圆锥的体积公开课教案
圆锥的体积教学设计一等奖【4篇】
圆锥的体积教学设计一等奖【精选4篇】一个好的教学设计是一节课成败的关键,要根据不同的课题进行灵活的教学设计。
首先对每一个课题的教学内容要有一个整体的把握。
这次漂亮的我为亲带来了4篇《圆锥的体积教学设计一等奖》,希望朋友们参阅后能够文思泉涌。
《圆锥的体积》教学设计篇一一、教学内容:义务教育课程标准实验教科书(人教版版)六年级下册第33~34页。
二、教学目标:1、知识技能目标:通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:(一)创设情境,导入新课投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。
张小虎和爷爷笑得合不拢嘴。
这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?进一步观察、比较、猜测。
教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2024年人教版数学六年级下册圆锥的体积优秀教案3篇
人教版数学六年级下册圆锥的体积优秀教案3篇〖人教版数学六年级下册圆锥的体积优秀教案第【1】篇〗义务教育教科书人教版小学数学六年级下册第三单元教材依据义务教育教科书人教版小学数学六年级下册第三单元《圆柱与圆锥》第五小节《圆锥的体积》。
指导思想《小学数学课程标准》指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,通过学生猜想、观察、操作、实验、证明等数学活动过程,体验数学问题的探索性和挑战性,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程,解决问题。
设计理念本着在教师引导下学生积极主动合作探究的理念,本课以学生认识发展规律为主线,以引导猜想问题、发现问题、提出问题、探究解决问题、得出结论为基点,通过实际应用训练使学生在“认识—实践—再认识、再实践”中理解运用知识。
在教学策略上,本节课利用多媒体创设教学情境,充分激发学生学习的兴趣和欲望,让学生在猜想释疑、合作学习和实验操作中,自觉探究圆锥体积公式的推导过程,并运用规律解决实际问题,激发学生探究的兴趣,解决问题的乐趣,逐步提高学生探究知识应用知识解决实际问题的能力。
学情分析在学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识圆锥的特征了,有了一些推导体积公式的方法,具备了一定的空间观念和学习的方法,能够把新知识与旧知识建立起联系,解决实际问题。
圆锥体也是生活中常见的物体的形状,所以在教学时从学生的生活实际和已有的知识经验入手,通过自主、合作、动手操作探究知识,这样符合小学生认识事物的规律。
教材分析从教材的编写可以看出,教材加强了与现实生活的联系。
加强了在操作中对空间与图形问题的思考,使学生在经历观察、联想、猜测、操作实验、推理等过程中理解和掌握圆锥的体积的计算方法,进一步发展空间观念。
2024年人教版数学六年级下册圆锥的体积优秀教案推荐3篇
人教版数学六年级下册圆锥的体积优秀教案推荐3篇〖人教版数学六年级下册圆锥的体积优秀教案第【1】篇〗教学目标:1.知识与技能目标能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。
2.过程与方法在探作中完成圆锥体积公式的推导。
在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。
3.情感态度与价值感在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。
教学重点:掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。
教学难点:理解圆锥体积公式的推导过程及解决生活中的实际问题学习者特征分析:接受教育者是小学六年级的学生。
教学策略选择与设计:(1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。
因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到动手操作、体验成功(2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。
(3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。
教学资源与工具设计:(1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。
直尺6把。
(2)教师自制的多媒体课件;教学过程:一、复习旧知,课前铺垫1.怎样计算圆柱的体积?指名回答,教师板书:圆柱体的体积=底面积高。
2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?指两名板演,全班齐练,集体订正。
二、提出质疑,引入新课圆锥有什么特征?它的体积如何计算呢?今天我们就利用这些知识探讨新的怎样计算圆锥的体积(板书课题)三、动手操作,获得新知1.探讨圆锥的体积公式教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:学生回答,教师板书:圆柱(转化)长方体圆柱体积公式(推导)长方体体积公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。
《圆锥的体积》精彩教学设计(优秀5篇)
《圆锥的体积》精彩教学设计(优秀5篇)作为一名老师,常常需要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
写教学设计需要注意哪些格式呢?下面是书包范文为大家分享的《圆锥的体积》精彩教学设计(优秀5篇),希望能够对您的写作有一些启发。
一、教学内容:六年制小学数学教材第十二册第25-26页二、教学目标:1、知识技能目标:◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:◆提高学生实践操作、观察比较、抽象概括及逻辑推断的能力,发展空间观念。
3、情感态度目标:◆培养学生的合作意识和探究意识;三、教学重点、难点:重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题难点:探索圆锥体积方法和推导过程。
教学过程:一、质疑引入1圆锥有什么特征?指名学生回答。
2说一说圆柱体积的计算公式。
(1)已知s、h求v(2)已知r、h求v(3)已知d、h求v3我们已经认识了圆锥又学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。
板书课题:圆锥的体积二、新课(一)教学圆锥体积的计算公式1、师:请大家回忆一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积的计算公式的推导过程:(学生:圆柱---转化长方体-长方体的体积公式----推导圆柱体公式)2、教师:那么圆锥的体积该怎样求呢?能不能也通过学过的图形来求呢?先让学生讨论,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式〈1〉学生独立操作让两名学生到讲台上做实验其他学生观察,拿出等底等高的圆柱和圆锥各1个,比圆柱体积多的水。
先在圆锥里装满水,然后倒入圆柱。
看几次正好把圆柱装满?〈2〉教师教具演示巩固学生的操作效果,cai课件演示a屏幕上出示等底、等高b等底、不等高c等高、不等底实验报告单实验器材实验结果等底不等高的圆锥、圆柱等高不等底的圆锥、圆柱等底等高的圆锥、圆柱〈3〉引导学生发现:圆柱体的体积等于和它等底等高的圆锥体体积的3倍或圆锥的体积等于和它等底等高圆柱体积的1/3(板书)用字母表示圆锥的体积公式。
《圆锥的体积》教案优秀4篇
《圆锥的体积》教案优秀4篇《圆锥的体积》教学设计篇一教学过程:一、情境引入:(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?(2)学生发言:(把它放进盛水的量杯里,看水面升高多少)(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。
真是一个爱动脑筋的孩子。
(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。
(老师板书课题)设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。
二、新课探究(一)、探究圆锥体积的计算公式。
1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)(4)老师拿教具演示等底等高。
拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现这个圆锥和圆柱是等底等高的。
(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。
(把等底等高的放在桌上备用。
)2、试验探究圆锥和圆柱体积之间的关系我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。
(1)课件出示试验记录单:a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?b、通过实验,你发现了什么?(2)学生分组用等底等高的圆柱圆锥试验,做好记录。
教师在组间巡回指导。
(3)汇报交流:你们的试验结果都一样吗?这个试验说明了什么?(4)老师用等底等高的圆柱圆锥装红色水演示。
小学数学《圆锥体积》公开课教案【优秀8篇】
小学数学《圆锥体积》公开课教案【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!小学数学《圆锥体积》公开课教案【优秀8篇】作为一名教职工,时常需要用到教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
小学数学《圆锥体积》公开课教案最新5篇
小学数学《圆锥体积》公开课教案最新5篇《圆锥体积的计算》教学设计篇一教学目标:1、通过让学生小组合作探究,利用不同的方法测量出圆锥的体积。
体验到计算圆锥体积的计算公式v=1/3sh是最简便的方法。
2、锻炼学生的操作能力,估算能力,评价能力,更好的发展他们的创新能力。
3、培养学生的合作意识及主动探索知识的精神。
教学重点:让学生自己亲身体验到计算圆锥体积的不同方法。
从而理解计算公式v=1/3sh,并感受到计算公式的简便。
教学难点:能利用不同方法计算不同物体的体积。
知识的活学活用。
教学准备:1、个学生一组,每组各有量杯;量桶;一升的容器;等底等高的圆柱与圆锥器皿;大米,沙子或水;1立方厘米的小方块若干。
62、教学软件。
教学流程:一、创设情景,激趣引新。
1、首先教师手中拿一圆柱体问:同学们,老师想知道这个圆柱体的体积你们能帮助我吗?(学生踊跃举手说明。
可以先测量出圆柱的半径与高。
再用圆周率乘半径的平方得到底面积,最后乘以高就可以了。
)2、教师表示赞同,并抓住这一契机拿出于刚才圆柱等底等高的圆锥,问:那老师这里还有一个圆锥体,它的体积应该怎样计算呢?你们知道吗?(学生齐答不)那你们想不想研究呢?(学生齐答想)好,下面我们就一起来研究圆锥的体积该怎样计算。
〈设计意图:通过以旧引新,不仅让学生感受到圆锥与圆柱的联系,而且还能体验得到新知的亲切。
从而产生学习新知的欲望。
〉二、小组合作,探究学习。
1、动手操作,测量圆锥体的体积。
要求:每组同学,利用桌面上的工具(量杯,量桶,与圆锥等底等高圆柱容器,大米,沙子,水,1立方分米小方块)测量出自己组内的圆锥体的体积。
测量物体是容器的厚度不计。
〈全体学生在动手操作,互相商量解决问题的办法。
教师巡回指导。
课堂呈现小组探究学习的热烈场面。
〉3、分组汇报不同的方法。
〈学生在汇报时可边讲解边示范〉方法一:可以利用量杯。
首先把圆锥体容器内装满水,然后把它倒入量杯内,我们看到水面的刻度就是水的。
圆锥的体积公开课教案
圆锥的体积公开课教案第一章节:圆锥体积的引入1.1 教学目标让学生了解圆锥体积的概念。
让学生掌握圆锥体积的计算公式。
1.2 教学内容引入圆锥体积的概念,通过实际操作让学生感受圆锥体积的意义。
讲解圆锥体积的计算公式:V = (1/3)πr²h,其中r为圆锥底面半径,h为圆锥的高。
1.3 教学活动通过实际操作,让学生用沙子或其它材料填充圆锥形容器,感受圆锥体积的大小。
让学生分组讨论,总结圆锥体积的计算方法。
1.4 教学评价检查学生对圆锥体积概念的理解。
检查学生对圆锥体积计算公式的掌握。
第二章节:圆锥体积的计算2.1 教学目标让学生掌握圆锥体积的计算方法。
让学生能够运用圆锥体积计算公式进行实际问题的计算。
2.2 教学内容讲解圆锥体积的计算公式:V = (1/3)πr²h。
通过例题讲解如何运用圆锥体积计算公式进行实际问题的计算。
2.3 教学活动让学生进行圆锥体积的计算练习,包括填空、选择题和应用题。
让学生分组讨论,互相交流解题方法。
2.4 教学评价检查学生对圆锥体积计算公式的掌握。
检查学生运用圆锥体积计算公式进行实际问题计算的能力。
第三章节:圆锥体积的实际应用3.1 教学目标让学生能够运用圆锥体积计算公式解决实际问题。
让学生了解圆锥体积在现实生活中的应用。
3.2 教学内容通过例题讲解如何运用圆锥体积计算公式解决实际问题。
讲解圆锥体积在现实生活中的应用,如建筑、工程等领域。
3.3 教学活动让学生进行圆锥体积实际应用的练习,包括填空、选择题和应用题。
让学生分组讨论,互相交流解题方法。
3.4 教学评价检查学生运用圆锥体积计算公式解决实际问题的能力。
检查学生对圆锥体积在现实生活中的应用的理解。
第四章节:圆锥体积的综合练习4.1 教学目标让学生巩固圆锥体积的概念和计算方法。
让学生提高运用圆锥体积解决实际问题的能力。
4.2 教学内容提供一系列圆锥体积的综合练习题目,包括填空、选择题和应用题。
4.3 教学活动让学生独立完成综合练习题目。
《圆锥的体积》教学设计(精选13篇)
《圆锥的体积》教学设计(精选13篇)《圆锥的体积》篇1指导思想与理论依据:本节课的教学内容是圆锥体积公式的推导,是一节几何课,新课程标准指出:教学的任务是引导和帮助学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。
因此,在设计本节课时,我力求为学生创造一个自主探索与合作交流的环境,使学生能够从情境中发现数学问题,学生会产生探究问题的需要,然后再通过自己的探索去发现和归纳公式,体验过程。
教学背景分析:(一)教学内容分析:1、教材内容:本节教材是在学生已经掌握了圆柱体体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。
让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
2、研读完教材后,自己的几个问题:(1)在教学的过程中如何将圆锥体积推导过程与圆柱构建起联系,还不会使学生感到生硬?(2)学生对三分之一好理解,怎样去认识是等底等高的柱、锥。
(3)大家都知道本节课必少不了学生的操作,怎么操作才是有效操作?怎么操作才能满足学生的求知欲?怎么操作才能使学生更好体验这个过程?(4)本节课的教学内容只能挖掘到圆锥的体积吗?能不能再深入一些?3、自己的创新认识:首先,研读教材后,我认为这几个问题的根本是一致的都是要把握住“谁在学?怎么学?”首先,在设计本节课时我想不只是让学生学会一个公式,而是学会一种数学学习的方式,一种数学学习的思想,体验一种数学学习的过程。
其次,是要提供给同学们一个可操作的空间。
(二)学情分析:1、学生在前面的学习中对点、线、面、体有一定的基础知识,同时也获得了转化、对应、比较等数学思想。
尤其是对于高年级段的同学来讲他们获取知识的渠道十分丰富,自己又有一定探究能力,对于圆锥体积的知识相信是有一定认识的,在进行教学设计前我们应该了解到他们认识到哪儿了?了解学生的起点,为制定教学目标和选择教学策略做好准备。
圆锥的体积教学设计【优秀7篇】
圆锥的体积教学设计【优秀7篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!圆锥的体积教学设计【优秀7篇】作为一名无私奉献的老师,编写教学设计是必不可少的,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
《圆锥的体积》教学设计【优秀4篇】
《圆锥的体积》教学设计【优秀4篇】篇一:《圆锥的体积》教学设计篇一教学目标:1、通过实验发现等底等高的圆柱和圆锥体积之间的关系,从而得出体积的计算公式,能运用公式解答有关实际问题。
2、通过动手操作参与实验,发现等底等高的圆柱和圆锥体积之间的关系,并通过猜想、探索和发现的过程,推导出圆锥的体积公式。
3、通过实验,引导学生探索知识的内在联系,渗透转化思想,感受数学方法的内在魅力,激发学生参加探索的兴趣。
教学重点:通过实验的方法,得到计算圆锥的体积。
教学难点:运用圆锥的体积公式进行正确地计算。
教学准备:等底等高的圆柱和圆锥容器模型各一个。
教学过程:一、复习导入师:同学们,请看大屏幕(课件出示圆柱削成最大圆锥)。
1、圆柱体积的计算公式是什么?(指名学生回答)2、圆锥有什么特征?同学们,圆柱的体积我们已经知道怎么求,那与它等底等高的圆锥的体积同学们知道怎么求吗?让我们一同走进圆锥的体积与等底等高的圆柱体体积有什么关系的知识课堂吧!(板书:圆锥的体积)二、探究新知课件出示等底等高的圆柱和圆锥1、引导学生观察:这个圆柱和圆锥有什么相同的地方?学生回答:它们是等底等高的。
猜想:(1)、你认为圆锥体积的大小与它的什么有关?(2)、你认为圆锥的体积和什么图形的体积关系最密切?猜一猜它们的体积有什么关系?2、学生动手操作实验(1)、用圆锥装满水(要装满但不能溢出来)往圆柱倒,倒几次才把圆柱倒满?(2)、通过实验,你发现了什么?小结:通过实验我们发现圆柱的体积是与它等底等高圆锥体积的3倍。
也可以说成圆锥的体积是与它等底等高圆柱体积的三分之一。
3、教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
看看圆柱和圆锥有什么相同的地方?(等底等高)请同学们注意观察,用圆锥装满水往圆柱里倒,倒几次才把圆柱倒满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱体积的三分之一。
(板书:圆锥的体积=1/3×圆柱体积)师:圆柱的体积等于什么?生:等于“底面积×高”。
2024年圆锥体积公开课一等奖教案
1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)
2、口算下列圆柱的体积。
(1)底面积是5平方厘米,高6厘米,体积=?
(2)底面半径是2分米,高10分米,体积=?
(3)底面直径是6分米,高10分米,体积=?
3、认识圆锥(课件演示),并说出有什么特征?
4、课堂总结
师:这节课你收获了什么?和大家分享一下吧!
圆柱的体积是与它等底等高圆锥体积的3倍;圆锥的体积是与它等底等高圆柱体积的三分之一;V圆锥=V圆柱=Sh。
(三)课时作业
1、王师傅做一件冰雕作品,要将一块棱长30厘米的正方体冰块雕成一个最大的圆锥,雕成的圆锥体积是多少立方厘米?
答案:30÷2=15(厘米)
4、出示例2:要求学生自己读题,理解题意。
在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)
(1)提问:从题目中你知道了什么?
(2)学生独立完成后教师提问,并回答学生的质疑:
3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?
(2)这些立体图形的体积计算公式是怎么推导的?运用了什么方法?请整理出来。
设计意图:通过复习物体的体积公式以及圆锥体积的推导,深化转化思想在生活中的应用,也为圆锥体积的推导埋下伏笔。
(二)课堂设计
1、情境导入
(出示沙堆)
师:你们有办法知道这个沙堆的体积吗?
学生自由发言,提出各种办法。
预设:把它放进圆柱形的容器里,测量出圆柱的底面积和高就可以知道等等
(4)公式推导
《圆锥的体积》教案6篇
《圆锥的体积》教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、事迹材料、心得体会、调查报告、讲话致辞、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work plans, work summaries, historical materials, insights, investigation reports, speeches, documentary evidence, teaching materials, essay summaries, other sample essays, and more. If you want to learn about different sample essay formats and writing methods, please stay tuned!《圆锥的体积》教案6篇教案是教师根据学生的学习反馈,提供个性化的学习指导,编写教案可以帮助我们预测和解决可能出现的教学问题和困难,提高教学的针对性和灵活性,本店铺今天就为您带来了《圆锥的体积》教案6篇,相信一定会对你有所帮助。
圆锥的体积教学设计(优秀6篇)
圆锥的体积教学设计(优秀6篇)《圆锥的体积》教案篇一教学内容教科书第39~40页例1,课堂活动及练习九第1题,第2题。
1.在操作和探究中理解并掌握圆锥的体积计算公式。
2.引导学生探究、发现,培养学生的观察、归纳等能力。
3.在实验中,培养学生的数学兴趣,发展学生的空间观念。
一、圆锥体积的计算公式的推导过程。
圆锥体积计算公式的理解。
小黑板、等底等高的圆柱和圆锥、圆柱形水槽、河沙或水。
一、情景铺垫,引入课题教师出示小黑板画面,画面中两个小孩正在商店里买蛋糕,蛋糕有圆柱形和圆锥形两种。
圆柱形蛋糕的标签上写着底面积16CM2,高20CM,单价:40元/个;圆锥形的蛋糕标签上写着底面积16CM2,高60CM,单价:40元/个。
屏幕上出示问题:到底选哪种蛋糕划算呢?教师:图上的两个小朋友在做什么?他们遇到什么困难了?他们应该选哪种蛋糕划算呢?谁能帮他们解决这个问题?教师抽学生回答问题。
可能会出现以下几种情形:第一种学生会认为买圆柱形的蛋糕比较划算,理由是这种蛋糕比圆锥形蛋糕的个大。
第二种学生会认为买圆锥形的蛋糕比较划算,理由是这种蛋糕比圆柱形蛋糕高。
第三种学生会认为不能确定,理由是不知道谁的体积大,无法比较。
教师:看来要帮助这两个同学不是一件容易的事情,解决这个问题的关键在哪里?学生明白首先要求出圆锥形蛋糕的体积。
教师:怎样计算圆锥的体积?这节课我们一起研究圆锥体积的计算方法。
揭示课题。
板书课题:圆锥的体积二、自主探究,感悟新知1.提出猜想,大胆质疑教师:谁来猜猜圆锥的体积怎么算?学生猜测:圆柱和圆锥的底面都是圆的,它们之间可能有联系,可不可以把圆锥变成圆柱,求出圆柱的体积,从而得出圆锥的体积……对学生的各种猜想,教师给予肯定和表扬。
2.分组合作,动手实验教师:圆锥的体积和圆柱的体积之间究竟有没有关系呢?如果有关系的话,它们之间又是一种什么关系?通过什么办法才能找到它们之间的关系呢?带着这些问题,请同学们分组研究,通过实验寻找答案。
《圆锥的体积》教案12篇
《圆锥的体积》教案12篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《圆锥的体积》教案12篇《圆锥的体积》教案1教学内容:练习四第4~12题和第23页思考题教学目标:1.使学生进步理解、掌握圆锥的体积计算方法,能根据不同的条件计算出圆锥的体积。
圆锥的体积教学设计优秀4篇
圆锥的体积教学设计篇8教学目的:使学生初步掌握圆锥体积的计算公式。
并能运用公式正确地计算圆锥的体积,发展学生的空间观念。
教学难点:圆锥的体积应用学具准备:等底等高的圆柱和圆锥,水和沙,多媒体课件教学时间:一课时教学过程:一、复习1、圆锥有什么特征?(课件出示)使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。
2、圆柱体积的计算公式是什么?指名学生回答,并板书公式:“圆柱的体积=底面积×高”。
同时渗透转化方法在数学学习中的应用。
二、导人新课出示一个圆锥形的谷堆,给出底面直径和高,让学生思考如何求它的体积。
板书课题:圆锥的体积三、新课1、教学圆锥体积的计算公式。
师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的?指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?先让学生讨论一下用什么方法求,然后指出:我们可以通过实验的方法,得到计算圆锥体积的公式。
教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?”然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”学生分组实验。
汇报实验结果。
先在圆锥里装满水,然后倒入圆柱。
正好3次可以倒满。
多指名说接着,教师课件边演示边叙述:现在圆锥和圆柱里都是空的。
请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?生:3次。
师:这说明了什么?生:这说明圆锥的体积是和它等底等高的圆柱的体积的。
多找几名同学说。
板书:圆锥的体积=1/3×圆柱体积师:圆柱的体积等于什么?生:等于“底面积×高”。
师:那么,圆锥的体积可以怎样表示呢?引导学生想到可以用“底面积×高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。
板书:圆锥的体积=1/3×底面积×高师:用字母应该怎样表示?然后板书字母公式:V=1/3SH师:在这个公式里你觉得哪里最应该注意?教学例1课件出示)一个圆锥的零件,底面积是19平方厘米,高是12厘米。
人教版数学六年级下册第13课圆锥的体积教学设计(精推3篇)
人教版数学六年级下册第13课圆锥的体积教学设计(精推3篇)〖人教版数学六年级下册第13课圆锥的体积教学设计第【1】篇〗教学目标1、推导出圆锥体积的计算公式。
2、会运用圆锥的体积公式计算圆锥的体积。
重点难点圆锥体积公式的推导过程。
教学过程一、板书课题师:同学们,今天我们来学习“圆锥的体积”(板书课题)。
二、出示目标理解并掌握圆锥的体积计算公式,并能运用公式解决实际问题。
三、自学指导认真看课本第33页到第34页的例2和例3,边看书,边实验,理解圆锥的体积计算方法,并将例3补充完整。
想:1、圆锥的体积与圆柱的体积有什么关系?2、圆锥的体积计算公式是什么?用字母如何表示?5分钟后,比谁能正确地回答思考题并能做对检测题!检测题完成课本第34页“做一做”第1、2题。
小组合作,校正答案后教口答一个体积是1413立方分米的铁块,可以制造成多少个底面半径是3分米、高是5分米的圆锥形零件?小组内互相说。
当堂训练1、必做题:课本第35页第5、6、7题。
(做在作业本上)2、选做题:有一个近似圆锥形的沙堆,底面周长是12.56米,高1.2米。
把这些沙铺在一个长4米、宽3米的长方形沙坑里,可以铺多厚?(得数保留两位小数)〖人教版数学六年级下册第13课圆锥的体积教学设计第【2】篇〗一、教学内容《圆锥的体积》是苏教版第十二册内容,在学习圆柱的体积之后,利用圆柱的体积推导出圆锥的体积,实验推导的过程是重要的教学环节。
二、教材分析本课属于属于空间与图形知识的教学,是小学阶段几何知识的重难点部分。
”六年级学生在经过小学六年的学习,已经具有了一定的空间想象能力和动手能力。
三、教学目标1、通过动手操作参与实验,发现等底等高的圆柱与圆锥体积之间的关系,从而得出圆锥体积的计算公式。
2、能运用公式解答有关的实际问题。
四、教学重难点教学重点:圆锥体积的计算公式教学难点:圆锥的体积公式推导。
五、课前准备课件六、教学过程一、谈话引入今天,我们来学习圆锥的体积公式是怎样推导出来的?二、自主探索,操作实验下面,我们一起来做个小实验(1)取一个圆柱体的容器和圆锥体的容器各一个。
圆锥的体积教学设计[优秀范文五篇]
圆锥的体积教学设计[优秀范文五篇]第一篇:圆锥的体积教学设计圆锥的体积教学设计【教学内容】圆锥的体积(北师大版小学六年级数学课本第十一页至第十二页)【教材分析】圆锥体积公式的推导及圆锥体积公式的应用,按创设情境--实验探究--导出公式三个层次编排。
学生分组操作时,肯定能借助倒沙子的实验,亲身感受等底等高的圆柱与圆锥体积的3倍关系,但要注意对“等底等高”这一条件的强调。
【教学目标】1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想----验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
3、培养学生自主探究的能力和小组合作学习的能力。
【教学重难点】重点:掌握圆锥体积的计算公式。
难点:正确探索出圆锥体积与圆柱体积之间的关系。
【教具学具】教具:等底等高的圆柱与圆锥、水,课件。
学具:学生自制的等底等高的圆柱与圆锥、细沙或大米【教学过程】一、创设情境,导入新课看,老师手里拿的是什么?(圆锥)回忆一下,圆锥有什么特征?这节课,我们就来研究一下圆锥的体积,齐读课题。
二、操作实验,自主探索1、提出问题:回忆一下我们学过圆柱的体积公式是什么?出示圆柱体,想一想圆柱体积的计算公式是怎样推导出来的?(指名回答,课件简单演示圆柱转化成长方体过程,帮助学生回忆。
)我们是把圆柱转化成已经学过的长方体推导出来的。
圆锥的体积该怎样求呢?能不能也通过学过的图形来推导呢?那应该转化为哪一个立体图形最合适呢?说说你的想法,它们的底面都与圆有关,正如这个同学所说,它们的形状具有一定的相似性,那么它们的体积也应该有着密切的联系。
2、大胆猜想:老师这儿现在就有一个圆柱和一个圆锥,大家观察一下它们有什么特点,对,它们等底等高。
很明显,圆柱的体积要大于圆锥的体积,那么你能不能进行一下大胆的猜测,圆柱和圆锥的体积可能存在着什么关系呢?圆柱体积等于3倍的圆锥体积,刚才大家对圆柱和圆锥的体积进行了大胆的猜测,那么这个猜测是否正确,我们应该怎么办呢?我们分小组验证一下,课前老师让大家准备了圆柱和圆锥,还有沙子。
《圆锥的体积》教学案例(通用16篇)
《圆锥的体积》教学案例(通用16篇)《圆锥的体积》篇1教学内容:本课是九年义务教育人教版小学数学第十二册的内容,是在学习了圆柱的体积计算和圆锥的特征的基础上进行教学的。
教学目标:1、引导学生通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。
2、培养学生的观察,猜测、操作能力。
3、培养学生良好的合作探究意识,引导学生掌握正确的学习方法。
教学重点、难点、关键:重点:圆锥的体积计算公式难点:圆锥体积计算公式的推导过程关键:学生通过实验操作,理解“圆锥的体积等于与它等底等高圆柱体积的三分之一。
”教学过程:一、联系生活,激趣导入师:同学们,老师有一个问题,看谁能帮助我解决。
有两种冰淇淋,一种是圆柱形的,2元一支,一种是圆锥形的,0.5元一支,你们说老师买哪种冰淇淋合算呢?生有的说买圆柱形的合算,有的说买圆锥形的合算。
(大家争论不休)(这时,我把这两种不同意见的学生分成两组,各派代表说说自己的理由)。
生甲:圆柱形上下一样粗,冰淇淋装得多些,所以买圆柱形合算。
生乙:那也不一定。
如果圆锥形冰淇淋的底比圆柱形的底大些,那么圆锥形的冰淇淋就不一定比圆柱形的少。
生甲:虽然圆锥形的底大,但它的上面是越来越小,这样冰淇淋装得还是少些,所以买圆锥形的不合算,还是买圆柱形的好。
生乙:不错,圆锥形的上面是越来越小,但如果圆锥形比圆柱形高些呢?……(通过辩论,学生逐渐明白了,合不合算,应该与它们的体积有关。
)师:为了解决这个问题,我们先来学习“圆锥的体积。
”(板书课题)二、探究新知1、猜测:你们认为圆锥的体积和什么图形的体积联系密切?(讨论后,大家一致认为应该与圆柱的体积有联系。
)2、实验:下面我们来分组做实验,看看它们之间有什样的联系?(1)请各组拿出实验材料(课前准备好的)每组等底等高,等底不等高,等高不等底的圆柱和圆锥各一对,黄沙一袋。
另外,每组发一份实验报告单。
(见下表)实验报告一、实验目的:研究圆锥的体积公式。
圆锥的体积教学设计一等奖(优秀5篇)
圆锥的体积教学设计一等奖(优秀5篇)《圆锥的体积》教学设计篇一一、教案背景1、面向学生:小学2、学科:数学人教六年级下学期3、课时:1二、教学课题本课是人教版数学六年级下学期《圆柱与圆锥》单元的内容。
本节课安排了两个例题:一是圆锥体积公式的推导,二是圆锥体积公式的应用。
圆锥体积公式的推导按引出问题---联想、猜测---实验探究---导出公式,四个层次编排。
圆锥体积的计算,题目给出了圆锥形沙堆的底面直径和高,求沙堆的体积。
通过这个例子的教学,使学生初步学会解决一些与计算圆锥形物体的体积有关的实际问题。
学习本课需要达成以下的目标:1、理解和掌握圆锥体积的计算方法,并能运用公式解决简单实际问题。
2、经历“类比猜想---验证推理”探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并能解决一些简单的实际问题。
3、培养学生动手操作、观察分析的能力,在探究中体验学习的乐趣。
三、教材分析本节内容圆锥的体积是在学生学习了圆柱的体积及圆锥的认识之后,学习的又一个求立体图形体积的内容,是学校阶段学习的最后一个解决“空间与图形”问题的内容,也是前阶段所学知识发展与升华。
教材安排了例2、例3两个例题,例2引导学生推导出圆锥的体积,例3让学生用圆锥的体积公式解决问题。
本课重点在于圆锥体积公式的推导。
鉴于圆柱与圆锥体积的关联,学生在圆柱体积公式推导学习中也领悟到新旧知识转化的特点,因此对于圆锥体积公式的推导仍可以采用转化的方式将圆锥体积与圆柱体积联系起来,通过实验操作来得出计算公式,再辅以及时的运用训练,以使学生理解圆锥体积的计算方法。
从教材的编排可以看出,教材加强了与现实生活的联系,加强了在操作中对空间与图形的思考,使学生在经历观察、猜测、实验、推理等过程中理解和掌握圆锥体积的计算方法,进一步发展空间观念。
四、学情分析:学生是九山小学,属农村的学生。
美国心理学家奥苏泊尔说:“如果我不得不把教育心理学还原为一条原理的话,影响学习的最主要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆锥的体积》教学设计
教学目标
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
3、情感、态度与价值观:培养学生勇于探索的求知精神,感受到数学来源于生活,能积极参与数学活动,自觉养成与人合作交流与独立思考的良好习惯。
教学重难点
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。
【教学难点】圆锥体积公式的推导。
教学过程
一、新课导入
出示铅锤
1.师:你们见过这个吗?生:铅锤。
师:我们知道这个铅锤所占空间的大小就是这个铅锤的体积,那么有什么办法算出这个铅锤的体积吗?
生:将其放进装满水的容器里,溢出的水就是这个容器的体积。
2.教师操作,将铅锤放进量筒中,水面上升。
师:这个时候如何测量铅锤的体积呢?
生:测量加入铅锤前后,水的体积增加的部分就是铅锤的体积(测量不规则的物体的体积——排水法)。
师:谁来评价一下这种方法怎么样?
师:如果要测量像小麦堆这样类似圆锥的体积怎么办呢?(课件出示图片)能把他放在水里吗?
生:不能。
师:那么这种方法是不是就有局限性?不适用于求所有的圆锥体的体积。
那么今天我们就要来找到一种办法来解决求圆锥体的体积。
二、新授
A、师:请同学们回忆一下我们学过那些物体体积的计算方法呢?
生:长方体、正方体、圆柱。
师:我们在计算圆柱体的体积的时候是将它转化成长方体的体积,那么你们认为哪种物体的体积计算方法会和圆锥的体积有关呢?
生:圆柱。
师:你能说说你猜测的依据吗?
生:圆柱和圆锥的底面都是圆形。
师:对,圆柱和圆锥在外形是是有一定的相似性的,所以他们的体积之间有着一定的关系。
师:那请你们大胆地猜测一下,他们之间有什么关系呢?
生1:圆柱的体积师圆锥的三倍。
生2:圆锥的体积是圆柱的三分之一。
师:谁有补充的?任意一个圆锥的体积都是任意圆柱体积的三分之一吗?
板书:猜测V圆柱=3V圆锥V圆锥=1/3V圆柱
师:有了猜测我们要干嘛?
生:验证。
师:那我们现在就来做实验验证。
B、准备水、圆柱、圆锥模具、试验单。
(2分钟)
要求:1、任选一组圆柱与圆锥比较、观察发现:弄清是比较什么?实验结果填什么?
2、细心操作,尽量减少误差。
C、小组汇报如何实验的和实验结果。
学生展示试验单。
师:对比一下结果发现?
生:有倒三次到满的,那么这些是三次倒满的圆柱和圆锥是哪一组?拿出来,仔细观察他们有什么特点。
D、师:通过实验验证了你们的猜测了吗?有没有什么疑问呢?
师:为什么有许多实验结果是不一样的?
生:因为只有等底等高的圆柱的体积才是圆锥体积的三倍。
E、板书:等底等高
师:等底等高的圆锥和圆柱之间的体积关系才会固定存在,如果不等底不等高,他们体积之间的关系就不固定了。
师:谁愿意具体说说,等底等高的圆柱和圆锥的体积之间存在什么样的关系呢?
生:等底等高的圆柱体积是圆锥体积的三倍。
生:等底等高的圆锥的体积是圆柱体积的三分之一。
F:现在我们通过实验已经验证了圆柱体积和圆锥体积的关系,那么对我们推导圆锥的体积公式有什么帮助呢?你们能不能推断出圆锥的体积计算公式?你能用字母来表示他们之间的关系吗?在草稿纸上试一试。
生展示:V锥=1/3V柱=1/3SH
师:加深印象:S是什么?H是什么?为什么要乘1/3?
生:S是与圆柱等底等高的圆锥的底面积,S是与圆柱等底等高的圆锥的高。
师:那我们相要求圆锥的体积,必须知道哪些条件?
生:圆锥的底面半径和高。
G:师总结今天的学习过程:
师:那我们回顾一下今天的学习过程,我们首先先观察,发现圆柱与圆锥他们的面之间有相似性,然后大胆地猜测了他们之间可能具有这样的关系,接着我们通过实验,验证了我们的猜测,最后我们队实验结果进行了分析,从而总结归纳出圆锥的体积计算公式。
师:那我们找到了计算圆锥的体积的普遍方法,现在能够帮老师求出这个铅锤的体积了吗?我们要测量什么数据?
生:需要测量它的高和底面半径。
师:很好,这里老师提供给你三组条件,请你们从中任选一组条件进行计算。
学生板演。
(要求呈现计算过程)
师:观察计算过程是否有可以改进的地方?谁有更简便的方法?
师:我发现大部分同学选的都是这一组条件,为什么呢?
生:因为第一组条件好算,知道半径就可以直接算出底面积,进而算出圆锥的体积。
第二种和第三种还要先算出半径,才能继续往下计算。
师:说的非常。
那么我们再算圆锥体的体积时都要先算出什么?
生:底面半径。
三、课堂练习
A、判断题
1、圆锥的体积等于圆柱体积的1/3。
()
2、圆柱的体积大于与它等底等高的圆锥的体积。
()
3、圆锥的高师圆柱的高的3倍,他们的体积一定相等。
()
B、填空
1、一个圆柱的体积师6立方厘米,与它等底等高的圆锥的体积是()立方厘米。
2、有一个圆柱和一个圆锥,他们的底面半径相同,高也相同,圆锥的体积是18立方分米,圆柱的体积是()立方分米。
C、解决问题
1、
四、课堂小结
师:通过今天的学习,你们学到了什么?
凫峰中心学校张苑
2018/3/14 精品文档word文档可以编辑!谢谢下载!。