生物信息学课件
生物信息学课件
Middle row displays identities; + sign for similar matches
15
Choose align two or more sequences…
16
Enter the two sequences (as accession numbers or in the fasta format) and click BLAST.
17
Pairwise alignment result of human beta globin and myoglobin
1
Overview and examples
2
DNA vs. Protein Alignment
• The reliability of protein alignment is higher than that of DNA
– 20 vs 4 characters – Codons : changes in the third position often do not alter the amino acid that is specified – Many amino acids share related biochemical and physical properties
• Ungapped DNA alignment:
AUGGAATTAGTTATTAGTGCTTTAATTGTTGAATAA ||||| | || || || | || || || | |
《生物信息学》课件
生物信息学的重要性
解释生物信息学在生物科学 研究、药物开发和医学诊断 中的重要作用。
生物信息学的发展历程
1
计算机技术的进步
描述计算机技术的不断发展为生物信息学提供了强大的工具和平台。
2
基因测序技术的突破
介绍基因测序技术的革命性进步,推动了生物信息学的发展。
3
开放数据共享
解释开放数据共享促进了生物信息学研究的合作和创新。
生物信息学的基本原理
1 序列比对
2 基因功能注释
3 数据挖掘和机器学习
阐述序列比对在生物信息 学中的核心作用,用于识 别相似的DNA、RNA和蛋 白质序列。
描述基因功能注释的流程, 用于理解基因的功能和作 用。
介绍数据挖掘和机器学习 在生物信息学中的应用, 用于发现生物学模式和预 测结构。
生物信息学的未来发展趋势
技术革新
预测未来生物信息学将受益于技 术的不断革新,如人工智能、大 数据和基因编辑。
研究领域拓展
探索生物信息学在新兴领域,如 单细胞测序和微生物组学中的应 用潜力。
多学科融合
强调生物信息学将与其他学科, 如人类基ቤተ መጻሕፍቲ ባይዱ组学和系统生物学, 进行深入交叉。
《生物信息学》PPT课件
欢迎来到《生物信息学》PPT课件。本课程将带您了解生物信息学的定义、应 用、发展历程、基本原理和未来发展趋势。
导入生物信息学
什么是生物信息学
介绍生物信息学是一门跨学 科领域,结合了生物学和计 算机科学的知识,用于解析 和研究生物信息。
生物信息学的应用领域
探索生物信息学在基因组学、 蛋白质组学、转录组学等领 域的广泛应用。
生物信息学概述(共59张PPT)精选全文完整版
蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划
生物信息学课堂ppt课件
只是出现在电子出版物的文本中。
5
产生 生物信息学的
❖ 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都 极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求 一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。 而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解 释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对 这些数据的分析工作。
❖ 基因组时代--基因寻找和识别、网络数据库系统的 建立、交互界面的开发;
❖ 后基因组时代--大规模基因组分析、蛋白质组分析。
8
重要性 生物信息学的
❖ 生物信息学不仅是一门学科,更是一种重要的研究开发工具。 ❖ 从科学的角度来讲,生物信息学是一门研究生物和生物相关
系统中信息内容与信息流向的综合系统科学。只有通过生物 信息学的计算处理,人们才能从众多分散的生物学观测数据 中获得对生命运行机制的系统理解。 ❖ 从工具的角度来讲,生物信息学几乎是今后所有生物(医药) 研究开发所必需的工具。只有根据生物信息学对大量数据资 料进行分析后,人们才能选择该领域正确的研发方向。 ❖ 生物信息学不仅具有重大的科学意义,而且具有巨大的经济 效益。它的许多研究成果可以较快地产业化,成为价值很高 的产品。
分析(主要研究内容) 应用(多个领域)
主要由数据库、计算机网络和应用软件三大部分构成
2
定义
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大量数据。
生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学
生物信息学分析方法介绍PPT课件
目录
• 生物信息学概述 • 基因组学分析方法 • 转录组学分析方法 • 表观遗传学分析方法 • 蛋白质组学分析方法 • 生物信息学分析流程和方法比较
01
生物信息学概述
生物信息学的定义和重要性
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理和 技术,对生物学数据进行分析、建模和解读,以揭示生命现象的本质和规律。
研究蛋白质的序列、结构 和功能,以及蛋白质相互 作用和蛋白质组表达调控 机制。
研究基因转录本的序列、 结构和表达水平,以及转 录调控机制。
研究基因表达的表观遗传 调控机制,如DNA甲基化 、组蛋白修饰等。
通过对患者基因组、蛋白 质组和转录组等数据的分 析,为个性化医疗和精准 医学提供支持。
02
基因组学分析方法
基因组注释
基因组注释是指对基因组序列中的各 个区域进行标记和描述的过程,包括 基因、转录单元、重复序列、调控元 件等。
注释信息可以通过数据库(如RefSeq、 GeneBank等)或注释软件(如GATK、 ANNOVAR等)获取。注释信息对于 理解基因组的生物学功能和进化关系 具有重要意义。
基因组变异检测
基因组变异检测是指检测基因组序列 中的变异位点,包括单核苷酸变异、 插入和缺失等。
VS
变异检测对于遗传疾病研究、进化生 物学和生物进化研究等领域具有重要 意义。常用的变异检测方法有SNP检 测、CNV检测等,它们基于不同的原 理和技术,具有不同的适用范围和精 度。
03
转录组学分析方法
RNA测序技术
利用生物信息学方法和算法,对 RNA测序数据进行基因融合检测, 寻找融合基因及其融合方式。
基因融合检测结果可以为研究肿 瘤等疾病提供重要线索,有助于 深入了解疾病发生发展机制。
生物信息学PPT课件
生物信息学在农业研究中的应用
1 2 3
作物育种
生物信息学可以通过基因组学手段分析作物的遗 传变异,为作物育种提供重要的遗传资源。
转基因作物研究
通过生物信息学分析,可以了解转基因作物的基 因表达和性状变化,为转基因作物的研发和应用 提供支持。
农业环境监测
生物信息学可以帮助研究人员监测农业环境中的 微生物群落、土壤质量等指标,为农业生产提供 科学依据。
特点
生物信息学具有数据密集、技术依赖、多学科交叉、应用广泛等特点。
生物信息学的重要性
促进生命科学研究
提高疾病诊断和治疗水平
生物信息学为生命科学研究提供了强 大的数据分析和挖掘工具,有助于深 入揭示生命现象的本质和规律。
生物信息学在疾病诊断和治疗方面具 有重要作用,通过对基因组、蛋白质 组等数据的分析,有助于实现个体化 精准医疗。
03 生物信息学技术与方法
基因组测序技术
基因组测序技术概述
基因组测序是生物信息学中的一项关键技术,它能够测定生物体的 全部基因序列,为后续的基因组学研究提供基础数据。
测序原理
基因组测序主要基于下一代测序技术,如高通量测序和单分子测序, 通过这些技术可以快速、准确地测定生物体的基因序列。
测序应用
基因组测序在医学、农业、生物多样性等多个领域都有广泛应用,如 疾病诊断、药物研发、作物育种等。
生物信息学ppt课件
目录
• 生物信息学概述 • 生物信息学的主要研究领域 • 生物信息学技术与方法 • 生物信息学的应用前景 • 生物信息学的挑战与展望 • 案例分析
01 生物信息学概述
定义与特点
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理、 技术和方法,对生物学数据进行分析、解释和利用,以解决生物学问题。
《生物信息学概论A》课件
PART 06
生物信息学的未来发展与 挑战
新兴技术与应用领域
人工智能与机器学习
在生物信息学中应用人工智能和机器学习技术,实现对基因组、 蛋白质组等复杂数据的自动化分析和解读。
纳米技术与合成生物学
结合纳米技术,实现更精准的基因编辑、药物输送和疾病诊断。
临床信息学
利用生物信息学技术,实现精准医疗和个性化治疗,提高疾病诊断 和治疗的效果。
包括电泳、色谱等分离技术,可以将复杂的蛋白质混合物分离成单一组分。
蛋白质鉴定技术
主要依赖于质谱技术,通过将蛋白质消化成肽段,然后对这些肽段进行质谱分析,从而确定蛋白质的序列。
蛋白质组学在药物研发中的应用
疾病标记物寻找
通过比较正常和疾病状态下的蛋白质表达谱,可以发现与疾病相关 的标记物,用于疾病的早期诊断和治疗监测。
药物靶点发现
通过对蛋白质相互作用的研究,可以发现新的药物靶点,为新药研 发提供新的思路和方向。
药物作用机制研究
通过研究药物对蛋白质表达和功能的影响,可以深入了解药物的作用 机制,为药物优化提供依据。
PART 04
生物信息学数据库
数据库的种类与用途
基因组数据库
存储基因组序列数据,用于基因识别、基因定位和基因功能研究。
它涉及到多个领域,如分子生物学、 遗传学、系统生物学、进化生物学等 ,旨在揭示生物现象背后的数据规律 和机制。
生物信息学的发展历程
20世纪70年代
随着人类基因组计划的启动,生物信息学开始萌芽。
20世纪90年代
随着计算机技术和互联网的发展,生物信息学迅速发 展壮大。
21世纪初
随着大数据和人工智能技术的兴起,生物信息学进入 了一个新的发展阶段。
生物信息学课件
基因组组装与注释
基因组组装
01
基因组组装是将测序得到的碎片组装成一个完整的基因组序列
。
基因组注释
02
基因组注释是对基因组序列进行分析,识别出基因和其他功能
元件。
基因组组装与注释的重要性
03
基因组组装与注释是理解基因组结构和功能的基础,对于研究
生物进化、疾病发生和治疗具有重要意义。
03
生物信息学应用
• 详细描述:单基因遗传病通常是由单个基因的突变引起的,这些突变可能是显性或隐性。在研究中,生物信息 学家可以通过对患者的基因组进行测序和分析,识别与疾病相关的基因变异。他们还可以通过比较健康个体的 基因组与患病个体的基因组,发现差异并确定导致疾病的特定突变。此外,生物信息学家还可以使用计算机模 型和算法来模拟基因组变异的影响,并预测其对蛋白质功能和细胞过程的影响。这些信息有助于医生和研究人 员更好地理解疾病的病因、病理生理机制以及潜在的治疗方法。
THANK YOU
数据库建设
研究如何建立和维护生物信息学数据库, 包括数据库设计、数据存储和管理、数据 查询和可视化等技术。
02
生物信息学基础
遗传密码子
遗传密码子的定义
遗传密码子是DNA和RNA中携带遗传信息的序列 。
遗传密码子的特点
遗传密码子具有方向性、连续性、通用性和简并 性。
遗传密码子的破译
科学家们通过研究基因组序列,逐渐破译了遗传 密码子的秘密。
以单分子DNA测序为主要技术,具有读取长度长、准确率高、速度快等优点,但设备昂贵且维护成本 高。
生物信息学数据库
1 2 3
NCBI
美国国立生物技术信息中心,提供生物医学相关 信息和数据,包括基因组测序数据、基因表达谱 数据等。
中国科技大学系列:《生物信息学》01省名师优质课赛课获奖课件市赛课一等奖课件
PSI-BLAST:位点特异性迭代BLAST PHI-BLAST:模式发觉迭代BLAST
基于序列信息研究分子进化
1.构建进化树,分析蛋白质旳超家族及亚家 族分类。
2.寻找Ortholog (直系同源物)或者Paralog (旁系同源物)。
3. 分子进化树旳构建措施:邻接法 (Neighbor-Joining), 最大简约法(Maximum Pasimony),最大似然性法(Maximum Likelihood),以及贝叶斯类算法(MCMC)。
4.构建进化树旳第一步:可靠旳多序列比对。
RNA二级构造旳预测
1. RNA分子中,如果存在重复且反向互补 ,则可以形成发卡结构。
2.数学知识:概率论与统计学等 3.算法及编程能力:JAVA, Perl/Python,
PHP+MySQL, …
生物信息学旳常用算法与措施
动态规划算法(Dynamic programming); 贝叶斯统计(bayesian statistic); 人工神经网络(ANNs); 马尔可夫模型和隐马尔科夫模型(HMM); 遗传算法(Genetic Algorithm); 蒙特卡洛措施(Monte Carlo); 模拟退火算法(Simulated Annealing); 支持向量机(SVM); …
1955年,Sanger与合作者分别对牛、猪和羊旳胰岛素蛋白质进 行了测序并做了序列上旳比较。-最早旳序列比对。
1962年,鲍林提出分子进化旳理论,推测在人中可能存在 50,000~100,000个不同旳基因/蛋白质。-分子进化理论旳奠定。
1965年,Margaret Dayhoff构建蛋白质序列图谱 1970年,Needleman-Wunsch算法:全局优化比对。 1981年,Smith-Waterman算法开发:局部优化比对。 1990年,迅速序列相同性搜索工具BLAST旳开发
《生物信息学概述》课件
04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究
(生物信息学).ppt
生物信息学简介生物信息学是一门综合性学科,将计算机科学、统计学和生物学相结合,利用计算机技术和软件工具对生物学数据进行解析、处理和研究。
生物信息学在基因组学、蛋白质组学、转录组学等领域具有重要的应用价值,可以帮助我们更好地理解生物体内的分子机制和生物过程。
生物信息学的应用领域基因组学基因组学是研究整个基因组的结构、功能、进化和调控的学科。
生物信息学在基因组学中起到重要作用,可以通过生物信息学工具对基因组进行注释、比对、重构等分析。
基因组学的研究可以帮助我们理解基因的组织、表达和调控,以及基因与疾病之间的关系。
蛋白质组学蛋白质组学是研究细胞或生物体内所有蛋白质的表达、结构和功能的学科。
生物信息学在蛋白质组学中有广泛的应用,可以通过生物信息学方法预测蛋白质的结构和功能,对蛋白质相互作用网络进行建模和分析,以及对蛋白质组的表达、修饰等进行系统性的研究。
转录组学转录组学是研究细胞或组织中所有基因的转录活动的学科。
生物信息学在转录组学中发挥重要作用,可以通过分析转录组数据,如RNA测序数据,来研究基因的表达模式、调控网络和信号通路等。
转录组学的研究对于理解基因调控和细胞分化等生物过程具有重要意义。
比较基因组学比较基因组学是研究不同物种间基因组的结构、功能和进化的学科。
生物信息学在比较基因组学中起到关键作用,可以通过比对不同物种的基因组序列,寻找共同的基因、保守的序列和功能,从而揭示物种的进化关系和基因家族的起源演化。
生物信息学的工具和方法生物信息学依赖于各种计算工具和方法来分析和解释生物学数据。
以下是一些常用的生物信息学工具和方法的介绍:序列比对序列比对是生物信息学中常用的分析方法,可以用来比对不同序列之间的相似性和差异性。
比对结果可以用来推断序列的进化关系、功能和结构等。
常用的序列比对工具包括BLAST、ClustalW等。
基因注释基因注释是通过对基因组序列进行分析和解释,确定基因的位置、结构和功能的过程。
2024年《生物信息学介绍》PPT课件
1. 实验设计 2. 样品制备(指mRNA或总RNA样品,包括对照组和实验组) 3. 芯片制备(包括PCR,纯化,点样等步骤) 4. 芯片杂交(将mRNA或总RNA分别进行逆转录生成cDNA,在此步骤中将对照组和实验组cDNA分别标记CY3和CY5荧光信号) 5. 芯片扫描(采用激光扫描仪,分别用532nm和635nm波长激光扫描芯片,对于每张芯片,得到CY3和CY5通道两幅图象)
蛋白质结构和功能的预测分析 蛋白质家族保守序列寻找 从氨基酸组成辨识蛋白质 蛋白质二级结构预测 蛋白质的三维结构 蛋白质的物理性质预测 其他特殊局部信息:其它特殊局部结构包括膜蛋白的跨膜螺旋、信号肽、卷曲螺旋(Coiled Coils)等,具有明显的序列特征和结构特征,也可以用计算方法加以预测
KDD2001年BIOKDD的主题就是“生物信息学中的数据挖掘”
现在的工作
数据挖掘算法在生物信息学研究中的应用 数据挖掘算法在生物信息学研究中的改进与发展 生物信息学软件的开发
基因芯片(microarray)介绍
电子技术与生物技术的结合 基因组研究中最实用的部分之一 Affymetrix公司: 1.6cm2 40万位点 每点1000万条探针
近期任务
大规模基因组测序中的信息分析 新基因和新SNPS(单核苷酸多态性)的发现与鉴定 完整基因组的比较研究 大规模基因功能表达谱的分析 生物大分子的结构模拟与药物设计
远期任务
读懂人类基因组,发现人类遗传语言的根本规律,从而阐明若干生 物学中的重大自然哲学问题,像生命的起源与进化等。这一研究的关键和核心是了解非编码 区 非编码区信息结构分析 遗传密码起源和生物进化的研究
生物信息学介绍
生物信息学: 存储、修复、分析、整合生物数据的学科 分子生物学与信息技术的结合体 研究材料与结果:各种生物学数据 研究工具:网络、计算机 包括生物学和计算两部分 现代生物研究的核心 研究方法: 传统生物学:实验 理论 现代生物学:理论 实验验证
《生物信息学》PPT课件
完整版课件ppt
8
数据库
数据库格式:EMBL格式,GenBank格式, ASN.1格式,PIR/CODATA格式
生物信息学
生物信息学概述 生物信息数据库及其应用
完整版课件ppt
1
生物信息学(bioinformatics)是生物学与计算 机科学以及应用数学等学科相互交叉而形成 的一门学科。它通过对生物学实验数据的获 得、加工、存储、检索与分析,进而达到揭 示数据所蕴含的生物学意义的目的。
完整版课件ppt
2
生物信息学与生物计算
★ 各种数据库的建立和管理 ★ 数据库接口和检索工具的研制 ★ 研究新算法,发展方便适用的程序
完整版课件ppt
3
生物信息学与生物实验
★ 实验数据是生物信息学的基础 ★ 生物信息学的指导作用
完整版课件ppt
4
算法 图形学 图像识别 人工智能 数据库 统计学 计算机模拟 信息理论 语言学 机器人学 软件工程 计算机网络
完整版课件ppt
25
重要生物信息学中心简介
NIH:National Institute of Health NCBI:National Center of Biotechnology Institute NLM:National Library of Medicine / GenBank, Unigene , Refseq, dbSNP, OMIM
完整版课件ppt
32
完整版课件ppt
33
完整版课件ppt
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-3-11
GenBank:由美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI) 建立。该 中心隶属于美国国家医学图书馆,位于美国国家卫生 研究院(NIH)内。
EMBL:欧洲分子生物学实验室(European Molecular Biology Laboratory, 其下有European Bioinformatics Centre),主要位于英国剑桥Cambridge和德国汉堡 Hamburg。
核酸序列
氨基酸序列
2014-3-11
注意
• 组成序列信息字符串的符号必须为标准的国 际生物化学联合会 (IUB)/国际纯粹与应 用化学联合会 (IUPAC) • 氨基酸或核苷酸的符号符号的大小写同义, 单个“连字符”表示一个空位 • 不清楚的核苷酸残基用 N表示,不确定的氨 基酸残基用X表示 • 标题行的名称是用户自定义的,可以是汉字, 也可以是英文
2014-3-11
2. 序列详细注释的GenBank格式
• GBFF(GenBank flatfile,GenBank 平面文 件)格式 • GenBank数据库的基本信息单位,是最为 广泛使用的生物信息学序列格式之一。
2014-3-11
GenBank格式
GenBank格式: 每个条目都是一份纯文本文件。每行左端或为空格或为识别字, 识别字均为完整英文字,不用缩写。 GenBank条目,使用一大批与EMBL和DDBJ数据库统一的关键
– 自治的 (autonomous) – 分布式的 (distributed) – 异构的 (heterogeneous)
2014-3-11
数据集成 Data Integration
一、 生物信息学数据库
生物信息学数据库的种类
分子生物信息数据库种类繁多。归纳起来,大体 可以分为4个大类: 基因组数据库
2014-3-11
一个简单的GenBank记录
LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM AF062069 3808 bp mRNA INV 02-MAR-2000 Limulus polyphemus myosin III mRNA, complete cds. AF062069 AF062069.2 GI:7144484 . Atlantic horseshoe crab. Limulus polyphemus Eukaryota; Metazoa; Arthropoda; Chelicerata; Merostomata; Xiphosura; Limulidae; Limulus. REFERENCE 1 (bases 1 to 3808) AUTHORS Battelle,B.-A., Andrews,A.W., Calman,B.G., Sellers,J.R., Greenberg,R.M. and Smith,W.C. TITLE A myosin III from Limulus eyes is a clock-regulated phosphoprotein JOURNAL J. Neurosci. (1998) In press REFERENCE 2 (bases 1 to 3808) AUTHORS Battelle,B.-A., Andrews,A.W., Calman,B.G., Sellers,J.R., Greenberg,R.M. and Smith,W.C. TITLE Direct Submission JOURNAL Submitted (29-APR-1998) Whitney Laboratory, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32086, USA REFERENCE 3 (bases 1 to 3808) AUTHORS Battelle,B.-A., Andrews,A.W., Calman,B.G., Sellers,J.R., Greenberg,R.M. and Smith,W.C. TITLE Direct Submission JOURNAL Submitted (02-MAR-2000) Whitney Laboratory, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, FL 32086, USA REMARK Sequence update by submitter COMMENT 2014-3-11 On Mar 2, 2000 this sequence version replaced gi:3132700.
2014-3-11
1、FASTA序列格式(Person格式 )
FASTA 序列格式包括三个部分: (1)在注释行的第一行用字符“>”标识,后面是 序列的名字和来源 (2)标准的单字符表示序列 (3)可选的“*”表示序列的结束,它可能出现也 可能不出现,但它是许多序列分析程序正确读取序 列所必须的。 FASTA格式是序列分析软件最常用的格式。这种格 式提供了从一个窗口到另一个窗口非常方便的拷贝 途径,因为序列中没有数字或其他非字符。FASTA 序列格式和蛋白质信息资源NBRF格式很相似。
2014-3-11
•说明3点:
•序列文件的第一行是由大于符号(>)打头的
任意文字说明,主要为标记序列用。 •从第二行开始是序列本身,标准核苷酸符号或 氨基酸单字母符号。通常核苷酸符号大小写均 可,而氨基酸一般用大写字母。 •文件中和每一行都不要超过80个字符(通常60 个字符)。
2014-3-11
字。格式可以分成3个部分:
1)头部包含关于整个序列的信息(描述字符),从 LOCUS行到 ORIGIN行;
2)注释这一序列的特性(Feature Table ),为注释的核心部分;
3)序列本身(Sequence)。 注:所有的核苷酸数据库记录(EMBL/GenBank/DDBJ)都在最后
一行以//结尾。
2014-3-11
二、核酸数据库
1 、国际三大核酸数据库
• 数据库 (Database)
网址 (Address)
GenBank EMBL DDBJ
/genbank /embl www.ddbj.nig.ac.jp/index-e.html
– Painfully collecting unstructured information around the sites – Manually putting pieces together – Hopefully getting the right picture...
• 总之,信息源的特点是:
第二 章 核酸序列分析
Nucleic Acid sequence Analysis
2014-3-11
§2.1 生物信息学数据库 Bioinformatics database
2014-3-11
生物信息学最重要的任务是从海量数据中提取新知识
2014-3-11
生物信息学数据存在的问题
• 信息源分布在世界各地不同的站点上 • 涉及多个数据源的全局问题无法立刻得到答案
DDBJ:日本DNA数据库(DNA Data Bank of Japan), 由the National Institute of Genetics, NIG 主管。
2014-3-11
这3个大型数据库于1988年达成协议,组成合作联合体。
它们每天交换信息,并对数据库DNA序列记录的统一
标准达成一致。每个机构负责收集来自不同地理分布的 数据(EMBL负责欧洲,GenBank负责美洲,DDBJ负责 亚洲等),然后来自各地的所有信息汇总在一起,3个 数据库的数据共享并向世界开放,故这3个数据库又被
核酸和蛋白质一级结构数据库
生物大分子(主要是蛋白质)三维空间结构数据库 由上述3类数据库和文献资料为基础构建的二级 数库的分类
一级数据库
数据库中的数据直接来源于实验获得的原始数据,只经过简 单的归类整理和注释
一级核酸数据库:EMBL database,GenBank database,DDBJ database 一级蛋白质序列数据库:SWISS-PORT database , PIR database 一级蛋白质结构数据库: PDB database
目前完成全基因组测序工作的物种有很多,并在
随时更新(update).可以进入ncbi的基因组计
划二次数据库查看,其网址: /Genomes
2014-3-11
四、 数据库格式
历史原因:没有完全统一的数据库格式
了解所用数据库格式的重要性
一般由两部分组成: 文字注释 序列
北京大学生物信息学中心(Centre of Bioinformatics, Peking University):
北京华大基因研究中心(中国科学院北京基因组研究所):
/bgi_new/index.htm 清华大学生物系生物信息研究室: 中国科学院上海生命科学研究院生物信息中心: 2014-3-11
Research》 (/)自1993 年起,每年都会在第一期推出生物数 据库特刊,介绍上一年度的数据库增 加和更新情况。
至2010年,生物信息学数据库总数已
达1230个。
2014-3-11
2014-3-11
核酸序列数据库
2014-3-11
称为公共序列数据库(Public Sequence Database)。
所以从理论上说,这3个数据库所拥有的DNA序列数据
是完全相同的。你可以从中选择一个你喜欢的数据库;
但是如果你的研究需要实时(24小时以内)的,则要注意 这些数据库间的记录是会有差异的。