层次分析法具体应用及实例

合集下载

层次分析法在汽车零件供应商评估中的应用

层次分析法在汽车零件供应商评估中的应用

层次分析法在汽车零件供应商评估中的应用本文以某大型汽车制造企业零件供应商选择为例,设计了在汽车零件供应商选择过程中甄选最优者的指标体系,在评估方法上,采取定性与定量相结合的方法,运用层次分析法(AHP)确定了指标权重系数,并通过一致性检验,证明所建立的供应商甄选评估体系是实际可操作的。

标签:层次分析法供应商评价一、汽车零件供应商评价指标设计利用AHP法对汽车零件供应商评估进行分析,可建立三个层次的结构模型,即评估内容层、评估目标层、评估指标层。

评估内容层是指评估所指向的具体对象与范围,它具有相对性。

对于不同的零件供应商评估内容存在差异。

评估内容层中的元素是对汽车零件供应商进行评估的内容。

笔者设计的汽车零件供应商测评内容主要包括:质量、价格、技术、服务、创新。

评估项目层是根据评估内容的要求给出的,是对评估内容的具体规定。

如技术内容,要通过以下评估项目:通用化、模块化、电子及职能化、环保化、轻量化来体现。

而技术只是对评估项目的一个综合说明。

测评项目的选择要通过一定的定量分析方法来实现,不能任意的指定。

一般采用德尔菲咨询、问卷调查与层次分析法、多元分析法进行选择。

评估指标层是评估项目层的可操作化的表现形式。

对于每一个测评指标都必须认真分析研究,给予清楚、准确的表述,使评估各方均能明确评估指标的涵义,不会因对测评指标的不同理解而导致标准不一产生评估结果误差。

选择评估指标时不但要求要具有实际价值,还要是切实可行的,最好是能够量化的。

二、分别构造判断矩阵本文只针对项目层进行讨论,根据表2,对各指标进行两两比较,采用层次分析法,确定其权重,构造出判断矩阵。

(表3~表4)注:(确定价格、技术、服务、创新等指标评估的判断矩阵及权重方法同上,不再列举)三、确定各指标权重1.首先将判断矩阵的每一列元素作归一化处理,其元素的一般项为:2.将各列归一化后的判断矩阵按行相加3.再将向量归一化,得到得到的W=[W1,W2,…,Wn]T即为所求特征向量。

层次分析法在住房消费中的分析及应用

层次分析法在住房消费中的分析及应用

层次分析法在住房消费中的分析及应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种系统分析方法,广泛应用于决策问题的分析与评价中。

在住房消费中,层次分析法可以用于分析和评价不同因素的重要性,帮助人们做出合理的住房消费决策。

在住房消费中,人们通常会考虑多个因素,如价格、地理位置、面积、环境、交通等等。

这些因素在决策时往往并不是平等重要的,层次分析法可以帮助人们确定各个因素的权重,从而更好地进行住房选择。

在运用层次分析法进行住房消费分析时,可以按照以下步骤进行:1.确定目标:确定住房消费的目标,例如选择一套适宜的住房。

2.构建层次结构:将住房选择问题划分为不同的因素层次,如地理位置、价格、面积等。

3.两两比较:对于每一层次内的因素,进行两两比较,判断它们之间的重要性。

比较时可以采用9分法,也就是将一方因素与另一方因素进行比较,评定其重要性的程度。

4.建立判断矩阵:通过两两比较的结果,建立判断矩阵。

矩阵的每个元素表示一个因素相对于另一个因素的重要性。

5.计算权重:通过计算判断矩阵的特征向量,可以得出各个因素的权重,确定各个因素在住房选择中的相对重要性。

6.一致性检验:进行一致性检验,判断计算结果的可靠性。

如果一致性比率超过一定阈值,则需要重新进行两两比较。

7.得出结论:根据各个因素的权重,将其应用于具体的住房选择问题中,从而得到最终的结论。

层次分析法的应用可以使人们更加客观、科学地进行住房消费决策。

通过对各个因素的权重进行评估,可以避免主观意见主导决策过程,从而选择到更符合个人需求和预算的住房。

需要注意的是,层次分析法在应用过程中也存在一些限制和挑战。

评估各个因素之间的重要性是一个主观的过程,不同人的判断可能存在差异。

判断矩阵的计算需要大量的数据和信息,如果数据不准确或缺乏,可能影响最终结果的可靠性。

层次分析法在住房消费中的分析和应用是一种有效的决策分析工具,可以帮助人们做出合理的住房选择。

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例层次分析法(Analytic Hierarchy Process,简称AHP)是一种运用于多准则决策问题的定性和定量分析方法。

通过将决策问题分解为多个层次,从而使决策问题的结构更加清晰,更容易理解和处理。

下面将介绍几个AHP方法的应用实例。

1.项目选择在项目选择过程中,可能存在多个关键因素需要权衡。

通过应用AHP,可以将项目选择问题分解为几个层次,例如项目目标、资源投入、风险等等。

然后为每个层次的因素确定权重,从而帮助决策者更加客观地评估不同项目的优劣,并做出最佳选择。

2.供应商评估当公司需要选择供应商时,往往需要考虑多个方面的因素,例如价格、质量、交货时间等等。

通过使用AHP,可以将供应商评估问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,最终确定出最佳供应商。

3.市场调研在市场调研过程中,可能涉及到多个调研指标和因素。

通过应用AHP,可以将市场调研问题分解为几个层次,例如调研目标、调研方法、数据可靠性等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最适合的市场调研方法和指标。

4.产品设计在产品设计过程中,需要考虑多个因素,例如功能、性能、成本等等。

通过使用AHP,可以将产品设计问题分解为不同的准则和子准则,然后为每个准则和子准则赋予合适的权重,从而帮助设计团队确定出最佳的产品设计方案。

5.企业战略规划在企业战略规划中,需要综合考虑多个战略选项的优劣。

通过应用AHP,可以将战略规划问题分解为不同的层次和因素,例如市场前景、竞争环境、技术能力等等。

然后为每个层次的因素确定权重,从而辅助决策者选择最佳的战略规划方案。

综上所述,层次分析法在多准则决策问题的应用非常广泛。

通过将决策问题分解为多个层次,然后根据不同层次的因素确定权重,能够帮助决策者更加客观地评估不同方案的优劣,并做出最佳选择。

这种方法在项目选择、供应商评估、市场调研、产品设计和企业战略规划等领域都有重要的应用。

层次分析法步骤及案例分析

层次分析法步骤及案例分析

层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。

它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。

本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。

一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。

将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。

例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。

2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。

判断可以基于专家经验、问卷调查或实际数据。

对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。

如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。

3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。

通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。

4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。

一致性是指在两两比较中的逻辑关系的一致性。

通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。

5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。

在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。

二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。

假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。

我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。

2. 构造判断矩阵:对于每个子目标,可以进行两两比较。

层次分析法应用实例

层次分析法应用实例

层次分析法应用实例选择一个合适的餐馆一、 问题描述:古人云:民以食为天,在大学生活中,我们经常在假日跟几个好友一起去外 面吃饭,可是学校外面的餐馆各式各样,五花八门,选择一个好吃价格又合适的 餐馆也是十分令人困扰的。

(一) 目标选择一个合适的餐馆 (二) 准则选择餐馆的标准大体可以分成四个:地理位置、环境、味道、人均价格。

方案:美特家(海甸岛店)、印象三宝、滋味天下。

(在文中依次用A 、B 、C 表示)二、 解决步骤(一)层次结构图此结构图中分为三个层次:目标层、标准层和决策方案图 (二)设置标度人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强 重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值, 这样就得到9个数值,即9个标度,为了便于将比较判断定量化,引入 1〜9比 率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8 表示上述两判断级之间的折中值。

目标层 标准层决策层(四)求各因素权重的过程下面我们用两两比较矩阵来求出A、B、C在地理位置的得分第一步,先求出两两比较矩阵每一列的第二步,把两两比较矩阵的每一元素除以其相应列的总和,所得商组成的新的矩阵称之为标准两两比总和:1.000第四步,我们将求出的餐馆A,B,C三个方案在地理位置,环境,味道,价格四个方面的得分(权重),即这四个方面的特征向量如表第五步,我们还必须取得每个标准在总目标满意的餐馆里相对重要的程度,即要取得每个标准相对的权重,即标准的特征向量。

我们就需要把这四个标准两两比较,得到两两比较矩阵如表通过这个两两比较矩阵,我们同样地可求出标准的特征向量如表即味道相对权重为0.421,地理位置的相对权重为0.198,环境的相对权重为0.081,人均价格的相对权重为0.279.三、两两比较矩阵的一致性检验第一步,由被检验的两两比较矩阵乘以其特征向量,所得的向量称之为赋权和向量,即广1 1/7 1/2( 6.103 '「0.30*7 1 3 X0.681 = 2.052 1/3 1 0.216 0.649第二步,每个赋权和向量的分量分别除以对应的特征向量的分量,即第i个赋权和向量的分量除以第i个特征向量的分量,如下:0.308/0.103=2.9902.05/0.681=3.0100.649/0.216=3.005第三步,计算出第二步结果中的平均值,记为入max入max =(2.99+3.010+3.005) - 3=3.002第四步,计算一致性指标CI:CI=(入max-n)/(n-1)=(3.002-3) - 2=0.001第五步,计算出一致性率CR:CR=CI/RI=0.001 - 0.58=0.002 三0.1一致性规定当CR^ 0.1时,认为两两比较矩阵的一致性可以接受,否则就认为两两比较矩阵一致性太差,必须重新进行两两比较判断。

AHP层次分析法--实例

AHP层次分析法--实例

AHP层次分析法--实例什么是AHP?AHP全称为Analytic Hierarchy Process,中文翻译为“层次分析法”,是由美国数学家托马斯·L·赛蒂在20世纪70年代初提出的一种用于复杂多目标决策的评估方法。

AHP方法的核心是利用层次结构模型,将复杂问题分解成若干个较小的组成部分,通过重点考虑各个部分在整体决策中的相对重要程度,最终得到全局最优的决策方案。

以购买一部新手机为例,假设我们需要选择一款符合自己需求的手机。

我们可以先将这个问题划分为几个要素,比如品牌、操作系统、屏幕大小、摄像头、价格等,针对这些要素,又可以进一步划分出更加详细的几个层次,如手机品牌可以再分为苹果、三星、华为、OPPO等。

下面我们来分别分析各个层次的重要程度。

1. 品牌对于品牌这个层次,我们可以考虑以下四个品牌:苹果、三星、华为和OPPO。

我们可以根据自己对这些品牌的认知程度以及市场占有率等因素来对它们进行排名,比如我认为苹果品牌最好,三星次之,华为再次之,而OPPO则是最不理想的选择,可以把它们排列成如下图表:| | 苹果 | 三星 | 华为 | OPPO || --- | ---- | ---- | ---- | ---- || 苹果 | 1 | 0.2 | 0.3 | 0.1 || 三星 | 5 | 1 | 0.5 | 0.3 || 华为 | 3.3 | 2 | 1 | 0.5 || OPPO | 10 | 3.3 | 2 | 1 |在这张表格中,左上至右下的主对角线上的数值都为1,因为一个品牌与自己之间的比较是没有意义的,其他位置上的数值则表示一个品牌相对于另一个品牌具有的重要程度比例,比如苹果对三星的重要程度是0.2,表示我们认为选择苹果手机是三星手机的五倍重要。

2. 操作系统对于操作系统这个层次,我们假设只考虑两个选择:iOS和Android,为了判断哪个更重要,我们可以考虑以下几个因素:易用性、系统稳定性、应用生态系统、开发者支持等。

经典层次分析法分析及实例教程

经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地










苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1

层次分析法及其案例分析

层次分析法及其案例分析

2 层次分析法应用实例
5、计算各项指标结构的权值(归一化特征向量) 按照上述第四小点中说明,可将特征值的归一化特征向量作为权重。 计算最大特征向量除高数中讲到的数学方法外,有一个较为简便的方法,即 “求和法" (1)按照纵列求和
A
B1 B2 B3 B4 B5 求和
B1
1 5 0.33333 0.33333 0.142857 6.809524
2、建立层次结构图
为了简化计算步骤,本文在供应商决策分析时,只做关键指标的分析,具体的层 次结构如下图:
目标层(A) 指标层(B) 方案层(C)
合格的供应商
价格指标 质量指标 交货指标 服务指标 硬件资质
供应商1
供应商2
2 层次分析法应用实例
3、建立判断矩阵
(1)建立B层次与A层次的矩阵关系 A、首先对各项指标进行打分( B1: B2,即价格指标、质量指标、交货指标、服 务指标、硬件资质)
B、进行一致性检测,以确保打分时不出现前后的逻辑错误
(1)计算上述矩阵的最大特征值= 5.08
(2)计算一致性指标: CI= - n =0.08/4=0.02( n=5,矩阵的阶 n -1
数),原则上比n越大,说明不一致性越严重
(3)查询随机性一致性指标: RI
n 1 2 3 4 5 6 7 8 9 10
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49
11
1.51
当n=5时,RI=1.12 (4)计算一致性比率:CR=CI/RI=0.02/1.12=0.01785<0.1,一致性成立。 一般认为当CR< 0.1时,认为矩阵的不一致程度在容许范围之内,可用其归一化特 征向量作为权向量,否则要重新构造成对比较矩阵。

层次分析法分析(AHP)及实例教程

层次分析法分析(AHP)及实例教程
02
设定评价标准
根据问题背景和目标,设定合理的评价标准,如 成本、效益、风险等。
识别关键因素和指标
关键因素识别
分析影响决策目标的关键因素,如市 场需求、技术水平、资源条件等。
指标选取
针对每个关键因素,选取具体的评价 指标,如市场份额、创新能力、资源 利用率等。
构建递阶层次结构图
目标层
准则层
将决策目标作为最高层, 表示解决问题的总体目标。
层次分析法分析 (AHP)及实例教程
目录
• 层次分析法(AHP)概述 • 构建层次结构模型 • 构造判断矩阵与权重计算 • 实例教程:以某企业投资决策为例 • AHP优缺点及改进方向 • 总结与展望
01
层次分析法(AHP)概述
AHP定义与发展历程
定义
层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的、系统化、 层次化的分析方法。它通过将复杂问题分解为若干层次和因素,对各因素进行两两比较,构造 判断矩阵,进而计算各因素的权重,为决策问题提供定量依据。
对计算得到的权重进行一致性检 验,确保结果的合理性和准确性。
一致性检验与调整策略
一致性检验方法
通过计算一致性指标CI和随机一 致性指标RI,判断判断矩阵的一 致性。
调整策略
当判断矩阵不满足一致性要求时, 需要对判断矩阵进行调整,包括 调整元素值、重新构造判断矩阵 等方法,直至满足一致性要求。
注意事项
针对缺点提出改进措施
1 2
提高数据质量和数量
通过改进数据采集和处理方法,提高数据的质量 和数量,减少数据不准确和不完整对决策结果的 影响。
引入客观标准
在构建判断矩阵时,可以引入客观标准和量化指 标,减少主观判断对决策结果的影响。

层次分析法的应用实例汇总

层次分析法的应用实例汇总

第二节 层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构(b) 过河代价层次结构图5-3 过河的效益与代价层次结构图过河的效益A 过河的效益 2B经济效益1B过河的效益3B隧 道2D桥 梁1D渡 船3D美化11C进出方便10C舒适9C自豪感8C交往沟通7C安全可靠6C建筑就业5C当地商业4C 岸间商业3C收入2C节省时间1C过河的代价A 社会代价2B 经济代价 1B环境代价3B隧 道 2D桥 梁1D 渡 船3D对生态的污染9C对水的污染8C汽车的排放物7C居民搬迁6C交往拥挤5C安全可靠4C冲击渡船业3C操作维护2C投入资金1C关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9表5-10表5-11表5-12表5-13表5-14表5-15表5-16表5-17表5-18表5-19表5-20表5-21表5-22表5-23这样我们得到方案关于效益的合成顺序为T )07.0 ,36.0 ,57.0()4(=益ω效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

表5-24表5-25表5-26表5-27表5-28表5-29表5-30表5-31代价分析的判断矩阵如表5-24—表5-36所示。

表5-32表5-33表5-34表5-35表5-36得到方案关于代价的合成排序为T )05.0 ,58.0 ,36.0()4(=代ω整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:桥梁:效益/代价=1.58 隧道:效益/代价=0.62轮渡:效益/代价=1.28方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

层次分析法实例范文

层次分析法实例范文

层次分析法实例范文下面我将以一个实例来说明层次分析法的应用。

假设你是一家公司的项目经理,需要在三个设计方案中选择一个最适合的方案。

你希望通过层次分析法来评估并选择最佳方案。

首先,你需要确定准则层。

准则层是评估和比较设计方案的标准。

在本实例中,准则层可以包括三个因素:成本、技术易用性和效果。

其次,你需要对每个准则进行两两比较。

你需要确定哪个准则对你更重要,换句话说,你需要对准则之间的重要性进行评估。

你可以使用一个1到9的尺度来进行评估,其中1表示相对重要性相同,9表示相对重要性非常不同。

在这个例子中,假设你认为成本对你更重要,因此可以给成本的评估为9,而技术易用性和效果的评估都为5接下来,你需要对每个准则的子准则进行两两比较。

对于成本来说,可能的子准则可以包括材料成本、人力成本和设备成本。

你需要评估这些子准则之间的重要性,同样使用1到9的尺度进行评估。

假设你认为人力成本对成本的影响最大,你可以给予人力成本的评估为9、材料成本和设备成本则分别给出评估5和3对于技术易用性和效果这两个准则,你需要进行类似的比较和评估。

比如,你可能认为技术易用性中的用户友好性对你最重要,效果中的创新性最重要。

完成这些比较和评估后,你需要计算总体权重。

通过层次分析法计算权重的方法是对准则之间的比较矩阵进行归一化处理,即计算每列的平均值,然后将每个条目除以其所在列的平均值。

最后,求每行的平均值得到每个准则的权重。

例如,对于成本准则,对应的比较矩阵为:1591/5131/91/31计算每列的平均值为:1/35/95/3然后将每个条目除以其所在列的平均值,得到:15/93/53/511/35/33/11最后,求每行的平均值得到每个准则的权重:0.48780.25920.2529重复这个过程,你可以得到技术易用性和效果的权重。

最后,你可以将每个设计方案在每个准则上进行评估。

同样使用1到9的尺度进行评估,并对每个准则乘以其对应的权重得到总体分数。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法具体应用及实例

层次分析法具体应用及实例

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

层次分析法的应用实例

层次分析法的应用实例

第二节 层次分析法的应用实例设某港务局要改善一条河道的过河运输条件,要确定是否建立桥梁或隧道以代替现在的轮渡。

此问题可得到两个层次结构:过河效益层次结构和过河代价层次结构;由图5-3(a)和(b)分别表示。

例 过河的代价与效益分析。

(a) 过河效益层次结构(b) 过河代价层次结构图5-3 过河的效益与代价层次结构图过河的效益A 过河的效益 2B经济效益1B过河的效益3B隧 道2D桥 梁1D渡 船3D美化11C进出方便10C舒适9C自豪感8C交往沟通7C安全可靠6C建筑就业5C当地商业4C 岸间商业3C收入2C节省时间1C过河的代价A 社会代价2B 经济代价 1B环境代价3B隧 道 2D桥 梁1D 渡 船3D对生态的污染9C对水的污染8C汽车的排放物7C居民搬迁6C交往拥挤5C安全可靠4C冲击渡船业3C操作维护2C投入资金1C关于效益的各个判断矩阵如表5-9—表5-23所示。

表5-9表5-10表5-11表5-12表5-13表5-14表5-15表5-16表5-17表5-18表5-19表5-20表5-21表5-22表5-23这样我们得到方案关于效益的合成顺序为T )07.0 ,36.0 ,57.0()4(=益ω效益层次模型的整体一致性比例C.R.(4)<0.1(最后一个矩阵的一致性较差,但因C11的排序权重很低,故不影响最后结果)。

从效益看建靠桥梁方案为最佳。

表5-24表5-25表5-26表5-27表5-28表5-29表5-30表5-31代价分析的判断矩阵如表5-24—表5-36所示。

表5-32表5-33表5-34表5-35表5-36得到方案关于代价的合成排序为T )05.0 ,58.0 ,36.0()4(=代ω整体一致性比例C.R.(4)<0.1。

各方案的效益/代价如下:桥梁:效益/代价=1.58 隧道:效益/代价=0.62轮渡:效益/代价=1.28方案选择的准则应使效益代价比最大,因此应选择建设桥梁方案。

层次分析法原理及应用举例

层次分析法原理及应用举例

层次分析法原理及应用举例
层次分析法原理:
层次分析法(AHP)是一种数量化决策方法,它可以将复杂的决策问题分解成几个子问题,并给出一个满意的结果。

它由三部分组成:分析人员、层次结构和度量。

层次分析法的目标是为了找出在多个选项中最优的一种,做出最佳决策。

它通过评估、对比、排序和得分来实现。

层次分析法应用举例:
层次分析法可以用来帮助决策者做出正确的决定,考虑到多个因素。

以下是一个简单的例子:
假设一家公司想要扩大其市场影响力,需要在新的市场上投资。

根据层次分析法,该公司可以制定几个主要决策因素,例如:投资风险、投资回报、国际市场风险等。

然后,该公司可以根据不同的决策因素给出不同的评分,以便找出最佳的投资目标。

例如,公司可以给出一个5级评分系统,1分表示“最低”,5分表示“最高”,然后根据这些评分,对每个投资目标进行排序,以找出最佳投资目标。

指标体系建立、权重与评分细则确定中,层次分析法的运用(4)

指标体系建立、权重与评分细则确定中,层次分析法的运用(4)
对重要性的比较。判断矩阵一般形式如下:
p1
p2
……
pn
p1
1
b12


b1n
p2
b21
1


b2n
………1
……
…………1

pn
bn1
bn2


1
一般,判断矩阵形式:
B=(bij ) n× n
判断矩阵B具有特征:b ii = 1,b j i = 1/ b i j ,b i j = b i k/ b j k
和方根法。
(1)和积法计算步骤:按列归一,按行求和——各行和归一 ,将判断矩阵每列元素作归一化处理:
bij
bij=
1nbij
(i,j=1,2,…,n)
将每列经归一化后的判断矩阵按行求和: W i = 1nbij ( i =1,2,…,n)
对按行求和的向量W=( W1, W2…… W n )t 做归一化处理:
4. 应用层次分析法,保持判断思维一致性,非常重要 只要矩阵中的 b ij 满足前述三条关系式时,就说明判断矩阵具有
完全的一致性。
判断矩阵一致性指标C.I.(Consistency Index)
C.I. =
max - n n-1
一致性指标C.I.值越小,判断矩阵越接近于完全一致性。
C.I.值越大,判断矩阵偏离完全一致性程度越大。
i, j 1, 2, , n
0.039 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.06 0.411
0.058 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.531

层次分析法的应用实例

层次分析法的应用实例

层次分析法的应用实例
层次分析法的应用实例包括以下几个方面:
1. 选址问题:层次分析法可以用于研究选址问题,比如在新建厂房时,如何选取合适的地点。

通过层次分析法可以确定各个因素的权重,以及不同地点在这些因素上的得分,综合得出最优选址方案。

2. 决策问题:层次分析法可以用于决策问题,比如在公司的战略规划中,如何确定不同方案的优先级。

通过层次分析法可以确定不同决策因素的权重和得分,最终得出最优的决策方案。

3. 资源分配问题:层次分析法可以用于资源分配问题,比如在项目管理中,如何分配不同的任务和资源。

通过层次分析法可以确定不同任务和资源的重要性和权重,以确定最优的资源分配方案。

4. 市场研究问题:层次分析法可以用于市场研究问题,比如在产品开发中,如何确定不同市场因素的重要性和优先级。

通过层次分析法可以确定市场因素的权重和得分,以确定最优的市场策略。

5. 效果评价问题:层次分析法可以用于效果评价问题,比如在某个项目结束后,如何评估项目的效果和质量。

通过层次分析法可以确定不同项目因素的权重和得分,以评估项目的整体效果和质量。

网络层次分析法基础附几个应用实例

网络层次分析法基础附几个应用实例

实例二:城市可持续发展评估
总结词
网络层次分析法在城市可持续发展评估中,能够将城 市的可持续发展目标分解为多个层次和因素,通过建 立层次结构模型和两两比较的方式确定各因素之间的 相对重要性,为城市可持续发展提供科学合理的评估 依据。
ห้องสมุดไป่ตู้详细描述
城市可持续发展评估是一个多目标、多准则的决策问 题,需要考虑经济、环境和社会等多个方面的因素。 网络层次分析法通过构建层次结构模型,将城市的可 持续发展目标分解为多个层次和因素,并利用专家的 知识和经验进行两两比较,确定各因素之间的相对重 要性。这种方法能够综合考虑各种因素之间的关联和 权重,为城市可持续发展提供更加全面和准确的评估 依据。
优势
AHP能够将决策者的主观判断转化为 数量化的决策结果,能够处理不完全 信息下的决策问题,并且能够提供一 致性检验和排序依据。
应用领域
资源分配
AHP可用于多资源分配问题,例如资金、人力、 时间等资源的分配。
风险评估
AHP可用于评估不同风险的大小和优先级,例如 项目风险、投资风险等。
决策支持
AHP可用于多目标决策问题,例如选择供应商、 项目方案等。
结果分析
根据组合权重的大小,对不同组成部 分的重要性进行排序,得出最终的评 价结果。
03 网络层次分析法的几个应 用实例
实例一:企业战略选择评估
要点一
总结词
要点二
详细描述
网络层次分析法在企业战略选择评估中,能够将复杂的决 策问题分解为多个层次和因素,通过两两比较的方式确定 各因素之间的相对重要性,为企业提供科学合理的战略选 择依据。
原理
AHP基于人类判断和决策的思维模式,通过建立递阶层次结构和两两比较判断矩 阵,将复杂的决策问题分解为相对独立的多个因素,并对这些因素进行比较和计 算,以得出不同方案或同一方案不同方案的相对优劣排序。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法步骤与实例1 层次分析法的思想:将所有要分析的问题层次化;根据问题的性质和所要到达的总目标,将问题分为不同的组成因素,并按照这些因素间的关联影响即其隶属关系,将因素按不同层次聚集组合,形成一个多层次分析结构模型;最后,对问题进行优劣比较排序.2 次分析法的步骤:3 以一个具体案例进行说明:【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。

【案例分析】市政工程项目进行决策:建立递阶层次结构 在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C措施层D图1 递阶层次结构示意图2.构造判断矩阵(成对比较阵)并赋值根据递阶层次结构就能很容易地构造判断矩阵。

构造判断矩阵的方法是:每一个具有向下隶属关系的元素(被称作准则)作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。

重要的是填写判断矩阵。

填写判断矩阵的方法有:大多采取的方法是:向填写人(专家)反复询问:针对判断矩阵的准则,其中两个元素两两比较哪个重要,重要多少,对重要性程度按1-9赋值(重要性标度值见下表)。

表1 重要性标度含义表设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下性质:(1) a ij〉0(2) a ji=1/ a ji(3) a ii=1根据上面性质,判断矩阵具有对称性,因此在填写时,通常先填写a ii=1部分,然后再仅需判断及填写上三角形或下三角形的n(n-1)/2个元素就可以了。

在特殊情况下,判断矩阵可以具有传递性,即满足等式:a ij*a jk=a ik当上式对判断矩阵所有元素都成立时,则称该判断矩阵为一致性矩阵。

【案例分析】市政工程项目建设决策:构造判断矩阵并请专家填写接前例,征求专家意见,填写后的判断矩阵如下:表2 判断矩阵表3.层次单排序(计算权向量)与检验(一致性检验)对于专家填写后的判断矩阵,利用一定数学方法进行层次排序。

层次单排序是指每一个判断矩阵各因素针对其准则的相对权重,所以本质上是计算权向量。

计算权向量有特征根法、和法、根法、幂法等,这里简要介绍和法。

和法的原理是,对于一致性判断矩阵,每一列归一化后就是相应的权重。

对于非一致性判断矩阵,每一列归一化后近似其相应的权重,在对这n个列向量求取算术平均值作为最后的权重。

具体的公式是:∑∑a a n 1=j n1=k k liji n 1=W 需要注意的是,在层层排序中,要对判断矩阵进行一致性检验。

在特殊情况下,判断矩阵可以具有传递性和一致性。

一般情况下,并不要求判断矩阵严格满足这一性质。

但从人类认识规律看,一个正确的判断矩阵重要性排序是有一定逻辑规律的,例如若A 比B 重要,B 又比C 重要,则从逻辑上讲,A 应该比C 明显重要,若两两比较时出现A 比C 重要的结果,则该判断矩阵违反了一致性准则,在逻辑上是不合理的。

因此在实际中要求判断矩阵满足大体上的一致性,需进行一致性检验。

只有通过检验,才能说明判断矩阵在逻辑上是合理的,才能继续对结果进行分析。

一致性检验的步骤如下。

第一步,计算一致性指标C.I.(consistency index )1..max --=n nI C λ第二步,查表确定相应的平均随机一致性指标R.I.(random index ) 据判断矩阵不同阶数查下表,得到平均随机一致性指标R.I.。

例如,对于5阶的判断矩阵,查表得到R.I.=1.12第三步,计算一致性比例C.R.(consistency ratio )并进行判断......I R I C R C当C.R.<0.1时,认为判断矩阵的一致性是可以接受的,C.R.>0.1时,认为判断矩阵不符合一致性要求,需要对该判断矩阵进行重新修正。

【案例分析】市政工程项目建设决策:计算权向量及检验 上例计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

4.层次总排序(组合权向量)与检验(一致性检验)总排序是指每一个判断矩阵各因素针对目标层(最上层)的相对权重。

这一权重的计算采用从上而下的方法,逐层合成。

很明显,第二层的单排序结果就是总排序结果。

假定已经算出第k-1层m 个元素相对于总目标的权重w (k-1)=(w 1(k-1),w 2(k-1),…,w m (k-1))T ,第k 层n 个元素对于上一层(第k 层)第j 个元素的单排序权重是p j (k)=(p 1j (k),p 2j (k),…,p nj (k))T ,其中不受j 支配的元素的权重为零。

令P (k)=(p 1(k),p 2(k),…,p n (k)),表示第k 层元素对第k-1层个元素的排序,则第k 层元素对于总目标的总排序为:w (k)=(w 1(k),w 2(k),…,w n (k))T = p (k) w (k-1)或 ∑=-=mj j ij i k k (k)w p w 1)1()( I=1,2,…,n同样,也需要对总排序结果进行一致性检验。

假定已经算出针对第k-1层第j 个元素为准则的C.I.j (k)、R.I.j (k)和C.R.j (k), j=1,2,…,m,则第k 层的综合检验指标C.I.j (k)=(C.I.1(k) ,C.I.2(k) ,…, C.I.m (k))w (k-1) R.I.j (k)=(R.I.1(k) ,R.I.2(k) ,…, R.I.m (k))w (k-1))()()(......k k k I R I C R C = 当C.R.(k)<0.1时,认为判断矩阵的整体一致性是可以接受的。

【案例分析】市政工程项目建设决策:层次总排序及检验 上例层次总排序及检验结果见下:表5 C 层次总排序(CR = 0.0000)表D 层次总排序(CR = 0.0000)可以看出,总排序的C.R.<0.1,认为判断矩阵的整体一致性是可以接受的5.结果分析通过对排序结果的分析,得出最后的决策方案。

【案例分析】市政工程项目建设决策:结果分析从方案层总排序的结果看,建地铁(D2)的权重(0.6592)远远大于建高速路(D1)的权重(0.3408),因此,最终的决策方案是建地铁。

根据层次排序过程分析决策思路。

对于准则层B的3个因子,直接经济效益(B1)的权重最低(0.1429),社会效益(B2)和环境效益(B3)的权重都比较高(皆为0.4286),说明在决策中比较看重社会效益和环境效益。

对于不看重的经济效益,其影响的两个因子直接经济效益(C1)、间接带动效益(C2)单排序权重都是建高速路远远大于建地铁,对于比较看重的社会效益和环境效益,其影响的四个因子中有三个因子的单排序权重都是建地铁远远大于建高速路,由此可以推出,建地铁方案由于社会效益和环境效益较为突出,权重也会相对突出。

从准则层C总排序结果也可以看出,方便日常出行(C3)、减少环境污染(C5)是权重值较大的,而如果单独考虑这两个因素,方案排序都是建地铁远远大于建高速路。

由此我们可以分析出决策思路,即决策比较看重的是社会效益和环境效益,不太看重经济效益,因此对于具体因子,方便日常出行和减少环境污染成为主要考虑因素,对于这两个因素,都是建地铁方案更佳,由此,最终的方案选择建地铁也就顺理成章了。

4 优缺点优点:(1)系统性:层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具。

(2)实用性:层次分析把定性和定量方法结合起来,能处理许多许多用传统的最优化技术无法着手的实际问题,应用范围很广。

同时,这种方法将决策者和决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策者的了解和掌握。

(3)简洁性:具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,并且所得的结果简单明确,容易为决策者了解和掌握。

缺点:囿旧:只能从原有方案中选优,不能生成新方案;粗略:它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;主观:从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受。

当然,采取专家群体判断的办法是克服这个缺点的一种途径。

应用范围5应用范围:管理信息系统评价、横渡江河海峡的抉择、科技成果的综合评价、工作选择、国家实力分析、选择旅游景点的问题、选择升学志愿等多目标多层次的综合评价问题。

相关文档
最新文档