据圆柱和长方体、正方体的体积计算方法来提出猜想,但“底面积×高”计算的是圆柱的体积,所以学生会想到圆锥体积可能是与它等底等高的圆柱体积的几分之一,学生可能进一步猜想二分之一、三分之一等。
在形成猜想后,再引导学生“验证说明”自己的猜想,教材中呈现了用做实验来“验证说明”的方法,即用一个空心圆锥装满米倒入等底等高的圆柱容器中,看几次能倒满来验证,从而推导出圆锥体积的计算方法。
二、学情分析:
接受教育者是小学六年级的学生,美国教育心理学家奥苏伯尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
”本节课是学生在学生学会推倒圆柱体积公式,认识了圆锥特征的基础上进行学习的,从而为本课自主研究学习打下了基础。
本节课重要的教学内容是推导出圆锥体积公式,并能运用公式进行实际生活运用。
学生对生活化的教学知识感性趣,凡事想探究明白,学生有积极探究的心向,让学生在探究中经历知识的产生,发展过程,从而喜爱数学。
三、设计理念:
本着在教师引导下学生积极主动合作探究的理念,本课以学生认识发展规律为主线,以引导猜想问题、发现问题、提出问题、探究解决问题、得出结论为基点,通过实际应用训练使学生在“认识—实践—再认识、再实践”中理解运用知识。
在教学策略上,本节课利用多媒体创设教学情境,充分激发学生学习的兴趣和欲望,让学生在猜想释疑、合作学习和实验操作中,自觉探究圆锥体积公式的推导过程,并运用规律解决实际问题,激发学生探究的兴趣,解决问题的乐趣,逐步提
高学生探究知识应用知识解决实际问题的能力。
四、教学目标:
(一)、知识与技能
1.使学生探索并初步掌握圆锥体积的计算方法和推导过程;
2.使学生会应用公式计算圆锥的体积并解决一些实际问题。
(二)、过程与方法
通过操作、实验、观察等方式,让学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。
(三)、情感态度与价值观
渗透知识是“互相转化”的辨证思想,让学生养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,感受探究成功的快乐。
五、教学重、难点:
重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。
难点:理解圆锥体积公式的推导过程。
六、教学准备:
圆柱、圆锥实物、容器、米、多媒体课件。
七、课时准备:
1课时。
八、教学过程:
(一)、回顾旧知识:
1.你会计算哪些图形的体积?
2.你能说说圆锥各部分的名称吗?
3.导入:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎么计算呢?这节课我们就来研究这个问题。
(板书:圆锥的体积)(二)、探索新知:
1.你认为圆锥的体积应该与我们以前学过的什么立体图形有一定联系的?为什么?(引导学生将圆柱和圆锥联系起来)
2.猜想
导入:为了我们研究圆锥体积的方便,每个组都准备了一个圆柱和一个圆锥。
你们小组观察看看,这两个图形有什么相同的地方?
(学生得出:底面积相等,高也相等。
)
底面积相等,高也相等,用数学语言说就叫“等底等高”。
(板书:等底 等高)
既然这两个物体是等底等高的,那么我们就跟求圆柱体积一样,就用“底面积×高”来求圆锥的体积行不行?(不行)
为什么?(因为圆锥的体积小)
很有道理哦。
圆锥没有占据这些空间。
那圆锥的体积大概是圆柱体积的多少呢?请你猜一猜。
谁来说一说。
哦,你猜二分之一,你猜三分之一,还有吗?
同学们都有自己的见解,到底谁的猜测正确呢?我们做实验寻找出圆柱体积与圆锥体积之间的关系,验证我们的猜想。
(板书:圆锥体积 圆柱体积)不过在实验前先认真阅读实验报告表,并在小组内分好工,谁一起操作,谁负责记录。
因为只有分工明确,才能更好的合作。
开始吧!
3.实验验证:
(1)生实验操作,并完成实验报告表
(2)小组交流
师:谁来汇报一下,你们组是怎样做实验的?通过做实验,你们发现它们有什么关系?
师:同学们得出这个结论非常重要,其他组也是这样的吗?
4.归纳公式
你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?(小
组讨论,得出圆锥的体积公式:V 锥=3
1sh ) 同学们刚才我们得到了圆锥的体积公式,那是不是所有的圆锥体积就是圆柱体积的三分之一呢?(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥里装满了米,往这个小圆柱里倒,倒三次能倒满吗?(不能)
为什么你们做实验的圆锥里装满了米往圆柱里倒,倒三次就能倒满呢?(因为是等底等高的圆柱体和圆锥体。
)
(老师在体积公式与“等底等高”四个字上连线。
)
现在我们得到的这个结论就更完整了。
(指名反复叙述公式)今后我们求圆锥的
体积时要先知道什么条件?但当题目没有给出底面积时,我们还可以用什么表示s?
对,V 锥=31sh=3
1πr ²h 。
(三)、实践应用:
1.计算下面圆锥的体积.
2.填空. (1)一个圆柱的体积是21立方米,与它等底等高的圆锥的体积是( )立方米。
(2)一个圆锥的体积是4.5立方厘米,与它等底等高的圆柱的体积是( )立方厘米。
3.判断下面的说法是不是正确。
(1)圆锥的体积等于圆柱体积的3
1 。
( ) (2)圆柱的体积大于与它等底等高的圆锥的体积。
( )
(3)圆锥的高是圆柱的高的3倍,它们的体积一定相等( )
4.列式计算.
工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数。
)
5.看书质疑
(四)、小结:同学们,通过这节课的学习,你有什么感受和想法?
(五)、作业: 书本P27页练习四第3、4、8题。
板书设计:
s=9 , h=12cm
2cm
r=6cm , h=10cm
圆锥的体积 圆锥的体积等于与它等底等高圆柱体积的3
1
圆锥体积=3
1
×底面积×高 V 锥=31sh=31πr²h
附:实验报告表
实 验 报 告 表。