辽宁高考数学考试(理科)答案与解析
辽宁高考数学理科卷解析

一、选择题(每小题5分,共60分). 1.已知集合{}{}35,55M x x N x x =-<=-<<,则MN =( )A. {}55x x -<< B. {}35x x -<< C. {}55x x-< D. {}35x x -<【测量目标】集合的基本运算.【考查方式】给出两个集合运用集合间的交集运算求解交集表示的范围. 【难易程度】容易 【参考答案】B【试题解析】直接利用交集性质求解,或者画出数轴求解. 2.已知复数12i z =-,那么1z=( )A.55+ B.i 55- C.12i 55+ D.12i 55- 【测量目标】复数的基本运算、共轭复数.【考查方式】给出复数的共轭复数的分数形式求其值. 【难易程度】容易 【参考答案】D 【试题解析】21112i 12i 12i 12i (12i)(12i)1255z --====-++-+. 3.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b 则2+=a b( )【测量目标】平面向量的数量积运算.【考查方式】给出平面向量之间的夹角及一个向量的坐标表示求模. 【难易程度】容易 【参考答案】B【试题解析】由已知2222,2444421cos60412︒=+=++=+⨯⨯⨯+=a a b a a b b ,∴2+=a b 4. 已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【测量目标】直线与圆的位置关系,圆的方程.【考查方式】已知圆与一条已知直线之间的位置关系和圆心所在的直线方程求圆的一般方程. 【难易程度】容易 【参考答案】B【试题解析】圆心在0x y +=上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.5.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( ) A.70种 B. 80种 C. 100种 D.140种 【测量目标】排列组合.【考查方式】给出实际问题运用排列组合的性质运算求解答案. 【难易程度】容易 【参考答案】A【试题解析】直接法:一男两女,有1254C C =5×6=30种,两男一女,有2154C C =10×4=40种,共计70种.间接法:任意选取39C =84种,其中都是男医生有35C =10种,都是女医生有14C =4种,于是符合条件的有84-10-4=70种. 6.设等比数列{}n a 的前n 项和为n S ,若633S S =,则69SS = ( )A. 2 B. 73C. 83D.3【测量目标】等比数列的前n 项和,等比数列的性质.【考查方式】给出等比数列的前n 项和的比的形式求解其值.【难易程度】容易 【参考答案】B【试题解析】设公比为q ,则3336333(1)132S q S q q S S +==+=⇒=.于是63693112471123S q q S q ++++===++. 7.曲线2xy x =-在点(1,1)-处的切线方程为( ) A. 2y x -= B.32y x =-+ C. 23y x =- D. 21y x =-+ 【测量目标】函数的导数,切线方程.【考查方式】给出一个曲线的解析式求其在某个定点的切线方程. 【难易程度】中等 【参考答案】D【试题解析】2222(2)(2)x x y x x ---'==--,当1x =时切线斜率为2k =-. 8.已知函数()cos()f x A x ωϕ=+的图象如图所示,π2()23f =-,则(0)f = ( )第8题图A.23-B.23C.12-D. 12【测量目标】函数sin()y A x ωϕ=+的图像与性质.【考查方式】给出函数sin()y A x ωϕ=+的图像,运用其性质求解未知数. 【难易程度】中等 【参考答案】B【试题解析】由图象可得最小正周期为2π3于是2π(0)()3f f =,注意到2π3与π2关于7π12对称所以2ππ2()()323f f =-=. 9.已知偶函数()f x 在区间[0,)+∞单调增加,则满足1(21)()3f x f -<的x 取值范围是( )A. 12(,)33B.12,33⎡⎫⎪⎢⎣⎭ C. 12(,)23 D. 12,23⎡⎫⎪⎢⎣⎭【测量目标】利用函数的单调性求参数范围.【考查方式】已知函数在某个区间的单调性求未知参数的取值范围. 【难易程度】中等 【参考答案】A【试题解析】由于()f x 是偶函数,故()()f x f x =∴得1(21)()3f x f -<,再根据()f x 的单调性得1213x -<解得1233x <<. 10.某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,... N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )第10题图A.0,A V S T >=-B.0,A V S T <=-C.0,A V S T >=+D.0,A V S T <=+【测量目标】循环结构的程序框图.【考查方式】已知某个循环结构的程序框图,给出输出结果逆推出原程序框图中的残缺部分. 【难易程度】容易 【参考答案】C 【试题解析】月总收入为S,因此0A >时归入S ,判断框内填0A >支出T 为负数,因此月盈利V S T =+.11.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥 P -GAC 体积之比为( )A. 1:1B. 1:2C. 2:1D. 3:2 【测量目标】锥的体积.【考查方式】求解已知几何体中部分几何体的体积之比. 【难易程度】中等 【参考答案】C【试题解析】由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积. 在底面正六边形ABCDEF 中3tan 303BH AB AB ︒==而3BD AB =故DH =2BH 于是22D GAC B GAC P GAC V V V ---==第11题图12.若1x 满足225xx +=, 2x 满足222log (1)5x x +-=, 12x x +=( )A.52 B.3 C. 72D.4 【测量目标】对数函数、指数函数的性质.【考查方式】给出满足对数函数、指数函数的未知数,运用对数函数、指数函数的性质求解未知数之和.【难易程度】中等 【参考答案】C【试题解析】由题意225xx += ①222log (1)5x x +-= ②(步骤1)所以112252,log (52)xx x x =-=-即12122log (52)x x =-(步骤2)令1272x t =-,代入上式得22722log (22)22log (1)t t t -=-=+-2522log (1)t t ∴-=-与②式比较得2t x = 于是12272x x =-(步骤3)1272x x ∴+=,故选C.(步骤4) 13.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分 层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命 的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为 980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为_________h. 【测量目标】分层抽样.【考查方式】给出实际问题运用分层抽样的方法求解答案. 【难易程度】容易 【参考答案】1013 【试题解析】9801102021032110134x ⨯+⨯+⨯==.14.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系.【考查方式】已知数列的通项与其前n 项和之间的关系求解数列的未知项.【难易程度】中等 【参考答案】13【试题解析】∵11(1)2n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413a =. 15.设某几何体的三视图如下(尺寸的长度单位为m ).则该几何体的体积为 3m .第15题图【测量目标】三视图,求几何体的体积【考查方式】给出几何体的三视图,求其体积. 【难易程度】容易 【参考答案】4【试题解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于16×2×4×3=4.16.已知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA +的最小值为 .【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的标准方程,运用其简单的几何性质求两条线段模的最值. 【难易程度】中等 【参考答案】9【试题解析】注意到P 点在双曲线的两只之间,且双曲线右焦点为(4,0)F ', 于是由双曲线性质24PF PF a '-==而5PA PF AF ''+=两式相加得9PF PA+,当且仅当,,A P F '三点共线时等号成立.17.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75︒,30︒,于水面C 处测得B 点和D 点的仰角均为60︒,0.1AC = km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414, 6≈2.44)第17题图【测量目标】正弦定理的实际应用.【考查方式】运用正弦定理在实际问题中构建三角形求解实际问题. 【难易程度】中等【试题解析】在ABC △中,30,6030DAC ADC DAC ︒︒︒∠=∠=-∠=.(步骤1)所以0.1CD AC == 又180606060BCD ︒︒︒︒∠=--=,(步骤2)故CB 是CAD △底边AD 的中垂线,所以BD BA =,(步骤3)在ABC △中,sin sin AB ACBCA ABC=∠∠即sin 60326sin1520AC AB ︒︒+==(步骤4)因此,3260.33km 20BD +=≈.故B ,D 的距离约为0.33km. (步骤5)18.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 .(1)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦;(2)用反证法证明:直线ME 与 BN 是两条异面直线.第18题图【测量目标】面面垂直,异面直线之间的关系.【考查方式】给出立体几何体,由已知知识点求解面面垂直与异面直线之间的关系. 【难易程度】较难【试题解析】(1)解法一:取CD 的中点G ,连接MG ,NG .设正方形ABCD ,DCEF 的边长为2,则MG ⊥CD ,MG =2,NG 2=(步骤1)因为平面ABCD ⊥平面DCED ,所以MG ⊥平面DCEF ,可得∠MNG 是MN 与平面DCEF 所成的角. (步骤2)因为MN 6=,所以6sin 3MNG ∠=为MN 与平面DCEF 所成角的正弦值.(步骤3) 解法二:设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为,,x y z 轴正半轴建立空间直角坐标系如图. (步骤1)则M (1,0,2),N (0,1,0),可得(1,1,2)MN =-(步骤2) 又(0,2,2)DA =为平面DCEF 的法向量,可得6cos(,)3MN DA MN DA MN DA==-· 所以MN 与平面DCEF 所成角的正弦值为6cos ,3MN DA =(步骤3)第18题(1)图(2)假设直线ME 与BN 共面,则AB ⊂平面MBEN ,且平面MBEN 与平面DCEF 交于EN 由已知,两正方形不共面,故AB ⊄平面DCEF .又AB //CD ,所以AB //平面DCEF .而EN 为平面MBEN 与平面DCEF 的交线,所以AB //EN .又AB //CD //EF ,所以EN //EF ,这与ENEF =E 矛盾,故假设不成立.所以ME 与BN 不共面,它们是异面直线. 19.(本小题满分12分)某人向一目射击4次,每次击中目标的概率为13.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(1)设X 表示目标被击中的次数,求X 的分布列;(2)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求()P A【测量目标】数学期望,分布列.【考查方式】运用数学期望的相关知识求解实际问题. 【难易程度】中等【试题解析】(1)依题意X 的分列为X 0 1 2 3 4P1681 3281 2481 881 181(2)设A 1表示事件“第一次击中目标时,击中第i 部分”,1,2i =.B 1表示事件“第二次击中目标时,击中第i 部分”,1,2i =依题意知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,(步骤1)11111122A A B A B A B A B =,(步骤2)所求的概率为11111122()()()()P A P A B P A B PA B P A B =+++() =11111122()()())()()()P A B P A P B PA PB P A P B +++( =0.10.90.90.10.10.10.30.30.28⨯+⨯+⨯+⨯= . (步骤3)20.(本小题满分12分)已知,椭圆C 过点A 3(1,)2,两个焦点为(1,0),(1,0)-.(1) 求椭圆C 的方程;(2) E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.【测量目标】椭圆的标准方程,直线与椭圆的位置关系.【考查方式】已知椭圆的几个参数求解椭圆的标准方程,判断直线与椭圆的位置关系. 【难易程度】较难【试题解析】(1)由题意,c =1,可设椭圆方程为2219114b b+=+,(步骤1)解得23b =,234b =-(舍去)所以椭圆方程为22143x y +=. (步骤2) (2)设直线AE 方程为:3(1)2y k x =-+,代入22143x y +=得 2223(34)4(32)4()1202k x k k x k ++-+--=(步骤3)设(,)E E E x y ,(,)F F F x y ,因为点3(1,)2A 在椭圆上,所以2234()12234F k x k--=+,32E E y kx k =+-(步骤4) 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以k -代k ,可得2234()12234F k x k +-=+32E Ey kx k =-++(步骤5)所以直线EF 的斜率()212F E F E EF F E F E y y k x x k k x x x x --++===--即直线EF 的斜率为定值,其值为12. (步骤6) 21.(本小题满分12分)已知函数21()(1)ln ,12f x x ax a x a =-+->. (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.【测量目标】函数的单调性.【考查方式】已知函数解析式求解函数的单调性,已知参数范围求解区间内函数的单调性. 【难易程度】较难【试题解析】(1)()f x 的定义域为(0,)+∞.211()a x ax a f x x a x x--+-'=-+= (1)(1)x x a x-+-=(步骤1)(i )若11a -=即2a =,则2(1)()x f x x-'=故()f x 在(0,)+∞单调增加. (步骤2)(ii)若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,()0f x '<;(步骤3) 当(0,1)x a ∈-及(1,)x ∈+∞时,()0f x '>故()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤4)(iii)若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤5)(2)考虑函数 ()()g x f x x =+21(1)ln 2x ax a x x =-+-+(步骤6)则211()(1)2(1)1(11)a a g x x a x a a x x--'=--+--=---(步骤7) 由于15a <<,故()0g x '>,即()g x 在(4, +∞)单调增加,从而当120x x >>时有12()()0g x g x ->,(步骤8)即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---.(步骤9) 22.(本小题满分10分)已知ABC △中,AB =AC , D 是ABC △外接圆劣弧AC 上的点(不与点A ,C 重合),延长BD 至E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30︒,ABC △中BC 边上的高为2+3, 求ABC △外接圆的面积.第22题图【测量目标】直线与圆的位置关系,圆的简单几何性质.【考查方式】给出圆与直线的位置关系,运用其简单几何性质求解角与线的关系.【难易程度】中等【试题解析】(1)如图,设F 为AD 延长线上一点∵A ,B ,C ,D 四点共圆,∴∠CDF=∠ABC (步骤1) 又AB =AC ∴∠ABC =∠ACB ,且∠ADB =∠ACB , ∴∠ADB =∠CDF , (步骤2)对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD 的延长线平分∠CDE . (步骤3)第22题图(2)设O 为外接圆圆心,连接AO 交BC 于H ,则AH ⊥BC .连接OC , OA 由题意∠OAC =∠OCA =15︒, ∠ACB =75︒,∴∠OCH =60︒.(步骤4)设圆半径为r ,则r +23r =2+3,a 得r =2,外接圆的面积为4π.(步骤5) 23.(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为πcos()3ρθ-=1,M,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.【测量目标】坐标系与参数方程.【考查方式】建立坐标系求解参数方程.【难易程度】中等【试题解析】(1)由πcos()13ρθ-=得13(cos )12ρθθ+=(步骤1) 从而C 的直角坐标方程为13122x y +=即32x +=(步骤2) 0θ=时,2,ρ=所以(2,0)M π2θ=时,3=3ρ所以3π()32N (步骤3) (2)M 点的直角坐标为(2,0)N 点的直角坐标为3(0,3(步骤4) 所以P 点的直角坐标为3,则P 点的极坐标为23π()6所以直线OP 的极坐标方程为π,(,)6θρ=∈-∞+∞(步骤5) 24.(本小题满分10分)设函数()|1|||f x x x a =-+-.(1)若1,a =-解不等式()3f x ; (2)如果x ∀∈R ,()2f x ,求a 的取值范围.【测量目标】不等式.【考查方式】给出函数解析式求解不等式.【难易程度】中等【试题解析】(1)当1a =-时,()11f x x x =-++.由()3f x 得113x x -++(步骤1) ○1当1x -时,不等式化为113x x---即23x -(步骤2)○2当1x >时,联立不等式组1()3x f x >⎧⎨⎩解得其解集为3+2⎛⎫∞ ⎪⎝⎭,,综上得()3f x 的解集为33,,22⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭.(步骤3) (2)若1,()21a f x x ==-,不满足题设条件.○1若1a <,21,,()1,1,2(1),1x a x a f x a a x x a x -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤4) ○2若1,a >21,1,()1,1,2(1),x a x f x a x a x a x a -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤5) 所以()2x f x ∀∈R ,的充要条件是12a -,从而a 的取值范围为][13∞-+∞(-,,).(步骤6)。
2023高考辽宁(理)全解全析

2023年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A 、B 互斥,那么 球地表面积公式P(A+B)=P(A)+P(B) S=42Rπ如果事件A 、B 相互独立,那么 其中R 表示球地半径 P(A ·B)=P(A)·P(B) 球地体和只公式如果事件A 在一次试验中发生地概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次地概率 V =243R π ()(1)(0,1,2,,)kkn kn n P k C P p k n -=-= 其中R 表示球地半径一、选择题1.已知集合{}30,31x M xN x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.M NC.()R M N ðD.()R M N ð解析:C解析:本小题主要考查集合地相关运算知识。
依题{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,()R M N = ð{}1.x x …2.135(21)lim(21)n n n n →∞++++-+ 等于( )A.14 B.12C.1D.2解析:B解析:本小题主要考查对数列极限地求解。
依题22135(21)1lim lim .(21)22n n n n n n n n →∞→∞++++-==++ 3.圆221x y +=与直线2y kx =+没有公共点地充要条件是( )A.(k ∈B.(,)k ∈-∞+∞C.(k ∈D.(,)k ∈-∞+∞ 解析:C解析:本小题主要考查直线和圆地位置关系。
依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.复数11212i i +-+-地虚部是( ) A.15i B.15 C.15i - D.15-解析:B解析:本小题主要考查复数地相关运算及虚部概念。
2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。
辽宁高考数学理科试题详细解答(全,每个题都有详细解答)

2012年高考辽宁卷理科数学解析版 沈阳市第三十一中学 李曙光编辑整理一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集{}=0,1,2,3,4,5,6,7,8,9U ,集合{}=0,1,3,5,8A ,集合{}=2,4,5,6,8B ,则()()=U U C A C BA .{}5,8B .{}7,9C .{}0,1,3D .{}2,4,6 难度 易 正确答案B()()(){}=C =7,9U U U C A C B AB2.复数2-=2+i i A .34-55iB .34+55i C .41-5i D .31+5i 难度 易 正确答案A()()()22-2-3-434===-2+2+2-555i ii i i i i 3. 已知两个非零向量,a b 满足+=-a b a b ,则下面结论正确 A .//a b B .a b ⊥ C .=a b D .+=-a b a b难度 中 正确答案B+=-a b a b ,可以从几何角度理解,以非零向量,a b 为邻边做平行四边形,对角线长分别为+,-a b a b ,若+=-a b a b ,则说明四边形为矩形,所以a b ⊥;也可由已知得22+=-a b a b ,即2222-2+=+2+=0a ab b a ab b ab a b ∴∴⊥ 4. 已知命题()()()()122121:,,--0p x x R f x f x x x ∀∈≥,则p ⌝是A .()()()()122121,,--0x x R f x f x x x ∃∈≤B .()()()()122121,,--0x x R f x f x x x ∀∈≤C .()()()()122121,,--<0x x R f x f x x x ∃∈D .()()()()122121,,--<0x x R f x f x x x ∀∈难度 易 正确答案C全称命题的否定形式为将“∀”改为“∃”,后面的加以否定,即将“()()()()2121--0f x f x x x ≥”改为“()()()()2121--<0f x f x x x ”5. 一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为 A .33!⨯ B .()333!⨯ C .()43!D .9!难度 中 正确答案C每家3口人坐在一起,捆绑在一起3!,共3个3!,又3家3个整体继续排列有3!种方法,总共有()43!6. 在等差数列{}n a 中,已知48+=16a a ,则该数列前11项和11=S A .58 B .88 C .143 D .176 难度 中 正确答案B4866+=2=16=8a a a a ∴,而()11111611+==11=882a a S a 7. 已知()sin -cos =2,0,αααπ∈,则tan α= A .1- B .2- C 2 D .1难度 中 正确答案A方法一:()sin -cos 2,0,αααπ∈,两边平方得1-sin 2=2,α()sin 2=-1,20,2,ααπ∈332=,=,24ππααtan =-1α∴ 方法二:由于形势比较特殊,可以两边取导数得cos +sin =0,tan =-1ααα∴8. 设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为A .20B .35C .45D .55 难度 中 正确答案D如图所示过点()5,15A 时,2+3x y 的最大值为55 9. 执行如图所示的程序框图,则输出的S 值是 A .-1 B .23 C .32D .4 难度 中 正确答案D当=1i 时,经运算得2==-12-4S ; 当=2i 时,经运算得()22==2--13S ;当=3i 时,经运算得23==222-3S ; 当=4i 时,经运算得2==432-2S ;当=5i 时,经运算得2==-12-4S ; 从此开始重复,每隔4一循环,所以当=8i 时,经运算得=4S ;接着=9i 满足输出条件,输出=4S 10. 在长为12cm 的线段AB 上任取一点C.现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积小于322cm 的概率为 A .16B .13 C .23 D .45难度 中正确答案C如图所示,令=,=AC x CB y ,则()+=12>0,y>0x y x ,矩形面积设为S ,则()==12-32S xy x x ≤。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5}【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i - 【答案】D(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B(4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A(6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =(A ) 2 (B )73 (C ) 83(D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2 于是63693112471123S q q S q ++++===++ 【答案】B (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x x x x ---=--,当x =1时切线斜率为k =-2 【答案】D(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23【答案】B(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23【答案】A10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
普通高等学校招生全国统一考试数学理(辽宁卷,含答案)

普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5} (2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73 (C ) 83(D )3 (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23)10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2022年辽宁省高考数学试卷(新高考II)附答案解析

2022年辽宁省高考数学试卷(新高考II)附答案解析一、选择题1. 题目:设函数 $ f(x) = \sqrt{x^2 + 1} $,求 $ f'(0) $。
答案:$ f'(0) = \frac{1}{2} $。
解析:根据导数的定义,我们有 $ f'(0) = \lim_{x \to 0}\frac{f(x) f(0)}{x 0} $。
将 $ f(x) $ 和 $ f(0) $ 代入,得到$ f'(0) = \lim_{x \to 0} \frac{\sqrt{x^2 + 1} 1}{x} $。
由于$ \sqrt{x^2 + 1} $ 在 $ x = 0 $ 附近可近似为 $ 1 +\frac{x^2}{2} $,所以 $ f'(0) $ 可近似为 $ \lim_{x \to 0}\frac{1 + \frac{x^2}{2} 1}{x} = \frac{1}{2} $。
2. 题目:已知等差数列 $\{a_n\}$ 的首项为 $a_1$,公差为$d$,求 $a_5$。
答案:$a_5 = a_1 + 4d$。
解析:根据等差数列的定义,我们有 $a_5 = a_1 + (5 1)d =a_1 + 4d$。
3. 题目:已知函数 $f(x) = x^3 3x$,求 $f(x)$ 的极值点。
答案:极小值点为 $x = 1$,极大值点为 $x = 1$。
解析:求导数 $f'(x) = 3x^2 3$,令 $f'(x) = 0$,解得 $x = \pm 1$。
然后求二阶导数 $f''(x) = 6x$,当 $x = 1$ 时,$f''(1) = 6 > 0$,所以 $x = 1$ 是极小值点;当 $x = 1$ 时,$f''(1) = 6 < 0$,所以 $x = 1$ 是极大值点。
4. 题目:已知函数 $f(x) = \frac{1}{x}$,求 $f(x)$ 的反函数。
辽宁省2020年高考[理数卷]考试真题与答案解析
![辽宁省2020年高考[理数卷]考试真题与答案解析](https://img.taocdn.com/s3/m/074ac81a42323968011ca300a6c30c225901f0b6.png)
辽宁省2020年高考[理数卷]考试真题与答案解析一、选择题1.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()U A B ðA .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}2.若α为第四象限角,则A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<03.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A .10名B .18名C .24名D .32名4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块11.若2x -2y <3−x -3−y ,则A .ln(y-x+1)>0B .ln(y-x+1)<0C .ln ∣x-y ∣>0D .ln ∣x-y ∣<012.0-1周期序列在通信技术中有着重要应用.若序列满足,且存12n a a a {0,1}(1,2,)i a i ∈= 在正整数,使得成立,则称其为0-1周期序列,并称满足的m (1,2,)i m i a a i +== (1,2,)i m i a a i +== 最小正整数为这个序列的周期.对于周期为的0-1序列,m m 12n a a a 是描述其性质的重要指标,下列周期为5的0-1序列中,满足11()(1,2,,1)mi i k i C k a a k m m +===-∑ 的序列是1()(1,2,3,4)5C k k ≤=A .B .C .D .11010 11011 10001 11001二、填空题13.已知单位向量a ,b 的夹角为45°,k a –b 与a 垂直,则k=__________.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.15.设复数,满足,,则=__________.1z 2z 12||=||=2z z 123i z z +=+12||z z -16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .⊂则下述命题中所有真命题的序号是__________.①②③④14p p ∧12p p ∧23p p ⌝∨34p p ⌝∨⌝三、解答题(一)必考题17.中,sin 2A -sin 2B -sin 2C= sinBsinC .ABC △(1)求A ;(2)若BC=3,求周长的最大值.ABC △18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,20160i i x ==∑2011200i i y ==∑,,.2021)8(0ii x x =-=∑2021)9000(i i y y =-=∑201)()800(i i i y y x x =--=∑(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数,.12211)(()()()iiini n i ini x y r x y x y x y ===----=∑∑∑2 1.414≈19.已知椭圆C 1:(a>b>0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 222221x y a b+=的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且.43CD AB =(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF|=5,求C 1与C 2的标准方程.20.如图,已知三棱柱ABC-A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面(2)设O 为△A 1B 1C 1的中心,所成角的正弦值.21.已知函数2() sin sin2f x x x =(1)讨论f(x)在区间(0,π)的单调性;答案解析1.A2.D3.B4.C5.B6.C7.A8.B9.D 10.C 11.A 12.C 13.14.3615.16.①③④222317.解:(1)由正弦定理和已知条件得,①222BC AC AB AC AB --=⋅由余弦定理得,②2222cos BC AC AB AC AB A =+-⋅由①,②得.1cos 2A =-因为,所以.0πA <<2π3A =(2)由正弦定理及(1)得,23sin sin sin AC AB BCB C A===从而,.23sin AC B =23sin(π)3cos 3sin AB A B B B =--=-故.π33sin 3cos 323sin()3BC AC AB B B B ++=++=++又,所以当时,周长取得最大值.π03B <<π6B =ABC △323+18.解:(1)由已知得样本平均数,从而该地区这种野生动物数量的估计值20160120i iy y===∑为60×200=12000.(2)样本的相关系数(,)i i x y (1,2,,20)i = .20120202211)()800220.94380900(0))((ii iii i ix y y x x r x y y ===--===≈⨯--∑∑∑(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.19.解:(1)由已知可设的方程为,其中.2C 24y cx =22c a b =-不妨设在第一象限,由题设得的纵坐标分别为,;的纵坐标分别为,,A C ,A B 2b a 2b a -,C D 2c ,故,.2c -22||b AB a=||4CD c =由得,即,解得(舍去),.4||||3CD AB =2843b c a =2322()c c a a ⨯=-2c a =-12c a =所以的离心率为.1C 12(2)由(1)知,,故,2a c =3b c =22122:143x y C c c+=设,则,,故.①00(,)M x y 220022143x y c c +=2004y cx =20024143x x c c+=由于的准线为,所以,而,故,代入①得2C x c =-0||MF x c =+||5MF =05x c =-,即,解得(舍去),.22(5)4(5)143c c c c --+=2230c c --=1c =-3c =所以的标准方程为,的标准方程为.1C 2213627x y +=2C 212y x =20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以.又由已知得AA 1∥CC 1,1MN CC ∥故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .所以平面A 1AMN ⊥平面.11EB C F (2)由已知得AM ⊥BC .以M 为坐标原点,的方向为x 轴正方向,为单位长,建立如MAMB 图所示的空间直角坐标系M-xyz ,则AB=2,AM=.3连接NP ,则四边形AONP 为平行四边形,故.由(1)知平面A 1AMN ⊥23231,(,,0)333PM E =平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设,则,(,0,0)Q a 22123234(),(,1,4())33NQ a B a a =----故.21123223210(,,4()),||3333B E a a B E =-----=故的普通方程为.2C 224x y -=(2)由得所以的直角坐标为.224,4x y x y +=⎧⎨-=⎩5,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩P 53(,)22设所求圆的圆心的直角坐标为,由题意得,0(,0)x 220059()24x x =-+解得.01710x =因此,所求圆的极坐标方程为.17cos 5ρθ=23.解:(1)当时,2a =72,3,()1,34,27,4,x x f x x x x -≤⎧⎪=<≤⎨⎪->⎩因此,不等式的解集为.()4f x ≥311{|}22x x x ≤≥或(2)因为,故当,即时,222()|||21||21|(1)f x x a x a a a a =-+-+≥-+=-2(1)4a -≥|1|2a -≥.所以当a≥3或a≤-1时,.()4f x ≥()4f x ≥当-1<a<3时,,222()|21|(1)4f a a a a =-+=-<所以a 的取值范围是.(,1][3,)-∞-+∞。
2024年辽宁省高考数学真题及参考答案

2024年辽宁省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁高考数学考试(理科)答案与解析
————————————————————————————————作者: ————————————————————————————————日期:
2012年辽宁省高考数学试卷(理科)
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2012•辽宁)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁UB)=( )
A. {5,8} B.{7,9} C. {0,1,3} D. {2,4,6}
考点:交、并、补集的混合运算.
专题:计算题.
分析:由题已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)
解答:解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以CUA={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C UA)∩(C U B)={7,9}
故选B
点评:本题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规则2.(5分)(2012•辽宁)复数=()
A. B. C.D.
考点:复数代数形式的乘除运算.
专题: 计算题.
分析:进行复数的除法运算,分子和分母同乘以分母的共轭复数,再进行复数的乘法运算,化成最简形式,得到结果.
解答:
解:===,
故选A.
点评:本题考查复数的代数形式的乘除运算,本题解题的关键是掌握除法的运算法则,本题是一个基础题.
3.(5分)(2012•辽宁)已知两个非零向量,满足|+|=|﹣|,则下面结论正确的是()
A.
∥B.
⊥
C.
||=||
D.
+=﹣
考点:平面向量数量积的运算.专题:平面向量及应用.。