电源滤波电容大小的计算方法
(整理)电源滤波电容大小的计算方法

电源滤波电容大小的计算方法滤波电容工程粗略计算公式:按RC时间常数近似等于3~5倍电源半周期估算。
给出一例:负载情况:直流1A,12V。
其等效负载电阻12欧姆。
桥式整流(半波整流时,时间常数加倍):RC = 3 (T/2)C = 3 (T/2) / R = 3 x (0.02 / 2 ) /12 = 2500 (μF)工程中可取2200 μF,因为没有2500 μF这一规格。
若希望纹波小些,按5倍取。
这里,T是电源的周期,50HZ时,T = 0.02 秒。
时间的国际单位是S。
仅供参考C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。
那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。
以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。
LED电源输入滤波电容的选择计算方法

LED 电源输入滤波电容的选择计算方法对于中小功率电源来说,一般采用单相或三相交流经过全桥整流后得到的脉动直流电压,输入滤波电容C in 用来平滑这个直流电压,使其脉动减小,电容的选择是比较重要的,如果过小,直流电压脉动过大,为了得到输出电压,需要过大的占空比调节范围及过高的控制闭环增益。
电容过大,其充电电流脉冲宽度变窄,幅值增高,导致输入功率因数降低,EMI 增大。
在有些场合,为了提高功率因数,交流整流后采用电感电容的LC 滤波方式,设计比较复杂,不在下面的计算范围内。
一般而言,在最低输入交流电时,整流滤波后的直流电压的脉动值V PP 是最低输入交流电压峰值的20%~25%假如已知交流输入电压的变化范围为V lin(min )~V lin(max),按照下面的步骤来计算C in 的容量1)线电压有效值: V lin(min )~V lin(max)2)线电压峰值:2 V lin(min )~2V lin(max)3)整流滤波后直流电压的脉动值V PP =2 V lin(min )×(20%~25%) (单相输入)V PP =2 V lin(min )×(7%~10%) (三相输入)4)整流滤波后的直流电压:V inV in =(2 V lin(min )- V PP )~2V lin(in)由于保证直流电压最小值符合要求,每个周期中C in 所提供的能力W in 为 W in =FA Pin ⨯ A 是交流输入的相数,单相为1三相为3,F 为频率,每个半周期输入滤波电容的能量为2(min)2(min))2()2[212pp lin lin V V V Cin Win --⨯⨯=(] 根据上式就可以计算出需要的电容的容量。
电源滤波电容的大小计算

电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
详解滤波电容的选择及计算

详解滤波电容的选择及计算标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]电源滤波电容的选择与计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用,用于滤低频,二级用,用于滤高频,的电容作用是减小输出脉动和低频干扰,的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f=1/(2pi*LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率.采用电容滤波设计需要考虑参数:ESRESL耐压值谐振频率那么如何选取电源滤波电容呢电源滤波电容如何选取,掌握其精髓与方法,其实也不难1) 理论上理想的电容其阻抗随频率的增加而减少(1/jwc),但由于电容两端引脚的电感效应,这时电容应该看成是一个LC串连谐振电路,自谐振频率即器件的FSR参数,这表示频率大于FSR值时,电容变成了一个电感,如果电容对地滤波,当频率超出FSR后,对干扰的抑制就大打折扣,所以需要一个较小的电容并联对地.原因在于小电容,SFR值大,对高频信号提供了一个对地通路,所以在电源滤波电路中我们常常这样理解:大电容滤低频,小电容滤高频,根本的原因在于SFR(自谐振频率)值不同,想想为什么如果从这个角度想,也就可以理解为什么电源滤波中电容对地脚为什么要尽可能靠近地了.2)那么在实际的设计中,我们常常会有疑问,我怎么知道电容的SFR是多少就算我知道SFR值,我如何选取不同SFR值的电容值呢是选取一个电容还是两个电容电容的SFR值和电容值有关,和电容的引脚电感有关,所以相同容值的0402,0603,或直插式电容的SFR值也不会相同,当然获取SFR值的途径有两个:1)器件Datasheet,如22pf0402电容的SFR值在2G左右,2)通过网络分析仪直接量测其自谐振频率,想想如何测量S21知道了电容的SFR值后,用软件仿真,如RFsim99,选一个或两个电路在于你所供电电路的工作频带是否有足够的噪声抑制比.仿真完后,那就是实际电路试验,如调试手机接收灵敏度时,LNA的电源滤波是关键,好的电源滤波往往可以改善几个dB.电容的本质是通交流,隔直流,理论上说电源滤波用电容越大越好.但由于引线和PCB布线原因,实际上电容是电感和电容的并联电路,(还有电容本身的电阻,有时也不可忽略)这就引入了谐振频率的概念:ω=1/(LC)1/2在谐振频率以下电容呈容性,谐振频率以上电容呈感性.因而一般大电容滤低频波,小电容滤高频波.这也能解释为什么同样容值的STM封装的电容滤波频率比DIP封装更高.至于到底用多大的电容,这是一个参考电容谐振频率不过仅仅是参考而已,老工程师说主要靠经验.更可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.文章来源:我看了这篇文章,也做个粗略的总结吧:1.电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
1117 3.3v 滤波电容大小设计

1117 3.3v 滤波电容大小设计一、概述在电子电路设计中,滤波器是非常重要的一个部分。
它可以用来减小电源中的高频噪声,提供更加稳定的电压给后续的电路使用。
在很多情况下,尤其是在低功耗的应用中,例如便携式设备或者传感器,我们经常使用 3.3V 电源供应,而且通常需要使用电容来进行滤波。
在本文中,我们将讨论在 1117 稳压芯片输出端的滤波电容的大小设计问题。
二、1117 稳压芯片简介1117 是一种高性能的低压差稳压器,经常被用来提供稳定的 3.3V 电压。
它具有较低的静态电流和较高的输出电流能力,是许多电子产品中的常见芯片之一。
三、滤波电容的作用在 1117 稳压芯片的输出端,我们通常会并联一个电容来起到滤波的作用。
这个电容可以过滤掉 1117 输出电压中的高频纹波,使得输出电压更加稳定。
它还能够提供瞬态响应,当负载突然改变时,能够迅速给予反应,维持输出电压的稳定性。
四、滤波电容大小的设计通常来讲,设计 1117 输出端的滤波电容需要考虑几个因素:1. 最小输出电容:根据 1117 的数据手册,芯片制造厂商一般会建议一个最小的输出电容值。
这个最小值是为了保证 1117 的稳定工作,防止出现振荡或者不稳定的工作状态。
2. 负载瞬态响应:在某些应用中,可能会存在负载瞬态响应的需求。
这时候,滤波电容的大小需要足够大,以确保在负载瞬变时能够快速补偿电流,使得输出电压保持稳定。
3. 输出纹波要求:有些应用对于输出电压的纹波有严格的要求,需要输出电压的纹波尽量小。
这时候,我们可能需要增加滤波电容的大小,来进一步降低输出电压的纹波。
五、滤波电容大小的计算滤波电容的大小通常是根据下面的几个公式来计算的:1. 最小输出电容:根据 1117 的数据手册,一般会提供最小输出电容的数值。
2. 负载瞬态响应:考虑输出电压的瞬态响应要求,根据负载瞬变电流和输出电压的变化范围来计算电容的大小。
3. 输出纹波要求:根据输出电压的纹波要求,使用公式计算所需的电容大小。
电源滤波电容大小的计算方法

问题: 请问电源的滤波电容的通常是一个大的并联一个小的,两个相差100倍,但是那个大的电容有的用10u,有的用47u,还有的用,这是怎么回事,应该怎么选择啊?大的是电解电容,滤波用的,选择的话,我感觉是看输入的电压质量的,如果本身纹波很大,或者对纹波要求很严格,那就用大的电容。
小一些的是去耦电容,我感觉和滤波差不多意思,就是防止电压波动的。
容值要小一些,高频时候作用大。
电源滤波电容大小的计算方法电源滤波电容大小的计算方法(有人说:没有仔细看,但结论似乎不正确)C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。
那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=(正负电源各),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=,带上上式后得到C=×==25000uF。
以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。
喜欢大音量的同志那就必须要用大水塘了,10000u 也不算大。
ps:如果按照dV=计算,则C=25万uF,可以想像在电源上你要花多少钱,而且对音质的影响有多大还很难说。
电源滤波电容大小的计算方法

电源滤波电容大小的计算方法滤波电容工程粗略计算公式:按RC时间常数近似等于3~5倍电源半周期估算。
给出一例:负载情况:直流1A,12V。
其等效负载电阻12欧姆。
桥式整流(半波整流时,时间常数加倍):RC=3(T/2)C=3(T/2)/R=3x(0.02/2)/12=2500(μF)工程中可取2200μF,因为没有2500μF这一规格。
若希望纹波小些,按5倍取。
这里,T是电源的周期,50HZ时,T=0.02秒。
时间的国际单位是S。
仅供参考C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。
那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。
以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。
喜欢大音量的同志那就必须要用大水塘了,10000u也不算大。
buck电路输出滤波电容计算

buck电路输出滤波电容计算滤波电容是指在电路中使用的电容器,用于滤除电源中的高频噪声和波动,使电路输出平稳。
在buck电路中,滤波电容的作用是减小输出电压的纹波并稳定输出。
要计算滤波电容的值,需要考虑以下几个因素:1.输出纹波电压要求:滤波电容的主要作用是减小输出纹波电压,所以首先需要确定输出纹波电压要求。
输出纹波电压是指输出电压中包含的交流分量,即电压的波动部分。
一般来说,输出纹波电压的要求是根据具体应用来确定的,一般要求输出纹波电压越小越好。
输出纹波电压的大小与滤波电容的容值成反比:当滤波电容的容值增大时,输出纹波电压变小,反之如果容值减小则输出纹波电压变大。
2.负载电流变化率:滤波电容的容值还要考虑负载电流变化率。
在实际使用中,负载电流往往是有脉冲性变化的,因此需要确定负载电流的最大变化率。
负载电流变化率越大,滤波电容的容值就需要越大,以确保输出电压的稳定性。
3.输出电压变化率:除了负载电流的变化,输出电压的变化也需要考虑。
输出电压变化率越大,滤波电容的容值也需要越大,以确保输出电压的稳定性。
4.开关频率:滤波电容的容值还受到开关频率的影响。
一般来说,开关频率越高,滤波电容的容值就可以越小。
但是开关频率也会导致滤波电容的损耗增加,所以需要权衡开关频率和滤波电容的容值。
综上所述,计算滤波电容的公式可以表示为:C=(I*Δt)/ΔV其中,C为滤波电容的容值,I为负载电流的变化率,Δt为输出电压的变化率,ΔV为输出纹波电压的要求。
需要注意的是,滤波电容的容值一般按标准电容值来选择,如10μF、22μF等,根据需要可以选择相应的标准电容。
总结起来,滤波电容的计算需要考虑输出纹波电压要求、负载电流变化率、输出电压变化率和开关频率等因素。
根据以上公式,可以计算出滤波电容的容值,并从标准电容值中选择合适的电容器来实现滤波电路的设计。
整流后滤波电解电容容量的计算

整流后滤波电解电容容量的计算整流后滤波电解电容容量的计算涉及到直流电压的波动程度和所需的纹波电压。
在直流电源输出的电流中,存在交流成分,这些交流成分被称为纹波电流,同样地,直流电源输出的电压中也存在交流成分,被称为纹波电压。
为了减小这些纹波电流和纹波电压,电解电容被用于滤波。
首先,我们先来计算纹波电压。
纹波电压可以通过下式来计算:ΔV=(I×T)/(2×C)其中,ΔV为纹波电压,I为额定负载电流,T为一个周期内的时间,C为电解电容容量。
在计算电容容量之前,我们需要确定纹波电流。
纹波电流可以通过下式来计算:I_rip = (ΔV × f) / (2 × ESR)其中,I_rip为纹波电流,ΔV为纹波电压,f为交流电源的频率,ESR为电解电容的等效串联电阻。
纹波电流和纹波电压的计算都取决于所需的纹波电压,而所需的纹波电压取决于特定应用。
对于不同的应用,允许的纹波电压范围有所不同。
一般来说,纹波电压越小,纹波电压滤波器所需要的电容容量就越大。
电解电容容量的选择也需要考虑到负载电流的需求。
负载电流是从电解电容中提供给负载的电流。
根据负载电流和波动程度,可以选择适当的电解电容容量。
然而,单独使用上述公式计算电容容量并不足够,因为这些公式假设了纹波电流和纹波电压都是恒定的。
实际上,纹波电流和纹波电压在整流电源中是会变化的。
为了更准确地计算电容容量,需要根据特定的纹波电流和纹波电压测量值进行试验和实际测试。
总结来说,整流后滤波电解电容容量的计算涉及到纹波电压和纹波电流的估计。
根据特定的应用需求和纹波电压要求,可以选择适当的电容容量。
然而,最准确的电容容量计算还可能需要通过实验和测试进行确认。
开关电源中滤波电容的选择方式

开关电源中滤波电容的选择方式、计算公式和注意事项
滤波电容在开关电源中非常重要,但是如何选择和使用滤波电容,特别是输出滤波电容的选择和使用特别关键。
开关电源中滤波电容的选择:
1. 一般情况下,滤波电容耐压越高越安全,但是意味着体积也就越大,同体积的话,耐压越高容量就越小。
所以,考虑实际情况发热话,滤波电容的耐压一般选取大于工作电压1.5倍左右就行。
2. 滤波电容的容量根据电源输出的电流大小,选择相应容量的电容。
理论上也是容量越大越好,但是实际上也不是这么回事(物极必反吧)。
a、电容容量越大,体积也就越大,开机冲击电流和冲击电压会很大,电源的待机功耗也就增加,
3. 开关电源波形更尖锐,对电容的容量要求要大些。
4. 滤波电容的通用选取原则是:C≥2.5T/R,其中: C为滤波电容,单位为UF; T为频率, 单位为Hz,R为负载电阻,单位为Ω;(这只是一般的选用原则,在实际的应用中,如条件(空间和成本)允许,都选取C≥5T/R)
5. 现在有很多计算人员的做法是将一大一小两个电容并联,小电容滤高频波,大电容滤低配,大小电容一般要求相差两个数量级以上,这样的话可以获得更大的滤波效果。
6. 滤波电源一般为电解电容,比如说铝电解电容和钽电解电容,要求高的可选择钽电解电容。
滤波电容容量选择

滤波电容容量选择当电机驱动器设计为使用AC交流电供电时,所设计的电路需先对AC电源整流、再滤波,从而产生直流电源,供电机驱动电路使用。
电路中滤波电容的选型需要考虑几个方面:电容耐压、工作温度、容量等。
输入滤波电容容量的选择和驱动器的驱动电压、最大功率有直接关系,需要作一些计算得到,如果此电容容量过少,驱动器表现为驱动力不足;而容量过大,则增加制造成本。
工程应用中,有这样的一个经验法则:滤波电容容量数值等于驱动功率数值。
但需要注意,这只是针对单相220V交流电全波整流的驱动应用,不能断章取义。
下面通过简单的计算推导,介绍容量计算的过程,只作为参考,以文档是广州锋驰运控()的工程笔记整理所得,如发现错误请联系我们:E-mail: support@。
首先,从电容、电阻的RC时间常数τ说起:τ越大,则R两端的电压越平稳,对于脉动电源,则其纹波电压越少。
在工程上,当RC时间常数满足以下条件时,可以满足纹波要求:T为脉动电源的周期,对于50Hz市电经全波整流后的周期T为:10mS。
故由上两式可以得;R为等效负载电阻;C为滤波电容容量。
下图为电路示意图:所以,只要得到电机驱动器的等效负载电阻,即可算出滤波电容所需的容量大小。
U为电机驱动器输入电压,单位为(V);P为电机驱动器功率,单位为(W);为电机驱动器等效负载电阻,单位为Ω。
RL结合以上各式:用频率f替代周期T,可得到滤波电容容量的计算公式如下:P为电机驱动器额定输出功率,单位为(W),如P=750W;U为电机驱动器额定输入交流电压有效值,单位为(V),如国内市电U=220V (AC);f为经过整流后脉动电源的频率,单位为(Hz),如单相电经全波整流后,f=100Hz;C为驱动器输入滤波电容容量,单位为(F)。
举例假设我们设计的驱动器使用市电单相电供电,且电路设计为全波整流,可得:U=220V;f=100Hz代入计算公式:得故输入滤波电容容量数值大小(单位uF)约等于驱动器的额定功率数值大小(单位W)。
整流滤波电容计算公式

整流滤波电容计算公式整流滤波电容是电子电路中常见的一种元器件,用于对电源电压进行平滑处理,使其更加稳定。
在设计整流滤波电路时,选择合适的电容值是至关重要的。
下面将介绍整流滤波电容的计算公式及其相关知识。
首先,我们需要了解什么是整流滤波电路。
整流指的是将交流电转化为直流电,滤波则是对直流电进行平滑处理的过程。
在整流滤波电路中,电容被用来平滑直流电,使其更加稳定。
通过合理的电容选择,可以有效地降低直流电中的纹波和噪声,保证电路的正常工作。
计算整流滤波电容的公式如下:C = I × T / V其中,C为电容值,单位为法拉(F);I为负载电流,单位为安培(A);T为纹波时间,单位为秒(s),通常为交流电周期的一半;V为纹波电压,单位为伏特(V),它通常等于直流电压的一定百分比。
例如,当电路所需的直流输出电压为12V,交流输入电压为220V,频率为50Hz时,电路中的负载电流为1A。
此时,我们可以根据下述步骤计算出电容的大小:第一步,计算纹波电压:Vr = Vp × k其中,Vp为峰值电压,等于220V / 根号2 = 156V;k为满载时纹波电压占总电压的比例,约为10%(根据经验值),因此k=0.1。
则Vr = 15.6V第二步,计算纹波时间:T = 1 / 2 × f其中,f为电源频率,即50Hz。
则T = 0.01s第三步,根据公式计算电容值:C = I × T / Vr = 1 × 0.01 / 15.6 = 0.00064F = 640uF因此,为了使电路的直流输出电压更加稳定,我们需要选择一个容值为640uF的电容来进行整流滤波。
在实际电路设计中,需要根据具体情况选择合适的电容容值。
如果选择过小的电容,会导致直流电输出的纹波电压过大,影响电路稳定性;如果选择过大的电容,则会增加成本,且可能会占用过多的电路板空间。
综上所述,选择合适的整流滤波电容是电路设计中的一项重要任务。
滤波电容的选取与计算

滤波电容滤波电容的选取与计算:一,当要求不是很精确的话,可以根据负载计算,每mA,2uf.二,按RC时间常数近似等于3~5倍电源半周期估算。
例:负载情况:直流1A,12V。
其等效负载电阻12欧姆。
桥式整流:RC = 3 (T/2)C = 3 (T/2) / R = 3 x (0.02 / 2 ) / 12 = 2500 (μF)工程中可取2200 μF,因为没有2500 μF这一规格。
若希望纹波小些,按5倍取。
这里,T是电源的周期,50HZ时,T = 0.02 秒。
全波整流结果一样,但半波整流时,时间常数加倍。
根据全波整流波形,可以看出,输出电压的平滑与电容充放电时间和信号的频率有关系,当信号的频率增大时,输出电压的波动就会变大,可以改变滤波电容的大小来改变充放电时间,使波动减小.这也反应了上述滤波电容的计算关系.理论上滤波电容越大滤波效果越好,输出电压就越平滑,但在电路接通的瞬间,电路中所产生的冲击电流因素却不能被忽略,这是因为,几乎所有的电子元器件都有其可以通过的最大电流值,所以,在选择电子元器件时,必须考虑冲击电流所带来的流过相关元器件瞬间电流的最大值,冲击电流越大,对电子元器件的要求就越高,电路的成本就会提高滤波电容的选用原则:(1)大电容,负载越重,吸收电流的能力越强,这个大电容的容量就要越大(2)小电容,凭经验,一般104即可1、电容对地滤波,需要一个较小的电容并联对地,对高频信号提供了一个对地通路。
2、电源滤波中电容对地脚要尽可能靠近地。
3、理论上说电源滤波用电容越大越好,一般大电容滤低频波,小电容滤高频波。
4、可靠的做法是将一大一小两个电容并联,一般要求相差两个数量级以上,以获得更大的滤波频段.具体案例:一、 AC220-9V再经过全桥整流后,需加的滤波电容是多大的? 再经78LM05后需加的电容又是多大?前者电容耐压应大于15V,电容容量应大于2000微发以上。
后者电容耐压应大于9V,容量应大于220微发以上。
开关电源滤波电容容量计算

开关电源滤波电容容量计算
开关电源是一种常见的电源供应方式,广泛应用于各种电子设备中。
为了保证开关电源输出的直流电稳定,必须对其进行滤波处理。
而滤波电容作为滤波电路中的重要组成部分,起到了平滑电流的作用。
那么,如何计算开关电源滤波电容的容量呢?
我们需要明确开关电源滤波电容的主要作用是平滑电流,将脉动电流转换为稳定的直流电流。
滤波电容的容量越大,其存储电荷的能力越强,对电流的平滑效果也就越好。
计算滤波电容的容量需要考虑以下几个因素:
1. 输出电流需求:首先需要确定开关电源的输出电流需求。
不同的电子设备对电流的需求是不同的,因此滤波电容的容量也会有所差异。
2. 输出电压波动:开关电源输出的直流电压会存在一定的波动,滤波电容的容量需要足够大,以便能够平衡这种波动,使输出电压更加稳定。
3. 脉动电流频率:开关电源输出的脉动电流频率通常是开关频率的倍数,滤波电容的容量需要根据脉动电流的频率来选择,以确保滤波效果良好。
综合考虑以上因素,可以使用以下公式来计算滤波电容的容量:
C = (I * ΔV) / (f * ΔV)
其中,C表示滤波电容的容量,单位为法拉(F);I表示输出电流需求,单位为安培(A);ΔV表示输出电压波动的允许范围,单位为伏特(V);f表示脉动电流的频率,单位为赫兹(Hz)。
需要注意的是,以上公式仅为一个大致的计算公式,实际应用中还需要考虑其他因素的影响,如开关电源的工作环境、散热条件等。
计算开关电源滤波电容的容量需要考虑输出电流需求、输出电压波动、脉动电流频率等因素,并使用相应的公式进行计算。
通过合理选择滤波电容的容量,可以提高开关电源的工作效果,保证电子设备的正常运行。
滤波电容计算

滤波电容计算
滤波电容计算
一、滤波电容的作用
滤波电容是电子产品设计中保护电子元件免受外部干扰和感应
干扰的关键部件之一,其主要作用是将抗干扰的直流电源与负载相隔离。
通常,电容可以将直流电源与负载之间的干扰滤除,并可以稳定直流电源、增强电源电容补偿电容,以及减少电源电压的漂移等。
同时,滤波电容还可以减少电路所产生的噪声,消除对设备造成的不良影响,保护电子元件免受外界现象。
二、滤波电容的选取
1、计算滤波电容的计算公式
滤波电容的计算公式:
C=R*I/V
其中,C为滤波电容值,R为电路的衰减系数,I为电路中的电流,V为电路的电压变化率。
2、滤波电容的选取原则
(1)电压的要求:电容最低电压应大于电路最大工作电压,以满足电路功能要求;
(2)电流的要求:滤波电容的电流大小要求不高,其最大工作电流不建议超过电容额定电流90%;
3、滤波电容的常用参数
滤波电容的常用参数主要包括电容值、最大工作电压、损耗因数、
最大工作电流、温度范围等。
开关电源滤波电容计算

开关电源滤波电容的计算涉及到多个因素,包括输入和输出电压、开关频率、预期的纹波电流等。
在计算过程中,还需要考虑电容的等效串联电阻(ESR)和等效串联电感(ESL)。
首先,可以根据所需的纹波电流和电压来确定电容的容量。
电容容量(C)可以用以下公式表示:
C = (I_p-p / V_p) x (T / f)
其中,I_p-p是纹波电流峰峰值,V_p是纹波电压峰峰值,T是周期,f是频率。
其次,要选择适当的电容类型和规格,以确保其在开关电源的工作频率下具有较低的ESR和ESL。
在确定了电容容量后,可以根据所需的滤波效果和电源的稳定性来进一步调整电容的规格和类型。
最后,还需要考虑电容的耐压值。
在选择电容时,应确保其额定电压大于或等于实际工作电压的峰值。
需要注意的是,开关电源滤波电容的计算是一个复杂的过程,需要综合考虑多个因素。
在实际应用中,建议咨询专业工程师或技术人员以获得准确的计算方法和合适的电容选择。
逆变电源滤波电容的大小计算

逆变电源滤波电容的大小计算11-06-19 01:19逆变电源滤波电容的大小计算电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可滤去交流纹波.。
电容滤波属电压滤波,是直接储存脉动电压来平滑输出电压,输出电压高,接近交流电压峰值;适用于小电流,电流越小滤波效果越好。
电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。
电容和电感的很多特性是恰恰相反的。
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。
因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。
当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。
因此在使用中会因电解液的频繁极化而产生较大的热量。
而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。
一般前面那个越大越好,两个电容值相差大概100倍左右。
电源滤波,开关电源,要看你的ESR(电容的等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。
大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好!电容的等效模型为一电感L,一电阻R和电容C的串联,电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.因而可等效为串联LC回路求其谐振频率,串联谐振的条件为WL=1/WC,W=2*PI*f,从而得到此式子f = 1/(2pi* LC).,串联LC回路中心频率处电抗最小表现为纯电阻,所以中心频率处起到滤波效果.引线电感的大小因其粗细长短而不同,接地电容的电感一般是1MM为10nH左右,取决于需要接地的频率。
电容滤波的计算方法及电源滤波电容选用技巧

电容滤波的计算方法及电源滤波电容选用技巧电容滤波是一种常见的电力电子滤波电路,用于减小电源中的脉动电压。
在电源中添加一个电容器,可以通过存储能量的方式将脉动电压平滑化,从而提供稳定的直流电源。
本文将介绍电容滤波的计算方法和电源滤波电容选用技巧。
首先,我们需要了解电容滤波的原理。
在一个整流电路中,电容滤波电路的主要部分是一个电容器和负载电阻。
当交流电源输入经过整流后,得到的直流电压存在脉动。
这时通过将电容器连接到输出端,在充电-放电周期内,电容器的电压会随着时间逐渐增加,这样就可以减小输出电压的脉动。
要计算电容器的容值,我们首先需要确定电容器的放电时间常数。
放电时间常数代表了电容器在放电时所需的时间,是一个重要的参考指标。
通常情况下,放电时间常数应该小于整个周期的时间,以确保电容器能够在周期内完全放电。
放电时间常数的计算公式如下:τ=R*C其中,τ为放电时间常数,R为负载电阻的阻值,C为电容器的电容值。
接下来,我们需要根据系统的需求来确定电容器的容值。
一般来说,电容器的容值越大,脉动电压越小,但是成本和尺寸也会增加。
所以在选用电容器时需要权衡这些因素。
一般情况下,可以按照以下步骤选择电容器的容值:1.确定对输出电压脉动的要求。
根据设计要求,确定允许的输出电压脉动范围。
2.根据最大负载电流和输出电压脉动的要求,计算电容器的容值。
可以使用以下公式进行计算:C=I/(ΔV*f)其中,C为电容器的容值,I为负载电流的峰值,ΔV为输出电压脉动的允许范围,f为电源频率。
3.根据计算结果选择合适的商用电容器,注意商用电容器的标称容值通常有一定的误差,因此要选取稍大于所计算出的容值的电容器。
需要注意的是,电容器的有效值与其标称容值之间存在一个关系。
电容器的有效值是指在给定频率下的等效电流波动值,与电容器的容值和频率有关。
一般来说,频率越高,电容器的有效值越小,因此选用电容器时要根据实际工作频率来选择。
另外,还需要注意电容器的寿命和可靠性。
buck电路输出滤波电容计算

buck电路输出滤波电容计算在电路设计中,滤波电容器是一种用于抑制电源噪声和稳定电路工作的元件。
在Buck电路中,滤波电容起到平滑输出电压的作用,它可以滤除输出电压中的纹波。
在设计Buck电路输出滤波电容时,我们可以根据如下步骤进行计算:1.确定滤波目标:首先需要确定所需的滤波效果。
一般来说,滤波电容的目标是将输出纹波电压控制在一定范围内,通常要求输出纹波电压的峰峰值不超过所需电压的1%-5%。
2.计算输出纹波电压:输出纹波电压是指Buck电路输出电压中的交流成分。
它可以通过如下公式计算得到:Vr = (Io * D) / (f * C)其中,Vr为输出纹波电压,Io为负载电流,D为占空比,f为开关频率,C为滤波电容。
3.确定滤波电容的最小值:根据滤波目标和输出纹波电压的计算结果,可以确定滤波电容的最小值。
一般来说,滤波电容的最小值可以通过如下公式计算得到:Cmin = (Io * D) / (Vr * f)其中,Cmin为滤波电容的最小值。
4.考虑电容器的ESR值:电容器的ESR(等效串联电阻)会影响滤波效果。
ESR越大,滤波效果越差。
因此,在实际计算中,还需要考虑电容器的ESR值。
一般来说,可以根据滤波电容的最小值和ESR值的比例,确定滤波电容的实际值。
5.选择合适的电容器:根据计算结果,选择合适的滤波电容。
一般来说,电容器的电压容量需要大于Buck电路的输出电压,以确保电容器能够正常工作。
需要注意的是,在选择滤波电容时还需要考虑其尺寸和成本。
较大的滤波电容可以提供更好的滤波效果,但也会增加电路的尺寸和成本。
因此,在实际设计中需要进行权衡。
综上所述,Buck电路输出滤波电容的计算需要考虑滤波目标、输出纹波电压、ESR值等因素。
通过合理计算和选择,可以设计出满足设计要求的Buck电路输出滤波电容。
47uf电容滤波频率

47uf电容滤波频率
(原创版)
目录
1.47uf 电容滤波频率的概念
2.47uf 电容滤波频率的计算方法
3.47uf 电容滤波频率的应用实例
4.47uf 电容滤波频率的优缺点
正文
一、47uf 电容滤波频率的概念
47uf 电容滤波频率是指在电子电路中,通过使用 47 微法的电容器进行滤波时,所能滤除的最高频率。
滤波器的作用是去除电路中的杂波,使得输出的信号更加稳定。
二、47uf 电容滤波频率的计算方法
47uf 电容滤波频率的计算公式为:f = 1 / (2π√(LC)),其中 f 为滤波频率,L 为电感,C 为电容。
在实际应用中,一般会根据电路的具体参数进行调整。
三、47uf 电容滤波频率的应用实例
在实际的电子电路中,47uf 电容滤波频率常被用于电源滤波、信号滤波等场景。
例如,在直流稳压电源中,可以通过使用 47uf 电容滤波,去除电源中的交流成分,使得输出的直流电压更加稳定。
四、47uf 电容滤波频率的优缺点
47uf 电容滤波频率的优点在于其能够有效去除电路中的高频杂波,提高信号的稳定性。
同时,其结构简单,使用方便,因此在电子电路中得到了广泛的应用。
然而,47uf 电容滤波频率也有其缺点。
首先,其滤波效果受到电容容量、电感大小等因素的影响,因此在实际应用中需要根据电路参数进行调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电源滤波电容大小的计算方法滤波电容工程粗略计算公式:按RC时间常数近似等于3~5倍电源半周期估算。
给出一例:负载情况:直流1A,12V。
其等效负载电阻12欧姆。
桥式整流(半波整流时,时间常数加倍):RC=3(T/2)C=3(T/2)/R=3x(0.02/2)/12=2500(μF)工程中可取2200μF,因为没有2500μF这一规格。
若希望纹波小些,按5倍取。
这里,T是电源的周期,50HZ时,T=0.02秒。
时间的国际单位是S。
仅供参考C=Q/U----------Q=C*UI=dQ/dt---------I=d(C*U)/dt=C*dU/dtC=I*dt/dU从上式可以看出,滤波电容大小与电源输出电流和单位时间电容电压变化率有关系,且输出电流越大电容越大,单位时间电压变化越小电容越大我们可以假设,单位时间电容电压变化1v(dV=1)(可能有人说变化也太大了吧,但想下我们一般做类似lm886的时候用的电压是30v左右,电压下降1v,电压变化率是96.7%,我认为不算小了,那如果您非认为这个值小了,那你可以按照你所希望的值计算一下,或许你发现你所需要的代价是很大的),则上式变为C=I*dt。
那么我们就可以按照一个最大的猝发大功率信号时所需要的电流和猝发时间来计算我们所需要的最小电容大小了,以lm3886为例,它的最大输出功率是125W,那么我么可以假设需要电源提供的最大功率是150W,则电源提供的最大电流是I=150/(30+30)=2.5A(正负电源各2.5A),而大功率一般是低频信号,我们可以用100Hz信号代替,则dt=1/100=0.01s,带上上式后得到C=2.5×0.01=0.025=25000uF。
以上计算是按照功放的最大功率计算的,如果我们平时是用小音量听的话,电容不需要这么大的,我认为满足一定的纹波系数就可以了,4700u或许就已经够用了。
喜欢大音量的同志那就必须要用大水塘了,10000u也不算大。
ps:如果按照dV=0.1v计算,则C=25万uF,可以想像在电源上你要花多少钱,而且对音质的影响有多大还很难说。
而且从上面的计算还可以得出结论,给lm3886供电的变压器的功率必须要大于150W,如果用一个变压器给双路供电必须大于300W。
还有些人可能要问你的计算有问题,因为电容在给电路供电的时候,变压器还在给它充电,应该不需要这么大的电容。
我们也可以计算一下,当供电30v时,电流2.5A,相当与电容接了一个12欧姆的负载(这个是瞬时最小电阻),则变压器要给电容充电的时间是T =R×c=12×0.025=0.3s,而在0.01s内变压器给电容充不了多少电,功放电路的能量要全部由电容供给半波整流时,纹波公式(推导就不贴了,交流电等效内阻=0):Vr约等于(Vp-Vd)/(RL*C1*fin)Vr是纹波,Vp是交流电峰值,Vd是二极管正向压降,fin是交流电频率,或者Vr=IL/(C1*fin)IL是负载电流全波整流Vr=(Vp-2Vd)/(2*RL*C1*Fin)串联式开关电源储能滤波电感的计算从上面分析可知,串联式开关电源输出电压Uo与控制开关的占空比D有关,还与储能电感L 的大小有关,因为储能电感L决定电流的上升率(di/dt),即输出电流的大小。
因此,正确选择储能电感的参数相当重要。
串联式开关电源最好工作于临界连续电流状态,或连续电流状态。
串联式开关电源工作于临界连续电流状态时,滤波输出电压Uo正好是滤波输入电压uo的平均值Ua,此时,开关电源输出电压的调整率为最好,且输出电压Uo的纹波也不大。
因此,我们可以从临界连续电流状态着手进行分析。
我们先看(1-6)式:当串联式开关电源工作于临界连续电流状态时,即D=0.5时,i(0)=0,iLm=2Io,因此,(1-6)式可以改写为:式中Io为流过负载的电流(平均电流),当D=0.5时,其大小正好等于流过储能电感L最大电流iLm的二分之一;T为开关电源的工作周期,T正好等于2倍Ton。
由此求得:或:(1-13)和(1-14)式,就是计算串联式开关电源储能滤波电感L的公式(D=0.5时)。
(1-13)和(1-14)式的计算结果,只给出了计算串联式开关电源储能滤波电感L的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
如果增大储能滤波电感L的电感量,滤波输出电压Uo将小于滤波输入电压uo的平均值Ua,因此,在保证滤波输出电压Uo为一定值的情况下,势必要增大控制开关K的占空比D,以保持输出电压Uo的稳定;而控制开关K的占空比D增大,又将会使流过储能滤波电感L的电流iL不连续的时间缩短,或由电流不连续变成电流连续,从而使输出电压Uo的电压纹波ΔUP-P进一步会减小,输出电压更稳定。
如果储能滤波电感L的值小于(1-13)式的值,串联式开关电源滤波输出的电压Uo将大于滤波输入电压uo的平均值Ua,在保证滤波输出电压Uo为一定值的情况下,势必要减小控制开关K的占空比D,以保持输出电压Uo的值不变;控制开关K的占空比D减小,将会使流过滤波电感L的电流iL出现不连续,从而使输出电压Uo的电压纹波ΔUP-P增大,造成输出电压不稳定。
由此可知,调整串联式开关电源滤波输出电压Uo的大小,实际上就是同时调整流过滤波电感L和控制开关K占空比D的大小。
由图1-4可以看出:当控制开关K的占空比D小于0.5时,流过滤波电感L的电流iL出现不连续,输出电流Io小于流过滤波电感L最大电流iLm的二分之一,滤波输出电压Uo的电压纹波ΔUP-P 将显著增大。
因此,串联式开关电源最好不要工作于图1-4的电流不连续状态,而最好工作于图1-3和图1-5表示的临界连续电流和连续电流状态。
串联式开关电源工作于临界连续电流状态,输出电压Uo等于输入电压Ui的二分之一,等于滤波输入电压uo的平均值Ua;且输出电流Io也等于流过滤波电感L最大电流iLm的二分之一。
串联式开关电源工作于连续电流状态,输出电压Uo大于输入电压Ui的二分之一,大于滤波输入电压uo的平均值Ua;且输出电流Io也大于流过滤波电感L最大电流iLm的二分之一。
串联式开关电源储能滤波电容的计算我们同样从流过储能电感的电流为临界连续电流状态着手,对储能滤波电容C的充、放电过程进行分析,然后再对储能滤波电容C的数值进行计算。
图1-6是串联式开关电源工作于临界连续电流状态时,串联式开关电源电路中各点电压和电流的波形。
图1-6中,Ui为电源的输入电压,uo为控制开关K的输出电压,Uo为电源滤波输出电压,iL为流过储能滤波电感电流,Io为流过负载的电流。
图1-6-a)是控制开关K输出电压的波形;图1-6-b)是储能滤波电容C的充、放电曲线图;图1-6-c)是流过储能滤波电感电流iL的波形。
当串联式开关电源工作于临界连续电流状态时,控制开关K的占空比D等于0.5,流过负载的电流Io等于流过储能滤波电感最大电流iLm的二分之一。
在Ton期间,控制开关K接通,输入电压Ui通过控制开关K输出电压uo,在输出电压uo作用下,流过储能滤波电感L的电流开始增大。
当作用时间t大于二分之一Ton的时候,流过储能滤波电感L的电流iL开始大于流过负载的电流Io,所以流过储能滤波电感L的电流iL有一部分开始对储能滤波电容C进行充电,储能滤波电容C两端电压开始上升。
当作用时间t等于Ton的时候,流过储能滤波电感L的电流iL为最大,但储能滤波电容C的两端电压并没有达到最大值,此时,储能滤波电容C的两端电压还在继续上升,因为,流过储能滤波电感L的电流iL还大于流过负载的电流Io;当作用时间t等于二分之一Toff的时候,流过储能滤波电感L的电流iL正好等于负载电流Io,储能滤波电容C的两端电压达到最大值,电容停止充电,并开始从充电转为放电。
可以证明,储能滤波电容进行充电时,电容两端电压是按正弦曲线的速率变化,而储能滤波电容进行放电时,电容两端电压是按指数曲线的速率变化,这一点后面还要详细说明,请参考后面图1-23、图1-24、图1-25的详细分析。
图1-6中,电容两端的充放电曲线是有意把它的曲率放大了的,实际上它们的变化曲率并没有那么大。
因为储能滤波电感L和储能滤波电容构成的时间常数相对于控制开关的接通或关断时间来说非常大(正弦曲线的周期:T=),即:由储能滤波电感L和储能滤波电容组成谐振回路的谐振频率,相对于开关电源的工作频率来说,非常低,而电容两端的充放电曲线变化范围只相当于正弦曲线零点几度的变化范围,因此,电容两端的充、放电曲线基本上可以看成是直线,这相当于用曲率的平均值取代曲线曲率。
同理,图1-3、图1-4、图1-5中储能滤波电容C的两端电压都可以看成是按直线变化的电压,或称为电压或电流锯齿波。
实际应用中,一般都是利用平均值的概念来计算储能滤波电容C的数值。
值得注意的是:滤波电容C进行充、放电的电流ic的平均值Ia正好等于流过负载的电流Io,因为,在D等于0.5的情况下,电容充、放电的时间相等,只要电容两端电压的平均值不变,其充、放电的电流必然相等,并等于流过负载的电流Io。
滤波电容C的计算方法如下:由图1-6可以看出,在控制开关的占空比D等于0.5的情况下,电容器充、放电的电荷和充、放电的时间,以及正、负电压纹波值均应该相等,并且电容器充电流的平均值也正好等于流过负载的电流。
因此,电容器充时,电容器存储的电荷ΔQ为:电容器充电的电压增量2ΔUc为:由此求得:或:(1-17)和(1-18)式,就是计算串联式开关电源储能滤波电容的公式(D=0.5时)。
式中:Io是流过负载的电流,T为控制开关K的工作周期,ΔUP-P为输出电压的波纹。
电压波纹ΔUP-P一般都取峰-峰值,所以电压波纹正好等于电容器充电或放电时的电压增量,即:ΔUP-P=2ΔUc。
顺便说明,由于人们习惯上都是以输出电压的平均值为水平线,把电压纹波分成正负两部分,所以这里遵照习惯也把电容器充电或放电时的电压增量分成两部分,即:2ΔUc。
同理,(1-17)和(1-18)式的计算结果,只给出了计算串联式开关电源储能滤波电容C的中间值,或平均值,对于极端情况可以在平均值的计算结果上再乘以一个大于1的系数。
当储能滤波电容的值小于(1-17)式的值时,串联式开关电源滤波输出电压Uo的电压纹波ΔUP-P会增大,并且当开关K工作的占空比D小于0.5时,由于流过储能滤波电感L的电流iL出现不连续,电容器放电的时间大于电容器充电的时间,因此,开关电源滤波输出电压Uo的电压纹波ΔUP-P 将显著增大。
因此,最好按(1-17)式计算结果的2倍以上来选取储能滤波电容的参数。