粒子群算法论文

合集下载

粒子群算法改进及其应用-硕士论文

粒子群算法改进及其应用-硕士论文
第二章 粒子群算法.......................................................................................4
2.1 粒子群算法简介 ................................................................................................ 4 2.2 基本粒子群算法 ................................................................................................ 4 2.3 粒子群算法流程 ................................................................................................ 5 2.4 粒子群算法的改进 ............................................................................................ 6
摘要
粒子群算法改进及应用
摘要
粒子群优化算法最早是由 Eberhart 和 Kennedy 模拟自然界的生物群体觅 食提出的一种群智能化方法。后来 Shi 等人引入惯性权重来更好的控制收敛和 探索,形成了当前的标准 PSO 算法。由于该算法实现简单,需要调整的参数 少,已被广泛地应用于函数优化、通信系统设计、电子系统设计以及经济管 理等领域。
学 校 代 码 10608

号 200808120306
分 类 号 TP18

粒子群优化算法的研究及改进

粒子群优化算法的研究及改进
or
optimized function is differentiable,derivative
continuous.The PSO
is
simple in structure,fast in
convergence,few
in parameters and easy in programming.
So it has attracted researchers at home and abroad and applyed in many areas since it is
systematic
study
PSO
on
the aspects of
algorithm modification
and used
and its application.The main
content
is
arranged as
(1)Upon analysing the
capabilities systems is
1 3 benchmark functions.The results indicate that GPSO algorithm have improved
performance
(3)Based
on
of the
convergence
speed and the search accuracy. the
and the algorithm
to‘'premature
convergence”.Finally,the
PSO algorithm is not strong in of the

climbing ability and lack of

毕业设计(论文)-一种改进的粒子群算法

毕业设计(论文)-一种改进的粒子群算法

南京邮电大学毕业设计(论文)题目一种改进的粒子群算法专业网络工程学生姓名班级学号指导教师指导单位物联网学院日期:2017年1月15日至2017年6月16日毕业设计(论文)原创性声明本人郑重声明:所提交的毕业设计(论文),是本人在导师指导下,独立进行研究工作所取得的成果。

除文中已注明引用的内容外,本毕业设计(论文)不包含任何其他个人或集体已经发表或撰写过的作品成果。

对本研究做出过重要贡献的个人和集体,均已在文中以明确方式标明并表示了谢意。

论文作者签名:日期:年月日摘要粒子群优化(PSO: Particle Swarm Optimization)是在20世纪被引入的一种强大且广泛使用的群优化计算方式,用于解决优化问题。

由于其实施的简单性,PSO 在过去几十年中已经广泛应用于各个领域。

粒子群的个体行为和整体行为互相影响,粒子之间信息互换,群体之间的信息共享,因此可通过粒子的协作对分布式问题进行求解。

粒子群算法具有参数较少、实现容易、寻找能力强的优点。

但是随着当前问题的规模不断增大,粒子群算法常常容易陷入搜索精度不足的问题。

针对上述问题,研究人员提出了许多的优化策略,社会学习机制就是其中的一种。

社会学习机制包含好几种学习机制,即联结,强化和模仿。

在这些机制中,应用最广泛的社会学习机制是模仿。

同样在粒子群算法中粒子与粒子之间的相互学习影响也可以利用这种机制。

粒子通过动态学习自身历史经验和模仿周围粒子的社会经验完成粒子最优解的搜索。

这种基于模仿的社会学习机制可以使得算法的搜索性能更加的强大。

本文将社会学习机制引入PSO,提出了一种基于社会学习的改进的粒子群算法,称为SL-PSO(Social Learning-Particle Swarm Optimization),仿真实验表明所提出的基于整个群体的算法在问题的维度变化的时候具有较好的性能,但是收敛速度慢的问题我们不能忽略。

为了避免出现收敛速度慢的问题,我们需要减少搜索范围,然后将向整个种群中的行为学习改变成向前5个优秀学习的粒子进行学习,并且定义为ISL-PSO(Improved Social Learning-Particle Swarm Optimization)。

粒子群算法论文

粒子群算法论文

粒子群算法的寻优算法摘要:粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。

这篇文章简要回顾了粒子群算法的发展历史;引入了一个粒子群算法的实例,对其用MATLAB进行编程求解,得出结论。

之后还对其中的惯性权重进行了延伸研究,对惯性权重的选择和变化的算法性能进行分析。

关键词:粒子群、寻优、MATLAB、惯性权重目录:1.粒子群算法的简介 (2)1.1 粒子群算法的研究背景 (2)1.2 起源 (2)1.3 粒子群理论 (3)2.案例背景 (4)2.1问题描述 (4)2.2 解题思路及步骤 (4)3.MATLAB编程实现 (5)3.1设置PSO算法的运行参数 (5)3.2种群初始化 (5)3.3寻找初始极值 (5)3.4迭代寻优 (6)3.5结果分析 (6)4.惯性权重对PSO算法的影响 (8)4.1惯性权重的选择 (8)4.2惯性权重变化的算法性能分析 (8)5 结论 (10)参考文献: (11)1.粒子群算法的简介粒子群算法(Particle Swarm Optimization)是一种新的智能优化算法。

谈到它的发展历史,就不得不先介绍下传统的优化算法,正因为传统优化算法自身的一些不足,才有新智能优化算法的兴起,而粒子群算法(PSO)就是在这种情况下发展起来的。

1.1 粒子群算法的研究背景最优化是人们在科学研究、工程技术和经济管理等领域中经常遇到的问题。

优化问题研究的主要内容是在解决某个问题时,如何从众多的解决方案中选出最优方案。

它可以定义为:在一定的约束条件下,求得一组参数值,使得系统的某项性能指标达到最优(最大或最小)。

传统的优化方法是借助于优化问题的不同性质,通常将问题分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题等。

相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共扼梯度法,应用于整数规则的分枝界定法、动态规划等。

粒子群算法的论文

粒子群算法的论文

摘自:人工智能论坛1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。

源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。

系统初始化为一组随机解,通过叠代搜寻最优值。

但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。

而是粒子在解空间追随最优的粒子进行搜索。

详细的步骤以后的章节介绍同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。

目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域2. 背景: 人工生命"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容1. 研究如何利用计算技术研究生物现象2. 研究如何利用生物技术研究计算问题我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为例如floys 和boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PS O是一种很好的优化工具.3. 算法介绍如前所述,PSO模拟鸟群的捕食行为。

基于粒子群算法的优化研究

基于粒子群算法的优化研究

基于粒子群算法的优化研究近年来,随着科技的不断发展,计算机技术的进步以及人工智能领域的发展,优化算法成为了解决各种实际问题的强有力工具。

在众多的优化算法中,粒子群算法(Particle Swarm Optimization,PSO)以其简单易理解、易于实现和优良的全局搜索性能,成为了最受欢迎的一种优化算法之一。

粒子群算法最初是由美国伊利诺伊理工大学的Eberhart和Kennedy在1995年提出,其灵感来源于鸟群或鱼群等真实生物群体的行为。

在粒子群算法中,解被表示为一组粒子(particles),每个粒子都有自己的位置和速度。

每个粒子根据自己的历史最优解和群体的历史最优解对自己的速度和位置进行更新,从而实现优化搜索目标。

粒子群算法具有易于理解、适用性强和全局搜索性能优越等特点,在各种实际问题中都得到了广泛应用。

例如,在工程、物流、金融等领域中,粒子群算法被广泛应用于参数优化、数据挖掘、路径规划等问题的求解。

此外,粒子群算法也在神经网络、模糊系统等领域中得到了广泛应用。

粒子群算法的核心思想是通过每个粒子的个体历史最优值和群体历史最优值的影响来指导粒子的搜索方向。

具体地,粒子的速度和位置更新公式如下:$$V_i^t=wV_i^{t-1}+c_1r_1(p_i^t-X_i^t)+c_2r_2(g^t-X_i^t)$$$$X_i^t=X_i^{t-1}+V_i^t$$其中,$V_i^t$表示粒子的速度,在第$t$次迭代时,$i$表示第$i$个粒子。

$X_i^t$表示第$i$个粒子的位置,表示在第$t$次迭代时,粒子$i$的位置。

$p_i^t$表示粒子$i$的个体历史最优值,即粒子$i$在历史上所找到的最优解。

$g^t$表示群体历史最优值,即所有粒子历史上所找到的最优解。

$c_1$、$c_2$为常数,$r_1$、$r_2$均为[0,1]之间的随机数。

$w$为惯性权重,用于控制粒子的搜索范围。

不同于一些经典的优化算法,如遗传算法、模拟退火等,粒子群算法是一种群体式(Population-Based)的优化算法。

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)

粒子群算法(优化算法)毕业设计毕设论文(包括源代码实验数据,截图,很全面的)

毕业论文题目粒子群算法及其参数设置专业信息与计算科学班级计算061学号3060811007学生xx指导教师徐小平2010年I粒子群优化算法及其参数设置专业:信息与计算科学学生: xx指导教师:徐小平摘要粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,粒子群优化算法通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。

它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。

论文介绍了粒子群优化算法的基本原理,分析了其特点。

论文中围绕粒子群优化算法的原理、特点、参数设置与应用等方面进行全面综述,重点利用单因子方差分析方法,分析了粒群优化算法中的惯性权值,加速因子的设置对算法基本性能的影响,给出算法中的经验参数设置。

最后对其未来的研究提出了一些建议及研究方向的展望。

关键词:粒子群优化算法;参数;方差分析;最优解IIParticle swarm optimization algorithm and itsparameter setSpeciality: Information and Computing ScienceStudent: Ren KanAdvisor: Xu XiaopingAbstractParticle swarm optimization is an emerging global based on swarm intelligence heuristic search algorithm, particle swarm optimization algorithm competition and collaboration between particles to achieve in complex search space to find the global optimum. It has easy to understand, easy to achieve, the characteristics of strong global search ability, and has never wide field of science and engineering concern, has become the fastest growing one of the intelligent optimization algorithms. This paper introduces the particle swarm optimization basic principles, and analyzes its features. Paper around the particle swarm optimization principles, characteristics, parameters settings and applications to conduct a thorough review, focusing on a single factor analysis of variance, analysis of the particle swarm optimization algorithm in the inertia weight, acceleration factor setting the basic properties of the algorithm the impact of the experience of the algorithm given parameter setting. Finally, its future researched and prospects are proposed.Key word:Particle swarm optimization; Parameter; Variance analysis; Optimal solutionIII目录摘要 (II)Abstract ............................................................................................................................. I II 1.引言. (1)1.1 研究背景和课题意义 (1)1.2 参数的影响 (1)1.3 应用领域 (2)1.4 电子资源 (2)1.5 主要工作 (2)2.基本粒子群算法 (3)2.1 粒子群算法思想的起源 (3)2.2 算法原理 (4)2.3 基本粒子群算法流程 (5)2.4 特点 (6)2.5 带惯性权重的粒子群算法 (7)2.7 粒子群算法的研究现状 (8)3.粒子群优化算法的改进策略 (9)3.1 粒子群初始化 (9)3.2 邻域拓扑 (9)3.3 混合策略 (12)4.参数设置 (14)4.1 对参数的仿真研究 (14)4.2 测试仿真函数 (15)4.3 应用单因子方差分析参数对结果影响 (33)4.4 对参数的理论分析 (34)5结论与展望 (39)致谢 (43)附录 (44)IV11.引言1.1 研究背景和课题意义“人工生命”是来研究具有某些生命基本特征的人工系统。

《粒子群优化算法研究及在阵列天线中的应用》范文

《粒子群优化算法研究及在阵列天线中的应用》范文

《粒子群优化算法研究及在阵列天线中的应用》篇一一、引言随着科技的发展,优化算法在各个领域的应用越来越广泛。

粒子群优化算法(Particle Swarm Optimization,PSO)作为一种智能优化算法,具有计算效率高、全局搜索能力强等优点,近年来受到了广泛关注。

本文将首先对粒子群优化算法进行深入研究,并探讨其在阵列天线设计中的应用。

二、粒子群优化算法研究2.1 粒子群优化算法概述粒子群优化算法是一种基于群体智能的优化算法,通过模拟鸟群、鱼群等生物群体的行为规律,实现全局寻优。

该算法将问题的解表示为粒子,通过粒子的速度和位置更新来寻找最优解。

2.2 粒子群优化算法的特点粒子群优化算法具有以下特点:(1)全局搜索能力强:粒子群优化算法能够在搜索空间中同时搜索多个区域,从而避免陷入局部最优解。

(2)计算效率高:该算法通过并行计算,加快了求解速度。

(3)参数调整灵活:粒子群优化算法的参数可以根据具体问题进行调整,具有较好的灵活性。

2.3 粒子群优化算法的改进及发展为了进一步提高粒子群优化算法的性能,许多学者对其进行了改进。

例如,引入惯性权重、自适应调整速度和位置更新公式等,使得算法在寻优过程中更加灵活、高效。

此外,还有一些学者将粒子群优化算法与其他优化算法相结合,形成混合优化算法,进一步提高求解效果。

三、粒子群优化算法在阵列天线中的应用3.1 阵列天线概述阵列天线是一种通过组合多个天线单元来形成特定波束的天线系统。

其优点包括高增益、高分辨率和低副瓣等。

阵列天线的性能取决于其天线单元的布局和相位控制。

因此,如何优化阵列天线的布局和相位控制成为了一个重要的问题。

3.2 粒子群优化算法在阵列天线布局优化中的应用粒子群优化算法可以用于阵列天线的布局优化。

具体而言,将每个天线单元的位置表示为一个粒子,通过粒子的速度和位置更新来寻找最优的布局方案。

在寻优过程中,根据阵列天线的性能指标(如副瓣电平、增益等)来评估每个粒子的优劣,并更新粒子的速度和位置。

粒子群算法及其应用研究

粒子群算法及其应用研究

粒子群算法及其应用研究粒子群算法是一种基于群体智能的优化算法,自提出以来便在各个领域得到了广泛的应用。

本文将介绍粒子群算法的基本原理、应用领域、优化应用以及未来研究方向。

粒子群算法是一种通过模拟鸟群、鱼群等动物群体的行为来求解优化问题的算法。

这些群体在寻找食物、避开天敌等过程中,会形成一定的队形或模式,从而达到整体的最优生存状态。

粒子群算法便是借鉴了这种群体智能的思想,通过多个粒子在搜索空间内的运动,寻找到最优解。

粒子群算法的特点在于其简单、易实现、收敛速度快等。

该算法只需记录每个粒子的位置和速度信息,无需进行复杂的迭代和矩阵运算,因此具有较低的时间复杂度。

同时,粒子群算法能够较好地处理多峰、高维、非线性等复杂问题,在求解这些难题时具有较大的优势。

粒子群算法在各个领域都有广泛的应用,其中最常见的是在函数优化、神经网络训练、图像处理、控制系统等领域。

在函数优化方面,粒子群算法能够快速寻找到函数的最小值或最大值,被广泛应用于各种工程和科学领域。

在神经网络训练方面,粒子群算法也被用来优化神经网络的权值和阈值,提高神经网络的分类和识别能力。

在图像处理方面,粒子群算法可以用于图像分割、特征提取等任务,提高图像处理的效果和质量。

虽然粒子群算法已经得到了广泛的应用,但是该算法仍存在一些不足之处,如易陷入局部最优解、参数设置缺乏指导等。

为了提高粒子群算法的性能和效果,研究者们提出了一系列优化方法,包括调整参数、改变粒子的更新策略等。

其中,调整参数是最常见的优化方法之一,包括调整学习因子、加速因子等参数,以获得更好的搜索效果。

改变粒子的更新策略也是一种有效的优化方法,可以通过引入变异、交叉等操作来增加粒子的多样性,避免陷入局部最优解。

未来研究方向主要包括以下几个方面:针对粒子群算法的参数设置问题,未来研究可以探索更加科学、合理的参数设置方法,以提高算法的性能和搜索效果。

针对粒子群算法易陷入局部最优解的问题,未来研究可以探索更加有效的优化策略,以提高算法的全局搜索能力。

粒子群优化算法及其应用研究【精品文档】(完整版)

粒子群优化算法及其应用研究【精品文档】(完整版)

摘要在智能领域,大部分问题都可以归结为优化问题。

常用的经典优化算法都对问题有一定的约束条件,如要求优化函数可微等,仿生算法是一种模拟生物智能行为的优化算法,由于其几乎不存在对问题的约束,因此,粒子群优化算法在各种优化问题中得到广泛应用。

本文首先描述了基本粒子群优化算法及其改进算法的基本原理,对比分析粒子群优化算法与其他优化算法的优缺点,并对基本粒子群优化算法参数进行了简要分析。

根据分析结果,研究了一种基于量子的粒子群优化算法。

在标准测试函数的优化上粒子群优化算法与改进算法进行了比较,实验结果表明改进的算法在优化性能明显要优于其它算法。

本文算法应用于支持向量机参数选择的优化问题上也获得了较好的性能。

最后,对本文进行了简单的总结和展望。

关键词:粒子群优化算法最小二乘支持向量机参数优化适应度目录摘要 (I)目录 (II)1.概述 (1)1.1引言 (1)1.2研究背景 (1)1.2.1人工生命计算 (1)1.2.2 群集智能理论 (2)1.3算法比较 (2)1.3.1粒子群算法与遗传算法(GA)比较 (2)1.3.2粒子群算法与蚁群算法(ACO)比较 (3)1.4粒子群优化算法的研究现状 (4)1.4.1理论研究现状 (4)1.4.2应用研究现状 (5)1.5粒子群优化算法的应用 (5)1.5.1神经网络训练 (6)1.5.2函数优化 (6)1.5.3其他应用 (6)1.5.4粒子群优化算法的工程应用概述 (6)2.粒子群优化算法 (8)2.1基本粒子群优化算法 (8)2.1.1基本理论 (8)2.1.2算法流程 (9)2.2标准粒子群优化算法 (10)2.2.1惯性权重 (10)2.2.2压缩因子 (11)2.3算法分析 (12)2.3.1参数分析 (12)2.3.2粒子群优化算法的特点 (14)3.粒子群优化算法的改进 (15)3.1粒子群优化算法存在的问题 (15)3.2粒子群优化算法的改进分析 (15)3.3基于量子粒子群优化(QPSO)算法 (17)3.3.1 QPSO算法的优点 (17)3.3.2 基于MATLAB的仿真 (18)3.4 PSO仿真 (19)3.4.1 标准测试函数 (19)3.4.2 试验参数设置 (20)3.5试验结果与分析 (21)4.粒子群优化算法在支持向量机的参数优化中的应用 (22)4.1支持向量机 (22)4.2最小二乘支持向量机原理 (22)4.3基于粒子群算法的最小二乘支持向量机的参数优化方法 (23)4.4 仿真 (24)4.4.1仿真设定 (24)4.4.2仿真结果 (24)4.4.3结果分析 (25)5.总结与展望 (26)5.1 总结 (26)5.2展望 (26)致谢 (28)参考文献 (29)Abstract (30)附录 (31)PSO程序 (31)LSSVM程序 (35)1.概述1.1引言最优化问题是在满足一定约束条件下,寻找一组参数值,使得系统的某些性能指标达到最大或者最小。

一种改进的粒子群算法

一种改进的粒子群算法

一种改进的粒子群算法摘要:粒子群算法是一种基于群体智能的优化算法,具有全局搜索能力和简单易用的特点,但存在收敛速度慢、易陷入局部最优等问题。

本文针对粒子群算法的不足,提出了一种改进的粒子群算法,主要包括两个方面的改进:自适应惯性权重和差分进化算子。

实验结果表明,改进后的算法在求解复杂函数优化问题时具有更快的收敛速度和更高的搜索精度。

关键词:粒子群算法;自适应惯性权重;差分进化算子;全局搜索1.引言粒子群算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,由Kennedy和Eberhart于1995年提出[1]。

PSO算法通过模拟鸟群捕食、觅食等行为,将待优化问题转化为粒子在搜索空间中的移动过程,通过粒子之间的信息交流和个体经验积累,逐步找到全局最优解。

相比其他优化算法,PSO算法具有简单易用、全局搜索能力强等优点,在多个领域都得到了广泛应用[2]。

然而,PSO算法也存在一些不足之处。

首先,PSO算法的收敛速度较慢,需要较长的迭代次数才能找到较优解。

其次,PSO算法容易陷入局部最优解,导致搜索精度不高。

为了解决这些问题,研究者们提出了许多改进的PSO算法,如自适应权重PSO[3]、混沌PSO[4]、改进收缩因子PSO[5]等。

本文针对PSO算法的不足,提出了一种改进的PSO算法,主要包括自适应惯性权重和差分进化算子两个方面的改进。

2.算法描述2.1 基本PSO算法基本PSO算法是由一群粒子组成的集合,每个粒子表示一个解向量。

每个粒子在搜索空间中随机初始化,然后根据自己的经验和全局最优解进行位置更新,直到满足停止条件为止。

具体算法流程如下:(1)初始化粒子群,包括粒子数量、搜索空间范围、速度范围、惯性权重等参数。

(2)对每个粒子,随机初始化位置和速度。

(3)对每个粒子,计算其适应度函数值。

(4)对每个粒子,更新速度和位置。

(5)更新全局最优解。

(6)判断是否满足停止条件,若不满足则返回第(3)步。

粒子群优化算法论文

粒子群优化算法论文

粒子群优化算法论文粒子群优化算法摘要近年来,智能优化算法—粒子群算法(particle swarm optimization,简称PSO)越来越受到学者的关注。

粒子群算法是美国社会心理学家JamesKennedy 和电气工程师Russell Eberhart在1995年共同提出的,它是受到鸟群社会行为的启发并利用了生物学家Frank Heppner的生物群体模型而提出的。

它用无质量无体积的粒子作为个体,并为每个粒子规定简单的社会行为规则,通过种群间个体协作来实现对问题最优解的搜索。

由于算法收敛速度快,设置参数少,容易实现,能有效地解决复杂优化问题,在函数优化、神经网络训练、图解处理、模式识别以及一些工程领域都得到了广泛的应用。

PSO是首先由基于不受约束的最小化问题所提出的基于最优化技术。

在一个PSO系统中,多元化解决方案共存且立即返回。

每种方案被称作“微粒”,寻找空间的问题的微粒运动着寻找目标位置。

一个微粒,在他寻找的时间里面,根据他自己的以及周围微粒的经验来调整他的位置。

追踪记忆最佳位置,遇到构建微粒的经验。

因为那个原因,PSO占有一个存储单元(例如,每个微粒记得在过去到达时的最佳位置)。

PSO系统通过全局搜索方法(通过)搜索局部搜索方法(经过自身的经验),试图平衡探索和开发。

粒子群优化算法是一种基于群体的自适应搜索优化算法,存在后期收敛慢、搜索精度低、容易陷入局部极小等缺点,为此提出了一种改进的粒子群优化算法,从初始解和搜索精度两个方面进行了改进,提高了算法的计算精度,改善了算法收敛性,很大程度上避免了算法陷入局部极小.对经典函数测试计算,验证了算法的有效性。

关键词:粒子群优化算法;粒子群;优化技术;最佳位置;全局搜索;搜索精度Particle swarm optimization (PSO) algorithm is a novel evolutionary algorithm. It is a kind of stochastic global optimization technique. PSO finds optimal regions of complex search spaces through the interaction of individualsin a population of particles. The advantages of PSO lie in simple and powerful function. In this paper , classical particle swarm optimization algorithm , thepresent condition and some applications of the algorithms are introduced , and the possible research contents in future are also discussed.PSO is a population-based optimization technique proposed firstly for the above unconstrained minimization problem. In a PSO system, multiple candidate solutions coexist and collaborate simultaneously. Each solution called a ‘‘particle’’, flies in the problem sear ch space looking for the optimal position to land. A particle, as time passes through its quest, adjusts its position according to its own ‘‘experience’’ as well as the experience of neighboring particles. Tracking and memorizing the best position encountered build particle_s experience. For that reason, PSO possesses a memory (i.e. every particle remembers the best position it reached during the past). PSO system combines local search method(through self experience) with global search methods (through neighboring experience), attempting to balance explorationand exploitation.Abstract Particle Swarm Optimization Algorithm is a kind of auto-adapted search optimization based on community.But the standard particle swarm optimization is used resulting in slow after convergence, low search precision and easily leading to local minimum. A new Particle Swarm Optimization algorithm is proposed to improve from the initial solution and the search precision. The obtained results showed the algorithm computation precision and the astringency are improved,and local minimum is avoided. The experimental results of classic functions show that the improved PSO is efficientand feasible.Key words :particle swarm optimization algorithms ; unconstrained minimization problem;the bestposition;global search methods; the search precision目录一.引言二.PSO算法的基本原理和描述(一)概述(二)粒子群优化算法(三)一种改进型PSO算法——基于遗传交叉因子的粒子群优化算法简介1 自适应变化惯性权重2 交叉因子法(四) PSO与GA算法的比较1 PSO算法与GA算法2 PSO算法与GA算法的相同点3 PSO算法与GA算法的不同点三.PSO算法的实现及实验结果和仿真(一)基本PSO算法(二)算法步骤(三)伪代码描述(四)算法流程图(五)六个测试函数的运行结果及与GA算法结果的比较四结论五. 致谢六.参考文献一、引言混沌是一种有特点的非线形系统,它是一种初始时存在于不稳定的动态状态而且包含着无限不稳定时期动作的被束缚的行为。

粒子群算法多维度应用实例

粒子群算法多维度应用实例

粒子群算法多维度应用实例全文共四篇示例,供读者参考第一篇示例:粒子群算法(Particle Swarm Optimization,PSO)是一种启发式优化算法,模拟了鸟群、鱼群等群体协作的行为,通过不断调整粒子的位置和速度来搜索最优解。

近年来,粒子群算法在多个领域中得到了广泛应用,特别是在多维度应用方面,展现出了强大的优化性能和较好的收敛速度。

本文将介绍粒子群算法在多维度应用中的实例,并探讨其优势和局限性。

一、多维度优化问题概述二、粒子群算法原理及优化过程粒子群算法是由Kennedy和Eberhart于1995年提出的,其基本思想是模拟鸟群或鱼群等群体在搜索空间中寻找目标的行为。

在粒子群算法中,每个粒子表示一个潜在的解,其位置和速度都会根据其个体最优解和全局最优解而不断更新。

粒子群算法的优化过程如下:(1)初始化粒子群:随机生成一定数量的粒子,并为每个粒子设定初始位置和速度。

(2)评估粒子适应度:计算每个粒子的适应度值,即目标函数的值。

(3)更新粒子速度和位置:根据粒子历史最优解和全局最优解来更新粒子的速度和位置。

(4)重复步骤(2)和(3)直到满足停止条件:当满足一定停止条件时,算法停止,并输出全局最优解。

三、粒子群算法在多维度应用中的实例1. 工程设计优化在工程设计中,往往需要优化多个设计参数以满足多个性能指标。

飞机机翼的设计中需要考虑多个参数,如翼展、翼型、翼厚等。

通过粒子群算法可以有效地搜索这些参数的最优组合,从而使飞机性能达到最佳。

2. 机器学习参数优化在机器学习中,通常需要调整多个超参数(如学习率、正则化系数等)以优化模型的性能。

粒子群算法可以应用于优化这些超参数,从而提高机器学习模型的泛化能力和准确度。

3. 经济模型参数拟合在经济模型中,经常需要通过拟合参数来分析经济现象和预测未来走势。

粒子群算法可以用来调整模型参数,从而使模型更好地拟合实际数据,提高预测准确度。

1. 全局搜索能力强:粒子群算法具有很强的全局搜索能力,能够在高维度空间中搜索到全局最优解。

粒子群算法论文

粒子群算法论文

VS
详细描述
组合优化问题是指在一组离散的元素中寻 找最优解的问题,如旅行商问题、背包问 题等。粒子群算法通过模拟群体行为进行 寻优,能够有效地求解这类问题。例如, 在旅行商问题中,粒子群算法可以用来寻 找最短路径;在背包问题中,粒子群算法 可以用来寻找最大化的物品价值。
粒子群算法在组合优化问题中的应用
粒子群算法论文
目录
CONTENTS
• 粒子群算法概述 • 粒子群算法的理论基础 • 粒子群算法的改进与优化 • 粒子群算法的实际应用 • 粒子群算法的未来展望
01 粒子群算法概述
粒子群算法的基本原理
粒子群算法是一种基于群体智能的优化算法,通过模拟鸟群、鱼群等生物群体的行 为规律,利用粒子间的信息共享和协作机制,寻找最优解。
高模型的决策能力和性能。
05 粒子群算法的未来展望
粒子群算法与其他智能算法的融合研究
融合遗传算法
通过引入遗传算法的变异、交叉和选 择机制,增强粒子群算法的搜索能力 和全局寻优能力。
混合粒子群优化
结合其他优化算法,如模拟退火、蚁 群算法等,形成混合优化策略,以处 理多目标、约束和大规模优化问题。
粒子群算法的理论基础深入研究
通过对粒子群算法的收敛性进行分析, 可以发现算法在迭代过程中粒子的分 布规律以及最优解的稳定性,有助于 优化算法参数和提高算法性能。
粒子群算法的参数优化
参数优化是提高粒子群算法性能 的关键步骤之一,主要涉及粒子 数量、惯性权重、学习因子等参
数的调整。
通过对参数进行优化,可以改善 粒子的搜索能力和全局寻优能力,
总结词
粒子群算法在机器学习中可以用于特征选择、模型选择 和超参数调整等方面。
详细描述
机器学习是人工智能领域的一个重要分支,旨在通过训 练数据自动地学习和提取有用的特征和规律。粒子群算 法可以应用于机器学习的不同方面,如特征选择、模型 选择和超参数调整等。通过模拟群体行为进行寻优,粒 子群算法可以帮助机器学习模型找到最优的特征组合、 模型参数和超参数配置,从而提高模型的性能和泛化能 力。

粒子群优化算法-毕业论文

粒子群优化算法-毕业论文

目录第1章概述 (1)1.1课题研究的目的及意义 (1)1.2国内外对粒子群算法(PSO)研究现状与发展趋势 (1)1.3本课题所要研究的主要内容 (5)1.4本文的研究方案 (5)1.5本章小结 (6)第2章粒子群优化算法 (7)2.1引言 (7)2.2粒子群优化算法的统一框架 (7)2.3粒子群优化算法的设计步骤 (8)2.4粒子群优化算法描述 (9)2.5粒子群算法的改进 (12)2.6本章小结 (16)第3章粒子群算法在函数优化问题中的应用 (17)3.1前言 (17)3.2常用测试函数 (17)3.3常用测试函数的介绍 (17)3.4基本粒子群算法在函数优化问题中的实验结果与分析 (18)3.5参数改进的粒子群算法在函数优化问题中的实验结果与分析 (20)3.6本章小结 (24)结论 (25)参考文献 (26)致谢 (29)附录1 (30)附录2 (32)附录3 (33)第1章概述1.1课题研究的目的及意义近年来,受自然隐喻的启发,人们提出了各种各样的计算智能方法,如人工神经网络、遗传算法( Genetic Algorithm,GA )、蚁群优化算法( Ant Colony Optimization ,ACO)、粒子群优化算法( Particle Swarm Optimization,PSO)和人工免疫系统等等,它们被广泛应用于各种NP -困难的优化问题的求解,虽然不能保证获取最优解,但在问题规模较大时也能在可行时间内找到问题的满意解。

粒子群优化(Particle SwarmOptimization,PSO)算法是一种新兴的优化技术,其思想来源于人工生命和进化计算理论。

PSO算法通过粒子追随自己找到的最好解和整个群体的最好解完成优化。

为了避免PSO算法在求解最优化问题时陷入在局部最优及提高PSO算法的收敛速度,提出了对PSO算法进行改进。

对无约束和有约束最优化问题分别设计了基于PSO算法的不同的求解方法和测试函数,并对PSO算法求解多目标优化问题进行了研究。

粒子群算法原文及解释

粒子群算法原文及解释

粒子群算法原文及解释粒子群优化算法(Particle Swarm Optimization,PSO)是一种模拟鸟群、鱼群等动物社会行为的优化算法。

通过模拟鸟群、鱼群等动物群体中的个体行为,粒子群优化算法能够有效地求解各种优化问题。

本文将从算法原理、算法流程、参数设置、优化问题、实现方式、改进策略、应用领域和性能评价等方面对粒子群优化算法进行详细的介绍。

一、算法原理粒子群优化算法基于群体智能理论,通过模拟鸟群、鱼群等动物群体中的个体行为来寻找最优解。

每个个体被称为一个粒子,它通过跟踪其自身的最优位置和群体的最优位置来更新自己的速度和位置。

粒子的速度和位置更新公式如下:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest - x[i][j])x[i][j] = x[i][j] + v[i][j]其中,v[i][j]表示粒子i在第j维上的速度,x[i][j]表示粒子i 在第j维上的位置,pbest[i][j]表示粒子i的个体最优位置,gbest 表示全局最优位置,w表示惯性权重,c1和c2表示加速因子,rand()表示随机函数。

二、算法流程粒子群优化算法的基本流程如下:1. 初始化粒子群,随机生成粒子的初始位置和初始速度。

2. 计算每个粒子的适应度值,记录粒子的个体最优位置和全局最优位置。

3. 根据粒子的适应度值更新粒子的速度和位置。

4. 重复步骤2和步骤3,直到满足终止条件(如达到预设的最大迭代次数或全局最优解的变化小于预设阈值)。

三、参数设置粒子群优化算法的参数包括惯性权重w、加速因子c1和c2等。

这些参数对算法的性能和收敛速度有着重要的影响,需要根据具体问题进行调整和优化。

通常需要通过实验来找到合适的参数设置。

四、优化问题粒子群优化算法适用于求解连续的、离散的优化问题。

对于不同的优化问题,需要根据问题的特性和要求来设计合适的粒子和适应度函数。

粒子群算法论文范文

粒子群算法论文范文

粒子群算法论文范文在粒子群算法中,每个个体被称为粒子,每个粒子都有一个位置和速度。

每个粒子通过更新自己的速度和位置来最优解。

更新过程涉及到个体的历史最优位置和群体的历史最优位置,被记为pbest和gbest。

粒子根据自己的速度和位置以及pbest和gbest来计算下一次的速度和位置。

通过不断迭代更新,粒子群逐渐收敛于最优解。

PSO算法的核心思想是通过合作和信息交流来实现全局和局部的平衡。

每个粒子都有自己的经验和知识,通过与周围粒子的交流不断更新自己的位置和速度。

当一个粒子找到更好的位置时,会通过更新pbest来存储自己的历史最优位置;当整个粒子群找到更好的位置时,会通过更新gbest来存储全局最优位置。

通过这种方式,粒子群能够在过程中不断自我调整,逐渐靠近最优解。

PSO算法的优势在于其简便性和并行性。

算法的流程简单明了,易于理解和实现。

同时,每个粒子都是独立的个体,可以并行地进行计算,提高了算法的效率。

此外,粒子群算法能够通过参数的调整适应不同类型的问题,并且对问题的数学模型没有要求,具有一定的鲁棒性。

虽然PSO算法具有许多优势,但也存在一些不足之处。

首先,PSO算法对参数的敏感性较高,不同问题需要不同的参数设置才能获得较好的优化效果。

其次,算法的收敛性和局部最优解问题仍然是研究的重点。

虽然算法能够通过速度和位置的更新来实现全局和局部的平衡,但是当空间较大或者存在复杂的函数拓扑结构时,算法容易陷入局部最优解。

在最近的研究中,学者们对PSO算法进行了各种改进和优化。

例如,引入自适应权重、多群体协同、约束处理等方法,来提高算法的性能和适应性。

此外,与其他优化算法相结合的混合算法也被广泛研究,以克服各自算法的局限性。

综上所述,粒子群算法是一种基于群体协作和信息交流的优化算法。

通过不断更新速度和位置来最优解。

该算法具有简便性、并行性和鲁棒性,可以应用于多种优化问题。

但在实际应用中需要根据具体问题进行参数调整,并且对于复杂问题容易陷入局部最优解。

粒子群优化算法及其相关研究综述【精品文档】(完整版)

粒子群优化算法及其相关研究综述【精品文档】(完整版)

粒子群优化算法及其相关研究综述摘要:粒子群优化是一种新兴的基于群体智能的启发式全局搜索算法,通过粒子间的竞争和协作以实现在复杂搜索空间中寻找全局最优点。

它具有易理解、易实现、全局搜索能力强等特点,倍受科学与工程领域的广泛关注,已经成为发展最快的智能优化算法之一。

本文围绕粒子群优化算法的原理、特点、改进与应用等方面进行全面综述,侧重于粒子群的改进算法,简短介绍了粒子群算法在典型理论问题中的应用,最后对其未来的研究提出了一些建议及研究方向的展望。

关键词:粒子群优化;PSO;群智能优化;智能算法Abstract: Particle swarm optimization is a new swarm intelligence-based heuristic global search algorithm, through competition and collaboration between the particles in order to achieve the advantages of looking at complex global search space. It has easy to understand, easy to implement, strong global search ability and other characteristics, much attention in the field of science and engineering, has become one of the fastest growing intelligent optimization algorithms. This paper focuses on aspects of the principle of particle swarm optimization, characteristics, improvement and application of a comprehensive review, focusing on improved PSO algorithm, a brief description of the particle swarm algorithm in a typical problem in the theory, and finally presented its future research Looking for some advice and research directions.Key Words: Particle Swarm optimization; PSO; Swarm intelligence optimization;Intelligent algorithm1 引言粒子群算法(Particle Swarm optimization,PSO)的基本概念源于对于鸟群捕食行为的简化社会模型的模拟,由Kenndy和Eberhart等人提出[1-2],1995年IEEE国际神经网络学术会议发表了题为“Particle Swarm Optimization”的论文,标志着PSO算法诞生。

粒子群算法研究及其工程应用案例

粒子群算法研究及其工程应用案例

粒子群算法研究及其工程应用案例一、概述随着现代制造业对高精度生产能力和自主研发能力需求的提升,优化指导技术在精确生产制造领域中的应用日益广泛。

粒子群优化算法(Particle Swarm Optimization,PSO)作为一种基于群体智能的优化算法,因其结构简单、参数较少、对优化目标问题的数学属性要求较低等优点,被广泛应用于各种工程实际问题中。

粒子群算法起源于对鸟群捕食行为的研究,通过模拟鸟群或鱼群等群体行为,利用群体中的个体对信息的共享,使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而找到最优解。

自1995年由Eberhart博士和kennedy博士提出以来,粒子群算法已成为一种重要的进化计算技术,并在工程应用中展现出强大的优势。

在工程应用中,粒子群算法可用于工艺参数优化设计、部件结构轻量化设计、工业工程最优工作路径设计等多个方面。

通过将粒子群算法与常规算法融合,可以形成更为强大的策略设计。

例如,在物流路径优化、机器人路径规划、神经网络训练、能源调度优化以及图像分割等领域,粒子群算法都取得了显著的应用成果。

本文旨在深入研究粒子群算法的改进及其工程应用。

对优化理论及算法进行分析及分类,梳理粒子群算法的产生背景和发展历程,包括标准粒子群算法、离散粒子群算法(Discrete Particle Swarm Optimization, DPSO)和多目标粒子群算法(Multi Objective Particle Swarm Optimization Algorithm, MOPSO)等。

在此基础上,分析粒子群算法的流程设计思路、参数设置方式以及针对不同需求得到的改进模式。

结合具体工程案例,探讨粒子群算法在工程实际中的应用。

通过构建基于堆栈和指针概念的离散粒子群改进方法,分析焊接顺序和方向对高速铁路客车转向架构架侧梁的焊接残余应力和变形的影响。

同时,将粒子群算法应用于点云数据处理优化设计,提高曲面重建和粮食体积计算的精度和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒子群算法论文SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#粒子群算法的寻优算法摘要:粒子群算法是在仿真生物群体社会活动的基础上,通过模拟群体生物相互协同寻优能力,从而构造出一种新的智能优化算法。

这篇文章简要回顾了粒子群算法的发展历史;引入了一个粒子群算法的实例,对其用MATLAB进行编程求解,得出结论。

之后还对其中的惯性权重进行了延伸研究,对惯性权重的选择和变化的算法性能进行分析。

关键词:粒子群、寻优、MATLAB、惯性权重目录:1.粒子群算法的简介粒子群算法(Particle Swarm Optimization)是一种新的智能优化算法。

谈到它的发展历史,就不得不先介绍下传统的优化算法,正因为传统优化算法自身的一些不足,才有新智能优化算法的兴起,而粒子群算法(PSO)就是在这种情况下发展起来的。

粒子群算法的研究背景最优化是人们在科学研究、工程技术和经济管理等领域中经常遇到的问题。

优化问题研究的主要内容是在解决某个问题时,如何从众多的解决方案中选出最优方案。

它可以定义为:在一定的约束条件下,求得一组参数值,使得系统的某项性能指标达到最优(最大或最小)。

传统的优化方法是借助于优化问题的不同性质,通常将问题分为线性规划问题、非线性规划问题、整数规划问题和多目标规划问题等。

相应的有一些成熟的常规算法,如应用于线性规划问题的单纯形法,应用于非线性规划的牛顿法、共扼梯度法,应用于整数规则的分枝界定法、动态规划等。

列举的这些传统的优化算法能够解决现实生活和工程上的很多问题,但工业和科学领域大量实际问题的困难程度正在日益增长,它们大多是根本无法在可接受的时间内找到解的问题。

这类优化问题的困难性不仅体现在具有极大的规模,更为重要的是,它们多数是非线性的、动态的、多峰的、具有欺骗性的或者不具有任何导数信息。

因此,发展通用性更强、效率更高的优化算法总是需要的。

起源在自然界中,鸟群运动的主体是离散的,其排列看起来是随机的,但在整体的运动中它们却保持着惊人的同步性,其整体运动形态非常流畅且极富美感。

这些呈分布状态的群体所表现出的似乎是有意识的集中控制,一直是许多研究者感兴趣的问题。

有研究者对鸟群的运动进行了计算机仿真,他们通过对个体设定简单的运动规则,来模拟鸟群整体的复杂行为。

1986 年 Craig ReynolS 提出了 Boid 模型,用以模拟鸟类聚集飞行的行为,通过对现实世界中这些群体运动的观察,在计算机中复制和重建这些运动轨迹,并对这些运动进行抽象建模,以发现新的运动模式。

之后,生物学家Frank Heppner 在此基础上增加了栖息地对鸟吸引的仿真条件,提出了新的鸟群模型。

这个新的鸟群模型的关键在于以个体之间的运算操作为基础,这个操作也就是群体行为的同步必须在于个体努力维持自身与邻居之间的距离为最优,为此每个个体必须知道自身位置和邻居的位置信息。

这些都表明群体中个体之间信息的社会共享有助于群体的进化。

在 1995年,受到 Frank Heppner 鸟群模型的影响,社会心理学博士 James Kennedy 和电子工程学博士 Russell Eherhart 提出了粒子群算法。

粒子群算法其实也是一种演化计算技术,该算法将鸟群运动模型中的栖息地类比于所求问题空间中可能解的位置,通过个体间的信息传递,导引整个群体向可能解的方向移动, 在求解过程中逐步增加发现较好解的可能性。

群体中的鸟被抽象为没有质量和体积的“粒子”,通过这些“粒子”间的相互协作和信息共享,使其运动速度受到自身和群体的历史运动状态信息的影响。

以自身和群体的历史最优位置对粒子当前的运动方向和运动速度加以影响,较好地协调粒子本身和群体之间的关系,以利于群体在复杂的解空间中进行寻优操作。

粒子群理论求解优化问题的,算法中每个粒子都代表问题的一个潜在解,每个粒子对应一个由适应度函数决定的适应度值。

粒子的速度决定了粒子移动的方向和距离,速度随自身及其他粒子的移动经验进行动态调整,从而实现个体在可解空间中的寻优。

PSO 算法首先在可行解空间中初始化一群粒子,每个粒子都代表极值优化问题的一个潜在最优解,用位置、速度和适应度值三项指标表示该粒子特征,适应度值由适应度函数计算得到,其值的好坏表示粒子的优劣。

粒子在解空间中运动,通过跟踪个体极值 Pbest 和群体极值Gbest 更新个体位置。

个体极值 Pbest 是指个体所经历位置中计算得到的适应度值最优位置,群体极值 Gbest 是指种群中的所有粒子搜索到的适应度最优位置。

粒子每更新一次位置,就计算一次适应度值,并且通过比较新粒子的适应度值和个体极值、群体极值的适应度值更新个体极值 Pbest 和群体极值 Gbest 位置。

假设在一个D 维的搜索空间中,由n 个粒子组成的种群X=(X1,X2,…,Xn ),其中第i 个粒子表示为一个D 维的向量T 21...X ),,(iD i i i x x x =代表第 i 个粒 子在D 维搜索空间中的位置,亦代表问题的一个潜在解。

根据目标函数即可计算出每个粒子位置Xi 对应的适应度值。

第i 个粒子的速度为T 21...V ),,(iD i i i V V V =,其个体极值为T 21...P ),,(iD i i i P P P =,种群的群体极值为T 21...P P ),,(gD g g g P P =。

在每次迭代过程中粒子通过个体极值和群体极值更新自身的速度和位置,即)()(V 22111k id k id k gd k id k id k id X P r c X P r c V -+-+=+ωid k k id V X 11k id X +++=其中ω为惯性权重,d = l ,2,…,D ;i = l ,2 ,…,n ;k 为当前迭代次数为粒子的速度;c1和c2是非负的常数,称为加速度因子;r1和r2是分布于[0,1]区间的随机数。

为防止粒子的盲目搜索,一般建议将其位置和速度限制在一定的区间]X [max max X ,—、]X [max max X ,—。

2.案例背景问题描述本案例寻优的非线性函数为:71289.2x sin f(x )22cos 2cos 2222-+++=+y x e y x y ππ函数图形如下图所示。

图1 函数图像从函数图像可以看出,该函数有很多局部最优点,而极限位置为(0,0),在(0,0)附近取得极大值。

解题思路及步骤基于PSO 算法的函数极值寻优算法流程图如图2所示。

图2 算法流程其中,粒子和速度初始化随机初始化粒子速度和粒子位置;由第一章中的公式计算粒子适应度值;根据初始粒子适应度值确定个体极值和群体极值;根据公式更新粒子速度和位置;根据新种群中粒子适应度值更新个体极值和群体极值。

本题中,适应度函数为函数表达式,适应度值为函数值。

种群粒子数设置为20,每个粒子的维数为2,算法迭代次数定为300次。

编程实现根据PSO算法原理,在MATLAB里编程实现基于PSO算法的函数极值寻优算法。

设置PSO算法的运行参数程序代码如下:%% 清空环境clcclear%% 参数初始化%粒子群算法中的两个参数c1 = ; c2 = ;maxgen=300; % 进化次数 sizepop=20; %种群规模Vmax=; Vmin=;popmax=2;popmin=-2; %速度和个体最大最小值种群初始化随机初始化粒子位置和粒子速度,并根据适应函数计算粒子适应度值。

%% 产生初始粒子和速度for i=1:sizepop%随机产生一个种群pop(i,:)=2*rands(1,2); %初始种群V(i,:)=*rands(1,2); %初始化速度%计算适应度fitness(i)=fun(pop(i,:)); %计算粒子的适应度值end适应度函数代码如下:function y = fun(x)%函数用于计算粒子适应度值 %x input 输入粒子 %y output 粒子适应度值y=sin( sqrt(x(1).^2+x(2).^2) )./sqrt(x(1).^2+x(2).^2)+exp((cos(2*pi*x (1))+cos(2*pi*x(2)))/2);寻找初始极值%% 个体极值和群体极值[bestfitness bestindex]=max(fitness);zbest=pop(bestindex,:); %全局最佳gbest=pop; %个体最佳fitnessgbest=fitness; %个体最佳适应度值fitnesszbest=bestfitness; %全局最佳适应度值迭代寻优根据上文中的公式更新粒子位置和速度,并且根据新粒子的适应度值更新个体极值和群体极值。

程序代码如下:%% 迭代寻优for i=1:maxgenfor j=1:sizepop%速度更新V(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) +c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax))=Vmax;V(j,find(V(j,:)<Vmin))=Vmin;%种群更新pop(j,:)=pop(j,:)+V(j,:);pop(j,find(pop(j,:)>popmax))=popmax;pop(j,find(pop(j,:)<popmin))=popmin;%适应度值fitness(j)=fun(pop(j,:));endfor j=1:sizepop%个体最优更新if fitness(j) > fitnessgbest(j)gbest(j,:) = pop(j,:);fitnessgbest(j) = fitness(j);end%群体最优更新if fitness(j) > fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endendyy(i)=fitnesszbest; %每代最优值记录在yy数组中end结果分析PSO算法反复迭代300次,画出每代个体适应度值变化图形,程序代码如下:plot(yy)title('最优个体适应度','fontsize',12);xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);最优个体适应度值变化如图三所示。

图3 最优个体适应度值最终得到的最优个体适应度值为,对应的粒子位置为(,),PSO算法寻优得到的最优值接近函数实际最优值。

相关文档
最新文档