高考导数分类汇编
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高考理科数学分类汇编——函数与导数
1.(北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.
【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,
当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.
2.(北京)设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;
(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.
【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为
f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;
(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,
若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.
x=2处f(x)取得极大值,不符题意;
若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;
若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,
可得f(x)在x=2处取得极小值;
若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,
可得f(x)在x=2处取得极大值,不符题意;
若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,
可得f(x)在x=2处取得极大值,不符题意.
综上可得,a的范围是(,+∞).
3.(江苏)函数f(x)=的定义域为[2,+∞).
【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).
故答案为:[2,+∞).
4.(江苏)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.
【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,
故答案为:
5.(江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.
【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,
∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,
函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;
②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,
f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),
f(x)在(﹣1,0)上递增,在(0,1)上递减;f(﹣1)=﹣4,f(0)=1,f(1)=0,
∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.
6.(江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.
(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;
(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;
(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.
【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,
则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;
(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,
f()=﹣=g()=﹣lna2,得a=;
(3)f′(x)=﹣2x,g′(x)=,(x≠0),
由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,
由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,
令h(x)=x2﹣﹣a=,(a>0,0<x<1),
设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),
则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,
又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.
7.(全国1卷)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()D
A.y=﹣2x B.y=﹣x C.y=2x D.y=x
【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.
8.(全国1卷)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,
则a的取值范围是()C
A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)
【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:
当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,
即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.