数学规划模型解析
整体规划数学模型

整体规划数学模型一、问题重述与提出某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论:1)若投资0.8万元可增加原料1千克,问应否作这项投资.2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划.分析:问题的关键在于在对甲乙两种饮料的生产的限制的条件下,对两种饮料进行合理的分配以达到获利最多的效果。
基本假设与符号说明基本假设:1两种饮料的生产原料分配是相互制约的。
2两种饮料的生产工人数量分配是相互制约的。
3甲饮料的产量不超过8百箱。
符号规定:x1---甲饮料的生产百箱数x2---乙饮料的生产百箱数三、问题分析与建立模型1.甲乙两种饮料的所用的原料总和不能超过60千克。
2.生产甲乙两种饮料的工人数量总和不能超过150人。
3.甲饮料的生产数量不能超过8百箱。
4.要使获利最大,这是一个目标规划模型目标函数MAX Z0=10x1+9x2约束函数s.t 6x1+5x2≤6010x1+20x2≤1500≤x1≤8, x2≥0若增加原料1千克,则建立线性目标规划函数如下:目标函数MAX Z1=10x1+9x2-0.8约束函数s.t 6x1+5x2≤6110x1+20x2≤1500≤x1≤8, x2≥0比较z0与Z1的大小若每百箱甲饮料获利可增加1万元,则建立线性目标规划函数如下:目标函数MAX Z2=11x1+9x2约束函数s.t 6x1+5x2≤6010x1+20x2≤1500≤x1≤8, x2≥0比较Z0与Z2的大小求解的Matlab程序代码:c=[-10 -9];A=[6 5; 10 20;1 0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 问题一:c=[-10 -9];A=[6 5;10 20;1 0];b=[61;150;800];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 问题二:c=[-11 -9];A=[6 5; 10 20;1 0];b=[60;150;8];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) 四、计算结果与问题分析讨论:计算结果:x =6.42864.2857fval =-102.8571问题一结果:x =6.71434.1429fval =-104.4286问题二结果:x =8.00002.4000fval =-109.6000问题结果分析:由于生产的甲、乙饮料箱数应为整数,故应生产甲饮料6.42百箱,乙饮料4.28百箱时,获利最大为102.72万元。
(完整word版)整数规划的数学模型及解的特点

整数规划的数学模型及解的特点整数规划IP (integer programming):在许多规划问题中,如果要求一部分或全部决策变量必须取整数。
例如,所求的解是机器的台数、人数、车辆船只数等,这样的规划问题称为整数规划,简记IP 。
松弛问题(slack problem):不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的松弛问题。
若松弛问题是一个线性规化问题,则该整数规划为整数线性规划(integer linear programming)。
一、整数线性规划数学模型的一般形式∑==nj jj x c Z 1min)max(或中部分或全部取整数n j nj i jij x x x mj ni x b xa ts ,...,,...2,1,...,2,10),(.211==≥=≥≤∑=整数线性规划问题可以分为以下几种类型1、纯整数线性规划(pure integer linear programming):指全部决策变量都必须取整数值的整数线性规划。
有时,也称为全整数规划。
2、混合整数线性规划(mixed integer liner programming):指决策变量中有一部分必须取整数值,另一部分可以不取整数值的整数线性规划。
3、0—1型整数线性规划(zero —one integer liner programming):指决策变量只能取值0或1的整数线性规划。
1 解整数规划问题0—1型整数规划0—1型整数规划是整数规划中的特殊情形,它的变量仅可取值0或1,这时的⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤-+=且为整数0,5210453233max 2121212121x x x x x x x x x x z变量xi 称为0—1变量,或称为二进制变量。
0—1型整数规划中0—1变量作为逻辑变量(logical variable),常被用来表示系统是否处于某一特定状态,或者决策时是否取某个方案。
线性规划的数学模型

线性规划的数学模型引言线性规划(Linear Programming, LP)是数学规划的一种方法,用于解决一类特殊的优化问题。
线性规划的数学模型可以表示为一个线性的目标函数和一系列线性约束条件。
本文将介绍线性规划的数学模型及其应用。
数学模型线性规划的数学模型可以用以下形式表示:最大化:$$ \\max_{x_1,x_2,...,x_n} Z=c_1x_1+c_2x_2+...+c_nx_n $$约束条件:$$ \\begin{align*} a_{11}x_1+a_{12}x_2+...+a_{1n}x_n&\\leq b_1 \\\\ a_{21}x_1+a_{22}x_2+...+a_{2n}x_n &\\leq b_2 \\\\ &\\vdots \\\\ a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n&\\leq b_m \\\\ x_1,x_2,...,x_n &\\geq 0 \\end{align*} $$其中,Z为目标函数的值,Z1,Z2,...,Z Z为目标函数的系数,Z1,Z2,...,Z Z为决策变量,Z ZZ为约束条件的系数,Z1,Z2,...,Z Z为约束条件的右侧常数。
线性规划的应用线性规划在实际问题中有广泛的应用,其应用领域包括但不限于以下几个方面:生产计划线性规划在生产计划中的应用是最为常见的。
通过建立适当的数学模型,可以最大化生产线的产能,同时满足客户需求和资源限制。
例如,一个工厂需要决定每个月生产的产品数量,以最大化利润。
这个问题可以通过线性规划来解决。
运输问题线性规划在运输问题中的应用也非常广泛。
运输问题涉及到将特定产品从供应地点运送到需求地点,以满足需求并尽量降低运输成本。
线性规划可以用来决定每个供应地点到每个需求地点的运输量,以最小化总运输成本。
资源分配在资源有限的情况下,线性规划可以用于优化资源的分配。
线性规划的数学模型

线性规划的数学模型线性规划是一种数学模型,被广泛应用于许多领域。
本文将介绍线性规划的数学模型的重要性和应用领域,并简要说明线性规划的定义和基本概念。
线性规划是一种优化问题的数学表述,其目的是在给定的约束条件下,找到使目标函数达到最大或最小的变量值。
线性规划的主要特点是目标函数和约束条件均为线性关系。
线性规划在工程、经济、物流、运输等领域都有广泛的应用。
它可以用来解决资源分配、生产计划、成本最小化、效益最大化等问题。
线性规划的数学模型可以通过建立目标函数和约束条件的数学表达式来表示。
这篇文档将深入探讨线性规划的数学模型,并介绍一些常见的线性规划应用案例。
通过了解线性规划的数学模型,读者可以更好地理解其背后的原理和应用。
希望本文能对读者在研究和实践中解决实际问题时提供帮助和指导。
本文将讨论如何构建线性规划模型,包括确定决策变量、目标函数和约束条件,以及如何将实际问题转化为数学模型。
决策变量在构建线性规划模型时,首先需要确定决策变量。
决策变量是用来表示决策问题中需要决定的未知量。
它们的取值将影响函数的输出结果。
在确定决策变量时,需要考虑问题的具体情况,并确保决策变量具有明确的定义和可行的取值范围。
目标函数确定决策变量后,下一步是确定目标函数。
目标函数是线性规划模型中需要最大化或最小化的函数。
它通常与问题的目标密切相关,并且能够量化问题的目标。
在确定目标函数时,需要考虑问题的特点和要求,确保目标函数能够准确地度量问题的目标。
约束条件除了目标函数,线性规划模型还包括一系列约束条件。
约束条件是对决策变量的限制和要求,用于限定决策变量的取值范围。
约束条件可以是等式或不等式,它们对问题的解产生了限制和约束。
在确定约束条件时,需要将问题的限制条件转化为数学形式,并确保约束条件与实际问题相符合。
实际问题转化为数学模型最后,将实际问题转化为数学模型是构建线性规划模型的关键步骤。
这需要理解问题的要求和限制,并将其转化为决策变量、目标函数和约束条件的数学表达式。
数学规划模型

数学规划模型
数学规划模型是一种数学建模方法,它使用数学方法来解决决策问题。
数学规划模型可以用来优化资源的利用,最大化或最小化某个目标函数。
首先,数学规划模型需要明确目标函数和约束条件。
目标函数是我们希望优化的指标,约束条件则是限制我们优化的条件。
例如,如果我们要找到一种最佳的生产计划,那么目标函数可以是产量的最大化,约束条件可以是原料的限制、生产设备的限制等。
接下来,数学规划模型需要定义决策变量。
决策变量是我们可以调整的变量,通过调整决策变量的值,我们可以达到最优解。
例如,对于生产计划问题,决策变量可以是每种产品的生产数量。
然后,将目标函数和约束条件用数学公式表示出来。
例如,如果我们的目标是最大化产量,那么目标函数可以表示为一个关于决策变量的函数。
同时,约束条件也可以用一组不等式来表示。
接下来,我们需要使用数学方法来求解这个数学规划模型。
常用的数学方法包括线性规划、整数规划、非线性规划等。
具体的求解方法取决于模型的特点和目标函数的形式。
最后,我们需要把数学模型的结果解释给决策者,帮助他们做出更明智的决策。
这个过程通常包括分析和解释模型的结果,
以及提供关于如何操作和调整决策变量的建议。
总结来说,数学规划模型是一种解决决策问题的数学方法。
通过明确目标函数和约束条件,定义决策变量,使用数学方法求解,并将结果解释给决策者,我们可以通过数学规划模型得到最优的决策方案。
这种方法在供应链管理、生产计划、资源分配等领域有着广泛的应用。
第一节 目标规划的数学模型

kl , kl 为分别赋予第l个目 式中:Pk为第k级优先因子,k=1,…,K; 标约束的正负偏差变量的权系数;gl为目标的预期目标值, l=1,…L。
建立目标规划数学模型的步骤
(1)按照实际问题所提出的各个目标与条件,列出目标的 优先级。 (2)写出绝对约束和目标约束 (3)给各个目标赋予相应的优先因子Pk,对同一优先级中 各偏差变量,按不同的重要程度赋予不同的权系数。 (4)对要求恰好达到目标值的目标,则取正负偏差变量之 和,即 min(d d ) ;对要求超过目标值的,只取负偏差变量, min d 即 ;对要求不超过目标值的,只取正偏差变量, 即 min d ,构造一个极小化的关于偏差变量的目标函数。
又包含偏差变量;
6. 目标规划模型中的优先级 pi 较之 pi 1的重
要性一般为数倍至数十倍之间; 7. 目标规划模型中的目标函数按照问题的性 质要求可表示为求min或max; 8. 下列表达式能否表达目标规划模型中的 目标函数:
(1)max z p1d1 p2 d 2 (2)min z p1d1 p2 d 2 (3)min z p1d1 p2 ( d 2 d 2 )
6.1.2关于目标规划的几个概念
1.偏差变量
用d+表示超过目标值的差值,称为正偏差变量;
d-表示未达到目标值的差值,称为负偏差变量.
第一目标:尽量完成本周期的利润指标24000元 如果实际利润是23500元,则 d 0, d 500 如果实际利润是24080元,则 d 80, d 0
min d1 300 x1 120 x2 d1 d1 24000 x d d 60 , x d d 100 min( d d 2 2 3 3 1 2 3 ) 2 20 x 10 x d d 1400 4 min d 1 2 4 4
优化问题中的数学规划模型

优化问题中的数学规划模型优化问题中的数学规划模型1.优化问题及其一般模型优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。
例如:设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。
一般地,优化模型可以表述如下:minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
2.数学规划模型分类“数学规划是运筹学和管理科学中应用及其广泛的分支。
在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。
”[H.P.Williams.数学规划模型的建立]。
数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,就要将实际问题经过抽象、简化、假设,确定变量与参数,建立适当层次上的数学模型,并求解。
3.建立数学规划模型的步骤当你打算用数学建模的方法来处理一个优化问题的时候,首先要确定寻求的决策是什么,优化的目标是什么,决策受到那些条件的限制(如果有限制的话),然后用数学工具(变量、常数、函数等)表示它们,最后用合适的方法求解它们并对结果作出一些定性、定量的分析和必要的检验。
Step 1. 寻求决策,即回答什么?必须清楚,无歧义。
阅读完题目的第一步不是寻找答案或者解法,而是…… Step 2. 确定决策变量第一来源:Step 1的结果,用变量固定需要回答的决策第二来源:由决策导出的变量(具有派生结构)其它来源:辅助变量(联合完成更清楚的回答) Step 3. 确定优化目标用决策变量表示的利润、成本等。
线性规划概念与数学模型

约束条件的图解:
每一个约束不等式在平面直角坐标系中都 代表一个半平面,只要先画出该半平面的边 界,然后确定是哪个半平面。
怎么画边界
?
怎么确定 半平面
以第一个约束条件(工时)
x1+2 x2 8 为例 说明约束条件的图解过程。
如果全部的劳动工时都用来生产甲 产品而不生产
乙产品,那么甲产品的最大可能产量为8吨,计算
D
条件的边界--
4
Q4
Q3
直线CD,EF: E
3
F
4x1 =16,4x2 =12
2
Q2 4x2 = 12
1
Q1
0
1
2
3
4
5
6
7
8
9
B
C
x1+4x2 = 8
4x1=16
三个约束条件及非负条件x1,x2 0所代表的公共部分
--图中阴影区,就是满足所有约束条件和非负条件的点的
集合,即可行域。在这个区域中的每一个点都对应着一个可
目标函数值递增的方向, 用箭头标出这个方向。 图中两条虚线 l1和l2就 分别代表 目标函数等值线 2x1+3x2=0 和 2x1+3x2=6, 箭头表示使两种产品的总 利润递增的方向。
5
l3
A4
E
B
3
l1 l2 2
1
1
2
D
F 4x1=12
Q2 4,2
x1+2x2 = 8
A
3
4
5
6
7
8
9
B
4x1=16 C
1 1
1 1
1 1
B1 1
4 , B2 1
数学建模-数学规划模型

将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类
数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。
点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。
传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。
n个人指派n项工作的问题。
传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。
传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。
把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。
传送门
6.动态规划
运筹学的一个分支。
求解决策过程最优化的过程。
传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。
传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。
传送门。
《数学规划模型 》课件

非线性规划问题通常具有多个局 部最优解,寻找全局最优解是一
个挑战。
非线性规划的解法
梯度法
通过迭代计算,逐步逼近 最优解。每次迭代需要计 算目标函数的梯度和约束 条件的海森矩阵。
牛顿法
利用泰勒级数展开,构造 一个二次函数近似原函数 ,然后求解该二次函数的 极值点。
拟牛顿法
在牛顿法的基础上,通过 迭代更新海森矩阵的近似 值,提高算法的收敛速度 。
多目标规划的解法
总结词
多目标规划的解法包括层次分析法、权重法、主要目标法等 。
详细描述
多目标规划的解法有多种,其中较为常用的包括层次分析法 、权重法、主要目标法等。这些方法通过一定的数学手段和 计算技术,将多目标问题转化为单目标问题,以便进行求解 。
多目标规划的应用实例
总结词
多目标规划的应用非常广泛,包括经济、交通、能源 、环境等多个领域。
线性规划问题通常表示为在给定一组线性约束条件下,最小化或最大化一组线性目 标函数。
线性规划问题具有明确的目标函数和约束条件,且这些条件都是线性的,因此称为 线性规划。
线性规划的解法
线性规划问题可以通过多种方法求解, 其中最常用的是单纯形法。
单纯形法是一种迭代算法,通过不断迭 代寻找最优解。在每一步迭代中,算法 会检查当前解是否满足所有约束条件, 并尝试通过移动到相邻解来改进目标函
非线性规划的应用实例
投资组合优化
在给定风险和收益目标下,通过 非线性规划模型优化投资组合的
配置。
生产计划优化
在生产过程中,通过非线性规划 模型优化资源分配、生产计划等
。
物流优化
在物流配送中,通过非线性规划 模型优化运输路线、车辆调度等
。
第三章数学规划模型

第三章数学规划模型第三章数学规划模型数学规划论起始20世纪30年代末,50年代与60年代发展成为⼀个完整的分⽀并受到数学界和社会各界的重视。
七⼋⼗年代是数学规划飞速发展时期,⽆论是从理论上还是算法⽅⾯都得到了进⼀步完善。
时⾄今⽇数学规划仍然是运筹学领域中热点研究问题。
从国内外的数学建模竞赛的试题中看,有近1/4的问题可⽤数学规划进⾏求解。
数学规划模型的⼀般表达式:),,(..),,(min(max)≤βαβαx g t s x ff 为⽬标函数,g 为约束函数,x 为可控变量,α为已知参数,β为随机参数。
本章主要介绍线性规划、整数规划、⾮线性规划的基本概念与基本原理、⽆约束问题的最优化⽅法、约束问题的最优化⽅法、动态规划。
3.1线性规划线性规划模型是运筹学的重要分⽀,是20世纪三四⼗年代初兴起的⼀门学科。
1947年美国数学家丹齐格G.B.Dantzig 及其同事提出的求解线性规划的单纯形法及有关理论具有划时代的意义。
他们的⼯作为线性规划这⼀学科的建⽴奠定了理论基础。
随着1979年前苏联数学家哈奇扬的椭球算法和1984年美籍印度数学家卡玛卡尔H.Karmarkar 算法的相继问世,线性规划的理论更加完备成熟,实⽤领域更加宽⼴。
线性规划研究的实际问题多种多样,如⽣产计划问题、物资运输问题、合理下料问题、库存问题、劳动⼒问题、最优设计问题等。
就模型⽽⾔,线形规划模型类似于⾼等数学中的条件极值问题,只是其⽬标函数和约束条件都限定为线性函数。
线性规划模型的求解⽅法⽬前仍以单纯形法为主要⽅法。
本节介绍的主要内容有:线性规划模型的建⽴以及求解,线性规划的matlab 解法,线性规划问题的建模实例。
3.1.1 线性规划模型的建⽴以及求解⼀、线性规划模型的建⽴例1、某机床⼚⽣产甲、⼄两种机床,每台销售后的利润分别为4000元与3000元。
⽣产甲机床需⽤B A 、机器加⼯,加⼯时间分别为每台2⼩时和1⼩时;⽣产⼄机床需⽤C B A 、、三种机器加⼯,加⼯时间为每台各⼀⼩时。
美赛数学建模常用模型及解析

美赛数学建模常用模型及解析
数学建模是数学与实际问题的结合,解决实际问题的具体数学模型是数学建模的核心。
以下是一些美赛中常用的数学模型及其解析。
1. 线性规划模型
线性规划模型是一种最常见的优化模型,它的目标是在给定的约束条件下,寻找一个线性函数的最大值或最小值。
线性规划模型可以用于解决资源分配、生产计划、运输优化等问题。
2. 整数规划模型
整数规划是线性规划的一个扩展,它要求决策变量只能取整数值。
整数规划模型可以应用于旅行商问题、装配线平衡问题等需要整数解决方案的实际问题。
3. 动态规划模型
动态规划是一种将多阶段决策问题转化为单阶段决策问题求解的方法。
动态规划模型可以用于解决背包问题、序列对齐问题等需要在不同阶段做出决策的问题。
4. 排队论模型
排队论模型用于分析系统中的排队现象,包括到达率、服务率、系统稳定性等指标。
排队论模型可以用于研究交通流量、电话系统、服务器排队等实际问题。
5. 随机过程模型
随机过程模型用于描述随机事件的演变过程,其中最常见的是马尔可夫链和布朗运动。
随机过程模型可以用于模拟金融市场、天气预测、股票价格等随机变化的问题。
这些模型只是数学建模中常用的几种类型,实际问题通常需要综合运用多种模型进行分析和求解。
对于每个具体的问题,需根据问题的特点和要求选择合适的数学模型,进行合理的建模和求解。
线性规划模型

1
(1-7)
标准型的特征
w目标函数最大化 w约束条件为等式 w右端相为非负值 w决策变量非负值
而称以下的形式为标准矩阵形式:
Max z C X
T
s.t. AX b
X 0
(1-8)
如何将线性规划转化为标准型
(1)若目标函数是求最小值 Min S = CX
令 S ˊ = - S,
则
Max Sˊ= - CX
令 z = -f = - 3.6x1 + 5.2x2 - 1.8x3 ,
其次考虑约束,有2个不等式约束,引进
松弛变量x4,x5 ≥0。于是,我们可以得到以
下标准形式的线性规划问题: Max z = - 3.6 x1 + 5.2 x2 - 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 + x4 = 15.7 4.1 x1 x1 + 3.3 x3 + x2 + x3 - x5 = 8.9 = 38
取其等式在坐标系中作出直线,通过判断确定不等
式所决定的半平面。各约束半平面交出来的区域
(存在或不存在),若存在,其中的点表示的解称 为此线性规划的可行解。这些符合约束限制的点集 合,称为可行集或可行域。进行(3);否则该线 性规划问题无可行解。
(3)任意给定目标函数一个值作一条目标函数的 等值线,并确定该等值线平移后值增加的方向,平移 此目标函数的等值线,使其达到既与可行域有交点又 不可能使值再增加的位置(有时交于无穷远处,此时 称线性规划的解无界)。若有交点时,此目标函数等 值线与可行域的交点即最优解(一个或多个),此目 标函数的值即最优值。
例2 将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3
数学建模---非线性规划模型

6.4.3 问题的分析
i i i i i i i
当购买Si的金额为xi(i=0~n),投资组合 x=(x0,x1,…,xn)的净收益总额
R( x) Ri ( xi )
n i 0
(6 )
整体风险:
Q( x) max Qi ( xi )
资金约束:
1i n
n
(7)
(8 )
F ( x) f i ( xi ) M
二、多目标规划模型 多目标规划模型的一般形式为
min f1 x , f 2 x , , f p x gi x 0, i 1, 2,....., m s.t. h j x 0, j 1, 2,....., l
T
5.7
2.7 4.5 7.6
320
267 328 131
模型的假设
1. 2.
3.
4.
在一个时期内所给出的ri,qi,pi保持不变。 在一个时间内所购买的各种资产(如股票、 证券等)不进行买卖交易,即在买入后不再 卖出。 每种投资是否收益是相互独立的。 在投资过程中,无论盈利与否必须先付交易 费。
符号的说明
表1
售价(元) 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 41000 38000 34000 32000 29000 28000 25000 22000 20000
数学建模——规划模型

假设:料 场和工地 之间有直 线道路
1)现有 2 料场,位于 A (5, 1), B (2, 7),记为 (xj,yj),j=1,2, 日储量 ej 各有 20 吨。
i 1 i
n
i
a ik x k bi , i 1, 2 ,..., n. s.t . k 1 x 0 , i 1, 2 ,..., n. i
(3)二次规划问题
目标函数为二次函数,约束条件为线性约束
1 n min u f ( x ) ci xi bij xi x j 2 i , j 1 i 1 n a ij x j bi , i 1, 2,..., n. s.t . j 1 x 0 .i 1, 2,..., n. i
改写为: S.t.
min z 13 9 10 11 12 8X
0 0 800 0.4 1.1 1 0 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
编写M文件xxgh4.m如下: c = [40 36]; A=[-5 -3]; b=[-45]; Aeq=[]; beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)
(一)规划模型的数学描述
u f ( x)
数学模型之数学规划模型

多目标规划模型的应用案例
资源分配问题
投资组合优化
在有限的资源条件下,如何分配资源 以达到多个目标的优化,如成本、质 量、时间等。
在风险和收益的权衡下,如何选择投 资组合以达到多个目标的优化,如回 报率、风险分散等。
生产计划问题
在满足市场需求和生产能力限制的条件 下,如何制定生产计划以达到多个目标 的优化,如利润、成本、交货期等。
整数规划模型的应用案例
总结词
整数规划模型在生产计划、资源分配、物流优化等领域有广泛应用。
详细描述
在生产计划领域,整数规划模型可以用于安排生产计划、优化资源配置和提高生产效率。在资源分配 领域,整数规划模型可以用于解决资源分配问题,例如人员分配、物资调度等。在物流优化领域,整 数规划模型可以用于车辆路径规划、货物配载等问题,提高物流效率和降低运输成本。
数学规划模型可以分为线性规划、非线性规划、整数规划、动态 规划等类型,根据问题的特性选择合适的数学规划模型进行建模 。
数学规划模型的应用领域
01
02
03
04
生产计划
数学规划模型可以用于制定生 产计划,优化资源配置,提高 生产效率。
物流运输
通过建立数学规划模型,可以 优化物流运输路线和运输方式 ,降低运输成本。
80%
金融投资组合优化
通过建立线性规划模型,可以优 化投资组合,实现风险和收益的 平衡。
03
非线性规划模型
非线性规划模型的定义
非线性规划模型是一种数学优化模型 ,用于解决目标函数和约束条件均为 非线性函数的问题。
它通过寻找一组变量的最优解,使得 目标函数达到最小或最大值,同时满 足一系列约束条件。
• 整数规划与混合整数规划的拓展:整数规划模型解决了离散变量的优化问题,混合整数规划则进一步扩展了整数规划的适 用范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2
数学规划模型
4.1 奶制品的生产与销售
自来水输送与货机装运
4.3
4.4 4.5
汽车生产与原油采购
接力队选拔和选课策略 饮料厂的生产与检修
4.6 钢管和易拉罐下料
y
数学规划模型
实际问题中 的优化模型 x~决策变量
Min(或Max) z f ( x), x ( x1 ,x n ) s.t. g i ( x) 0, i 1,2, m
0
最优解一定在凸多边 形的某个顶点取得。
模型求解
model: max=72*x1+64*x2; x1+x2<50; 12*x1+8*x2<480; 3*x1<100; end DO RANGE (SENSITIVITY) ANALYSIS? No
软件实现
LINGO 9.0
2
Global optimal solution found at iteration:
“资源” 剩余为零的约束为紧约束(有效约束)
Objective value: 3360.000 Total solver iterations: 2
Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000
1桶 牛奶 或
12小时
3公斤A1
4公斤A2
获利24元/公斤
获利16元/公斤
目标函数
获利 24×3x1 获利 16×4 x2 每天获利 Max z 72x1 64x2 原料供应
x1 x2 50
12x1 8x2 480
约束条件
劳动时间 加工能力 非负约束
3x1 100 x1 , 0
20桶牛奶生产A1, 30桶生产A2,利润3360元。
结果解释
model: max=72*x1+64*x2; x1+x2<50; 12*x1+8*x2<480; 3*x1<100; end
原料无剩余 三 种 时间无剩余 资 源 加工能力剩余40 Objective value: 3360.000 Total solver iterations: 2 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000
Objective value: 3360.000 Variable Value Reduced Cost X1 20.00000 0.000000 X2 30.00000 0.000000 Row Slack or Surplus Dual Price 1 3360.000 1.000000 2 0.000000 48.00000 3 0.000000 2.000000 4 40.00000 0.000000
结果解释
最优解下“资源”增加 1单位时“效益”的增 量
影子价格
原料增加1单位, 利润增长48
时间增加1单位, 利润增长2 加工能力增长不影响利润
35 <48, 应该买! • 35元可买到1桶牛奶,要买吗? • 聘用临时工人付出的工资最多每小时几元? 2元!
最优解不变时目标函 RANGES IN WHICH THE BASIS IS UNCHANGED: 数系数允许变化范围
约 l2 : 12x1 8x2 480 束 12x1 8x2 480 l4 条 3x1 100 l3 : 3x1 100 件 l4 : x1 0, l5 : x2 0 x1 , x2 0
l1 : x1 x2 50
x2 A
l1 B l2 C Z=3600 l3
车间级:根据生产计划、工艺流程、资源约束及费 用参数等,以最小成本为目标制订生产批量计划。 时间层次 若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划。 本节课题
例1 加工奶制品的生产计划
1桶 牛奶 或 12小时 8小时 3公斤A1 获利24元/公斤
4公斤A2
获利16元/公斤
每天: 50桶牛奶
时间480小时 至多加工100公斤A1
制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少桶 ? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/公斤,应否改变生产计划?
8小时 每天 50桶牛奶 时间480小时 至多加工100公斤A1 决策变量 x1桶牛奶生产A1 x2桶牛奶生产A2
f(x)~目标函数
T
gi(x)0~约束条件 数 学 规 划 线性规划 非线性规划 整数规划
决策变量个数n和 多元函数 约束条件个数m较大 条件极值 最优解在可行域 的边界上取得
重点在模型的建立和结果的分析
4.1 奶制品的生产与销售
企业生产计划 空间层次
工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;
线性 规划 模型 (LP)
模型求解
x1 x2 50
图解法
l5 x1 72 z D Max z 72 x1 64 x2即x2 x1 Z=2400 64 64 Z=0 目标 在B(20,30)点得到最优解 斜率为 -72/64~ 等值线 函数
目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线
OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 X2 ROW 72.000000 24.000000 8.000000
DO RANGE(SENSITIVITY) ANALYSIS?