必修三31随机事件及其概率(精)

合集下载

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

高中数学 第3章 概率 3.1 随机事件及其概率教案 苏教版必修3-苏教版高一必修3数学教案

第3章概率本章概述一、课标要求本章通过对随机现象的研究,学习认识客观世界的方法.多年来,学生学习数学,主要研究确定的现象,对于不确定现象的规律知之甚少.通过本章的学习,使学生进一步了解不仅确定性现象有规律,可以预知结果,可以用数学方法去研究,而且不确定现象也有规律可循,同样也能用数学方法去研究.使学生初步形成用科学的态度、辩证的思想、用随机观念去观察、分析、研究客观世界的态度,寻求并获得认识世界的初步知识和科学态度.1.在具体情境中了解随机事件发生的不确定性及频率的稳定性,进一步了解概率的意义以及概率与频率的区别.2.通过实例,理解古典概型概率的计算公式,会用列举法计算随机事件所包含的基本事件数以及事件发生的概率.3.了解随机数的意义,能运用模拟方法〔包括计算机产生随机数来模拟〕根据概率,初步体会几何概型的意义.4.通过实例,了解两个互斥事件的概率加法公式.5.通过阅读相关材料,了解人类认识随机现象的过程.6.使学生能初步利用概率知识对实际问题进行分析,并进行理性思考,学会对纷繁复杂的事物进行探索,养成透过事物表面现象把握事物本质所在的思维方法,培养学生理性思维能力与辩证思维能力、创新意识与探究能力、数学建模能力和实践能力,以及表达、交流的能力,增强学生的辩证唯物主义世界观,进一步树立科学的人生观、价值观.7.注重表达数学的文化价值与美学价值,增强学生的审美观,丰富学生的文化底蕴,提高学生的人文素质.二、本章编写意图与教学建议人们在认识自然的过程中,对自然现象进行大量的观察,通过观察得到大量的数据,再对得到的数据进行分析,找出其内在的规律.人们发现,有些现象并不像万有引力定律那样可以得到完全确定的规律.现实世界中发生的事件大多是随机事件,人们通过对随机事件的大量重复试验的结果进行理性的探讨,发现了随机事件也不是毫无规律可循.研究这些规律,最终导致了概率的诞生.学生在初中已经接触了概率的初步知识,本章那么是在此基础上开始系统地学习概率知识.本章又是高中阶段第一次学习这一内容,在后续的学习中还将继续学习概率的其他内容,因此,在高中阶段概率的学习中,起到了承前启后的作用,由于与概率计算密切相关的内容还没有学习,因此,在涉及有关计算的问题时采用枚举法,而在用枚举法时一定要做到既不重复也不遗漏,应该按照一定的顺序来计算有关数据,也可以用表格或树形图来进行有关数据的计算.本章包括了随机事件的概率、古典概型、几何概型以及互斥事件有一个发生的概率等内容.概率的核心问题是要让学生了解随机现象及概率的意义,为了让学生能更深入地理解,可以列举日常生活中的实例,由此正确理解随机事件发生的不确定性及其频率的稳定性,从而加深对概率的理解;古典概型从随机事件发生频率的稳定性导入,通过对频率稳定性研究得出随机事件的发生与否有一定的规律可循,从而得出概率的统计定义.在教学中让学生通过实例理解古典概型的特征是试验结果的有限性和每一个试验结果出现的等可能性,使学生学会把一些实际问题转化为古典概型;从古典概型到几何概型,是从有限到无限的延伸,在几何概型的教学中抓住较强直观性的特点.在教学中有意识地适当地运用现代信息技术辅助教学.在教学中要能做到:(1)注意概念的区别与联系,类似的概念不能够混淆,例如概率与频率,互斥事件与对立事件;(2)在运用公式时注意是否符合公式运用的前提条件;(3)注意顺向思维与逆向思维的合理运用,遵循“正难那么反〞的原那么;(4)注意学习前辈的学习和研究的思维方法,能通过对大量事件的观察抽象出事件的本质.在本章的教学中应注重培养学生学习的信心,提高学生学习数学的兴趣,使学生形成锲而不舍的钻研精神和科学态度;培养学生的数学思维能力,逐步地发展独立获取数学知识的能力,形成批判性的思维习惯,发展数学应用意识和创新意识;通过本章的学习,让学生感受数学与现实世界的重要联系,逐步形成辩证的思维品质;养成准确,清晰,有条理地表述问题以及解决问题的过程的习惯,提高数学表达和交流的能力;进一步拓展学生的视野,逐步认识数学的科学价值、应用价值和文化价值.三、教学内容及课时安排建议3.1 随机事件及其概率整体设计教材分析本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率论的发展、概率趣话以及概率的应用,以此激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率为一课时.本节课主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.通过实例说明一个随机事件的发生是存在着统计规律性的,一个随机事件发生的频率总是在某个常数附近摆.我们给这个常数取一个名字,叫做这个随机事件的概率.它从数量上反映了这个事件发生的可能性的大小.它是0~1之间的一个数.将这个事件记为A,用P(A)表示事件A发生的概率.对于任意一个随机事件A,P(A)必须满足如下基本要求:0≤P(A)≤1.怎样确定一个事件发生的概率呢?可以从实际问题出发,创设问题情境.具体设计如下:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.三维目标1.通过具体的例子了解随机现象,了解必然事件、不可能事件、随机事件的概念.采用实验探究法,按照思考、交流、实验、观察、分析、得出结论的方法进行启发式教学.使学生了解一个随机事件的发生既有随机性,又在大量重复试验中存在着一种客观规律性——频率的稳定性,以引出随机事件概率的意义和计算方法.2.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性.3.掌握概率的统计定义及概率的性质.引导学生对身边的事件加以注意、分析,发挥学生的主体作用,设计好探究性试验.指导学生做简单易行的试验,让学生无意识地发现随机事件的某一结果发生的规律性,理论联系实际,激发学生的学习积极性.4.通过概率论的介绍,激发学生对科学的探究精神和严肃认真的科学态度.发动学生动手试验,体验数学的奥秘与数学美,激发学生的学习兴趣.培养学生的辩证唯物主义观点,增强学生的科学意识.重点难点教学重点:1.随机现象的定义,必然事件、不可能事件、随机事件的定义.2.概率的统计定义,概率的基本性质.教学难点:随机事件的定义,随机事件发生存在的统计规律性.课时安排1课时教学过程导入新课设计思路一:〔情境导入〕在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战〞搞得盟军焦头烂额.为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船〔为100艘〕编队规模越小,编次就越多〔为每次20艘,就要有5个编次〕,编次越多,与敌人相遇的概率就越大.美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.设计思路二:〔问题导入〕观察以下现象,各有什么特点?(1)在标准大气压下,水加热到100 ℃沸腾;(2)抛一石块,下落;(3)同性电荷互相吸引;〔4〕实心铁块丢入水中,铁块上浮;〔5〕射击一次,中靶;〔6〕掷一枚硬币,反面向上.解答:〔1〕、〔2〕两种现象必然发生,〔3〕、〔4〕两种现象不可能发生,〔5〕、〔6〕两种现象可能发生,也可能不发生.推进新课新知探究由上述事例可知现实生活中有很多现象,这些现象在一定条件下,可能发生也可能不发生.在一定条件下事先就能断定发生或不发生某种结果,这种现象就是确定性现象.在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果,这种现象就是随机现象.对于某个现象,如果能让其条件实现一次,就是进行了一次试验,试验的每一种可能的结果,都是一个事件.在上述现象中,我们如果把〔1〕、(2)的条件实现一次,那么〔1〕、(2)的现象一定会出现“沸腾〞与“下落〞,“沸腾〞与“下落〞都是一个事件.对于在一定条件下必然要发生的事件,叫做必然事件(certain event);我们如果把(3)、〔4〕的条件各实现一次,那么“吸引〞与“上浮〞也都是一个事件,但这两个事件都是不可能发生的.在一定条件下不可能发生的事件,叫做不可能事件(impossible event);当(5)、(6)的条件各实现一次,那么“中靶〞与“反面向上〞也都是一个事件,这两个事件,可能发生,也可能不发生.在一定条件下可能发生也可能不发生的事件,叫做随机事件(random event).必然事件与不可能事件反映的都是在一定条件下的确定性现象,而随机事件反映的是随机现象.我们一般用大写的英文字母表示随机事件,例如随机事件A、随机事件B等,另外我们常常将随机事件简称为事件.由于随机事件具有不确定性,因而从表面上看,似乎偶然性在起着支配作用,没有什么必然性.但是,人们经过长期的实践并深入研究后,发现随机事件虽然就每次试验结果来说具有不确定性,然而在大量重复试验中,它却呈现出一种完全确定的规律性.历史上曾有人做过抛掷硬币的大量重复试验,结果如下表:从表中我们可以看到,当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.对于给定的随机事件A,在相同的条件下,随着试验次数的增加,事件A发生的频率mn 总在某个常数附近摆动并趋于稳定,因此,可以用这个常数来刻画随机事件A发生的可能性的大小,并把这个常数称为随机事件A的概率〔probability〕,记作P(A).必然事件的概率为1,不可能事件的概率为0.因此0≤P(A)≤1 .对于概率的统计定义,教师应说明以下几点:〔1〕求一个事件的概率的基本方法是通过大量的重复试验;〔2〕只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;〔3〕概率是频率的稳定值,而频率是概率的近似值;〔4〕概率反映了随机事件发生的可能性的大小.应用示例思路1例1 给出以下事件:①某人练习打靶,一枪命中十环;②手机没电,接听;③抛一枚硬币,结果正面向上;④冰棒在烈日下融化;⑤一粒植物种子,播种后发芽;⑥向上抛一只不锈钢杯子,结果杯口向上.其中随机事件的个数是〔〕A.3B.4解析:判断事件是否是随机事件,可以依据随机事件的概念判断,也就是该事件在一定条件下,是否可能发生也可能不发生,如果可能发生也可能不发生,那么该事件为随机事件.由随机事件的概念可知:①③⑤⑥是随机事件.答案:B点评:判断某一事件是否是随机事件依据随机事件的概念,同样判断某一事件是否是必然事件或是不可能事件也是依据相应的概念,因此,此题中的②是不可能事件,④是必然事件.例2 指出以下事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?〔1〕假设a、b、c 都是实数,那么a(bc)=(ab)c ;〔2〕没有空气,动物也能生存下去;〔3〕在标准大气压下,水在温度90°时沸腾;〔4〕直线y=k(x+1)过定点(-1,0);〔5〕某一天内某人接听20次;〔6〕一个袋内装有形状、大小相同的一个白球和一个黑球,从中任意摸出1个球为白球.分析:根据必然事件、随机事件和不可能事件的定义来判断.解:由必然事件的定义可知〔1〕、〔4〕是必然事件;由随机事件的定义知〔5〕、〔6〕是随机事件;由不可能事件的定义可知(2〕、〔3〕是不可能事件.点评:要判断一个事件是必然事件、随机事件还是不可能事件,应紧紧抓住这些事件的定义,从定义出发来作出判断.例3 任取一个由50名同学组成的班级〔称为一个标准班〕,至少有两位同学的生日在同一天〔记为事件T〕的概率是0.97,据此,我们知道( )A.取定一个标准班,事件T发生的可能性为97%B.取定一个标准班,事件T发生的概率大约是97%C.任意取定10 000个标准班,其中必有9 700个班有事件T发生D.随着抽取的班级数n的不断增大,事件T发生的频率逐渐接近0.97,并在它附近摆动解析:根据随机事件的概率的定义必须进行大量试验,才能得出某一随机事件的概率,因此,此题应从定义出发来研究.对于取定的一个标准班来说,T要么发生要么不发生,所以A,B都不对;对任意取定的10 000个标准班,也可能出现极端情况,如T都不发生,因此C也不对;据概率的统计定义知,选项D正确.答案:D点评:利用概率的统计定义计算随机事件的概率,需要大量重复的试验.对某一个随机事件来说,在一次试验中不一定发生,但在大量重复试验下它的发生又呈现一定的规律.通过对概率的定义的感悟,感受数学学科的实验性,体会偶然与必然的辩证统一.例4 对某电视机厂生产的电视机进行抽样检测的数据如下:〔1〕计算表中优等品的各个频率;〔2〕该厂生产的电视机优等品的概率是多少?分析:利用概率的定义来求解此题.解:〔1〕各次优等品的频率为 0.8, 0.92, 0.96, 0.95, 0.956, 0.954;〔2〕优等品的概率是0.95.点评:通过此题进一步理解概率的定义,领悟概率其实是某一随机事件发生的可能性的大小.例5 历史上曾有人做过抛掷硬币的大量随机试验,结果如下:〔1〕计算表中正面向上的频率;(2)试估计事件“正面向上〞的概率.分析:先运用频率计算的方法计算频率,再运用概率的定义确定事件“正面向上〞的概率.解:(1)表中频率自上而下依次为:0.518 1,0.506 9,0.501 6,0.500 5,0.499 6;〔2〕由(1)的结果发现:当抛掷的次数很多时,“正面向上〞的频率接近于常数0.5,在它附近摆动,所以抛掷一枚硬币,正面向上的概率约为0.5.点评:通过计算随机事件发生的频率来估计随机事件的概率是求随机事件概率常用的方法.思路2例1 指出以下事件中哪些是必然事件,哪些是不可能事件,哪些是随机事件.〔1〕我国东南沿海某地明年将受到3次热带风暴的侵袭;〔2〕假设a为实数,那么|a|≥0;〔3〕某人开车经过10个交叉路口都遇到绿灯;〔4〕一个正六面体的六个面分别标有数字1、2、3、4、5、6,将该正六面体连续抛掷两次,向上的一面数字之和大于12.分析:要判断某一事件是必然事件、随机事件还是不可能事件,可以依据必然事件、随机事件以及不可能事件的定义来判断.解:由必然事件、随机事件和不可能事件的定义可知:〔2〕是必然事件;〔1〕、〔3〕是随机事件;〔4〕是不可能事件.点评:对于某一事件是必然事件、随机事件还是不可能事件的判断依据是定义,其关键是看事件本身是如何发生的.例2 在一只口袋中装有形状与大小都相同的2只白球和3只黑球,从中任意取出3只球,试编拟一些事件,使它们分别为随机事件、必然事件和不可能事件.分析:要编拟一些事件,使其为随机事件、必然事件和不可能事件,就是在一定条件下,所编拟的事件必定发生那么为必然事件,必定不发生那么为不可能事件,可能发生也可能不发生那么为随机事件.解:事件A :任意取出3只球,恰有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至少有1只球是黑球,那么事件B 是必然事件;事件C :任意取出3只球,都是白球,那么事件C 是不可能事件.点评:此题在编拟随机事件、必然事件和不可能事件时,是开放性问题,因此根据相应的概念来编拟,答案不唯一.除了上述解答外,还可以是其他答案,例如:事件A :任意取出3只球,至少有1只球是白球,那么事件A 是随机事件;事件B :任意取出3只球,至多有2只球是白球,那么事件B 是必然事件;事件C :任意取出3只球,没有一只黑球,那么事件C 是不可能事件.例3 用一台自动机床加工一批零件,从中抽出100个逐个进行直径检验,结果如下:从这100个螺母中,任意抽取一个,求事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率并求这几个事件发生的概率约为多少?分析:分别求出事件A 〔6.92<d≤6.94〕,事件B 〔6.90<d≤6.96〕,事件C 〔d>6.96〕,事件D 〔d≤6.89〕的频率,再根据这几个事件的频率得出概率.解:事件A 的频率为17+10026=0.43,概率约为0.43; 事件B 的频率为10081526171710+++++=0.93,概率约为0.93; 事件C 的频率为10022+=0.04,概率约为0.04;事件D 的频率为1001=0.01,概率约为0.01. 点评:根据概率的统计定义求随机事件的概率的常用方法是先求随机事件发生的频率,再由频率得出随机事件发生的概率.例4 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是多少?分析:击中靶心的频率=击中靶心的次数÷射击的次数,再根据概率的统计定义可知:击中靶心的概率应为频率在某一常数P 的左右摆动,那么常数P 即为该事件的概率.解:〔1〕表中击中靶心的频率依次为0.8,0.95,0.88,0.92,0.89;〔2〕因频率在常数0.89的左右摆动,所以射手射击一次,击中靶心的概率约是0.89. 点评:在运用概率的统计定义求某一事件的概率时,应该先求频率,再根据频率来求该事件的概率.知能训练一、课本随机现象练习.解答:2.(1)随机事件;(2)不可能事件;(3)必然事件;(4)不可能事件;(5)随机事件;(6)随机事件.3.必然事件:③;不可能事件:⑤;随机事件:①②④.4.必然事件:太阳每天都从东方升起;不可能事件:电灯在断电时发亮;随机事件:同时抛两枚硬币,正面都向上.二、课本随机事件的概率练习.解答:1.不对.2.不同意,随机事件的发生概率与该事件以前是否发生无关,故下次发生的概率仍为21. 3.不一定,第10个人治愈的概率仍为10%.点评:通过练习,进一步加深必然事件、不可能事件、随机事件以及概率的概念的理解. 课堂小结本节课主要研究了以下内容:1.随机事件、必然事件、不可能事件的概念.2.随机事件A 的概率:一般地,如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm .3.由于随机事件A 在各次试验中可能发生,也可能不发生,所以它在n 次试验中发生的次数〔称为频数〕m 可能等于0〔n 次试验中A 一次也不发生〕,可能等于1〔n 次试验中A 只发生一次〕,……也可能等于n 〔n 次试验中A 每次都发生〕.我们说,事件A 在n 次试验中发生的频数m 是一个随机变量,它可能取得0、1、2、…、n 这n+1个数中的任一个值.于是,随机事件A 的频率nm 也是一个随机变量,它可能取得的值介于0与1之间,即0≤P 〔A 〕≤1.特别,必然事件的概率为1,即P(Ω)=1,不可能事件的概率为0,即P()=0.这里说明随机事件的频率究竟取得什么值具有随机性.然而,经验说明,当试验重复多次时随机事件的频率又具有稳定性.4.说明:①求一个事件概率的基本方法是做大量的重复试验;②当频率在某个常数附近摆动时,这个常数叫做事件A 的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率从数量上反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P〔A 〕≤1.作业课本习题3.1 1、2.设计感想本节课是概率这一章的第一节课,所以有必要在上新课之前向学生简要地介绍概率的发展、概率趣话以及概率的应用,以激发学生对科学的探究精神和严肃认真的科学态度.随机事件及其概率分为两部分,第一部分主要学习随机现象、必然事件、不可能事件、随机事件的概念.通过抛掷硬币试验,探究随机事件的概率,揭示概率的本质,引出随机事件概率的求法,同时让学生体验数学的奥秘与数学美,激发学生的学习兴趣.第二部分是随机事件的概率.怎样确定一个事件发生的概率呢?设计时,从实际问题出发,创设问题情境.除了已有设计之外还可以有如下设计:首先利用多媒体展示奥地利遗传学家孟德尔〔G.Mendel ,1822~1884〕用豌豆进行杂交试验的结果表格,通过商讨分析得到孟德尔是用某种性状发生的频率来估计生物遗传的基本规律的.然后依次展示抛掷硬币的模拟试验结果、π的前n 位小数中数字6出现的频率、鞋厂某种成品鞋质量检验结果,通过商讨分析分别得出:掷硬币的模拟试验结果中,当模拟次数很大时,正面向上的频率值接近于常数0.5,并在其附近摆动;π的前n 位小数中数字6出现的频率中数字6在π的各位小数数字中出现的频率值接近于常数0.1,并在其附近摆动;鞋厂某种成品鞋质量检验结果中,当抽取的样品数很多时,优等品的频率接近于常数0.95,并在其附近摆动.最终得出概率的统计定义.习题详解1.〔1〕随机事件 〔2〕不可能事件 〔3〕随机事件 〔4〕必然事件 〔5〕不可能事件〔6〕必然事件 〔7〕随机事件 〔8〕随机事件2.D.3.(1)〔2〕概率约为0.81.4.。

【精准解析】2021人教A版数学必修3:3.1.1 随机事件的概率

【精准解析】2021人教A版数学必修3:3.1.1 随机事件的概率
(1)“a+b=5”这一事件包含以下 4 个基本事件:(1,4),(2,3),(3,2),(4,1). “a<3 且 b>1”这一事件包含以下 6 个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (2)“ab=4”这一事件包含以下 3 个基本事件:(1,4),(2,2),(4,1); “a=b”这一事件包含以下 4 个基本事件:(1,1),(2,2),(3,3),(4,4).
.
解析落在桌面的数字不小于 4,即 4,5 的频数为 13+22=35.所以频率为13050=0.35.
答案 0.35
9.给出下列四个命题:
①集合{x||x|<0}为空集是必然事件;
②y=f(x)是奇函数,则 f(0)=0 是随机事件;
③若 loga(x-1)>0,则 x>1 是必然事件; ④对顶角不相等是不可能事件.
A.1 个
B.2 个
C.3 个
D.4 个
解析∵集合 A 是集合 B 的真子集,∴A 中的任意一个元素都是 B 中的元素,而 B 中至少有一个元
素不在 A 中,因此①正确,②错误,③正确,④正确.
答案 C
2.从含有 8 件正品、2 件次品的 10 件产品中,任意抽取 3 件,则必然事件是( )
A.3 件都是正品 B.至少有 1 件次品
-1-
D.{(男,男),(女,女)}
解析随机试验的所有结果要保证等可能性.两小孩儿有大小之分,所以(男,女)与(女,男)是不同的
结果,故选 C.
答案 C
5.袋内装有一个黑球与一个白球,从袋中取出一球,在 100 次摸球中,摸到黑球的频率为 0.49,则摸
到白球的次数为( )

高中数学人教A版必修三3.1.1随机事件的概率课件

高中数学人教A版必修三3.1.1随机事件的概率课件

不可能产生
定义1:在一定条件下必然要产生的事件叫必然事件。
例如:①木柴燃烧,产生热量;条件:木柴燃烧;结果:产生热量 ②抛一石块,下落. 条件:抛一石块;结果:下落
定义2:在一定条件下不可能产生的事件叫不可能事件。
例如:③在常温下,焊锡融化; 条件:常温下;结果:焊锡融化 ④在标准大气压下,且温度低于0℃时,冰融化. 条件:标准大气压下且温度低于0oC; 结果:冰融化
定义3:在一定条件下可能产生也可能不产生的事件 叫随机事件。
例如: ⑤抛一枚硬币,正面朝上; 条件:抛一枚硬币;结果:正面朝上 ⑥某人射击一次,中靶.等等. 条件:射击一次;结果:中靶
例1 指出下列事件是必然事件,不可能事件,还是 随机事件:
(1)某地明年1月1日刮西北风;
随机事件
(2)当x是实数时, x 2 0;
随机事件
(6)一个袋内装有形状大小相同的一个白球和一个黑球,从中任意
摸出1个球则为白球
随机事件
例3.对某电视机厂生产的电视机进行抽样检测的数据如下: 抽取台数 50 100 200 300 500 1000 优等品数 40 92 192 285 478 954 (1)计算表中优等品的各个频率; (2)该厂生产的电视机优等品的概率是多少?
(3)射击运动员射击一次命中10环。
(4)同时掷两颗骰子,出现的点数之和不超过12。
其中是随机事件的有
(C)
A、 (1) B、(1)(2) C、(1)(3) D、(2)(4)
练习2、下列事件:
(1)如果a、b∈R, 则a+b=b+a。
(2)如果a<b<0,则 1 > 1 。 ab
(3)我班有一位同学的年龄小于18且大于20。

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

人教版高中数学必修3第三章概率《3.1.1 随机事件的概率》教学PPT

1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
05005
30000
14984
0.4996
72088
36124
0.5011
我们看到,当试验次数很多时,出现正面的 频率值在0.5附近摆动.
上述试验表明,随机事件A在每次试验中是否 发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率呈现出一定 的规律性,这个规律性是如何体现出来的?
有些事情的发生是偶然的,有些事情的发生是必然的.
但是偶然与必然之间往往有某种内在联系.
例如,北京地区一年四季的变化有着确定的、必 然的规律,但北京地区一年里哪一天最热,哪一天最 冷,哪一天降雨量最大,那一天降雪量最大等,又是 不确定的、偶然的.
基本概念
1、随机事件: 在条件S下可能发生也可能 不发生的事件,叫做相对于 条件S的随机事件,简称随 机事件.
这些事件会发生吗?是什么事件?
不可能发生,不可能发生,不可能事件
确定事件
考察下列事件: (1)某人射击一次命中目标; (2)任意选择一个电视频道,它正在播放
新闻; (3)抛掷一个骰子出现的点数为奇数.
这些事件一定会发生吗?他们是什么事件?
可能发生也可能不发生,随机事件.
对于随机事件,知道它发生的可能性大小是 非常重要的.
2、必然事件: 在条件S下一定会发生的事 件,叫做相对于条件S的必 然事件,简称必然事件.
3、不可能事件: 在条件S下一定不会发生的事 件,叫做相对于条件S的不可 能事件,简称不可能事件.
4、确定事件: 必然事件与不可能事件统称为 相对于条件S的确定事件,简称 确定事件.

高中人教A版数学必修3精品课件 3.1.1 随机事件的概率

高中人教A版数学必修3精品课件 3.1.1 随机事件的概率

实验
探寻“抛掷一枚硬币,正面向上”这 个随机事件发生的可能性大小.
实验操作: 每人各取一枚同样的硬币,做10次抛掷硬币试验。
统计“正面向上”出现的次数,并计算“正面向上”出 现的频率。
计算机模拟实验
历史上的一些实验
历史上曾有人作过抛掷硬币的大量重复试验, 请同学们来看这样一组数据:
抛掷次数(n)
正面向上次数(频数m) 频率( Nhomakorabeam n
)
2048
1061
0.5181
4040
2048
0.5069
12000
6019
0.5016
24000
12012
0.5005
30000
14984
0.4996
72088
36124
0.5011
掷硬币试验
从这次试验,你可以得到一 些什么启示?
概率的定义
对于给定的随机事件A,随着试验次 数的增加,事件A发生的频率 m 总是逐渐稳
概率约是0.8 (3)这位运动员进球的概率是0.8,那么他投10次篮一定 能投中8次吗?
不一定. 投10次篮相当于做10次试验,每次试验的 结果都是随机的, 所以投10次篮的结果也是随机的.
小结
通过这节课的学习,你的收获是什么?
作业
测评卷 P35
n
定于区间[0,1]中的某个常数,我们就把这个常 数叫做事件A的概率,记作P(A).
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 m 作为事
n
件A发生的概率的近似值,
即 P( A)
m n ,(其中P(A)为事件A发生的概率)

人教A版高中数学必修三3.1.1 《随机事件的概率》课件

人教A版高中数学必修三3.1.1 《随机事件的概率》课件

规律方法 (1)频率是事件A发生的次数m与试验总次数n的 比值,利用此公式可求出它们的频率,频率本身是随机变 量,当n很大时,频率总是在一个稳定值附近左右摆动, 这个稳定值就是概率. (2)解此类题目的步骤是:先利用频率的计算公式依次计 算出各个频率值,然后根据概率的定义确定频率的稳定值 即为概率.
(2)若此人射击 1 次,中靶的概率约为 0.9,击中 10 环的概 率约为 0.2.
题型三 试验与重复试验的结果分析
【例3】指出下列试验的结果: (1)从装有红、白、黑三种颜色的小球各1个的袋子中任取 2个小球; (2)从1,3,6,10四个数中任取两个数(不重复)作差. 审题指导 本题考查试验结果的罗列方法.
降雨量 70 110 140 160 200 220
频率 1 3 4 7 3 2 20 20 20 20 20 20
(2)P(“发电量低于 490 万千瓦时或超过 530 万千瓦时”)= P(Y<490 或 Y>530)=P(X<130 或 X>210)=P(X=70)+ P(X=110)+P(X=220)=210+230+220=130. 故今年六月份该水力发电站的发电量低于 490(万千瓦时)或 超过 530(万千瓦时)的概率为130.Biblioteka 误区警示 忽略试验的顺序而致错
【示例】先后抛掷两枚质地均匀的硬币,则 (1)一共可能出现多少种不同的结果? (2)出现“一枚正面,另一枚反面”的情况分几种? [错解] (1)一共可能出现“两枚正面”“两枚反面”“一枚正面, 一枚反面”,3种不同情况. (2)出现“一枚正面,一枚反面”的结果只有一种.
题型一 事件的判断
【例1】在下列事件中,哪些是必然事件?哪些是不可能事件?哪 些是随机事件? ①如果a,b都是实数,那么a+b=b+a; ②从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签; ③没有水分,种子发芽; ④某电话总机在60秒内接到至少15次传呼; ⑤在标准大气压下,水的温度达到50 ℃时沸腾; ⑥同性电荷,相互排斥. [思路探索] 根据事件的定义去判断.

高中数学必修三《3.1 随机事件的概率》课件(共29张PPT)

高中数学必修三《3.1 随机事件的概率》课件(共29张PPT)
1000
的彩票中奖。实际上,买1000张彩票中奖的
999 概率为 1 1000
1000
0.6323 。
没有一张中奖也是有可能的,其概率近似为 0.3677。
2.概率与公平性的关系
问题3:你有没有注意到在乒乓球、排 球等体育比赛中,如何确定由哪一方 先发球?你觉得那些方法对比赛双方 公平吗?
45 优等品数(m) m 优等品频率 ( n ) 0.9
思考2:从这个实验中你又能得出什么结论? m 当抽查的球数很多时,抽到优等品的频率 n 接
近于常数0.95,在它附近摆动。
思考3:上述试验表明,随机事件在每次试验中是
否发生是不能预知的,但是在大量重复试验后,随 着试验次数的增加,事件A发生的频率呈现出一定 的规律性,这个规律性是如何体现出来的?
通过大量重复试验得到事件A发 生的频率的稳定值,即概率.
思考6:在相同条件下,事件A在先后两次试验中发生的频
率是否一定相等?事件A在先后两次试验中发生的概率 P (A)是否一定相等? 频率具有随机性,做同样次数的重复试验,事件 A 发生的频率可能不相同;概率是一个确定的数,是客观存 在的,与每次试验无关. 思考7:必然事件、不可能事件发生的概率分别为多少?
随机性与规律性: 随机事件在一次试验中发生与否是随机 的,但随机性中含有规律性。认识了这种随 机性中的规律性,就能为我们比较准确的预 测随机事件发生的可能性。
问题2:有人说,中奖率为
1 1000
的彩
票,买1000张一定中奖,这种理解对吗?
说明:虽然中奖张数是随机的,但这种随机 性中具有规律性。随着试验次数的增加,即 1 随着买的彩票张数的增加,大约有
6、遗传机理中的统计规律

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测

人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。

人教版数学必修三课件高一数学311随机事件的概率课件

人教版数学必修三课件高一数学311随机事件的概率课件

思考6:事件A发生的频率 fn(A) 与 事 件A的概率P(A) 的联系和区别:
联系:随着试验次数的增加, 频率稳定在区 间[0,1]的某个常数上,这个常数就是 概率.在实际问题中,通常事件的概率 是未知的,常用频率作为它的估计值.
区别: 频率本身是随机的,做同样次数或不同 次数的重复试验得到的事件的频率可 能会不同.而概率是一个确定数,是客 观存在的,与每次试验无关.
2 048 4 040 12 000 24 000 30 000 72 088
1 061 2 048 6 019 12 012 14 984 36 124
0.5181 0.5069 0.5016 0.5005 0.4996 0.5011
在上述抛掷硬币的试验中,正面向上发生的 频率的稳定值为多少?
思考3:某农科所对某种油菜籽在相同条
美国海军接受了数学家的建议,命令舰队在指定海域集 合,再集体通过危险海域,然后各自驶向预定港口.奇迹出现了: 盟军舰队遭袭被击沉的船只由原来的25%降低为1 %,大大减 少了损失。
学习目标
• 1.了解事件的分类及随即事件发生的不 确定性和其概率的稳定性。
• 2.理解频率与概率的联系与区别 • 3.能初步举出重复试验的结果
思考2:考察下列事件: (1)在没有水分的真空中种子发芽; (2)在常温常压下钢铁融化; (3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
我们把上述事件叫做不可能事件.
在条件S下,一定不会发生的事件,叫 做相对于条件S的不可能事件
思考3:考察下列事件: (1)某人射击一次命中目标; (2)马林能夺取北京奥运会男子乒乓球 单打冠军; (3)抛掷一个骰字出现的点数为偶数.
件下的发芽情况进行了大量重复试验,

新课标人教A版必修三第三章+概率311随机事件的概率精品课件ppt(共45张PPT)

新课标人教A版必修三第三章+概率311随机事件的概率精品课件ppt(共45张PPT)
频率具有随机性,做同样次数的重复试验, 事件 A 发生的频率可能不相同;概率是一个确定 的数,是客观存在的,与每次试验无关.
频率是概率的近似值,概率是频率的稳定值。
例1.对某电视机厂生产的电视机进行抽样检测的数据如下:
抽取台数 50 100 200 300 500 1000 优等品数 40 92 192 285 478 954
1、概率的正确理解
问题1:有人说,既然抛掷一枚硬币出现正面 的 概率为0.5,那么连续两次抛掷一枚质地均匀的硬币, 一定是一次正面朝上,一次反面朝上。 你认为这种 想法正确吗?
随机性与规律性:
随机事件在一次试验中发生与否是随机 的,但随机性中含有规律性。认识了这种随 机性中的规律性,就能为我们比较准确的预 测随机事件发生的可能性。
知识探究(一):
思考:下列事件有何特点?
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮 在00C下,这些雪融化

转盘转动后,指针 指向黄色区域
这两人各买1张彩票, 她们中奖了
“某人射击一次,射中靶心” “掷一枚硬币,出现正面”
必然事件:在一定条件下必然要发生的事件叫必然事
件。
木柴燃烧,产生热量
它们都具有某种可以相互区分的稳定性状, 例如高茎或矮茎、圆料或皱科、灰色种皮 或白色种皮等。
豌豆杂交试验
❖ 孟德尔把黄色和绿色的豌豆杂交, 第一年收获的豌豆是黄色的。第二 年,当他把第一年收获的黄色豌豆 再种下时,收获的豌豆既有黄色的 又有绿色的。
❖ 同样他把圆形和皱皮豌豆杂交,第 一年收获的都是圆形豌豆,连一粒。 皱皮豌豆都没有。第二年,当他把 这种杂交圆形再种下时,得到的却 既有圆形豌豆,又有皱皮豌豆。

人教A版数学必修三课件:第三章 3.1.3随机事件的概率(共57张PPT)

人教A版数学必修三课件:第三章  3.1.3随机事件的概率(共57张PPT)
常说口里顺,常做手不笨。最淡的墨水,也胜过最强的记性。 人总是珍惜未得到的,而遗忘了所拥有的。 我为你今天的表现感到骄傲。 世上最累人的事,莫过于虚伪的过日子。 困难越大,荣耀也越大。 任何人都可以变得狠毒,只要你尝试过嫉妒。 成功的信念在人脑中的作用就如闹钟,会在你需要时将你唤醒。 让珊瑚远离惊涛骇浪的侵蚀吗?那无异是将它们的美丽葬送。 天空的高度是鸟儿飞出来的,水无论有多深是鱼儿游出来的。 只要更好,不求最好!奋斗是成功之父。 炫耀是需要观众的,而炫耀恰恰让我们失去观众。 只要还有明天,今天就永远是起跑线。 成功是一种观念,成功是一种思想,成功是一种习惯,成功是一种心态。 成功的道路上充满荆棘,苦战方能成功。 有勇气并不表示恐惧不存在,而是敢面对恐惧、克服恐惧。 对自己不满是任何真正有才能的人的根本特征之一。 如果上帝没有帮助你那他一定相信你可以。 你今天必须做别人不愿做的事,好让你明天可以拥有别人不能拥有的东西。 为了照亮夜空,星星才站在天空的高处。 要想成为强者,决不能绕过挡道的荆棘,也不能回避风雨的冲刷。
பைடு நூலகம்

高中数学必修三课件-3.1.1 随机事件的概率4-人教A版

高中数学必修三课件-3.1.1 随机事件的概率4-人教A版

4.任何事件的概率是0~1之间的一个确定的数, 小概率(接近0)事件很少发生,大概率(接近1) 事件则经常发生,知道随机事件的概率的大小有利 于我们作出正确的决策.
布置作业: P113 练习:1,2,3.
件、频数、频率、概率的概念.
2.概率是频率的稳定值,根据随机事件发生的 频率只能得到概率的估计值.
3.随机事件A在每次试验中是否发生是不能预 知的,但是在大量重复试验后,随着试验次数的增 加,事件A发生的频率逐渐稳定在区间[0,1]内的 某个常数上(即事件A的概率),概率就是用来度 量某事件发生的可能性大小的量.
3.1.1 随机事件的概率
事 随机事件 件 确定事件 必然事件
不可能事件
确定事件和随机事件统称为事件,一般用大 写字母A、B、C……表示.
如何度量随机事件发地时哪一 个面朝上:
姓名 试验次数 正面朝上的次数 正面朝上的比例
思考:通过试验,说说你的发现? Excel 统计分析
对于给定的随机事件A,发生的频率fn(A)是不是 不变的?事件A发生的概率P(A)是不是不变的?它 们之间有什么区别与联系?.
在实际问题中,随机事件A发生的概率往往是未 知的(如在一定条件下射击命中目标的概率),你如 何得到事件A发生的概率?
课堂练习:见导学案
小结 1.必然事件、不可能事件、确定事件、随机事
在相同的条件S下重复n次试验,观察某一事件A
是否出现,若某一事件A出现的次数为nA,则称nA为 事件A出现的频数,那么事件A出现的频率fn(A)等于 什么?
fn
A
nA n
【0,1】
试验表明: 随机事件A在每次试验中是否发生是不能预知的 大量重复后 随机事件A发生的频率稳定于【0,1】内某个常数

高中数学必修三3.1.1 随机事件的概率 课件 (共24张PPT)

高中数学必修三3.1.1 随机事件的概率 课件 (共24张PPT)

1 ,那 1000
2.游戏的公平性 在各类游戏中,如果每人获胜的概率相等, 那么游戏就是公平的.这就是说,是否公平只要 看获胜的概率是否相等. 例:在一场乒乓球比赛前,裁判员利用抽 签器来决定由谁先发球,请用概率的知识解 释其公平性. 解:这个规则是公平的,因为抽签上抛 后,红圈朝上与绿圈朝上的概率均是0.5,因 此任何一名运动员猜中的概率都是0.5,也就 是每个运动员取得先发球权的概率都是0.5。 小结:事实上,只要能使两个运动员取得 先发球权的概率都是0.5的规则都是公平的。
必然事件的概率为1,不可能事件的概 率为0.因此 0 P A 1
概率的定义:
对于给定的随机事件A,如果随着实 验次数的增加,事件A发生的频率fn(A)稳 定在某个常数上,把这个常数记作P(A), 称为事件A的概率,简称为A的概率。
随机事件及其概率
某批乒乓球产品质量检查结果表:
抽取球数 优等品数
注意以下几点:
(1)求一个事件的概率的基本方法是通 过大量的重复试验; (2)只有当频率在某个常数附近摆动时, 这个常数才叫做事件 A的概率; (3)概率是频率的稳定值,而频率是概 率的近似值;
(4)概率反映了随机事件发生的可能性 的大小; (5)必然事件的概率为1,不可能事件的 概率为0.因此 0 P A 1.
随机事件及其概率
二.概率的定义及其理解
对于随机事件,知道它发生的可能性大小 是非常重要的.用概率度量随机事件发生 的可能性大小能为我们的决策提供关键性 的依据.
结论:
随机事件A在每次试验中是否发 生是不能预知的,但是在大量重复实 验后,随着次数的增加,事件A发生 的频率会逐渐稳定在区间[0,1]中的 某个常数上。
一. 必然事件、不可能事件、随机事件
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
美国海军接受了数学家的建议,命令舰队在指定海域 集合,再集体通过危险海域,然后各自驶向预定港口.结 果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25% 降为1%,大大减少了损失,保证了物资的及时供应.
• 在自然界和实际生活中,我们会遇到各 种各样的现象.
如果从结果能否预知的角度来看,可以分为两 大类:
• 问题二:列举一些你了解的必然 事件、不可能事件、随机事件
• 问题三:在这三类事件中,你 认为哪一类事件最值得我们探 索和研究?
• 问题4:随机事件在一次试验中 可能发生可能不发生,是不是没 有任何规律的随意发生呢?在大 量重复实验的情况下,它的发生 有没有一定的统计规律性?
实验
我们来做抛掷一枚硬币的试验, 观察它落地时哪一个面朝上。
一类现象的结果总是确定的,即在一定的条 件下,它所出现的结果是可以预知的,这类现象 称为确定性现象;
另一类现象的结果是无法预知的,即在一定 的条件下,出现哪种结果是无法预先确定的,这 类现象称为随机现象.
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中, 铁块浮起
在标准大气压00C下, 这些雪融化
的确定事件。 随机事件:在条件S下,可能发生也可能不发生的事件,
叫做相对于条件S的随机事件。
事件的表示:一般用A、B、C等大写字母表示。
例1 指出下列事件是必然事件,不可能事件,还是随机事件:
(1)“抛一石块,下落”; (2)“在标准大气压下且温度低于0℃时,冰融化”; (3)“某人射击一次,中靶”; (4)“如果实数a>b,那么a-b>0”; (5)“掷一枚硬币,出现正面”; (6)如果a、b都是实数, a+b=b+a
频数与频率
频数:在相同的条件S下重复n次试验,观察
某一事件A是否出现,称n次试验中事
件A出现的次数nA为事件A出现的频数。
频率:事件A出现的比例
n
f n(A)
A
n
为事
件A出现的频率。
f 频率的范围: 0 (A)1 n
用计算机模拟掷硬币实验
历史上有人曾经做过大量重复 掷硬币的试验,如下表所示:
(7)“在常温下,焊锡熔化”; (8)“从分别标有号数1,2,3,4,5的5张标签中任取 一张,得到4号签”; (9)“某电话机在1分钟内收到2次呼叫”; (10)“没有水份,种子能发芽”.
事件(1)、(2)、(4)、(6)是必然事件; 事件(7)、(10)是不可能事件; 事件(3)、(5)、(8)、(9)是随机事件.
试 验 者 试验次数 正面朝上的次数 正面朝上的比例
棣莫佛 蒲丰 费勒 皮尔逊 皮尔逊
2048 4040 10000 12000 24000
1061 2048 4979 6019 12012
0.5181 0.5069 0.4979 0.5016 0.5005
历史上曾有人作过抛掷硬币的大量 重复实验,结果如下表所示
随机事件的概率
在第二次世界大战中,美国曾经宣布:一名优秀数学 家的作用超过10个师的兵力.这句话有一个非同寻常的来 历.
1943年,在大西洋上英美运输船队常常受到德国潜艇 的袭击,当时,英美两国限于实力,无力增派更多的护航 舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家, 数学家们运用概率论分析后分析,舰队与敌潜艇相遇是一 个随机事件,从数学角度来看这一问题,它具有一定的规 律性.一定数量的船(为100艘)编队规模越小,编次就 越多(如每次20艘,就要有5个编次),编次越多,与敌 人相遇的概率就越大.
第一步:全班每人各取一枚同样的硬币, 做10次掷硬币的试验,每人记录 下试验结果,填在表格中:
姓名 试验次数 正面朝上的次数 正面朝上的比例
第二步:每个小组把本组同学的试验结果 统计一下,填入下表:
组次 试验总次数 正面朝上总的次数 正面朝上的比例
第三步:把全班同学的试验结果统计一下, 填入下表:
班级 试验总次数 正面朝上总的次数 正面朝上的比例
第四步:把全班每个同学的实验中正面朝 上的次数收集起来,并用条形图表示。
• 问题5:比较你的实验结果、你所 在小组的实验结果以及班级实验 结果之间的差异,你能得到什么 结论?
• 问题6:如果再重复一次上面的 实验,全班汇总的结果还会和这 次的汇总结果一致吗?如果不一 致,你能说出原因吗?
120° 17202°° 120°
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
问题一:试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生
(2)明天,地球仍会转动 必然发生
必然事件
(3)实心铁块丢入水中,铁块浮起
不可能发生 (4)在标准大气压00C以下,雪融化
不可能事件
1.频率是概率的近似值,随着试验次数的增加, 频率会稳定在概率附近;概率是频率的稳定值;
2.频率本身是随机的,在试验前不能确定; 3.概率是一个确定的数,是客观存在的,与试 验的次数无关。它反映了随机事件发生的可能性 的大小。
抛掷次数(n) 正面朝上次数(m) 频率(m/n)
2048 4040 12000 1061 2008 6019 0.518 0.497 0.501
24000 12012 0.5005
30000 14984 0.4996
频率m/n
1
0.5 2048 4040 12000
24000 30000
抛掷次数n
72088

数学理论
一般地,在大量重复进行同一试验后,随 着试验次数的增加,事件A发生的频率 如果逐 渐稳定在区间[0,1]中的某一个常数上,这时就 把这个常数叫做事件A的概率,记作 P(A)。
概念探究
思考1:从数值上,频率与概率有什么关系?
思考2:频率是不是不变的?概率是不是不变的?
讨论总结
频率和概率的区别和联系
不可能发生
(5)在刚才的图中转动转盘后,指针指向黄色区域
可能发生也可能不发生
(6)两人各买1张彩票,均中奖 可能发生也可能不发生
随机事件
数学理论 必然事件:在条件S下,一定会发生的事件,叫做相对
于条件S的必然事件。 不可能事件:在条件S下,一定不会发生的事件,叫做相
对于条件S的不可能事件。 确定事件:必然事件与不可能事件统称为相对于条件S
相关文档
最新文档