最新气体实验定律典型例题解析3

合集下载

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案

高考物理《气体实验定律和理想气体状态方程》真题练习含答案1.[2024·新课标卷](多选)如图,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程.上述四个过程是四冲程柴油机工作循环的主要过程.下列说法正确的是() A.1→2过程中,气体内能增加B.2→3过程中,气体向外放热C.3→4过程中,气体内能不变D.4→1过程中,气体向外放热答案:AD解析:1→2为绝热过程,Q=0,气体体积减小,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知ΔU>0,气体内能增加,A正确;2→3为等压膨胀过程,W<0,由盖­吕萨克定律可知气体温度升高,内能增加,即ΔU>0,由热力学第一定律ΔU=Q+W可知Q>0,气体从外界吸热,B错误;3→4过程为绝热过程,Q=0,气体体积增大,W<0,由热力学第一定律ΔU=Q+W可知ΔU<0,气体内能减小,C错误;4→1过程中,气体做等容变化,W=0,又压强减小,则由查理定律可知气体温度降低,内能减少,即ΔU<0,由热力学第一定律ΔU=Q+W可知Q<0,气体对外放热,D正确.2.[2023·辽宁卷]“空气充电宝”是一种通过压缩空气实现储能的装置,可在用电低谷时储存能量、用电高峰时释放能量.“空气充电宝”某个工作过程中,一定质量理想气体的p­T图像如图所示.该过程对应的p­V图像可能是()答案:B解析:根据pVT =C可得p =CVT从a 到b ,气体压强不变,温度升高,则体积变大;从b 到c ,气体压强减小,温度降低,因c 点与原点连线的斜率小于b 点与原点连线的斜率,c 点的体积大于b 点体积.故选B .3.如图所示,一长度L =30 cm 气缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S =50 cm 2.活塞与水平平台上的物块A 用水平轻杆连接,A 的质量为m =20 kg ,物块与平台间的动摩擦因数μ=0.75.开始时活塞距缸底L 1=10 cm ,缸内气体压强等于外界大气压强p 0=1×105 Pa ,温度t 1=27 ℃.现对气缸内的气体缓慢加热,g =10 m /s 2,则( )A .物块A 开始移动时,气缸内的温度为35.1 ℃B .物块A 开始移动时,气缸内的温度为390 ℃C .活塞从图示位置到达气缸口的过程中气体对外做功30 JD .活塞从图示位置到达气缸口的过程中气体对外做功130 J 答案:D解析:初态气体p 1=p 0=1×105 Pa ,温度T 1=300 K ,物块A 开始移动时,p 2=p 0+μmgS=1.3×105 Pa ,根据查理定律可知p 1T 1 =p 2T 2 ,解得T 2=390 K =117 ℃,A 、B 两项错误;活塞从图示位置到达气缸口的过程中气体对外做功W =p 2S(L -L 1)=130 J ,C 项错误,D 项正确.4.如图是由汽缸、活塞柱、弹簧和上下支座构成的汽车减震装置,该装置的质量、活塞柱与汽缸摩擦均可忽略不计,汽缸导热性和气密性良好.该装置未安装到汽车上时,弹簧处于原长状态,汽缸内的气体可视为理想气体,压强为1.0×105 Pa ,封闭气体和活塞柱长度均为0.20 m .活塞柱横截面积为1.0×10-2 m 2;该装置竖直安装到汽车上后,其承载的力为3.0×103 N 时,弹簧的压缩量为0.10 m .大气压强恒为1.0×105 Pa ,环境温度不变.则该装置中弹簧的劲度系数为( )A .2×104 N /mB .4×104 N /mC .6×104 N /mD .8×104 N /m 答案:A解析:设大气压为p 0,活塞柱横截面积为S ;设装置未安装在汽车上之前,汽缸内气体压强为p 1,气体长度为l ,汽缸内气体体积为V 1;装置竖直安装在汽车上后,平衡时弹簧压缩量为x ,汽缸内气体压强为p 2,汽缸内气体体积为V 2,则依题意有p 1=p 0,V 1=lS ,V 2=(l -x)S ,对封闭气体,安装前、后等温变化,有p 1V 1=p 2V 2,设弹簧劲度系数为k ,对上支座进行受力分析,设汽车对汽缸上支座的压力为F ,由平衡条件p 2S +kx =p 0S +F ,联立并代入相应的数据,解得k =2.0×104 N /m ,A 正确,B 、C 、D 错误.5.如图所示为一定质量的理想气体等温变化p ­V 图线,A 、C 是双曲线上的两点,E 1和E 2则分别为A 、C 两点对应的气体内能,△OAB 和△OCD 的面积分别为S 1和S 2,则( )A .S 1<S 2B .S 1=S 2C .E 1>E 2D .E 1<E 2 答案:B解析:由于图为理想气体等温变化曲线,由玻意耳定律可得p A V A =p C V C ,而S 1=12p A V A ,S 2=12 p C V C ,S 1=S 2,A 项错误,B 项正确;由于图为理想气体等温变化曲线,T A =T C ,则气体内能E 1=E 2,C 、D 两项错误.6.[2024·云南大理期中考试]如图所示,在温度为17 ℃的环境下,一根竖直的轻质弹簧支撑着一倒立汽缸的活塞,使汽缸悬空且静止,此时倒立汽缸的顶部离地面的高度为h =49 cm ,已知弹簧原长l =50 cm ,劲度系数k =100 N/m ,汽缸的质量M =2 kg ,活塞的质量m =1 kg ,活塞的横截面积S =20 cm 2,若大气压强p 0=1×105 Pa ,且不随温度变化.设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好,使缸内气体的温度保持与外界大气温度相同.(弹簧始终在弹性限度内,且不计汽缸壁及活塞的厚度)(1)求弹簧的压缩量;(2)若环境温度缓慢上升到37 ℃,求此时倒立汽缸的顶部离地面的高度. 答案:(1)0.3 m (2)51 cm解析:(1)对汽缸和活塞整体受力分析有 (M +m )g =k Δx解得Δx =(M +m )gk=0.3 m(2)由于气缸与活塞整体受力平衡,则根据上述可知,活塞离地面的高度不发生变化,升温前汽缸顶部离地面为h =49 cm活塞离地面50 cm -30 cm =20 cm故初始时,内部气体的高度为l =49 cm -20 cm =29 cm 升温过程为等压变化V 1=lS ,T 1=290 K ,V 2=l ′S ,T 2=310 K 根据V 1T 1 =V 2T 2解得l ′=31 cm故此时倒立汽缸的顶部离地面的高度h ′=h +l ′-l =51 cm7.[2024·河北省邢台市期末考试]如图所示,上端开口的内壁光滑圆柱形汽缸固定在倾角为30°的斜面上,一上端固定的轻弹簧与横截面积为40 cm 2的活塞相连接,汽缸内封闭有一定质量的理想气体.在汽缸内距缸底70 cm 处有卡环,活塞只能向上滑动.开始时活塞搁在卡环上,且弹簧处于原长,缸内气体的压强等于大气压强p 0=1.0×105 Pa ,温度为300 K .现对汽缸内的气体缓慢加热,当温度增加60 K 时,活塞恰好离开卡环,当温度增加到480 K 时,活塞移动了10 cm.重力加速度取g =10 m/s 2,求:(1)活塞的质量; (2)弹簧的劲度系数k .答案:(1)16 kg (2)800 N/m解析:(1)根据题意可知,气体温度从300 K 增加到360 K 的过程中,经历等容变化,由查理定律得p 0T 0 =p 1T 1解得p 1=1.2×105 Pa此时,活塞恰好离开卡环,可得p 1=p 0+mg sin θS解得m =16 kg(2)气体温度从360 K 增加到480 K 的过程中,由理想气体状态方程有 p 1V 1T 1 =p 2V 2T 2解得p 2=1.4×105 Pa对活塞进行受力分析可得p 0S +mg sin θ+k Δx =p 2S 解得k =800 N/m8.[2024·湖南省湘东九校联考]如图所示,活塞将左侧导热汽缸分成容积均为V 的A 、B 两部分,汽缸A 部分通过带有阀门的细管与容积为V4 、导热性良好的汽缸C 相连.开始时阀门关闭,A 、B 两部分气体的压强分别为p 0和1.5p 0.现将阀门打开,当活塞稳定时,B 的体积变为V2 ,然后再将阀门关闭.已知A 、B 、C 内为同种理想气体,细管及活塞的体积均可忽略,外界温度保持不变,活塞与汽缸之间的摩擦力不计.求:(1)阀门打开后活塞稳定时,A部分气体的压强p A;(2)活塞稳定后,C中剩余气体的质量M2与最初C中气体质量M0之比.答案:(1)2.5p0(2)527解析:(1)初始时对活塞有p0S+mg=1.5p0S得到mg=0.5p0S打开阀门后,活塞稳定时,对B气体有1.5p0·V=p B·V2对活塞有p A S+mg=p B S所以得到p A=2.5p0(2)设未打开阀门前,C气体的压强为pC0,对A、C两气体整体有p0·V+pC0·V4=p A·(3V2+V4)得到pC0=272p0所以,C中剩余气体的质量M2与最初C中气体质量M0之比M2M0=p ApC0=5 27。

2023高考物理热学专题冲刺训练--气体实验定律的综合应用(三)--气体变质量问题

2023高考物理热学专题冲刺训练--气体实验定律的综合应用(三)--气体变质量问题

气体变质量问题一、变质量问题的求解方法二、针对练习1、一个篮球的容积是2.5 L,用打气筒给篮球打气时,每次把105 Pa的空气打进去125 cm3.如果在打气前篮球内的空气压强也是105 Pa,那么打30次以后篮球内的空气压强是多少?(设打气过程中气体温度不变)2、某双层玻璃保温杯夹层中有少量空气,温度为27 ℃时,压强为3.0×103 Pa。

(1)当夹层中空气的温度升至37 ℃,求此时夹层中空气的压强;(2)当保温杯外层出现裂隙,静置足够长时间,求夹层中增加的空气质量与原有空气质量的比值,设环境温度为27 ℃,大气压强为1.0×105 Pa。

3、用容积为ΔV 的活塞式抽气机对容积为V 0的容器中的气体抽气,如图所示.设容器中原来的气体压强为p 0,抽气过程中气体温度不变.求抽气机的活塞抽气n 次后,容器中剩余气体的压强p n 为多少?4、(2020·全国Ⅰ卷)甲、乙两个储气罐储存有同种气体(可视为理想气体)。

甲罐的容积为V ,罐中气体的压强为p ;乙罐的容积为V 2,罐中气体的压强为p 21. 现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等. 求调配后(1)两罐中气体的压强;(2)甲罐中气体的质量与甲罐中原有气体的质量之比.5、某容积为20 L 的氧气瓶装有30 atm 的氧气,现把氧气分装到容积为5 L 的小钢瓶中, 使每个小钢瓶中氧气的压强为5 atm ,若每个小钢瓶中原有氧气压强为1 atm ,问能分装多少 瓶?(设分装过程中无漏气,且温度不变)6、容器中装有某种气体,且容器上有一小孔跟外界大气相通,原来容器内气体的温度为C o 27,如果把它加热到C o 127,从容器中逸出的空气质量是原来质量的多少倍?7、某个容器的容积是10 L,所装气体的压强是2.0×106 Pa.如果温度保持不变,把容器的开关打开以后,容器里剩下的气体是原来的百分之几?(设大气压是1.0×105 Pa)8、如图所示为某充气装置示意图。

高中物理:气体实验定律全章节精编讲解及练习解析

高中物理:气体实验定律全章节精编讲解及练习解析

第三节气体实验定律一、考情分析考试大纲考纲解读1.气体实验定律I2.理想气体I3.理想气体I 1.理解三个气体实验定律,能结合分子运动论相关内容从微观解释这三个定律,并能用这三个定律解释问题和进行简单的定量计算,没有必要做那些难度很大的计算题。

2.要重视气体实验定律的定量计算及图象类的题。

二、考点知识梳理(一)、气体分子运动的特点1.分子间的距离较大:气体很容易压缩,说明气体分子的间距_______。

气体分子的平均间距的数量级为10-9m是分子直径数量级10-10m的10倍,故分子间的作用力十分微弱。

2.分子间的碰撞频繁:在标准状态下,1立方厘米气体中含有2.7×1019个分子。

大量分子__________运动,分子间不断地发生碰撞。

在标准状态下,一个空气分子在1 秒内与其它空气分子的碰撞竟达65亿次之多。

故分子间的碰撞频繁。

通常假定分子之间或分子与器壁之间的碰撞为完全弹性碰撞。

3.分子沿各方向运动的机会_______:由于大量分子作无规则的热运动,在某一时刻向任一方向运动的分子都有,就某一个分子在某一时刻,它向哪一方向运动,完全是偶然的。

因此,在任一时刻分子沿各方向运动的机会是均等的。

4.分子速率按一定规律分布:大量分子做无规则热运动,速率有大、有小。

但分子的速率却按照一定的规律分布。

即“_____________”的正态分布规律。

当气体温度升高时,速率大的分子数增加,分子平均速率增大,因此,温度越高,分子的热运动越___________。

(二)、气体状态参量:1.体积V:____________。

由于气体分子间的平均距离是分子直径的10倍以上,分子间的相互作用力可以认为是零,因而极易流动和扩散,总是要充满整个容器,故气体的体积等于盛气体的容器的容积。

单位m3。

2.温度T(t):(1)温度:从宏观上看,表示物体的_________;从微观上看,是物体内大量分子___________的标志,它反映了气体分子无规则的激烈程度。

2025年高中物理复习配套课件含答案解析 专题二十四 气体实验定律的综合应用

2025年高中物理复习配套课件含答案解析  专题二十四 气体实验定律的综合应用

热点题型探究
(1)在该市检测时大钢瓶所处环境温度为多少摄氏度?
[答案] 21 ℃
[解析] 大钢瓶的容积一定,从北方到该市对大钢瓶内气体,
1

1
=
2
2
解得2 = 294 K,故2 = 21 ℃
热点题型探究
(2)一个大钢瓶可分装多少小钢瓶供病人使用?
[答案] 124
热点题型探究
[解析] 设大钢瓶内氧气由状态2 、2 等温变化为停止分装时
质量为0 的理想气体,活塞可沿汽缸
滑动且与汽缸壁保持良好的气密性.连
接、的细管上有两个阀门K1 、K 2 ,当向右拉活塞时,保持K1 打开,K 2 闭合;
向左推活塞时,保持K1 闭合,K 2 打开.活塞开始时位于汽缸的最左端,若环境温
度始终保持不变,外界大气压为0 ,不计细管体积的影响.
1
由盖-吕萨克定律有
0
解得2 =
4
0
3
=
2
2
热点题型探究
例6
导热良好、粗细均匀的U形玻璃管竖直放置,左端
封闭,右端开口.初始时,管内水银柱及空气柱长度如图
所示,下方水银柱足够长且左、右两侧水银面等高.已知
大气压强0 = 75 cmHg保持不变,环境初始温度为
1 = 300 K.现缓慢将玻璃管处环境温度提升至2 = 350 K,
解得1 = 0 +
3

对活塞Ⅰ,由平衡条件有2 + 0 ⋅ 2 + ⋅ 0.1 = 1 ⋅ 2
解得弹簧的劲度系数为 =
40

热点题型探究
(2)缓慢加热两活塞间的气体,求当活塞Ⅱ刚运动到汽缸连接处时,活塞间气
体的压强和温度.

专题3.2 气体实验定律实验(解析版)

专题3.2 气体实验定律实验(解析版)

2021年高考物理100考点最新模拟题千题精练(物理实验)第三部分热学,机械振动和光学实验专题3.2 气体实验定律实验1.(2020年4月北京西城模拟)某同学用如图所示装置探究气体做等温变化的规律。

(1)在实验中,下列哪些操作不是必需的。

A.用橡胶塞密封注射器的下端B.用游标卡尺测量柱塞的直径C.读取压力表上显示的气压值D.读取刻度尺上显示的空气柱长度(2)实验装置用铁架台固定,而不是用手握住玻璃管(或注射器),并且在实验中要缓慢推动活塞,这些要求的目的是。

(3)下列图像中,最能反映气体做等温变化的规律的是。

【参考答案】(1)B (2)防止玻璃管内的空气温度升高(或保持玻璃管内的空气温度不变)(3)C 【名师解析】(1)由于玻璃管粗细均匀,因此用游标卡尺测量柱塞的直径的操作不需要,选择B。

(2)不是 用手握住玻璃管(或注射器),并且在实验中要缓慢推动活塞,这些要求的目的是防止玻璃管内的空气温度升高(或保持玻璃管内的空气温度不变)。

(3)根据气体等温变化,压强与体积成反比可知最能反映气体做等温变化的规律的是图像C 。

2. (2020年6月北京海淀二模)(6分)如图12所示,用气体压强传感器探究气体等温变化的规律,操作步骤如下:① 在注射器内用活塞封闭一定质量的气体,将注射器、压强传感器、数据采集器和计算机逐一连接起来;② 移动活塞至某一位置,记录此时注射器内封闭气体的体积V 1和由计算机显示的气体压强值p 1; ③ 重复上述步骤②,多次测量并记录;④ 根据记录的数据,作出相应图象,分析得出结论。

(1)关于本实验的基本要求,下列说法中正确的是 (选填选项前的字母)。

A .移动活塞时应缓慢一些 B .封闭气体的注射器应密封良好 C .必须测出注射器内封闭气体的质量 D .气体的压强和体积必须用国际单位(2)为了能最直观地判断气体压强p 与气体体积V 的函数关系,应作出 (选填“p - V ”或“1p V-”)图象。

化学气体的理想气体定律练习题及

化学气体的理想气体定律练习题及

化学气体的理想气体定律练习题及解答化学气体的理想气体定律练习题及解答1. 问题一:理想气体定律的表达式是什么?请简要说明每个符号的含义。

理想气体定律的表达式为PV = nRT,其中:- P代表气体的压强(单位为帕斯卡)- V代表气体的体积(单位为立方米)- n代表气体的物质的量(单位为摩尔)- R代表气体常数(单位为焦耳·摩尔^-1·开尔文^-1)- T代表气体的温度(单位为开尔文)2. 问题二:根据理想气体定律回答以下问题:a) 一个由1摩尔氧气组成的气体在温度为300K下,占据1升的体积,求气体的压强。

根据理想气体定律,我们有PV = nRT。

将已知值代入计算得到:P = (1 mol)(8.314 J·mol^-1·K^-1)(300 K)/(1 L) = 24.942 J·L^-1·mol^-1因此,气体的压强为24.942 J·L^-1·mol^-1。

b) 一气缸中装有4摩尔氢气,并且体积为5升。

如果气缸的温度是350K,求气体的压强。

同样地,根据理想气体定律,我们有PV = nRT。

将已知值代入计算得到:P = (4 mol)(8.314 J·mol^-1·K^-1)(350 K)/(5 L) = 233.392 J·L^-1·mol^-1因此,气体的压强为233.392 J·L^-1·mol^-1。

c) 一气缸中装有2摩尔二氧化碳气体,并且温度为400K。

如果气体的压强为80 J·L^-1·mol^-1,求气体的体积。

根据理想气体定律,我们有PV = nRT。

将已知值代入计算得到:V = (2 mol)(8.314 J·mol^-1·K^-1)(400 K)/(80 J·L^-1·mol^-1) = 41.57 L 因此,气体的体积为41.57升。

高考物理复习典型例题《应用气体实验定律处理三类问题》

高考物理复习典型例题《应用气体实验定律处理三类问题》

高中物理复习典型例题气体实验定律处理三类问题1.如图所示,一圆柱形汽缸固定在水平地面上,用质量m =20kg、面积S =100cm 2的活塞密封了一定质量的理想气体,活塞通过正上方的定滑轮连接一质量M =50kg 的重物,活塞与汽缸之间的最大静摩擦力与滑动摩擦力相等为300N。

开始时气体的温度t =27℃、压强p =0.9×105Pa,活塞与汽缸底部的距离H =50cm,重物与水平地面的距离h =10cm。

已知外界大气压p 0=1.0×105Pa,重力加速度g 取10m/s 2。

现对汽缸内的气体缓慢加热,求:(1)重物恰好开始下降时气体的温度;(2)重物刚与地面接触时气体的温度。

A 、B 两部分;初始时,A 、B 的体积均为V ,压强均等于大气压p 0,隔板上装有压力传感器和控制装置,当隔板两边压强差超过0.5p 0时隔板就会滑动,否则隔板停止运动。

气体温度始终保持不变。

向右缓慢推动活塞,使B 的体积减小为V 2。

(1)求A 的体积和B 的压强;(2)再使活塞向左缓慢回到初始位置,求此时A 的体积和B 的压强。

3.如图,导热汽缸的上端开口,用厚度不计的活塞密封有一定质量的理想气体,活塞与汽缸间的摩擦不计。

用系在活塞上的轻绳将汽缸竖直悬挂起来,活塞与汽缸均处于静止状态。

当环境的热力学温度为T 0时,活塞距缸底的高度为h 0,已知外界大气压恒为p 0,活塞质量为m ,横截面积为S ,汽缸质量为M ,重力加速度大小为g 。

(1)由于环境温度降低,汽缸向上移动了Δh ,求此过程中外界对密封气体做的功W 及此时环境的热力学温度T ;(2)保持环境的热力学温度为T ,在汽缸底部挂上一个质量为m 0的砝码,使活塞距缸底的高度仍为h0,求砝码质量m 0的大小。

4.物理兴趣小组设计了一个如图所示的测定水深的深度计,导热性能良好的汽缸Ⅰ、Ⅱ内径相同,长度均为L ,中间用细管连通,内部分别有轻质薄活塞A 、B ,活塞密封性良好且可无摩擦滑动,汽缸Ⅰ左端开口。

气体实验定律题型分析

气体实验定律题型分析

3 解析 设当小瓶内气体的长度为 l 时,压强为 p1;当小 4 瓶的底部恰好与液面相平时,瓶内气体的压强为 p2,汽缸内 1 气体的压强为 p3.依题意 p1=p0+ ρgl① 2
1 3l 由玻意耳定律 p1 S=p2l-2S② 4
3 式中 S 为小瓶的横截面积.联立①②两式,得 p2= (p0 2 1 + ρgl)③ 2
A.环境温度升高 B.大气压强升高 C.沿管壁向右管内加入水银 D.U 形玻璃管自由下落
解析
当环境温度升高时,左端封闭的气体体积要增大,
h 增大,A 正确;大气压强升高,封闭气体压强增大,体积缩 小,h 减小,B 不正确;沿 U 形管加入水银,封闭气体的压强 增大,平衡时,内外水银高度差增大,C 正确;U 形管自由下 落时,水银重力产生加速度,而不产生压力,由于原来封闭气 体的压强大于大气压强,体积膨胀,h 增大,D 正确.
mg [解析] 锅内气体的最大压强为 p=p0+ S m=0.1 kg πd2 1 S= =[ ×3.14×(0.3×10-2)2]m2 4 4 =7.1×10 6m2

取 p0=10 Pa, 0.1×9.8 5 解得 p=(10 + -6) Pa=2.4×10 Pa 7.1×10
5
5
因压强变化 Δp=p-p0=1.4×10 Pa, 故水的沸点增加 1.4×105 Δt= 3×1 ℃=39 ℃ 3.6×10 所以,锅内的最高温度可达 139 ℃. [点评] 在确定气体压强时, 要看系统所处的状态: 若平 衡,由平衡条件求解,若有加速度,由牛顿第二定律列式求 解.
(2)如图所示
[答案]
(1)1.47×10-3m3
(2)见解析图
[点评]
在一定质量的气体状态参量发生变化的过程中

3 素养提升课(十六) 应用气体实验定律处理三类典型问题

3 素养提升课(十六) 应用气体实验定律处理三类典型问题

素养提升课(十六)应用气体实验定律处理三类典型问题题型一汽缸活塞类问题(2019·高考全国卷Ⅱ)如图,一容器由横截面积分别为2S和S的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑。

整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气。

平衡时,氮气的压强和体积分别为p0和V0,氢气的体积为2V0,空气的压强为p。

现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(1)抽气前氢气的压强;(2)抽气后氢气的压强和体积。

[解析](1)设抽气前氢气的压强为p10,根据力的平衡条件得(p10-p)·2S=(p0-p)·S①得p10=12(p0+p)。

②(2)设抽气后氢气的压强和体积分别为p1和V1,氮气的压强和体积分别为p2和V2。

根据力的平衡条件有p2·S=p1·2S③由玻意耳定律得p1V1=p10·2V0④p2V2=p0V0⑤由于两活塞用刚性杆连接,故V1-2V0=2(V0-V2)⑥联立②③④⑤⑥式解得p 1=12p 0+14pV 1=4(p 0+p )V 02p 0+p。

[答案] (1)12(p 0+p ) (2)12p 0+14p4(p 0+p )V 02p 0+p【对点练1】 (2020·九江市第二次模拟)如图所示,竖直放置在粗糙水平面上的汽缸,汽缸里封闭一部分理想气体。

其中缸体质量M =4 kg ,活塞质量m =4 kg, 横截面积S =2×10-3 m 2 ,大气压强p 0=1.0×105 Pa ,活塞的上部与劲度系数为k =4×102 N/m 的弹簧相连,挂在某处。

当汽缸内气体温度为227 ℃时,弹簧的弹力恰好为零,此时缸内气柱长为L =80 cm 。

求:(1)当缸内气体温度为多少K 时,汽缸对地面的压力为零;(2)当缸内气体温度为多少K 时,汽缸对地面的压力为160 N 。

气体实验定律及应用答案

气体实验定律及应用答案

第2节气体实验定律及应用知识梳理一、气体分子运动速率的统计分布气体实验定律理想气体1.气体分子运动的特点1分子很小;间距很大;除碰撞外不受力.2气体分子向各个方向运动的气体分子数目都相等.3分子做无规则运动;大量分子的速率按“中间多;两头少”的规律分布.4温度一定时;某种气体分子的速率分布是确定的;温度升高时;速率小的分子数减少;速率大的分子数增多;分子的平均速率增大;但不是每个分子的速率都增大.2.气体的三个状态参量1体积;2压强;3温度.3.气体的压强1产生原因:由于气体分子无规则的热运动;大量的分子频繁地碰撞器壁产生持续而稳定的压力.2大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=错误!.3常用单位及换算关系:①国际单位:帕斯卡;符号:Pa;1 Pa=1 N/m2.②常用单位:标准大气压atm;厘米汞柱cmHg.③换算关系:1 atm=76 cmHg=1.013×105Pa≈1.0×105 Pa.4.气体实验定律1等温变化——玻意耳定律:①内容:一定质量的某种气体;在温度不变的情况下;压强p与体积V成反比.②公式:p1V1=p2V2或pV=C常量.2等容变化——查理定律:①内容:一定质量的某种气体;在体积不变的情况下;压强p与热力学温度T成正比.②公式:错误!=错误!或错误!=C常量.③推论式:Δp=错误!·ΔT.3等压变化——盖—吕萨克定律:①内容:一定质量的某种气体;在压强不变的情况下;其体积V与热力学温度T 成正比.②公式:错误!=错误!或错误!=C常量.③推论式:ΔV=错误!·ΔT.5.理想气体状态方程1理想气体:在任何温度、任何压强下都遵从气体实验定律的气体.①理想气体是一种经科学的抽象而建立的理想化模型;实际上不存在.②理想气体不考虑分子间相互作用的分子力;不存在分子势能;内能取决于温度;与体积无关.③实际气体特别是那些不易液化的气体在压强不太大;温度不太低时都可看作理想气体.2一定质量的理想气体状态方程:错误!=错误!或错误!=C常量.典例突破考点一气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁;形成对器壁各处均匀、持续的压力;作用在器壁单位面积上的压力叫做气体的压强.2.决定因素1宏观上:决定于气体的温度和体积.2微观上:决定于分子的平均动能和分子的密集程度.3.平衡状态下气体压强的求法1液片法:选取假想的液体薄片自身重力不计为研究对象;分析液片两侧受力情况;建立平衡方程;消去面积;得到液片两侧压强相等方程.求得气体的压强.2力平衡法:选取与气体接触的液柱或活塞为研究对象进行受力分析;得到液柱或活塞的受力平衡方程;求得气体的压强.3等压面法:在连通器中;同一种液体中间不间断同一深度处压强相等.4.加速运动系统中封闭气体压强的求法选取与气体接触的液柱或活塞为研究对象;进行受力分析;利用牛顿第二定律列方程求解.例1.如图中两个汽缸质量均为M;内部横截面积均为S;两个活塞的质量均为m;左边的汽缸静止在水平面上;右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A、B;大气压为p0;求封闭气体A、B的压强各多大解析:题图甲中选m为研究对象.p A S=p0S+mg得p A=p0+错误!题图乙中选M为研究对象得p B=p0-错误!.答案:p0+错误!p0-错误!例2.若已知大气压强为p0;在下图中各装置均处于静止状态;图中液体密度均为ρ;求被封闭气体的压强.解析:在甲图中;以高为h的液柱为研究对象;由二力平衡知p气S=-ρghS+p0S所以p气=p0-ρgh在图乙中;以B液面为研究对象;由平衡方程F上=F下有:p A S+p h S=p0Sp气=p A=p0-ρgh在图丙中;仍以B液面为研究对象;有p A+ρgh sin 60°=p B=p0所以p气=p A=p0-错误!ρgh在图丁中;以液面A为研究对象;由二力平衡得p气S=p0+ρgh1S;所以p气=p0+ρgh1答案:甲:p0-ρgh乙:p0-ρgh丙:p0-错误!ρgh丁:p0+ρgh1例3.如图所示;光滑水平面上放有一质量为M的汽缸;汽缸内放有一质量为m的可在汽缸内无摩擦滑动的活塞;活塞面积为S.现用水平恒力F向右推汽缸;最后汽缸和活塞达到相对静止状态;求此时缸内封闭气体的压强p.已知外界大气压为p0解析:选取汽缸和活塞整体为研究对象;相对静止时有:F=M+ma再选活塞为研究对象;根据牛顿第二定律有:pS-p0S=ma解得:p=p0+错误!.答案:p0+错误!考点二气体实验定律及理想气体状态方程1.理想气体状态方程与气体实验定律的关系错误!=错误!错误!2.几个重要的推论1查理定律的推论:Δp=错误!ΔT2盖—吕萨克定律的推论:ΔV=错误!ΔT3理想气体状态方程的推论:错误!=错误!+错误!+……例4.如图;一固定的竖直汽缸由一大一小两个同轴圆筒组成;两圆筒中各有一个活塞.已知大活塞的质量为m1=2.50 kg;横截面积为S1=80.0 cm2;小活塞的质量为m2=1.50 kg;横截面积为S2=40.0 cm2;两活塞用刚性轻杆连接;间距保持为l=40.0 cm;汽缸外大气的压强为p=1.00×105 Pa;温度为T=303 K.初始时大活塞与大圆筒底部相距错误!;两活塞间封闭气体的温度为T1=495 K.现汽缸内气体温度缓慢下降;活塞缓慢下移;忽略两活塞与汽缸壁之间的摩擦;重力加速度大小g取10 m/s2.求:1在大活塞与大圆筒底部接触前的瞬间;汽缸内封闭气体的温度;2缸内封闭的气体与缸外大气达到热平衡时;缸内封闭气体的压强.解析1设初始时气体体积为V1;在大活塞与大圆筒底部刚接触时;缸内封闭气体的体积为V2;温度为T2.由题给条件得V1=S1错误!+S2错误!①V2=S2l②在活塞缓慢下移的过程中;用p1表示缸内气体的压强;由力的平衡条件得S1p1-p=m1g+m2g+S2p1-p③故缸内气体的压强不变.由盖-吕萨克定律有错误!=错误!④联立①②④式并代入题给数据得T2=330 K⑤2在大活塞与大圆筒底部刚接触时;被封闭气体的压强为p1.在此后与汽缸外大气达到热平衡的过程中;被封闭气体的体积不变.设达到热平衡时被封闭气体的压强为p′;由查理定律;有错误!=错误!⑥联立③⑤⑥式并代入题给数据得p′=1.01×105 Pa⑦答案1330 K 21.01×105 Pa例5.一氧气瓶的容积为0.08 m3;开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m3.当氧气瓶中的压强降低到2个大气压时;需重新充气.若氧气的温度保持不变;求这瓶氧气重新充气前可供该实验室使用多少天.解析:设氧气开始时的压强为p1;体积为V1;压强变为p22个大气压时;体积为V2.根据玻意耳定律得p1V1=p2V2①重新充气前;用去的氧气在p2压强下的体积为V3=V2-V1②设用去的氧气在p01个大气压压强下的体积为V0;则有p2V3=p0V0③设实验室每天用去的氧气在p0下的体积为ΔV;则氧气可用的天数为N=V0/ΔV④联立①②③④式;并代入数据得N=4天⑤答案:4天考点三气体状态变化的图象问题一定质量的气体不同图象的比较例6.为了将空气装入气瓶内;现将一定质量的空气等温压缩;空气可视为理想气体.下列图象能正确表示该过程中空气的压强p和体积V关系的是解析:选B.等温变化时;根据pV=C;p与错误!成正比;所以p-错误!图象是一条通过原点的直线;故正确选项为B.当堂达标1.如图所示;一个横截面积为S的圆筒形容器竖直放置;金属圆块A的上表面是水平的;下表面是倾斜的;下表面与水平面的夹角为θ;圆块的质量为M;不计圆块与容器内壁之间的摩擦;若大气压强为p0;则被圆块封闭在容器中的气体的压强p为________.解析:对圆块进行受力分析:重力Mg;大气压的作用力p0S;封闭气体对它的作用力错误!;容器侧壁的作用力F1和F2;如图所示.由于不需要求出侧壁的作用力;所以只考虑竖直方向合力为零;就可以求被封闭的气体压强.圆块在竖直方向上受力平衡;故p0S+Mg=错误!·cos θ;即p=p0+错误!.答案:p0+错误!2.某压缩式喷雾器储液桶的容量是5.7×10-3 m3.往桶内倒入4.2×10-3 m3的药液后开始打气;打气过程中药液不会向外喷出.如果每次能打进2.5×10-4m3的空气;要使喷雾器内药液能全部喷完;且整个过程中温度不变;则需要打气的次数是A.16次B.17次C.20次D.21次解析:选B.设大气压强为p;由玻意耳定律;npV0+pΔV=pV;V0=2.5×10-4m3;ΔV =5.7×10-3m3-4.2×10-3m3=1.5×10-3m3;V=5.7×10-3m3;解得n=16.8次≈17次;选项B正确.3.多选一定质量理想气体的状态经历了如图所示的ab、bc、cd、da四个过程;其中bc的延长线通过原点;cd垂直于ab且与水平轴平行;da与bc平行;则气体体积在A.ab过程中不断增大B.bc过程中保持不变C.cd过程中不断增大D.da过程中保持不变解析:选AB.首先;因为bc的延长线通过原点;所以bc是等容线;即气体体积在bc过程中保持不变;B正确;ab是等温线;压强减小则体积增大;A正确;cd是等压线;温度降低则体积减小;C错误;连接aO交cd于e;如图所示;则ae是等容线;即V a=V e;因为V d<V e;所以V d<V a;da过程中体积不是保持不变;D错误.4.已知湖水深度为20 m;湖底水温为4 ℃;水面温度为17 ℃;大气压强为1.0×105Pa.当一气泡从湖底缓慢升到水面时;其体积约为原来的取g=10 m/s2;ρ水=1.0×103 kg/m3A.2.8倍B.8.5倍C.3.1倍D.2.1倍解析:选C.一标准大气压约为10 m高的水柱产生的压强;所以气泡在湖底的压强p1约为3.0×105Pa;由理想气体状态方程得;错误!=错误!;而T1=4+273K=277 K;T2=17+273K=290 K;温度基本不变;压强减小为原来的错误!;体积扩大为原来的3倍左右;C项正确.5.如图所示;上端开口的光滑圆柱形汽缸竖直放置;横截面积为40 cm2的活塞将一定质量的气体和一形状不规则的固体A封闭在汽缸内.在汽缸内距缸底60 cm 处设有a、b两限制装置;使活塞只能向上滑动.开始时活塞搁在a、b上;缸内气体的压强为p0p0=1.0×105 Pa为大气压强;温度为300 K.现缓慢加热汽缸内气体;当温度为330 K时;活塞恰好离开a、b;当温度为360 K时;活塞上移了4 cm.g 取10 m/s2.求活塞的质量和物体A的体积.解析:设物体A的体积为ΔV;T1=300 K;p1=1.0×105Pa;V1=60×40 cm3-ΔV;T2=330 K;p2=错误!Pa;V2=V1;T3=360 K;p3=p2;V3=64×40 cm3-ΔV.由状态1到状态2为等容过程;则错误!=错误!;代入数据得m=4 kg.由状态2到状态3为等压过程;则错误!=错误!;代入数据得ΔV=640 cm3.答案:4 kg 640 cm3。

气体实验定律典型例题含简易答案

气体实验定律典型例题含简易答案

气体性质.如下图,在一个密封的长为120cm气缸中有一活塞(活塞厚度不计)将气缸分成两部分,左面封闭空气,右边为真空,且以弹簧连接活塞,当左边气柱长30cm时,其温度为27℃,如温度升高到159℃时,空气柱长36cm,弹簧的原长是cm.答案、120如图〔甲〕所示,一端封闭、一端开口、内径均匀的直玻璃管内,注入一段60毫米的水银柱。

将管水平放置时,封闭端空气柱长140毫米,开口端空气柱长140毫米。

假设先将管缓慢倒置、竖直插入水银糟内,如图〔乙〕。

管中封闭端空气柱长133毫米,设大气压为76毫米高水银柱,空气温度不变,求槽中水银进入管中的长度和管露出槽中水银面的高度。

答案、34mm;206mm3.用销钉固定的活塞把水平放置的容器分隔成A、求最后A中气体的压强20cm的空气柱,其余各段水银柱的长度见图中标示.A端下段水银柱的下外表与B端下段水银柱的上表面处于同一水平面上,大气压强为75cmHg产生的压强,初始气温为27℃,后来仅A端气体加热,要答案、pA=×105Pa使两端上部水银面相平,求A端封闭的气体温度应4.如图,两容器A、B的容积相等,用带有阀门的细升为多少管连接,当容器间的压强差超过大气压时,阀门自动翻开,否那么阀门是关闭的.最初两容器的温度为27℃,A容器内气体压强为大气压,B容器为真空.求:答案、470K(197℃).(1)A内气体开始流入B内时的环境温度.7、如下图,在A、B两个容器之间有一个内径很(2)假设B容器温度仍保持为27℃,欲使A、B内气体细带有阀门K的不导热的管道相连通.阀门K原来质量相等,A容器的温度应升到多高是关闭的.容器A置于27℃的恒温装置中,容器B置于7℃的恒温装置中.A的容积为10L,其中答案、87℃747℃盛有的氧气.B的容积为70L,其中盛有的氧5、如图,在内径均匀、竖直放置的U形管两侧灌有气.当翻开阀门K后,氧气是否产生质量迁移假设水银,底部有一空气柱,尺寸:h=24cm,l1=5cm,有迁移,向何方迁移迁移的质量是多少(连通管l2=10cm,l=20cm.此时大气压P0为×105Pa,当温道的体积不计)度由0℃上升到273℃时,空气柱长度增加多少(设水银不会从管中溢出)活塞恰好位于汽缸的正中央,设活塞与汽缸的,汽缸内初始压强为5摩擦可不计p0=×10P度为T0,求:弹簧原长.如果将汽缸倒置,保持汽缸Ⅱ局部的温度不变,使汽缸Ⅰ局部升温,使得活塞在汽缸内的位,那么汽缸Ⅰ局部气体的温度升高多少H G2GT0.答案317、(1);(2)2K Sp0B两局部,其体积之比V A:V B=2:1,如下图,起初A中有温度为127℃压强为×105Pa的空气,B中有温度27℃、压强为×105Pa的空气,拔出销钉,使活塞可以无摩擦地移动〔不漏气〕,由于容器壁缓慢导热,最后气体都变到室温27℃,活塞也停住,答案316、由A向B有氧气迁移,迁移质量为.8、如下图,一密闭的截面积为S的圆筒形汽缸,答案、高为H,中间有一薄活塞,用一倔强系数为k的轻6、如下图,粗细均匀的U型管倒置于水银槽中,AG,与汽缸紧密接触,弹簧吊着,活塞重为不导热端封闭一段长为10cm的空气柱,B端也有一段长且质量、温度、压强都相同时,且气体是同种气体,1 / 21气体性质.如下图,在一个密封的长为120cm气缸中有一活塞(活塞厚度不计)将气缸分成两局部,左面封闭空气,右边为真空,且以弹簧连接活塞,当左边气柱阀门的细管连接,当容器间的压强差超过大气压时,长30cm时,其温度为27℃,如温度升高到159℃时,阀门自动翻开,否那么阀门是关闭的.最初两容器的温空气柱长36cm,弹簧的原长是度为27℃,A容器内气体压强为大气压,B容器为cm.真空.求:2.如图〔甲〕(1)A内气体开始流入B内时的环境温度.所示,一端封(2)假设B容器温度仍保持为27℃,欲使A、B内气体闭、一端开质量相等,A容器的温度应升到多高口、内径均匀5、如图,在内径均匀、竖直放置的U形管两侧灌有的直玻璃管内,注入一段60毫米的水银柱。

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

2024届高考物理知识点复习:气体实验定律的综合应用(解析版)

气体实验定律的综合应用目录题型一 气体实验定律的理解和应用 题型二 应用气体实验定律解决“三类模型”问题 类型1 “玻璃管液封”模型 类型2 “汽缸活塞类”模型类型3 变质量气体模型题型三 热力学第一定律与气体实验定律的综合应用题型一气体实验定律的理解和应用1理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2温度不变:p 1V 1=p 2V 2(玻意耳定律)体积不变:p 1T 1=p 2T 2(查理定律)压强不变:V 1T 1=V 2T 2(盖-吕萨克定律)2两个重要的推论(1)查理定律的推论:Δp =p 1T 1ΔT (2)盖-吕萨克定律的推论:ΔV =V 1T 1ΔT 3利用气体实验定律解决问题的基本思路1(2023·广东深圳·校考模拟预测)为方便抽取密封药瓶里的药液,护士一般先用注射器注入少量气体到药瓶里后再抽取药液,如图所示,某种药瓶的容积为0.9mL ,内装有0.5mL 的药液,瓶内气体压强为1.0×105Pa ,护士把注射器内横截面积为0.3cm 2、长度为0.4cm 、压强为1.0×105Pa 的气体注入药瓶,若瓶内外温度相同且保持不变,气体视为理想气体。

(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能如何变化?请简述原因。

(2)求此时药瓶内气体的压强。

【答案】(1)总内能增加,原因见解析;(2)p1=1.3×105Pa【详解】(1)注入气体后与注入气体前相比,瓶内封闭气体的总内能增加;注入气体后,瓶内封闭气体的分子总数增加,温度保持不变故分子平均动能保持不变,因此注入气体后瓶内封闭气体的总内能增加。

(2)以注入后的所有气体为研究对象,由题意可知瓶内气体发生等温变化,设瓶内气体体积为V1,有V1=0.9mL-0.5mL=0.4mL=0.4cm3注射器内气体体积为V2,有V2=0.3×0.4cm3=0.12cm3根据玻意耳定律有p0V1+V2=p1V1代入数据解得p1=1.3×105Pa2.(2023·山东·模拟预测)某同学利用实验室闲置的1m长的玻璃管和一个标称4.5L的导热金属容器做了一个简易温度计。

高中物理【气体实验定律的应用】典型题(带解析)

高中物理【气体实验定律的应用】典型题(带解析)

高中物理【气体实验定律的应用】典型题1.一定质量的理想气体,从图中A 状态开始,经历了B 、C ,最后到D 状态,下列说法中正确的是( )A .A →B 温度升高,体积不变 B .B →C 压强不变,体积变大 C .C →D 压强变小,体积变小D .B 状态的温度最高,C 状态的体积最大解析:选A .在p -T 图象中斜率的倒数反映气体的体积,所以V A =V B >V D >V C ,故选项B 、C 、D 均错.2.如图所示为一定质量理想气体的体积V 与温度T 的关系图象,它由状态A 经等温过程到状态B ,再经等容过程到状态C .设A 、B 、C 状态对应的压强分别为p A 、p B 、p C ,则下列关系式中正确的是( )A .p A <pB ,p B <pC B .p A >p B ,p B =p C C .p A >p B ,p B <p CD .p A =p B ,p B >p C解析:选A .由pVT =常量得:A 到B 过程,T 不变,体积减小,则压强增大,所以p A<p B ;B 经等容过程到C ,V 不变,温度升高,则压强增大,即p B <p C ,所以A 正确.3.如图所示,水平放置的封闭绝热汽缸,被一锁定的绝热活塞分为体积相等的a 、b 两部分.已知a 部分气体为1 mol 氧气,b 部分气体为2 mol 氧气,两部分气体温度相等,均可视为理想气体.解除锁定,活塞滑动一段距离后,两部分气体各自再次达到平衡态时,它们的体积分别为V a 、V b ,温度分别为T a 、T b .下列说法正确的是( )A .V a >V b ,T a >T bB .V a >V b ,T a <T bC .V a <V b ,T a <T bD .V a <V b ,T a >T b解析:选D .解除锁定前,两部分气体温度相同,体积相同,由pV =nRT 可知b 部分压强大,故活塞左移,平衡时V a <V b ,p a =p b .活塞左移过程中,a 气体被压缩内能增大,温度增大,b 气体向外做功,内能减小,温度减小,平衡时T a >T b ,故选D .4.如p -V 图所示,1、2、3三个点代表某容器中一定量理想气体的三个不同状态,对应的温度分别是T 1、T 2、T 3,用N 1、N 2、N 3分别表示这三个状态下气体分子在单位时间内撞击容器壁上单位面积的平均次数,则N 1________N 2,T 1________T 3,N 2________N 3.(填“大于”“小于”或“等于”)解析:根据理想气体状态方程p 1′V 1′T 1=p 2′V 2′T 2=p 3′V 3′T 3,可知T 1>T 2,T 2<T 3,T 1=T 3;由于T 1>T 2,状态1时气体分子热运动的平均动能大,热运动的平均速率大,分子密度相等,故单位面积的平均碰撞次数多,即N 1>N 2;对于状态2、3,由于V 3′>V 2′,故分子密度n 3<n 2,T 3>T 2,故状态3分子热运动的平均动能大,热运动的平均速率大,而且p 2′=p 3′,因此状态2单位面积的平均碰撞次数多,即N 2>N 3.答案:大于 等于 大于5.容器内装有1 kg 的氧气,开始时,氧气压强为1.0×106 Pa ,温度为57 ℃,因为漏气,经过一段时间后,容器内氧气压强变为原来的35,温度降为27 ℃,求漏掉多少千克氧气?解析:由题意知,气体质量m =1 kg ,压强p 1=1.0×106 Pa ,温度T 1=(273+57)K =330 K ,经一段时间后温度降为T 2=(273+27)K =300 K , p 2=35p 1=35×1.0×106 Pa =6.0×105 Pa ,设容器的体积为V ,以全部气体为研究对象, 由理想气体状态方程得:p 1V T 1=p 2V ′T 2代入数据解得:V ′=p1VT 2p 2T 1=1.0×106×300V 6.0×105×330=5033V ,所以漏掉的氧气质量为:Δm =ΔVV ′×m =50V 33-V 50V33×1 kg =0.34 kg.答案:0.34 kg6.如图,一粗细均匀的细管开口向上竖直放置,管内有一段高度为2.0 cm 的水银柱,水银柱下密封了一定量的理想气体,水银柱上表面到管口的距离为2.0 cm.若将细管倒置,水银柱下表面恰好位于管口处,且无水银滴落,管内气体温度与环境温度相同.已知大气压强为76 cmHg ,环境温度为296 K.(1)求细管的长度;(2)若在倒置前,缓慢加热管内被密封的气体,直到水银柱的上表面恰好与管口平齐为止,求此时密封气体的温度.解析:(1)设细管的长度为L ,横截面的面积为S ,水银柱高度为h ;初始时,设水银柱上表面到管口的距离为h 1,被密封气体的体积为V ,压强为p ;细管倒置时,气体体积为V 1,压强为p 1.由玻意耳定律有pV =p 1V 1① 由力的平衡条件有p =p 0+ρgh ② p 1=p 0-ρgh ③式中,ρ、g 分别为水银的密度和重力加速度的大小,p 0为大气压强.由题意有V =S (L -h 1-h )④V 1=S (L -h )⑤由①②③④⑤式和题给条件得L =41 cm.⑥ (2)设气体被加热前后的温度分别为T 0和T , 由盖—吕萨克定律有V T 0=V 1T⑦由④⑤⑥⑦式和题给数据得T =312 K .⑧ 答案:(1)41 cm (2)312 K7.如图所示,按下压水器,能够把一定量的外界空气,经单向进气口压入密闭水桶内.开始时桶内气体的体积V 0=8.0 L ,出水管竖直部分内外液面相平,出水口与大气相通且与桶内水面的高度差h 1=0.20 m .出水管内水的体积忽略不计,水桶的横截面积S =0.08 m 2.现压入空气,缓慢流出了V 1=2.0 L 水.求压入的空气在外界时的体积ΔV 为多少?已知水的密度ρ=1.0×103 kg/m 3,外界大气压强p 0=1.0×105 Pa ,取重力加速度大小g =10 m/s 2,设整个过程中气体可视为理想气体,温度保持不变.解析:设流出2 L 水后,液面下降Δh ,则Δh =V 1S此时,瓶中气体压强p 2=p 0+ρg (h 1+Δh ) 体积V 2=V 0+V 1设瓶中气体在外界压强下的体积为V ′ 则p 2V 2=p 0V ′初始状态瓶中气体压强为p 0,体积为V 0,故ΔV =V ′-V 0 解得ΔV =2.225 L. 答案:2.225 L8.如图,一容器由横截面积分别为2S 和S 的两个汽缸连通而成,容器平放在水平地面上,汽缸内壁光滑.整个容器被通过刚性杆连接的两活塞分隔成三部分,分别充有氢气、空气和氮气.平衡时,氮气的压强和体积分别为p 0和V 0,氢气的体积为2V 0,空气的压强为p .现缓慢地将中部的空气全部抽出,抽气过程中氢气和氮气的温度保持不变,活塞没有到达两汽缸的连接处,求:(1)抽气前氢气的压强; (2)抽气后氢气的压强和体积.解析:(1)设抽气前氢气的压强为p 10,根据力的平衡条件得 (p 10-p )·2S =(p 0-p )·S ① 得p 10=12(p 0+p ).②(2)设抽气后氢气的压强和体积分别为p 1和V 1,氮气的压强和体积分别为p 2和V 2.根据力的平衡条件有p 2·S =p 1·2S ③由玻意耳定律得p 1V 1=p 10·2V 0④ p 2V 2=p 0V 0⑤由于两活塞用刚性杆连接,故 V 1-2V 0=2(V 0-V 2)⑥联立②③④⑤⑥式解得p 1=12p 0+14p ⑦V 1=4(p 0+p )V 02p 0+p.⑧答案:(1)12(p 0+p ) (2)12p 0+14p 4(p 0+p )V 02p 0+p9.在两端封闭、粗细均匀的U 形细玻璃管内有一段水银柱,水银柱的两端各封闭有一段空气.当U 形管两端竖直朝上时,左、右两边空气柱的长度分别为l 1=18.0 cm 和l 2=12.0 cm.左边气体的压强为12.0 cmHg.现将U 形管缓慢平放在水平桌面上,没有气体从管的一边通过水银逸入另一边.求U 形管平放时两边空气柱的长度.在整个过程中,气体温度不变.解析:设U 形管两端竖直朝上时,左、右两边气体的压强分别为p 1和p 2.U 形管水平放置时,两边气体压强相等,设为p ,此时原左、右两边气柱长度分别变为l 1′和l 2′.由力的平衡条件有p1=p2+ρg(l1-l2)①式中ρ为水银密度,g为重力加速度大小.由玻意耳定律有p1l1=pl1′②p2l2=pl2′③两边气柱长度的变化量大小相等l1′-l1=l2-l2′④由①②③④式和题给条件得l1′=22.5 cm⑤l2′=7.5 cm⑥答案:22.5 cm7.5 cm10.如图,容积均为V的汽缸A、B下端有细管(容积可忽略)连通,阀门K2位于细管的中部,A、B的顶部各有一阀门K1、K3;B中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B的底部;关闭K2、K3,通过K1给汽缸充气,使A中气体的压强达到大气压p0的3倍后关闭K1.已知室温为27 ℃,汽缸导热.(1)打开K2,求稳定时活塞上方气体的体积和压强;(2)接着打开K3,求稳定时活塞的位置;(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强.解析:(1)设打开K2后,稳定时活塞上方气体的压强为p1,体积为V1.依题意,被活塞分开的两部分气体都经历等温过程.由玻意耳定律得p0V=p1V1①(3p0)V=p1(2V-V1)②联立①②式得V1=V 2③p1=2p0④(2)打开K 3后,由④式知,活塞必定上升.设在活塞下方气体与A 中气体的体积之和为V 2(V 2≤2V )时,活塞下气体压强为p 2.由玻意耳定律得(3p 0)V =p 2V 2⑤ 由⑤式得 p 2=3VV 2p 0>p 0⑥由⑥式知,打开K 3后活塞上升直到B 的顶部为止;此时p 2为p 2′=32p 0.(3)设加热后活塞下方气体的压强为p 3,气体温度从T 1=300 K 升高到T 2=320 K 的等容过程中,由查理定律得p 2′T 1=p 3T 2⑦ 将有关数据代入⑦式得p 3=1.6p 0⑧答案:(1)V22p 0 (2)上升直到B 的顶部 (3)1.6p 0。

备考2024届高考物理一轮复习讲义第十五章热学第2讲固体液体和气体考点3气体实验定律和理想气体状态方

备考2024届高考物理一轮复习讲义第十五章热学第2讲固体液体和气体考点3气体实验定律和理想气体状态方

考点3 气体实验定律和理想气体状态方程的应用1.理想气体状态方程与气体实验定律的关系p1V1T1=p 2V2T2{温度不变:p1V1=p2V2玻意耳定律体积不变:p1T1=p2T2查理定律压强不变:V1T1=V2T2盖-吕萨克定律2.两个重要的推论(1)查理定律的推论:Δp=p1T1ΔT(2)盖-吕萨克定律的推论:ΔV=V1T1ΔT烧瓶上通过橡胶塞连接一根玻璃管,向玻璃管中注入一段水柱.用手捂住烧瓶,这个过程中烧瓶内气体的温度、压强和体积分别会如何变化?答案用手捂住烧瓶会使烧瓶内气体的温度升高,因水柱可自由移动,气体的压强始终等于大气压,根据理想气体状态方程可知,气体体积会增大.研透高考明确方向命题点1气体实验定律的应用7.[2022湖南]如图,小赞同学设计了一个液体拉力测量仪.一个容积V0=9.9L的导热汽缸下接一圆管,用质量m1=90g、横截面积S=10cm2的活塞封闭一定质量的理想气体,活塞与圆管壁间摩擦不计.活塞下端用轻质细绳悬挂一质量m2=10g的U形金属丝,活塞刚好处于A位置.将金属丝部分浸入待测液体中,缓慢升起汽缸,使金属丝从液体中拉出,活塞在圆管中的最低位置为B.已知A、B间距离h=10cm,外界大气压强p0=1.01×105Pa,重力加速度取10m/s2,环境温度保持不变.求(i)活塞处于A位置时,汽缸中的气体压强p1;(ii)活塞处于B位置时,液体对金属丝拉力F的大小.答案(i)105Pa(ii)1N解析(i)选活塞与金属丝整体为研究对象,根据平衡条件有p0S=p1S+(m1+m2)g代入数据解得p1=105Pa(ii)当活塞在B位置时,设汽缸内的压强为p2,根据玻意耳定律有p1V0=p2(V0+Sh)代入数据解得p2=9.9×104Pa选活塞与金属丝整体为研究对象,根据平衡条件有p0S=p2S+(m1+m2)g+F联立解得F=1N.命题点2理想气体状态方程的应用8.[2023全国甲]一高压舱内气体的压强为1.2个大气压,温度为17℃,密度为1.46kg/m3.(i)升高气体温度并释放出舱内部分气体以保持压强不变,求气体温度升至27℃时舱内气体的密度;(ii)保持温度27℃不变,再释放出舱内部分气体使舱内压强降至1.0个大气压,求此时舱内气体的密度.答案(i)1.41kg/m3(ii)1.18kg/m3解析解法1:假设被释放的气体始终保持与舱内气体同温同压,对升温前舱内气体,由理想气体状态方程有p1V1T1=p2V2T2气体的体积V1=mρ1,V2=mρ2解得p1ρ1T1=p2ρ2T2(i)气体压强不变,已知T1=(17+273)K=290KT2=(27+273)K=300Kρ1=1.46kg/m3上式简化为ρ1T1=ρ2T2将已知数据代入解得ρ2≈1.41kg/m3(ii)气体温度T1=(17+273)K=290K,T3=T2=300K 压强p1=1.2atm,p3=1.0atm,密度ρ1=1.46kg/m3代入p1ρ1T1=p3ρ3T3,解得ρ3≈1.18kg/m3解法2:(i)已知初态气体压强p1=1.2atm,温度T1=(17+273)K=290K,ρ1=1.46kg/m3,高压舱内气体体积为V1,保持气体压强不变,假设升温后气体体积增大为V2,由盖-吕萨克定律可知V1 T1=V2T2又气体质量保持不变,即ρ1V1=ρ2V2解得ρ2≈1.41kg/m3(ii)保持气体温度不变,降压前气体体积为V2,压强为p2=p1=1.2atm,降压后压强减小为p3=1.0atm,气体体积增大为V3,由玻意耳定律有p1V2=p3V3同时ρ2V2=ρ3V3联立解得ρ3≈1.18kg/m3解法3:(i)设升温并释放部分气体之前,舱内气体的压强为p1,温度为T1,质量为m1,体积为V1;升温并释放部分气体之后,舱内剩余气体的压强为p2,温度为T2,质量为m2,体积为V2,则由题意可知T1=(17+273)K=290K,T2=(27+273)K=300K由理想气体状态方程有p1V1=n1RT1p2V2=n2RT2又p1=p2,V1=V2则n1n2=m1m2=ρ1ρ2=T2T1代入数据解得ρ2≈1.41kg/m3(ii)设压强降至1.0个大气压时,舱内气体的压强为p3,温度为T3,质量为m3,体积为V3由理想气体状态方程有p2V2=n2RT2,p3V3=n3RT3又V2=V3,T2=T3则p2p3=n2n3=m2m3=ρ2ρ3又由(i)得ρ1ρ2=T2T1,联立可得ρ3=p3T1p2T2ρ1代入数据解得ρ3≈1.18kg/m3.。

气体实验定律典型例题解析

气体实验定律典型例题解析

气体实验定律(1)·典型例题解析【例1】把一根长100cm上端封闭的玻璃管,竖直插入一个水银槽中,使管口到水银面的距离恰好是管长的一半,如图13-21所示,求水银进入管中的高度是多少?已知大气压强是1.0×105Pa.解析:管中的空气在管插入水银槽前:p1=p0V1=LS在插入水银槽后:p2=p0+ρg(L/2-h)由于变化前后温度不变,所以可根据玻意耳定律求解,即:p1V1=p2V21.0×105×1×S=[1.0×105+(0.5-h)×13.6×104](1-h)Sh=2m或h=0.25m因为管长只有100cm,2m显然不合题意,所以水银进入管中的高度是25cm.点拨:本题虽然是求“水银进入管中的高度”.而解题中所研究的对象却是管中的空气,题目叙述中对气体的第一状态一带而过,而突出说明第二状态,解题时最好把两种状态都画出来,并把两种状态的参量对应地列出,【例2】如图13-22所示,粗细均匀的U形玻璃管,右端开口,左端封闭,管内用水银将一部分空气封闭在管中,开口朝上竖直放置时,被封闭的空气柱长24cm,两边水银高度差为15cm,若大气压强为75cmHg,问再向开口端倒入长为46cm的水银柱时,封闭端空气柱长度将是多少?解析:倒入水银前对封闭端的气体有:V1=SL1=24S p1=75-15=60cmHg倒入水银后,左端水银面将上升,右端水银面将下降,设左端水银面上升x,则此时封闭端气柱长L2=L1-x=24-x此时两边水银面的高度差Δh2=46-(15+2x)=2L2-17此时封闭端气体的压强为:p2=75+Δh2=58+2L2根据玻意耳定律p1V1=p2V2得24×60=L2×(58+2L2)即L22+29L2-720=0解得:L2=-45cm(舍去),L2=16cm.点拨:确定两边水银面的高度差以及由高度差求被封气体的压强是解答本题的关键.【例3】将两端开口的长60cm的玻璃管竖直插入水银中30cm,将上端开口封闭,而后竖直向上将管从水银中提出,再将管口竖直向上,若大气压强为76cmHg,求气柱长?点拨:当管从水银中取出时,有一部分水银将流出,求出此时水银柱的长度,才能求出玻璃管开口向上时气体的压强,最后才能解决气柱长度问题.参考答案:23.9cm【例4】如图13-23所示,一个上下都与大气相通的直圆筒,内部横截面的面积S0=0.01m2,中间用两个活塞A和B封住一定质量的理想气体,A、B都可沿圆筒无摩擦地上、下滑动,但不漏气,A的质量可不计,B的质量为M,并与一劲度系数k=5×103N/m的较长的弹簧相连,已知大气压强p0=1×105Pa.平衡时,两活塞间的距离L0=0.6m,现用力压A,使之缓慢向下,移动一定距离后,保持平衡,此时用于压A的力F=5×102N,求活塞A向下移动的距离.(假设气体温度保持不变)点拨:A下降的距离等于气柱变短的长度和B下移的距离之和,以整体为研究对象分析弹簧缩短的距离,用玻意耳定律分析密封气柱的长度的变化,可以通过画图使之形象化.参考答案:0.3m跟踪反馈1.一个空气泡从湖的深处冒上来,如果湖水温度处处相等,则气泡上升过程中受到的浮力将:[ ] A.逐渐增大B.逐渐减小C.保持不变D.无法确定2.一根一端封闭的均匀玻璃管水平放置,其间有一段21.8cm的水银柱,将长为30.7cm的空气柱封闭在管中,若将玻璃管开口竖直向上时,空气柱长度为多少?若将玻璃管开口竖直向下时,空气柱长度为多少?(设外界大气压强为74.7cm Hg)3.在标准状况下,一个气泡从水底升到水面,它的体积增大一倍,求水深h.(g取10m/s2)4.两端封闭的均匀细玻璃管水平放置,管的正中央有一段长15cm的水银柱,其两侧的空气柱中的压强均为72cmHg,现将玻璃管旋至竖直位置,若欲使玻璃管中上、下两段空气柱的长度保持为1∶2,则玻璃管沿竖直方向做什么样的运动?设整个过程中,温度保持恒定.参考答案1.A 2.24cm、48cm 3.10m 4.a=4.6m/s2,竖直向下加速。

气体实验定律-理想气体的状态方程

气体实验定律-理想气体的状态方程

[课堂练习]1.一定质量的理想气体处于某一初始状态,现要使它的温度经过状态变化后,回到初始状态的温度,用下列哪个过程可以实现( )A .先保持压强不变而使体积膨胀,接着保持体积不变而减小压强B .先保持压强不变而使体积减小,接着保持体积不变而减小压强C .先保持体积不变而增大压强,接着保持压强不变而使体积膨胀D . 先保持体积不变而减少压强,接着保持压强不变而使体积减小2.如图为0.2mol 某种气体的压强与温度关系.图中p 0为标准大气压.气体在B 状态时的体积是_____L .3.竖直平面内有右图所示的均匀玻璃管,内用两段水银柱封闭两段空气柱a 、b ,各段水银柱高度如图所示.大气压为p 0,求空气柱a 、b 的压强各多大?4.一根两端封闭,粗细均匀的玻璃管,内有一小段水银柱把管内空气柱分成a 、b 两部分,倾斜放置时,上、下两段空气柱长度之比L a /L b =2.当两部分气体的温度同时升高时,水银柱将如何移动?5.如图所示,内径均匀的U 型玻璃管竖直放置,截面积为5cm 2,管右侧上端封闭,左侧上端开口,内有用细线栓住的活塞.两管中分别封入L =11cm 的空气柱A 和B ,活塞上、下气体压强相等为76cm 水银柱产生的压强,这时两管内的水银面的高度差h=6cm ,现将活塞用细线缓慢地向上拉,使两管内水银面相平.求:(1)活塞向上移动的距离是多少?(2)需用多大拉力才能使活塞静止在这个位置上?6、一定质量的理想气体,在某一平衡状态下的压强、体积和温度分别为p 1、V 1、T 1,在另一平衡状态下的压强、体积和温度分别为p 2、V 2、T 2,下列关系正确的是( )A .p 1 =p 2,V 1=2V 2,T 1= 21T 2B .p 1 =p 2,V 1=21V 2,T 1= 2T 2C .p 1 =2p 2,V 1=2V 2,T 1= 2T 2D .p 1 =2p 2,V 1=V 2,T 1= 2T 2h 1h 3h 2 a b7、A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。

气体实验定律典型例题解析3

气体实验定律典型例题解析3

气体实验定律(3)·典型例题解析【例1】电灯泡内充有氦氩混合气体,如果要使电灯泡内的混合气体在500℃时的压强不超过一个大气压,则在20℃的室温下充气,电灯泡内气体压强至多能充到多少?解析:由于电灯泡容积不变,故气体为等容变化,设t 1=500℃时压强为,=℃时的压强为.则由=得:=,p t 20p 122p p T T p p 212121293773p 2=0.35 p 1=0.35个大气压. 点拨:要分析出在温度变化时,灯泡的容积没有变化,气体的状态变化遵循查理定律.还要注意摄氏温度与热力学温度的关系.【例2】如图13-44所示,四个两端封闭粗细均匀的玻璃管,管内的空气被一段水银柱隔开,按图中标明的条件,当玻璃管水平放置时,水银柱处于静止状态,如果管内两端的空气都升高相同的温度,则水银柱向左移动的是:解析:假设温度升高,水银柱不动,两边气体均作等容变化,根据查理定律得压强增大量为Δ=Δ,而左、右两边初态压强相同,p p T Tp 两边温度升高量Δ也相同,所以Δ跟成正比,即左、右两边气体T p 1T初态温度高的,气体压强的增量小,水银柱应向气体压强增量小的方向移动,亦即应向初态气体温度高的一方移动,故D 正确.点拨:在三个状态参量都变化的情况下,讨论有关问题比较复杂,常用假设法,先假设某一量不变,讨论其他两个量变化的关系,这样可使问题变得简单.【例3】有一开口的玻璃瓶,容积是2000cm 3,瓶内空气的温度从0℃升高到100℃的过程中,会有多少空气跑掉(玻璃的膨胀可忽略不计)?,如果在0℃时空气的密度是1.293×10-3g/cm 3,那么跑掉的这部分空气的质量是多少?点拨:瓶中空气作的是等压变化,如果把所研究的对象确定为0℃时,玻璃瓶内的空气,当温度升高到100℃时,它的体积是多少,那么本题就是研究一定质量的气体的问题了.参考答案:0.73×103cm30.69g【例4】容积为2L的烧瓶,在压强为1.0×105Pa时,用塞子塞住,此时温度为27℃,当把它加热到127℃时,塞子被顶开了,稍过一会儿,重新把塞子塞好,停止加热并使它逐渐降温到27℃,求:(1)塞子被顶开前的最大压强;(2)27℃时剩余空气的压强.点拨:塞子被顶开前,瓶内气体的状态变化为等容变化,塞子被顶开后,瓶内有部分气体逸出,此后应选剩余气体为研究对象,再利用查理定律求解.参考答案:(1)1.33×105Pa (2)0.75×105Pa跟踪反馈1.一定质量的理想气体在0℃时压强p0=780mmHg,求这种气体在t=273℃时的压强(气体的体积不变)2.如图13-45两端封闭粗细均匀竖直放置的玻璃管内,有一长为h的水银柱,将管内气体分为两部分,已知L2=2L1,若使两部分气体同时升高相同的温度,管内水银柱将如何移动?3.有一个玻璃瓶,内盛空气,当温度由0℃升高到100℃时,因瓶口开着失去1g空气,瓶内原来有多少克空气.4.高压锅使用时,锅内的压强大,温度高,食物容易煮烂.已知某高压锅的限压阀质量为0.1kg,排气孔直径为0.3cm,则锅内气体的压强最大可达多少Pa?若每增加3.6×103Pa水的沸点相应增加1℃,锅内的最高温度可达多高?参考答案1.156cmHg 2.上移3.3.7g 4.2.5×105Pa 142℃。

气体的等温变化玻意耳定律典型例题

气体的等温变化玻意耳定律典型例题

气体的等温变化、玻意耳定律典型例题【例1】一个气泡从水底升到水面时,它的体积增大为原来的3倍,设水的密度为ρ=1×103kg/m3,大气压强p0=1.01×105Pa,水底与水面的温度差不计,求水的深度。

取g=10m/s2。

【分析】气泡在水底时,泡内气体的压强等于水面上大气压与水的静压强之和。

气泡升到水面上时,泡内气体的压强减小为与大气压相等,因此其体积增大。

由于水底与水面温度相同,泡内气体经历的是一个等温变化过程,故可用玻意耳定律计算。

【解答】设气泡在水底时的体积为V1、压强为:p1=p0+ρgh气泡升到水面时的体积为V2,则V2=3V1,压强为p2=p0。

由玻意耳定律 p1V1=p2V2,即(p0+ρgh)V1=p0·3V1得水深【例2】如图1所示,圆柱形气缸活塞的横截面积为S,下表面与水平面的夹角为α,重量为G。

当大气压为p0,为了使活塞下方密闭气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个重物(气缸壁与活塞间的摩擦不计)【误解】活塞下方气体原来的压强设所加重物重为G′,则活塞下方气体的压强变为∵气体体积减为原的1/2,则p2=2p1【正确解答】据图2,设活塞下方气体原来的压强为p1,由活塞的平衡条件得同理,加上重物G′后,活塞下方的气体压强变为气体作等温变化,根据玻意耳定律:得 p2=2p1∴ G′=p0S+G【错因分析与解题指导】【误解】从压强角度解题本来也是可以的,但免发生以上关于压强计算的错误,相似类型的题目从力的平衡入手解题比较好。

在分析受力时必须注意由气体压强产生的气体压力应该垂直于接触面,气体压强乘上接触面积即为气体压力,情况就如【正确解答】所示。

【例3】一根两端开口、粗细均匀的细玻璃管,长L=30cm,竖直插入水银槽中深h0=10cm处,用手指按住上端,轻轻提出水银槽,并缓缓倒转,则此时管内封闭空气柱多长?已知大气压P0=75cmHg。

专题70气体实验定律和图像

专题70气体实验定律和图像

2024年高考物理一轮大单元综合复习导学练专题70 气体实验定律和图像【知识导学与典例导练】一、气体实验定律的基本规律及推论 1.理想气体状态方程与气体实验定律的关系p 1V 1T 1=p 2V 2T 2{温度不变:p 1V 1=p 2V 2 玻意耳定律体积不变:p 1T 1=p2T 2 查理定律压强不变:V 1T 1=V2T 2盖—吕萨克定律 2.两个重要的推论(1)查理定律的推论:Δp=p1T 1ΔT(2)盖吕萨克定律的推论:ΔV=V1T 1ΔT【例1】如图所示,两端封闭的玻璃管在常温下竖直放置,管内充有理想气体,一段汞柱将气体封闭成上下两部分,两部分气体的长度分别为l 1,l 2,且l 1=l 2,下列判断正确的是( )A .将玻璃管转至水平,稳定后两部分气体长度12''l l >B .将玻璃管转至水平,稳定后两部分气体长度12''l l <C .保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度12''l l >D .保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度12''l l =【答案】B【详解】AB .设上方气体为a 、下方气体为b ,初状态时b 内气体压强大,a 内气体压强小,将玻璃管转至水平,b 内的气体压强减小,a 内的气体压强增大,则b 内气体体积增大、长度增加,a 内气体长度减小,故12''l l <则A 错误,B 正确;CD .假设水银柱不动,则两部分气体做等容变化,对a 内气体应用查理定律有11p p T T ∆=∆解得11T p p T∆∆=同理对b 气体由查理定律有可得22Tp p T∆∆=由于12p p <,可得21p p ∆>∆故b 气体的压强增加量较大,水银柱将向上移动,稳定后两部分气体的长度12''l l <故CD 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气体实验定律(3)·典型例题解析
【例1】电灯泡内充有氦氩混合气体,如果要使电灯泡内的混合气体在500℃时的压强不超过一个大气压,则在20℃的室温下充气,电灯泡内气体压强至多能充到多少?
解析:由于电灯泡容积不变,故气体为等容变化,设t 1=500℃时
压强为,=℃时的压强为.则由
=得:=,p t 20p 122p p T T p p 212121293773
p 2=0.35 p 1=0.35个大气压. 点拨:要分析出在温度变化时,灯泡的容积没有变化,气体的状态变化遵循查理定律.还要注意摄氏温度与热力学温度的关系.
【例2】如图13-44所示,四个两端封闭粗细均匀的玻璃管,管内的空气被一段水银柱隔开,按图中标明的条件,当玻璃管水平放置时,水银柱处于静止状态,如果管内两端的空气都升高相同的温度,则水银柱向左移动的是:
解析:假设温度升高,水银柱不动,两边气体均作等容变化,根据
查理定律得压强增大量为Δ=Δ,而左、右两边初态压强相同,p p T T
p 两边温度升高量Δ也相同,所以Δ跟成正比,即左、右两边气体T p 1T
初态温度高的,气体压强的增量小,水银柱应向气体压强增量小的方向移动,亦即应向初态气体温度高的一方移动,故D 正确.
点拨:在三个状态参量都变化的情况下,讨论有关问题比较复杂,常用假设法,先假设某一量不变,讨论其他两个量变化的关系,这样可使问题变得简单.
【例3】有一开口的玻璃瓶,容积是2000cm 3,瓶内空气的温度从0℃升
高到100℃的过程中,会有多少空气跑掉(玻璃的膨胀可忽略不计)?,如果在0℃时空气的密度是1.293×10-3g/cm3,那么跑掉的这部分空气的质量是多少?
点拨:瓶中空气作的是等压变化,如果把所研究的对象确定为0℃时,玻璃瓶内的空气,当温度升高到100℃时,它的体积是多少,那么本题就是研究一定质量的气体的问题了.
参考答案:0.73×103cm30.69g
【例4】容积为2L的烧瓶,在压强为1.0×105Pa时,用塞子塞住,此时
温度为27℃,当把它加热到127℃时,塞子被顶开了,稍过一会儿,重新把塞子塞好,停止加热并使它逐渐降温到27℃,求:(1)塞子被顶开前的最大压强;
(2)27℃时剩余空气的压强.
点拨:塞子被顶开前,瓶内气体的状态变化为等容变化,塞子被顶开后,瓶内有部分气体逸出,此后应选剩余气体为研究对象,再利用查理定律求解.
参考答案:(1)1.33×105Pa (2)0.75×105Pa
跟踪反馈
1.一定质量的理想气体在0℃时压强p0=780mmHg,求这种气体在t=273℃时的压强(气体的体积不变)
2.如图13-45两端封闭粗细均匀竖直放置的玻璃管内,有一长为h的水银柱,将管内气体分为两部分,已知L2=2L1,若使两部分气体同时升高相同的温度,管内水银柱将如何移动?
3.有一个玻璃瓶,内盛空气,当温度由0℃升高到100℃时,因瓶口开着
失去1g空气,瓶内原来有多少克空气.
4.高压锅使用时,锅内的压强大,温度高,食物容易煮烂.已知某高压锅的限压阀质量为0.1kg,排气孔直径为0.3cm,则锅内气体的压强最大可达多
少Pa?若每增加3.6×103Pa水的沸点相应增加1℃,锅内的最高温度可达多
高?
参考答案
1.156cmHg 2.上移3.3.7g 4.2.5×105Pa 142℃。

相关文档
最新文档