定积分与微积分基本定理复习讲义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分与微积分基本定理复习讲义
河南省卢氏县第一高级中学山永峰
考
什么怎么考
1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.
2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题.
2.考查简单定积分的求解.
3.考查曲边梯形面积的求解.
4.与几何概型相结合考查.
[归纳·知识整合]
1.定积分
(1)定积分的相关概念:在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式.
(2)定积分的几何意义
①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分).
②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数.
(3)定积分的基本性质:①∫b a kf(x)d x=k∫b a f(x)d x.
②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x.
③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.
[探究] 1.若积分变量为t,则∫b a f(x)d x与∫b a f(t)d t是否相等?
提示:相等.
2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗?
提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算.
3.定积分∫b a[f(x)-g(x)]d x(f(x)>g(x))的几何意义是什么?
提示:由直线x=a,x=b和曲线y=f(x),y=g(x)所围成的曲边梯形的面积.
2.微积分基本定理:如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么∫b a f(x)d x
=F (b )-F (a ),这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式. 为了方便,
常把F (b )-F (a )记成F (x )|b a ,即 ∫b a f (x )d x =F (x )|b
a =F (
b )-F (a ). 课前预测:
1.∫421
x
d x 等于( )
A .2ln 2
B .-2ln 2
C .-ln 2
D .ln 2
2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2
-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( ) A.176 B.143 C.136 D.116
3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2
所围成的曲边梯形的面积为________. 4.(教材改编题)∫1
01-x 2
d x =________.
5.由y =1x ,直线y =-x +5
2所围成的封闭图形的面积为________
考点一 利用微积分基本定理求定积分
[例1] 利用微积分基本定理求下列定积分:
(1)∫21(x 2+2x +1)d x ;(2)∫π
0(sin x -cos x )d x ;
(3)∫2
x (x +1)d x ;(4)∫21
⎝
⎛⎭⎪⎫e 2x +1x d x ; (5)2
0π
⎰ sin 2x 2d x .
———————————————————
求定积分的一般步骤:
(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差; (2)把定积分用定积分性质变形为求被积函数为上述函数的定积分; (3)分别用求导公式找到一个相应的原函数;
(4)利用牛顿—莱布尼兹公式求出各个定积分的值; (5)计算原始定积分的值. 强化训练:
1.求下列定积分:(1)∫20
|x -1|d x ;(2)
20
π⎰
1-sin 2x d x .
考点二 利用定积分的几何意义求定积分
[例2] ∫10-x 2
+2x d x =________.
变式:在本例中,改变积分上限,求∫20-x 2
+2x d x 的值. —————
——————————————
利用几何意义求定积分的方法
(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分. (2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小. 强化训练:
2.(2014·福建模拟)已知函数f (x )=∫x
0(cos t -sin t )d t (x >0),则f (x )的最大值为________.
考点三:利用定积分求平面图形的面积
[例3] (2014·山东高考)由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )
103 B .4 C.163
D .6
变式训练:
若将“y =x -2”改为“y =-x +2”,将“y 轴”改为“x 轴”,如何求解? —————
——————————————
利用定积分求曲边梯形面积的步骤 (1)画出曲线的草图.
(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限. (3)将“曲边梯形”的面积表示成若干个定积分的和或差. (4)计算定积分,写出答案. 强化训练:
(2014·郑州模拟)如图,曲线y =x 2
和直线x =0,
x =1,y =14
所围成的图形(阴影部分)的面积为( )
A.23
B.13
C.12
D.14
考点四:定积分在物理中的应用
[例4] 列车以72 km/h 的速度行驶,当制动时列车获得加速度a =-0.4 m/s 2
,问列车应在进站前多长时间,以及离车站多远处开始制动? —————
——————————————
1.变速直线运动问题
如果做变速直线运动的物体的速度v 关于时间t 的函数是v =v (t )(v (t )≥0),那么物体从
时刻t =a 到t =b 所经过的路程为∫b
a v (t )d t ;如果做变速直线运动的物体的速度v 关于时
间t 的函数是v =v (t )(v (t )≤0),那么物体从时刻t =a 到t =b 所经过的路程为-∫b
a
v (t )d t .
2.变力做功问题
物体在变力F (x )的作用下,沿与力F (x )相同方向从x =a 到x =b 所做的功为∫b
a F (x )d x . 强化训练:
4.一物体在力F (x )=
⎩
⎪⎨⎪⎧
10 0≤x ≤23x +4 x >2(单位:N)的作用下沿与力F (x )相同的方向运动
了4米,力F (x )做功为( )
A .44 J
B .46 J
C .48 J
D .50 J
1个定理——微积分基本定理
由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算.
3条性质——定积分的性质