差热分析

合集下载

差热分析

差热分析

差动热分析仪热分析是在程序控温条件下,测量物质物理化学性质随温度变化的函数关系的一种技术。

程序控温可采用线性、对数或倒数程序。

热分析法依照所测样品物理性质的不同有以下几种:差热分析法,差示扫描量热法,热重分析法,热膨胀分析及热——力分析法等。

图a. 差动热分析仪整机线路连接图1.电炉2.气氛控制单元3.数据站接口单元4.差动热补偿单元5.差热放大单元6.可控硅加热单元7.微机温控单元图b. 仪器各主要部件2图c. 加热炉组件图d. 电炉(一)差热分析差热分析(differential thermal analysis, DTA)法是在程序控温下,测量物质与参比物之间温度差随温度或时间变化的一种技术。

根据国际热分析协会(international confederation for thermal analysis, ICTA) 规定,DTA曲线放热峰向上,吸热峰向下,灵敏度单位为微伏(μV)。

如图1-1为苦味酸(三硝基苯酚)的DTA曲线。

图1-1 苦味酸在动态空气中的DTA曲线可见,体系在程序控温下,不断加热或冷却降温,物质将按照它固有的运动规律而发生量变或质变,从而产生吸热或放热,根据吸热或放热便可判定物质内在性质的变化。

如:晶型转变、熔化、升华、挥发、还原、分解、脱水或降解等。

差热分析测量原理如图1-2所示。

图1-2 差热分析原理示意图图1-3 仪器工作原理差热分析仪主要由温度控制系统和差热信号测量系统组成,辅之以气氛和冷却水通道,测量结果由记录仪或计算机数据处理系统处理。

1.温度控制系统该系统由程序温度控制单元、控温热电耦及加热炉组成。

程序温度控制单元可编程序模拟复杂的温度曲线,给出毫伏信号。

当控温热电耦的热电势与该毫伏值有偏差时,说明炉温偏离给定值,由偏差信号调整加热炉功率,使炉温很好地跟踪设定值,产生理想的温度曲线。

2.差热信号测量系统该系统由差热传感器、差热放大单元等组成。

差热传感器即样品支架,由一对差接的点状热电耦和四孔氧化铝杆等装配而成,测定时将试样与参比物(常用α-Al2O3)分别放在两只坩埚中,置于样品杆的托盘上,然后使加热炉按一定速度升温(如10℃〃min-1)。

差热和热重分析

差热和热重分析

差热分析可以用来研究土壤中污染物 的热分解和转化过程,例如研究土壤 中农药的分解和转化过程。
热重分析可以用来研究土壤中污染物 的迁移和分布特性,例如研究土壤中 重金属的分布和迁移特性。
06 差热和热重分析的未来发 展与挑战
新技术发展
新型传感器技术
利用新型传感器技术,如纳米传感器和柔性传感器,提高差热和 热重分析的灵敏度和精度。
差热分析的应用
01 确定物质的熔点、玻璃化转变温度等物理 性质。
02 研究物质的热稳定性、热分解和氧化等化 学性质。
03
用于药物、食品、聚合物、陶瓷等领域的 研发和质量控制。
04
热重分析(TGA)
02 热重分析(TGA)
热重分析的定义
热重分析(TGA)是一种在程序控温下测量物质质量与温度关系的分析方法。通过 测量物质质量随温度变化的情况,可以研究物质在加热或冷却过程中的物理和化学 变化。
在热重分析中,样品被放置在热天平上,并加热或冷却以模拟不同的温度条件。随着温度的变化,样 品的质量会发生变化,这些变化被记录并转化为温度与质量之间的关系曲线。通过对曲线的分析,可 以了解物质在加热或冷却过程中的质量变化情况。
热重分析的应用
热重分析在多个领域都有广泛的应用,包括材料科学 、化学、制药、食品科学等。它可以用于研究材料的 热稳定性、分解行为、反应动力学以及物质在温度变 化过程中的相变等。
陶瓷材料的抗热震性能
差热分析可以研究陶瓷材料在不同温度下的热震稳定性,对于陶瓷 材料的应用具有重要意义。
金属材料
金属材料的熔点和凝固点
01
通过差热分析,可以精确测定金属材料的熔点和凝固点,有助
于了解金属材料的热物性。
金属材料的氧化和腐蚀行为

差热分析

差热分析

• 将试样和参考物(在一定 温度范围内不发生热效应 的一些热惰性物质)放在 炉子的恒温区内,以完全 相同的条件升温或降温, 在试样和参考物的底部安 装两支热电偶,并把这两 支热电偶反向串联—差示 热电偶起来。如右图所示:

当试样加热过程中产生吸热或放热效应时,试 样的温度就会低于或高于参比物质的温度,差热 电偶的冷端就会输出相应的差热电势。通过检流 计偏转与否来检测差热电势的正负,就可推知是 吸热或放热效应。在与参比物质对应的热电偶的 端连接上温度指示装置,就可检测出物质发生物 理化学变化时所对应的温度。
DTA与DSC区别
• DSC多了个补偿加热器 • 用差式扫描量热仪可以直接测量热量 ,差式分析却不可以。DTA在试样发 生热效应时,试样的实际温度已发生 改变。而DSC的试样热量变化随时可 以被补充。试样与参比物温度始终相 等,避免了热传。
典型的DSC曲线
典型的差示扫描量热(DSC) 曲线以热流率(dH/dt)为纵 坐标、以时间(t)或温度(T) 为横坐标,即dH/dt-t(或T) 曲线。 曲线离开基线的位移即代表样 品吸热或放热的速率(mJ· s1),而曲线中峰或谷包围的 面积即代表热量的变化。 因而差示扫描量热法可以直接 测量样品在发生物理或化学变 化时的热效应。
图7 典型的DSC曲线
第三节 热重法
• 热重法(TG或TGA):在程序控制 温度条件下,测量物质的质量与温度 关系的一种热分析方法。 • 其数学表达式为: ΔW=f(T)或(τ) • ΔW为重量变化,T是绝对温度,τ是时 间。 • 热重法试验得到的曲线称为热重曲线 (即TG)。 • TG曲线以质量(或百分率%)为纵坐 标,从上到下表示减少,以温度或时 间作横坐标,从左自右增加,试验所 得的TG曲线,对温度或时间的微分可 得到一阶微商曲线DTG和二阶微商曲 线DDTG

差热分析

差热分析

S.L.Boersma (J.Amer.Ceram.
= mq
(3)
Soc.38.281.1955
G
W.W.Wendl endt 认为实 用于常规
m 试样中活性物质的质量
DTA 装置
q 单位活性物质量的转变或反应热 G 镍制品坩埚和周围镍套(带有盖)间的
导热系数
5
△T 温度差 t1 转变开始时间 t2 △T 回到零的时间 镍均温块 放置样品的空穴型状
础上经某种简化、例如样品物理性质不随温度变化、线性升温等推得峰面积与热
效应关系的数学表达式。表 1 列出了几种主要理论及其表达式。表 1 继 speil 之
后 出的峰面积和过程热效应关系的理论
理论 出者及 表达式
主要假设条件
备注
原始文献
M.J.Vold (Anal.Chem. 21.688.1949)
若将在实验温区内呈热稳定的已知物质(即参比物)和试样一起放人一个加 热系统中(见图 1),并以线性程序温度对它们加热。在试样没有发生吸热或放热 变化且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是 一致的。若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度 偏离线性升温线,且向高温方向移动。反之、在试样发生吸热变化时,由于试样 不可能从环境瞬间吸取足够的热量,从而使试样温度低于程序温度。只有经历一 个传热过程试样才能回复到与程序温度相同的温度。
物质在加热或冷却过程中会发生物理变化或化学变化,与此同时,往往还伴 随吸热或放热现象。伴随热效应的变化,有晶型转变、沸腾、升华、蒸发、熔融 等物理变化,以及氧化还原。分解、脱水和离解等化学变化。另有—些物理变化, 虽无热效应发生但比热容等某些物理性质也会发生改变、这类变化如玻璃化转变 等。物质发生焓变时质量不一定改变,但温度是必定会变化的。差热分析正是在 物质这类性质基础上建立的一种技术。

差热分析法

差热分析法

差热分析法基本原理差热分析法——Differential Thermal Analysis (DTA)是在程序控制温度下,测量试样与参比物质之间的温度差ΔT与温度T(或时间t)关系的一种分析技术,所记录的曲线是以ΔT 为纵坐标,以T(或t)为横坐标的曲线,称为差热曲线或DTA曲线,反映了在程序升温过程中,ΔT与T或t的函数关系:ΔT = f ( T ) 或f ( t )参比物质为一种在所测量温度范围内不发生任何热效应的物质。

通常使用的参比物质是灼烧过的α-Al2O3或MgO。

图17.6为DTA原理示意图。

加热时,温度T及温差△T分别由测温热电偶及差热电偶测得。

差热电偶是由分别插在试样S和参比物R的二支材料、性能完全相同的热电偶反向相连而成。

当试样S没有热效应发生时,组成差热电偶的二支热电偶分别测出的温度T s、T R相同,即热电势值相同,但符号相反,所以差热电偶的热电势差为零,表现出ΔT=T s-T R=0,记录仪所记录的ΔT曲线保持为零的水平直线,称为基线。

若试样S有热效应发生时,T s≠T R,差热电偶的热电势差不等于零,即ΔT=T s-T R≠0,于是记录仪上就出现一个差热峰。

热效应是吸热时,ΔT=T s-T R<0,吸热峰向下,热效应是放热时,ΔT>0,放热峰向上。

当试样的热效应结束后,T s、T R又趋于一样,ΔT恢复为零位,曲线又重新返回基线。

图17.7为试样的真实温度与温差比较图。

差热峰反映试样加热过程中的热效应,峰位置所对应的温度尤其是起始温度是鉴别物质及其变化的定性依据,峰面积是代表反应的热效应总热量,是定量计算反应热的依据,而从峰的形状(峰高、峰宽、对称性等)则可求得热反应的动力学参数。

表17.2列出了各种吸热和放热体系的类型,供判断差热峰产生机理时参考。

表17.2 差热分析中吸热和放热体系的主要类型现象(物理的原因)吸热放热现象(化学的原因)吸热放热结晶转变○○化学吸附○熔融○析出○气化○脱水○升华○分解○○吸附○氧化度降低○脱附○氧化(气体中)○吸收○还原(气体中)○氧化还原反应○○固相反应○○影响DTA的因素影响DTA的因素很多,下面讨论几种主要的因素:★升温速度的影响保持均匀的升温速度(ψ)是DTA的重要条件之一,即应:ψ = dT R / dt = 常数若升温速度不均匀(即ψ有波动),则DTA曲线的基线会漂移,影响多种参数测量。

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介 (Differential Thermal Analysis)

差热分析法(DTA)简介(Differential Thermal Analysis)1.DTA的基本原理差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。

差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。

在DAT试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。

如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,断裂或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。

一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。

差热分析的原理如图Ⅱ-3-1所示。

将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,以表示各自的温度,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。

则它们的升温曲线如图Ⅱ-3-2所示。

若以对t作图,所得DTA曲线如图Ⅱ-3-3所示,在0-a区间,ΔT大体上是一致的,形成DTA曲线的基线。

随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。

显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。

图Ⅱ-3-1差热分析的原理图 II-3-1 差热分析的原理图图II-3-2试样和参比物的升温曲线1.参比物;2.试样;3.炉体;4.热电偶(包括吸热转变)图Ⅱ-3-3 DTA吸热转变曲线TA曲线所包围的面积S可用下式表示式中m是反应物的质量,ΔH是反应热,g是仪器的几何形态常数,C是样品的热传导率ΔT是温差,t1是DTA曲线的积分限。

这是一种最简单的表达式,它是通过运用比例或近似常数g和C来说明样品反应热与峰面积的关系。

这里忽略了微分项和样品的温度梯度,并假设峰面积与样品的比热无关,所以它是一个近似关系式。

差热分析及其应用

差热分析及其应用

地质年代测定
通过差热分析可以测定地 质样品的热稳定性,结合 其他方法可用于地质年代 的测定和古气候研究。
火山喷发研究
差热分析可以用于研究火 山岩的形成和演化过程, 有助于了解火山喷发的机 制和规律。
环境科学领域
有毒有害物质检测
差热分析可以用于检测环境中的有毒有害物质,如重金属、有机 污染物等,为环境监测和治理提供技术支持。
THANKS
化学反应研究
差热分析可用于研究化学 反应的热力学参数,如反 应热、熵变等,有助于深
入了解反应机理。
化学物质鉴定
通过差热分析可以确定化 学物质的结构和组成,有 助于对未知化合物的鉴定
和分类。
催化剂研究
差热分析可用于研究催化 剂的热稳定性和活性,为 催化剂的优化和改进提供
依据。
材料科学领域
材料热稳定性分析
参比物
用于比较样品热性质的物质,通 常为惰性物质。
坩埚
用于盛放样品和参比物的容器。
实验步骤与操作
准备样品和参比物
将样品和参比物分别放入坩埚中。
设定实验参数
根据实验需求设定差热分析仪的参数,如 加热速率、温度范围等。
开始实验
将坩埚放入差热分析仪中,启动实验。
数据记录与分析
记录实验过程中的热量变化数据,并进行 分析。
无损分析
差热分析是一种非破坏性的分析方法,样品在测试过程中 不会被破坏或消耗,因此可以用于对珍贵的文物或生物样 品进行无损分析。
应用广泛
差热分析可以用于研究物质的物理性质和化学性质,如熔 点、沸点、结晶、反应热等,因此被广泛应用于材料科学 、化学、生物学等领域。
操作简便
差热分析的操作相对简单,只需要将样品放入差热分析仪 中,进行必要的参数设置即可开始测试。

差热分析法(DTA)

差热分析法(DTA)

6.3.1 基本原理
2012-3-8
5
6.3.2 差热曲线方程
为了对差热曲线进行理论上的分析, 为了对差热曲线进行理论上的分析 , 从 60年代起就开始进行分析探讨 , 但由于 年代起就开始进行分析探讨, 年代起就开始进行分析探讨 考虑的影响因素太多, 考虑的影响因素太多 , 以致于所建立的 理论模型十分复杂,难以使用。 理论模型十分复杂,难以使用。 1975年 , 神户博太郎对差热曲线提出了 年 一个理论解析的数学方程式, 一个理论解析的数学方程式 , 该方程能 够十分简便的阐述差热曲线所反映的热 力学过程和各种影响因素。 力学过程和各种影响因素。
2012-3-8 16
(二)
CS
在反应终点C, 反应终点 ,
d∆H = 0 dt
K ln (∆Tc − ∆Ta ) = − t CS
d∆T dt
= − K [∆T − ∆Ta ]
K ∆Tc = exp− CS
t + ∆Ta
(6 − 9)
反应终点C以后, 将按指数函数衰减直至 反应终点 以后,∆T将按指数函数衰减直至 以后 ∆T 基线) 2012-3-8 a(基线)
2012-3-8 20
6.3.3 差热分析仪
差热分析仪的组成
加热炉 温差检测器 温度程序控制仪 信号放大器 记录仪 气氛控制设备
2012-3-8 21
6.3.4 差热分析的影响因素
1. 仪器因素: 仪器因素: 炉子的形状结构与尺寸, 炉子的形状结构与尺寸,坩埚材料与 形状, 形状,热电偶位置与性能 2. 实验条件因素: 实验条件因素: 升温速率、 升温速率、气氛 3. 试样因素: 试样因素: 用量、 用量、粒度
2012-3-8 22

简述差热分析,差示扫描量热分析的基本原理

简述差热分析,差示扫描量热分析的基本原理

简述差热分析,差示扫描量热分析的基本原理差热分析和差示扫描量热分析(DSC)是测量材料的物理性质的一种常用技术。

它们可以测量和分析材料的热量流失,在加热和冷却过程中材料的温度,以及在这两个过程中发生的化学反应。

这些技术也常用于分析材料的物化特性,如熔点,热容量等。

差热分析是一种根据材料在不同温度下的热导率,来测量材料特性的技术。

它通过控制一个样品在不同温度,以及使用固定的快速热流,来直接测量材料的热传导性能。

它的基本原理是,当样品和热源之间的温度差达到一定的值时,样品会吸收热量,加热;同时,温度差值会随着温度的变化而变化。

差示扫描量热分析(DSC)是一种更加精确的测量技术,它可以测量更小的温度变化,以及更小的热量流失。

它将差热分析中的快速热流替换成一致热流,从而得到更精确的测量结果。

它的基本原理是,在一个固定的温度量程内(由上下限确定),控制一个样品在升温或降温过程中,样品吸收或放出热量,从而使得温度变化,从而得到热量流失的精确值。

在差热分析和差示扫描量热分析的应用中,需要使用专业的仪器来测量和控制温度。

这些仪器可以精确地控制温度,使用户可以在短时间内得到精确的测量结果。

差热分析和差示扫描量热分析是材料特性分析中常用的技术,它们可以测量材料的热量流失,温度变化,以及发生的化学反应。

它们通过精确的控制温度,以及使用固定的快速热流或一致热流,来测量材料的热传导性能,以及材料的物理和化学特性。

同时,它们也可以帮助用户轻松地得到精确的测量结果。

总之,差热分析和差示扫描量热分析是研究材料特性常用的技术,它们的基本原理是,在一定温度差达到一定大小时,样品会吸收或放出热量,从而使得温度变化。

同时,这些技术也需要使用专业的仪器,来获得精确的测量结果。

差热分析(Differencial Thermal Analysis, DTA)

差热分析(Differencial Thermal Analysis, DTA)

差热分析的应用
提供的信息:
峰的位置 峰的形状 峰的个数
凝胶材料的烧结进程研究
DTA数据的记录方式
6)用时间或温度作为横坐标,从左到右为增加。 7)说明鉴定中间生成物和最后产物的方法。8)全部 原始记录的如实重复。 9)标明试样重量和试样稀释程度。 11)标明所用仪器的型号、商品名称及热电偶的几何 形状、材料和位置。
影响曲线形状的因素
• 影响差热分析的主要因素有三个方面:仪
DTA曲线及理论分析
DTA曲线
DTA曲线是指试样与参比物间的温差(ΔT) 曲线和温度(T)曲线的总称。
DTA曲线分析
① 零线:理想状态ΔT=0的线; ② 基线:实际条件下试样无热效应时的曲线部份; ③ 吸热峰:TS<TR ,ΔT<0时的曲线部份; ④ 放热峰:TS>TR , ΔT>0时的曲线部份; ⑤ 起始温度(Ti):热效应发生时曲线开始偏离基线的 温度; ⑥ 终止温度(Tf):曲线开始回到基线的温度;
稀释 剂的 加入 往往 会降 低差 热分 析的 灵敏
度!
差热曲线分析
差热曲线分析就是解释曲线上每个峰谷产生的原因,从 而分析被测物质是有那些物相组成的。峰谷产生的原因 有:
✓矿物质脱水 ✓相变 ✓物质的化合或分解 ✓氧化还原
差热分析的峰只表示试样的热效应,本身不反应更多 的物理化学本质。为此,单靠差热曲线很难做正确的解 释。现在普遍采用的联用技术。
✓ 如:在空气和氢气的气氛下
对镍催化剂进行差热分析, 所得到的结果截然不同(见 图)。在空气中镍催化剂被 氧化而产生放热峰。
稀释剂的影响
稀释剂是指在试样 中加入一种与试样不 发生任何反应的惰性 物质,常常是参比物 质。稀释剂的加入使 样品与参比物的热容 相近,能有助于改善 基线的稳定性,提高 检出灵敏度,但同时 也会降低峰的面积。

差热分析dta实验报告

差热分析dta实验报告

差热分析dta实验报告引言差热分析(Differential Thermal Analysis, DTA)是一种常用的热分析技术,用于研究物质的热性质和相变行为。

本实验旨在通过DTA技术,对样品进行加热或冷却过程中的温度变化进行监测,并观察样品中可能存在的热性质和相变点。

实验方法实验仪器和试剂本次实验所使用的仪器为差热分析仪(DTA),试剂为待测试样品。

实验步骤1. 准备样品:将待测试样品准备成适当的形状和大小,确保样品的质量在仪器所能接受的范围之内。

2. 样品装填:将样品置于DTA仪器的样品台上,并确保样品与台面接触良好,以保证传热效果。

3. 设定实验条件:根据样品的性质和研究目的,设置合适的加热速率、升温范围和冷却速率。

4. 开始实验:启动DTA仪器,开始进行样品的加热或冷却处理。

5. 数据记录:在实验过程中,实时记录样品的温度变化情况。

6. 数据分析:利用DTA仪器的数据处理软件,对实验数据进行分析,获取样品的热性质和相变点。

实验结果与分析我们选择了一种未知样品进行差热分析实验,结果如下图所示:![DTA实验结果图](dta_result.png)从实验结果图中可以看出,在样品加热过程中,出现了两个峰值,分别对应着两个不同的相变点。

根据峰值的温度和形状,可以初步判断样品可能存在的相变类型。

对于第一个峰值,其温度在600C左右,呈现出一个尖峰状,说明样品可能发生了固态相变。

根据不同物质的热性质,可以进一步判断该固态相变可能是晶体结构的变化或者晶格缺陷的形成等。

第二个峰值出现在800C左右,温度范围较宽,且峰值相对较平,表明该相变可能为液固相变或者化学反应等。

进一步的分析还需要结合实际的样品性质和反应条件,进行详细的比较和判断。

结论通过差热分析(DTA)实验,我们得到了待测试样品的热性质和相变点的初步信息。

根据实验结果分析,样品可能存在两个不同的相变类型,其中一个为固态相变,另一个为液固相变或者化学反应。

差热分析与热重分析

差热分析与热重分析

差热分析与热重分析计划学时:2学时本实验通过DTA研究物质BaCl2.2H2O在加热过程中所发生的物理化学变化,绘制相应曲线,确定其变化的实质。

【实验目的】(1) 掌握DTA热分析仪的原理和实验技术。

(2) 测量化学分解反应过程中的分解温度。

(3) 测量物质在加热过程中所发生的物理化学变化,绘制相应曲线,从而研究材料的反应过程。

【实验原理】热分析是物理化学分析的基本方法之一。

综合热分析研究物质在加热过程中发生相变或其他物理化学变化时所伴随的能量、质量和体积等一系列的变化,可以确定其变化的实质或鉴定矿物。

DSC和DTA研究物质在加热过程中内部能量变化所引起的吸热或放热效应。

1. 差热分析DTA原理差热分析(Differential Thermal Analysis 简称DTA )是指在程序控制温度下,测量物质和参比物之间的温度差与温度(或时间)关系的一种技术。

用数学式表达为△T= Ts—Tr ( T 或t )式中Ts ,Tr ——分别代表试样及参比物温度;T ——程序温度;t ——时间。

试样和参比物的温度差主要取决于试样的温度变化。

DTA 仪由以下几部分组成:(1) 样品支持器。

(2) 程序控温的炉子。

(3) 记录器。

(4) 检测差热电偶产生的热电势的检测器和测量系统。

(5) 气氛控制系统。

若将呈热稳定的已知物质(即参比物)和试样一起放入一个加热系统中,并以线性程序温度对它们加热。

在试样没有发生吸热或放热变化,且与程序温度间不存在温度滞后时,试样和参比物的温度与线性程序温度是一致的。

即Ts—Tr(△T)为零时,两温度线重合,在△T 曲线上则为一条水平基线。

若试样发生放热变化,由于热量不可能从试样瞬间导出,于是试样温度偏离线性升温线,且向高温方向移动。

而参比物的温度始终与程序温度一致,△T >0,在△T 曲线上是一个向上的放热峰。

反之,在试样发生吸热变化时,由于试样不可能从环境瞬间吸收足够的热量,从而使试样温度低于程序温度。

差热分析曲线实验报告(3篇)

差热分析曲线实验报告(3篇)

第1篇一、实验目的1. 了解差热分析仪的构造和操作原理。

2. 掌握差热分析的基本实验操作技术。

3. 学会定性解释差热谱图。

4. 用DTA图确定物质的反应初始温度。

二、实验原理差热分析(Differential Thermal Analysis,简称DTA)是一种用于研究物质在加热或冷却过程中,伴随物理或化学变化所产生的热效应的方法。

通过测量试样与参比物之间的温度差随温度或时间的变化关系,可以了解物质的相变、分解、吸附、脱附等过程的热效应,从而对物质进行定性、定量分析。

在差热分析实验中,试样和参比物被置于同一加热炉中,分别由两个热电偶进行温度测量。

当加热炉温度升高时,试样和参比物之间会发生热交换,导致两者温度产生差异。

通过测量这种温度差,可以绘制出差热分析曲线。

三、实验仪器与试剂1. 实验仪器:- CRY-1P型差热分析仪1套- 计算机- 镊子- 小勺- 坩埚- CuSO4·5H2O- α-Al2O32. 实验试剂:- CuSO4·5H2O:分析纯- α-Al2O3:分析纯四、实验步骤1. 将CuSO4·5H2O和α-Al2O3分别置于两个坩埚中,并确保它们的质量和形状尽可能一致。

2. 将两个坩埚放入差热分析仪的样品架上,并调整好位置。

3. 启动差热分析仪,设置合适的升温速率和温度范围。

4. 当加热炉温度达到设定值时,记录差热分析曲线。

5. 完成实验后,关闭差热分析仪,并整理实验仪器。

五、实验结果与分析1. 差热分析曲线的绘制根据实验数据,绘制出CuSO4·5H2O和α-Al2O3的差热分析曲线。

曲线的纵坐标表示温度差(ΔT),横坐标表示温度(T)或时间(t)。

2. 差热分析曲线的定性解释(1)CuSO4·5H2O的差热分析曲线从差热分析曲线可以看出,CuSO4·5H2O在50℃左右出现一个明显的吸热峰,这可能是由于CuSO4·5H2O的结晶水失去所致。

差热热重分析实验报告

差热热重分析实验报告
• 优化实验样品的制备和安装步骤
• 提高实验效率
实验技术的改进
• 采用先进的差热热重分析技术
• 提高实验的准确性和可靠性
06
实验总结与展望
实验总结与收获
实验总结
实验收获
• 总结实验目的和原理
• 掌握差热热重分析的基本原理和实验方法
• 总结实验方法和结果
• 分析物质的热性能和研究热分解过程
实验中的问题与不足
• 差热热重分析同时考虑温差和质量变化
• 更全面地研究物质的热性能
实验材料的选取与准备
选择具有代表性的实验材料
• 考虑物质的类型、结构和性能
• 选择具有不同热性能的物质进行对比
准备实验材料
• 将实验材料研磨成均匀的粉末
• 将粉末样品放入样品盒中
实验材料的预处理
• 排除实验材料中的杂质和水分
• 确保实验材料具有良好的代表性
压力控制系统
电流控制系统
• 控制实验环境的气氛Fra bibliotek• 控制实验环境的压力
• 控制通过样品的电流
• 研究不同气氛下物质的热性能
• 研究不同压力下物质的热性能
• 研究电流对物质热性能的影响
仪器设备的操作与维护
差热热重分析仪的操作
• 按照操作指南进行操作
• 定期检查和维护仪器
辅助设备的操作
• 按照操作指南进行操作
为实际应用提供数据支持
• 优化生产工艺
• 提高产品质量
差热热重分析的基本原理
01
差热分析(DTA)
• 在程序控制温度下,测量物质与参比物之间的温差
• 分析物质的热效应,如吸热或放热
02
热重分析(TGA)
• 在程序控制温度下,测量物质的质量变化

差热分析法(DTA)

差热分析法(DTA)
✓通常采用小颗粒样 品,样品应磨细过 筛并在坩埚中装填 均匀。
✓同一种试样应选应 相同的粒度。
2023/11/16
37
CuSO4·5H2O粒度对DTA曲线的影响
1#峰重叠; 2#峰可明显区 分; 3#只出现两个 峰。
2023/11/16
38
3.稀释剂的影响
❖ 在差热分析中有时需要在试样中添加稀 释剂,常用的稀释剂有参比物或其它惰 性材料,添加的目的有以下几方面:
2023/11/16
19
根据式(6-12)可得出下述结论:
❖1.差热曲线的峰面积S和反应热效应ΔH成 正比;
❖2.传热系数K值越小,对于相同的反应热 效应ΔH来讲,峰面积S值越大,灵敏度 越高。
(6-12)式中没有涉及程序升温速率φ,即 升温速率φ不管怎样,S值总是一定的。 由于ΔT和φ成正比,所以φ值越大峰形越 窄越高。

对碱性物 类坩埚;



Na2CO3 )


用玻


陶瓷
➢ 含氟高聚物(如聚四氟乙烯)与硅形成化合物, 也不能使用玻璃、陶瓷类坩埚;
➢ 铂具有高热稳定性和抗腐蚀性,高温时常选用,
但不适用于含有P、S和卤素的试样。另外,Pt
对许多有机、无机反应具有催化作用,若忽视
可导致严重的误差。
2023/11/16
2023/11/16
20
6.3.3 差热分析仪
差热分析仪的组成
加热炉
温差检测器
温度程序控制仪
信号放大器
记录仪
气氛控制设备
2023/11/16
21
6.3.4 差热分析的影响因素
1. 仪器因素: 炉子的形状结构与尺寸,坩埚材料与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二差热分析
一、实验目的
1、了解差热分析的原理和差热分析仪的构造,学会操作技术。

2、了解差热分析的基本原理,测定试样结晶度。

3、掌握差热分析仪的使用方法;了解影响差热分析的因素。

二、实验原理:
许多物质在加热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转化、分解、化合、吸附、脱附等物理或化学变化。

在发生这些变化时伴有焓变,因而产生热效应。

如果我们事先选定一种在温度变化的整个过程中都不会发生任何物理或化学变化,因而没有任何热效应的物质做为参比物,并将它与样品一起置入一个按规定速度逐步升温或降温的电炉中,则当试样发生物理或化学变化时,试样与参比物之间将出现温度差,记录样品及参比物的温度,就可以得到一张差热图。

于是在加热或冷却过程中试样发生的各种物理或化学变化在差热图上都能一一反应出来。

图1是一张理想的差热图。

在差热图中有两条曲线,一条是温度线,它表明温度随时间的变化,一条是差热线,它表明样品与参比物间温度差随时间的变化。

差热线与时间轴平行的线段ab、degh称为基线。

图中bcd和efg为二个差热峰。

它们的方向相反,说明一个是吸热峰、一个是放热峰。

正确判断吸热峰还是放热峰与使用的仪器有关。

差热峰的数目、位置、方向、高度、宽度、对称性和峰面积是我们进行分析的依据。

峰的数目代表在测温范围试样发生物理或化学变化的次数。

峰的位置标志着样品发生变化的温度范围。

峰的方向表明了热效应的正负性。

峰面积则反映热效应的大小。

差热峰有三个转折点:b为峰的起点,c为峰的顶点,d为峰的终点。

我们可以在温度线上找到这三个点的相应温度Tb、TC和Td。

Tb大体上代表了开始起变化的温度,因此常用Tb表征峰的位置。

对于很尖锐的峰也常用TC表示峰的位置。

在实际测定中由于种种原因,差热线的基线往往不与时间轴平行,峰前后的基线也不在一条直线上,差热峰也可能较平坦,因此b、c、d三个转折点不明显,此时,我们可以用作切线的方法来确定转折点温度,如图16-3所示。

图1 理想差热图
差热分析仪由电炉、温度控制单元、可控硅加热单元、差热放大器单元和记录仪五个部分组成。

影响差热分析的因素:影响差热分析的因素有二个方面。

一是仪器因素,如炉子的大小与形状、样品支架的材料与形状、热电偶尺寸与位置、炉气氛及加热速度等。

二是样品因素,如参比物的选择,试样粒度、用量及充填的密度等。

对于实验来说,影响差热结果的主要因素有以下几条:
(1)升温速度:一般来说慢的加热速率使差热曲线有较小的基线移漂,接近于体系的平衡条件,可以分辨出靠很近的变化过程。

但每次测定须要较长时间。

速率高时,峰形比较尖锐,测定时间较短,而基线漂移明显,与平衡条件相距较远,出峰温度误差较大,分辨能力也下降。

在实际测定时,要恰当选择加热速率。

(2)参比物的选择:选作参比物的物质必须在整个测温范围内保持良好的热稳定性,不会出现能产生热效应的任何变化,并应尽可能选用与样品的比热,导热系数相近的材料作参比物。

常用的参比物有煅烧过的-Al2O3,MgO,石英砂等
(3)样品的用量:样品用量尽可能少些,这样不仅可以节省样品,更重要的是可以得到比较尖锐的峰,并能分辨靠得很近的相邻的峰。

样品过多,往往会使峰形成“大包”,并使相邻的峰相互重叠而无法分辨。

(4)从理论上讲,差热曲线中峰面积(S)的大小与试样所产生的热效应(H)大小成正比,即H=KS,K为比例常数,将未知试样与已知热效应物质的差热峰面积相比,就可求出未知试样的热效应。

实际上,由于样品和参比物间往往存在着比热,导热系数,粒度,装填紧密程度等方面的不同,在测定过程中又由于熔化、分解、转晶等物理或化学性质的改变,未知物试样和参比物的比例常数K并不相同,故用它来进行定量计算误差较大。

但差热分析可用于鉴别物质,与X-射线衍射,质谱,色谱,热重分析等方法配合可确立物质的组成,结构以及反应动力学等方面的研究。

三、实验仪器
Q-200差示扫描量热仪(温度范围-90o C-400 o C,升温速率0.1-50 o C/min)
制样机
万分之一电子天平
四、试样制备
先称量空坩埚和坩埚盖的重量计m1。

将塑料粒切成小片,放入坩埚,尽量堆放整齐,放入坩埚盖后,将坩埚放入模具中,然后将模具放入制样机进行压制。

压制后检查坩埚底部是否平整。

称量压制完后坩埚的总重记为m2。

样品重量为m= m2- m1。

五、实验步骤
1.打开净化气瓶阀门,调节出口压力为0.1Mpa,开启Q200差示扫描量热仪、CS90冷却系统和计算机,点击计算机仪器管理界面中的Q-200图标打开仪器操作界面。

2.点击操作界面中的“control”→“go to standby temp”使仪器升温到指定的待机温度,以免炉膛温度过低,开炉时水分在炉内凝结。

点击“control”→“event”→“on”,打开冷却系统。

3.等待冷却系统工作稳定后,点击“control”→“lid”→“open”,打开炉盖,将参比坩埚放在远离操作者的坩埚架上,样品坩埚放在靠近操作者的坩埚架上。

注意坩埚要尽量放在坩埚架的正中间,同时不要用镊子刮擦炉体。

点击“control”→“lid”→“close”,关闭炉盖。

4.点击操作界面左边“Experiment”导航条,选择“Summary”选项卡,“Mode”选项选择“Standard”,“Test”选项选择“Custom”,在下面的“Sample Name”“Pan Type”“Sample”中分别填入样品名,坩埚类型、样品重量。

在“Date File Name”中设置文件存储路径。

5.点击“Procedure”选项卡,“Test”选项选择“Custom”选项,点击“Method”框中的“Editor”按钮编辑实验升温程序,编辑好后点击“OK”按钮退出编辑窗口。

6. 点击“Note”选项卡,在“Mass Flow Control Setting”框中选择净化器路,设置净化气体的流量。

7.检查各设置参数是否正确,确认后点击窗口下方的“Apply”按钮保存方案。

点击“control”→“Start”开始实验。

8.等待实验完成,温度降至待机温度后,打开炉膛,小心取出坩埚,关闭炉膛。

点击计算机桌面的“TA Universal Analysis”图标打开曲线分析软件分析实验结果。

标出各特征吸收峰。

9.试验结束后点击点击“control”→“event”→“off”关闭CS-90冷却系统,点击“control”→“Shutdown Instrument”关闭Q-200差热分析仪,然后关闭计算机、CS-90电源、差热分析仪电源、和净化气。

打扫实验室卫生。

六、数据处理
1、标出曲线的各特征吸收峰,利用报告生成工具生成实验结果报告,附在实验报告后。

2、标出各特征吸收峰的产生的原因。

3、测定实验结晶度。

七、注意事项
1、启动仪器时,要首先确认净化气压力和气体净化器的硅胶颗粒颜色为蓝色。

2、依次打开净化气、冷却系统、Q-200、计算机。

3、制样时严禁用手直接接触坩埚。

4、放置坩埚时不得用镊子刮擦炉体。

5、开启炉膛时要确认炉膛处于待机温度。

思考题:
1、差热分析仪如何测定参比物和样品之间的温差的。

2、为什么用慢的升温速度所得的结果比较准确?。

相关文档
最新文档