北师大版八年级上册数学 第四章复习 试题
八年级数学上册《第四章 函数》练习题-含答案(北师大版)
八年级数学上册《第四章 函数》练习题-含答案(北师大版)一、选择题1.在圆的面积计算公式S=πR 2中,变量是( ) A.S B.R C.π,R D.S ,R2.下表是某报纸公布的世界人口数情况: 年份 19571974198719992010人口数30亿 40亿 50亿 60亿 70亿上表中的变量是( ) A.仅有一个,是年份 B.仅有一个,是人口数C.有两个变量,一个是人口数,另一个是年份D.一个变量也没有3.下列各图象分别给出了x 与y 的对应关系,其中y 是x 的函数的是( ).4.在函数中,自变量x 的取值范围是( )A.x <13B.x ≠﹣13C.x ≠13D.x >13 5.在函数11y x =-x 的取值范围是( ) A.x ≤1 B.x ≥1 C.x<1 D.x>16.若等腰三角形的周长为60 cm ,底边长为x cm ,一腰长为y cm ,则y 关于x 的函数解析式及自变量x 的取值范围是( )A.y =60-2x(0<x<60)B.y =60-2x(0<x<30)C.y =12(60-x)(0<x<60)D.y =12(60-x)(0<x<30)7.如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没在水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )8.如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数( )A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小二、填空题9.已知3x﹣y=7中,变量是,常量是 .把它写成用x的式子表示y的形式是 .10.函数中,自变量x的取值范围是 .11.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q(升)与它行驶的距离s(百千米)之间的函数关系式为;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶__________千米.12.根据如图的程序,计算当输入x=3时,输出的结果y= .13.A、B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发,途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地,甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有________千米.三、解答题14.某种蔬菜的价格随季节变化如下表:单位:元/千克月份 1 2 3 4 5 6 7 8 9 10 11 12价格5.05.55.04.82.01.51.00.91.52.03.03.5(1)观察表说出变量、自变量、因变量;(2)哪个月这种蔬菜价格最高,哪个月这种蔬菜的价格最低;(3)计算一下这种蔬菜的年平均价.15.一种手机卡的缴费方式为:每月必须缴纳月租费20元,另外每通话1 min要缴费0.2元.(1)如果每月通话时间为x(min),每月缴费y(元),请用含x的代数式表示y.(2)在这个问题中,哪些是常量?哪些是变量?(3)当一个月通话时间为200 min时,应缴费多少元?(4)当某月缴费56元时,此人该月通话时间为多少分钟?16.一根合金棒在不同的温度下,其长度也不同,合金棒的长度和温度之间有如下关系:温度℃…﹣5 0 5 10 15 …长度cm …9.995 10 10.005 10.01 10.015 …(1)上表反映了温度与长度两个变量之间的关系,其中_______是自变量,_______是函数.(2)当温度是10℃时,合金棒的长度是_______cm.(3)如果合金棒的长度大于10.05cm小于10.15cm,根据表中的数据推测,此时的温度应在______℃~_______℃的范围内.(4)假设温度为x℃时,合金棒的长度为ycm,根据表中数据写出y与x之间的关系式________.(5)当温度为﹣20℃或100℃,合金棒的长度分别为______cm或______cm.17.我们知道,海拔高度每上升1千米,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x千米处的温度为y ℃.(1)写出y与x之间的函数关系式.(2)已知碧云峰高出地面约500米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过上空,若机舱内仪表显示飞机外面的温度为﹣34 ℃,求飞机离地面的高度为多少千米?18.某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(L)与时间x(min)之间的关系如折线图所示,根据图像解答下列问题:(1)洗衣机进水时间是多少分钟?清洗衣物时洗衣机中的水是多少升?(2)已知洗衣机的排水速度为每分钟19升①求排水时y与x的函数关系式。
北师大版八年级数学上册第四章《一次函数》 同步练习题
第四章《一次函数》同步练习题一.选择题1.若一次函数y=kx+2的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.k<﹣2 D.k>﹣22.下列选项中,坐标所表示的点在直线y=2x上的是()A.(1,1)B.(2,1)C.(1,2)D.(2,2)3.在函数y=+x﹣2中,自变量x的取值范围是()A.x≥﹣4 B.x≠0 C.x≥﹣4且x≠0 D.x>﹣4且x≠0 4.在平面直角坐标系中,若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度后恰好经过点(﹣1,﹣2),则n的值为()A.10 B.8 C.5 D.35.已知一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,所得的图象经过点(0,﹣3),则a的值为()A.3 B.1 C.﹣3 D.66.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(﹣2,0)和y轴上的一点B,若△ABO(O为坐标原点)的面积为4,则b的值为()A.4 B.2 C.3 D.17.正比例函数y=﹣(k+2)x(k常数,且k≠﹣2),当x的值减少1时,函数y的值减少3,则k的值为()A.5 B.3 C.﹣3 D.﹣58.按照如图所示的程序计算函数y的值时,若输入x的值是3,则输出y的值是﹣7,若输入x的值是1,则输出y的值是()A.﹣3 B.﹣2 C.0 D.29.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.1210.如图所示的函数图象反映的过程是:小明从家去书店选购学习资料,又到体育馆去锻炼身体,然后回家.其中x表示时间,y表示小明离他家的距离.下列结论中:①体育馆离小明家的距离是2千米;②小明从家里到书店的平均速度与从书店到体育馆的平均速度相等;③小明在体育馆锻炼身体的时间是18分;④小明从体育馆返回家的平均速度是0.08千米/小时.正确的结论有()A.①②B.②④C.①③D.①③④二.填空题11.一直线y=﹣x+2关于y轴对称的直线函数表达式是.12.购买单价为每支2元的圆珠笔,总金额y(元)与铅笔数n(支)的关系式可表示为,其中,是变量.13.若函数y=(3m﹣1)x|3m﹣2|是y关于x的正比例函数,则m=.14.当直线y=(2﹣2k)x+k﹣3经过第一、三、四象限时,则k的取值范围是.15.已知点P(x0,y)到直线y=kx+b的距离可表示为,例如:点(0,1)到直线y=2x+6的距离.据此进一步可得点(2,﹣1)到直线y =x﹣4之间的距离为.三.解答题16.画出直线y=﹣2x+3的图象,根据图象解决下列问题:(1)直线上找出横坐标是+2的点的坐标;(2)写出y>0时,x的取值范围;(3)写出直线上到x轴的距离等于4的点的坐标.17.琳琳通过新闻了解到,近来意大利“新冠肺炎”疫情愈发严重,决定给意大利的网友Carlo邮寄一批防疫用品.已知琳琳家、药店、邮局在同一直线上,琳琳从家出发,跑步去药店买了酒精和口罩,又步行到邮局把物品寄出,然后再走回家.琳琳离家的距离y 与时间x之间的关系如图所示,请根据图象解决下列问题:(1)琳琳家离药店的距离为km.(2)琳琳邮寄物品用了min.(3)琳琳两段步行的速度分别是多少?(4)图中点P的意义是.18.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.19.在平面直角坐标系xOy中,已知点A(0,4)、点B(2,0),函数y=2x+m的图象与直线AB交于点M,与y轴交于点C.(1)求直线AB的函数解析式;(2)当△ABC为直角三角形时,求m的值;(3)当点M在线段AB上时,求m的取值范围.20.用充电器给某手机充电时,其屏幕的起始画面如图①.经测试,在用快速充电器和普通充电器对该手机充电时,其电量E(单位:%)与充电时间t(单位:h)的函数图象分别为图②中的线段AB、AC.(1)求线段AB、AC对应的函数表达式;(2)已知该手机正常使用时耗电量为10%/h,在用快速充电器将其充满电后,正常使用ah,接着再用普通充电器将其充满电,其“充电﹣耗电﹣充电”的时间恰好是6h,求a 的值.参考答案一.选择题1.解:∵一次函数y=kx+2的函数值y随x的增大而增大,∴k>0.故选:B.2.解:当x=1时,y=2×1=2,∴点(1,1)不在直线y=2x上,点(1,2)在直线y=2x上;当x=2时,y=2×2=4,∴点(2,1)不在直线y=2x上,点(2,2)不在直线y=2x上.故选:C.3.解:由题意得,x+4≥0,x≠0,解得,x≥﹣4且x≠0,故选:C.4.解:∵若将一次函数y=﹣2x+6的图象向下平移n(n>0)个单位长度,∴平移后的函数解析式为:y=﹣2x+6﹣n,∵函数解y=﹣2x+6﹣n的图象经过点(﹣1,﹣2),∴﹣2=﹣2×(﹣1)+6﹣n,解得:n=10,故选:A.5.解:在一次函数y=﹣x+5中,令x=0,则y=5,即一次函数y=﹣x+5与y轴交点为(0,5).∵旋转后所得的图象经过点(0,﹣3),∴旋转后的函数与y轴交点为(0,﹣3),∵一次函数y=﹣x+5的图象,绕y轴上一点P(0,a)旋转180°,∴(0,5)和(0,﹣3)关于点(0,a)对称,∴a==1,故选:B.6.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1,∵直线y=kx+b+1经过点A(﹣2,0)和y轴正半轴上的一点B,∴B(0,b+1),∵△ABO的面积是:×2×(b+1)=4,解得b=3.故选:C.7.解:根据题意得y﹣3=﹣(k+2)(x﹣1),即y﹣3=﹣(k+2)x+k+2,而y=﹣(k+2)x,所以k+2=﹣3,解得k=﹣5.故选:D.8.解:∵输入x的值是3,则输出y的值是﹣7,∴﹣7=﹣2×3+b,解得:b=﹣1,∴当x<2时,y=﹣x﹣1,∴当x=1时,y=﹣1﹣1=﹣2,故选:B.9.解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+的一次函数,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条变长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,即∴(﹣c)2+2×8=c2,解得c=2,故选:A.10.解:由图象可知:体育馆离小明家的距离是2千米,故①说法正确;小明从家里到书店的平均速度为:(千米/分), 从书店到体育馆的平均速度为:(千米/分),所以小明从家里到书店的平均速度与从书店到体育馆的平均速度不相等,故②说法错误; 小明在体育馆锻炼身体的时间是:55﹣37=18(分钟),故③说法正确;小明从体育馆返回家的平均速度是:2÷=(千米/小时),故④说法错误.所以正确的结论有①③.故选:C .二.填空题(共5小题)11.解:∵关于y 轴对称的点纵坐标不变横坐标互为相反数,∴直线y =﹣x +2关于y 轴对称的直线函数表达式为y =x +2.故答案为y =x +2.12.解:总金额y (元)与铅笔数n (支)的关系式可表示为y =2n ,其中y ,n 为变量,故答案为:y =2n ;n ,y .13.解:∵函数y =(3m ﹣1)x |3m ﹣2|是y 关于x 的正比例函数,∴, 解得:m =1.故答案为:1.14.解:∵y =(2﹣2k )x +k ﹣3经过第一、三、四象限,∴. 解得k <1.故答案是:k <1.15.解:∵已知点P (x 0,y 0)到直线y =kx +b 的距离可表示为, ∴点(2,﹣1)到直线y =x ﹣4之间的距离为:|2﹣4+1|÷=,故答案为:.三.解答题(共5小题)16.解:直线y=﹣2x+3过点(0,3)、(1.5,0),函数图象如右图所示;(1)当x=2时,y=﹣2×2+3=﹣1,即直线上横坐标是+2的点的坐标是(2,﹣1);(2)由图象可得,y>0时,x的取值范围是x<1.5;(3)当y=4时,4=﹣2x+3,解得,x=﹣0.5,当y=﹣4时,﹣4=﹣2x+3,解得,x=3.5,即直线上到x轴的距离等于4的点的坐标是(﹣0.5,4)或(3.5,﹣4).17.解:(1)由图象可知,琳琳家离药店的距离为2.5km.故答案为:2.5;(2)由图象可知,琳琳邮寄物品用了:65﹣45=20(分钟),故答案为:20;(3)从药店步行到邮局的路程为1km,时间为15min,所以速度为km/min;从邮局步行回家的路程为1.5km,时间为25min,所以速度为:(km/min);(4)图中点P的意义是:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.故答案为:离家45min时,琳琳到达邮局,此时她离家的距离为1.5km.18.解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.19.解:(1)∵点A(0,4)、点B(2,0),设直线AB的解析式为:y=kx+b则,解得∴直线AB的解析式为y=﹣2x+4;(2)当△ABC为直角三角形时,存在两种情况:①如图1,C与原点O重合,∠ACB=90°,此时m=0;②如图2,当∠ABC=90°时,C(0,m),由勾股定理得:AB2+BC2=AC2,∵点A(0,4),点B(2,0),∴22+42+22+m2=(4﹣m)2,解得:m=﹣1;综上,m的值是0或﹣1;(3)当直线y=2x+m经过点A时,m=4;当直线y=2x+m经过点B时,如图3,∴2×2+m=0,则m=﹣4,∴当点M在线段AB上时,m的取值范围是﹣4≤m≤4.word 版 初中数学11 / 11 20.解:(1)设线段AB 的函数表达式为E 1=k 1t +b 1,将(0,20),(2,100)代入E 1=k 1t +b 1,可得,∴线段AB 的函数表达式为:E 1=40t +20;设线段AC 的函数表达式为E 2=k 2t +b 2,将(0,20),(6,100)代入E 2=k 2t +b 2, 可得,∴线段AC 的函数表达式为:E 2=t +20; (2)根据题意,得×(6﹣2﹣a )=10a , 解得a =.答:a 的值为.。
北师大版八年级上册数学第四章复习
第四章 一次函数一、仔细选一选(每小题3分,共30分)1、下面哪个点不在函数y = -2x+3的图象上( )A .(-5,13) B.(0.5,2) C.(3,0) D.(1,1) 2、如图,在直角坐标系中,直线l 对应的函数表达式是( )A. 1-=x yB.1+=x yC. 1--=x yD. 1+-=x y 3、一次函数y = -2x -3不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4、直线b kx y +=经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是( ) A. 32+=x y B.232+-=x y C. 23+=x y D. 1-=x y 5、下列函数中,y 的值随x 的值增大而增大的是( ) A. y= -3x B. y=2x - 1 C. y= -3x+10 D. y= -2x+17、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 与y 2的大小关系是( )A. y 1 >y 2B. y 1 =y 2C. y 1 <y 2D. 不能比较 8、直线y=k x +b 经过一、二、四象限,则k 、b 应满足 ( )A. k>0, b<0B. k>0,b>0C. k<0, b<0D. k<0, b>09、下图中,表示一次函数的是( )x y l 2 l 1 x y xyxy l 1 l 1 l 1 l 2 l 2l 2l 210、如下图,同一坐标系中,直线l 1: y=2x-3l 2: y=-3的图象大致可能是( )。
(A ). ( B ) ( C ) ( D ) 二、细心填一填(每小题2分,共28分)11、正比例函数的图象一定经过的点的坐标为_______________.12、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 . 13、已知一次函数y=kx+5的图象经过点(-1,2),则k= .14、某种储蓄的月利率为0.15%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .15、直线32+-=x y 与坐标轴的交点坐标为 . 16、若点(m ,m +3)在函数y=-21x +2的图象上,则m=____ 17、函数y=x -1一定不经过第 象限.18、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x 表示y 的函数表达式 为_________________________(0<x<3)19.已知函数y=(k-1)x+k-1,当k 时,它是一次函数;当k= 时,它是正比例函数.20已知直线y=x+b,当b<0时,直线不经过第 象限21.一次函数y=(m-1)x+3,若y 随x 的增大而增大,则m .22.拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中的 剩余油量y (升)和工作时间x (时)之间的函数关系式是 .23.某人用充值50元的IC 卡从A 地向B 地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t 分钟(3≤t ≤45),则IC 卡上所余的费用y (元)与t (分)之间的关系式是 . 24.先画图再填空:(12分) 作出函数x y 33-=的图象,并根据图象回答下列问题:(1)y 的值随x 的增大而 ;(2)图象与x 轴的交点坐标是 ;与y 轴的交点坐标是 ; (3)当x 时,y ≥0 ;(4)求函数x y 33-=的图象与坐标轴所围成的三角形的面积.OX Y25.(10)有一种节能型轿车的油箱最多可装天燃气50升,加满燃气后,油箱中的剩余燃气量y(升)与轿车行驶路程x(千米)之间的关系如图所示,根据图象回答下列问题:(1)一箱天燃气可供轿车行驶多少千米?(2)轿车每行驶200千米消耗燃料多少升?(3)写出y与x之间的关系式;(0≤x≤1000)26.(10)某通讯移动通讯公司手机费用有A、B两种计费标准,如下表:月租费(元/部)通讯费(元/分钟)备注A种收费标准50 0.4 通话时间不足1分钟按1分钟计算B种收费标准0 0.6设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳y A= 元;按B类收费标准,该用户应缴纳y B= 元;(用含x的代数式表示)(2)如果该用户每月通话时间为300分钟,应选择哪种收费方式?(3)如果该用户每月手机费用不超过90元,应选择哪种收费方式?27.(10)求图象经过点(2,-1),且与直线y=2x+1平行的直线的表达式.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分) 1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12C.13D.142. 关于方程x 2-2=0的理解错误的是A.这个方程是一元二次方程B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是①菱形的对角线相等 ②对角线互相垂直的四边形是菱形;③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.240139.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为A.5B.4C.342D.3410.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分) 11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________.14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________.16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________.三、解答题(本题共7小题,共66分) 17.(8分)解方程:(1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果; (2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F. (1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求:(1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米?(2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师大版初中八年级数学上册第四章同步练习题(含答案解析)
第四章测试卷一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个2.(常德)若一次函数y=(k ﹣2)x+1的函数值y 随x 的增大而增大,则( )A .k <2B .k >2C .k >0D .k <03.(湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)4.(娄底)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .y=2x ﹣4B .y=2x+4C .y=2x+2D .y=2x ﹣25.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y =◆x +◆中的k 和b 看不清了,则( )A.k =2,b =3 B .k =-23,b =2 C .k =3,b =2 D .k =1,b =-1 6.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是( )8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l 1描述的是无月租费的收费方式;②l 2描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是( )A .0B .1C .2D .3第8题图 第9题图 第10题图9.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( )A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +610.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m=160;③点H 的坐标是(7,80);④n=7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④二、填空题(每题3分,共24分)11.已知y =(2m -1)x 3m -2是一次函数,则m =________.12.直线y =2x +1经过点(0,a ),则a =________.13.已知一次函数y =(1-m )x +m -2,当m ________时,y 随x 的增大而增大.14.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第________象限.15.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是__________.16.一次函数的图象与直线y =-x +1平行,且过点(8,2),那么此一次函数的表达式为___________.17.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝ ⎛⎭⎪⎫2,32.若AB =5,则点B 的坐标是__________.18.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2=____4____.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y =ax +b .(1)当点P (a ,b )在第二象限时,直线y =ax +b 经过哪几个象限?(2)如果ab <0,且y 随x 的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点P (-2,2),且一次函数的图象与y 轴相交于点Q (0,4).(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.21.如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20 t ,按每吨1.9元收费.如果超过20 t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x t ,应收水费为y 元.(1)分别写出每月用水量未超过20 t 和超过20 t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.24.一次函数y =kx +b (k ≠0)的图象由直线y =3x 向下平移得到,且过点A (1,2).(1)求一次函数的解析式;(2)求直线y =kx +b 与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?参考答案第四章测试卷一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有( B )A .1个B .2个C .3个D .4个2.(常德)若一次函数y=(k ﹣2)x+1的函数值y 随x 的增大而增大,则( B )A .k <2B .k >2C .k >0D .k <03.(湘西州)一次函数y=x+2的图象与y 轴的交点坐标为( A )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0)4.(娄底)将直线y=2x ﹣3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( A )A .y=2x ﹣4B .y=2x+4C .y=2x+2D .y=2x ﹣25.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y =◆x +◆中的k 和b 看不清了,则( B )A.k =2,b =3 B .k =-23,b =2 C .k =3,b =2 D .k =1,b =-1 6.点P 1(x 1,y 1),P 2(x 2,y 2)是一次函数y =-4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( A )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 27.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是( D )8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l 1描述的是无月租费的收费方式;②l 2描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是( D )A .0B .1C .2D .3第8题图 第9题图 第10题图9.如图,把直线y =-2x 向上平移后得到直线AB ,直线AB 经过点(m ,n ),且2m +n =6,则直线AB 的解析式是( D )A .y =-2x -3B .y =-2x -6C .y =-2x +3D .y =-2x +6【解析】原直线的k =-2,向上平移后得到了新直线,那么新直线的k =-2.∵直线AB 经过点(m ,n ),且2m +n =6,∴直线AB 经过点(m ,6-2m ).可设新直线的解析式为y =-2x +b 1,把点(m ,6-2m )代到y =-2x +b 1中,可得b 1=6.∴直线AB 的解析式是y =-2x +6.10.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m=160;③点H 的坐标是(7,80);④n=7.5.其中说法正确的是( A )A .①②③B .①②④C .①③④D .①②③④【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选A .二、填空题(每题3分,共24分)11.已知y =(2m -1)x 3m -2是一次函数,则m =___1_____.12.直线y =2x +1经过点(0,a ),则a =____1____.13.已知一次函数y =(1-m )x +m -2,当m ___<1_____时,y 随x 的增大而增大.14.已知直线y =kx +b ,若k +b =-5,kb =6,那么该直线不经过第____一____象限.15.直线y =2x +b 与x 轴的交点坐标是(2,0),则关于x 的方程2x +b =0的解是_____x =2_____.16.一次函数的图象与直线y =-x +1平行,且过点(8,2),那么此一次函数的表达式为_____y =-x +10______.17.如图,已知点A 和点B 是直线y =34x 上的两点,A 点坐标是⎝ ⎛⎭⎪⎫2,32.若AB =5,则点B 的坐标是____⎝ ⎛⎭⎪⎫6,92或⎝ ⎛⎭⎪⎫-2,-32______.【解析】由题意可得|A ,B 两点的纵坐标之差||A ,B 两点的横坐标之差|=34,再由AB 2=|A ,B 两点的纵坐标之差|2+|A ,B 两点的横坐标之差|2,求得|A ,B 两点的横坐标之差|=4,|A ,B 两点的纵坐标之差|=3.再分两种情况讨论求解即可.18.直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(-2,0),且两直线与y 轴围成的三角形面积为4,那么b 1-b 2=____4____.【解析】如图,在△ABC 中,BC 为底,AO 为高,且高为2,面积为4,故△ABC 的底边BC =4×2÷2=4.因为点B 的坐标为(0,b 1),点C 的坐标为(0,b 2),所以b 1-b 2即是BC 的长,为4.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y =ax +b .(1)当点P (a ,b )在第二象限时,直线y =ax +b 经过哪几个象限?(2)如果ab <0,且y 随x 的增大而增大,则函数的图象不经过哪些象限?解:(1)因为点P (a ,b )在第二象限,所以a <0,b >0.所以直线y =ax +b 经过第一、二、四象限.(2)因为y 随x 的增大而增大,所以a >0.又因为ab<0,所以b<0.所以一次函数y=ax +b 的图象不经过第二象限.20.一个正比例函数和一个一次函数,它们的图象都经过点P (-2,2),且一次函数的图象与y 轴相交于点Q (0,4).(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.解:(1)设正比例函数的表达式为y =k 1x ,则2=k 1×(-2),解得k 1=-1.所以正比例函数的表达式为y=-x.设一次函数的表达式为y=k2x +b ,则2=k2×(-2)+b ,4=b ,解得b=4,k2=1,所以一次函数的表达式为y=x +4.(2)图略.(3)x<-2.21.如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当x =-2时,y 的值,当y =10时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.解:(1)当y =0时,2x +3=0,得x=-32,则A ⎝ ⎛⎭⎪⎫-32,0. 当x=0时,y=3,则B (0,3).(2)当x=-2时,y=-1;当y=10时,x=72.(3)OP=2OA ,A ⎝ ⎛⎭⎪⎫-32,0,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,P (-3,0),则△ABP 的面积为12×⎝ ⎛⎭⎪⎫3-32×3=94; 当点P 在x 轴的正半轴上时,P (3,0),则△ABP 的面积为12×3×⎝ ⎛⎭⎪⎫3+32=274. 22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20 t ,按每吨1.9元收费.如果超过20 t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x t ,应收水费为y 元.(1)分别写出每月用水量未超过20 t 和超过20 t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?解:(1)当x ≤20时,y =1.9x ;当x >20时,y =1.9×20+(x -20)×2.8=2.8x -18.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20 t ,按每吨1.9元收费,所以该户5月份用水量超过了20 t.由2.8x -18=2.2x ,解得x=30.答:该户5月份用水30 t.23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.解:(1)设方案一的解析式为y =kx ,把(40,1600)代入解析式,可得k =40,故解析式为y =40x ;设方案二的解析式为y =ax +b ,把(40,1400)和(0,600)代入解析式,可得a =20,b =600,故解析式为y =20x +600;(2)根据两直线相交可得方程40x =20x +600,解得x =30.(8分)根据两函数图象可知,当x >30时,选择方案一所得报酬高于选择方案二所得报酬.24.一次函数y =kx +b (k ≠0)的图象由直线y =3x 向下平移得到,且过点A (1,2).(1)求一次函数的解析式;(2)求直线y =kx +b 与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.解:(1)根据题意,得k =3,k +b =2,解得b =-1.∴y =3x -1;(2)在y =3x -1中,当y =0时,x =13,∴点B 的坐标为⎝ ⎛⎭⎪⎫13,0; (3)设直线AC 的解析式为y =mx +n (其中m ≠0),则点C 的坐标为(0,n ),根据题意得S △BOC =12×13|n |=12,∴|n |=3,∴n =±3.当n =3时,m +n =2,解得m =-1,∴y = -x +3;当n =-3时,m +n =2,解得m =5,∴y =5x -3.∴直线AC 的解析式为y =-x +3或y =5x -3.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?解:(1):∵甲车途经C 地时休息一小时,∴2.5-m =1,∴m =1.5.乙车的速度为a m =1202,即a 1.5=60, 解得a =90.甲车的速度为300n -1=300-1201.5,解得n =3.5; (2)设甲车的y 与x 的函数关系式为y =kx +b .①休息前,0≤x ≤1.5,函数图象经过点(0,300)和(1.5,120),所以b =300,1.5k +b =120,所以k =-120,所以y =-120x +300;②休息时,1.5<x <2.5,y =120;③休息后,2.5≤x ≤3.5,函数图象经过点(3.5,0),又由题意可知k =-120,故b =420,所以y =-120x +420.综上,y 与x 的函数关系式为y =⎩⎪⎨⎪⎧-120x +300(0≤x ≤1.5),120(1.5<x <2.5),-120x +420(2.5≤x ≤3.5);(3)设当两车相距120km 时,乙车行驶了x h.甲车的速度为(300-120)÷1.5=120(km/h ),乙车的速度为120÷2=60(km/h ).①若相遇前,则120x +60x =300-120,解得x =1;②若相遇后,则120(x -1)+60x =300+120,解得x =3.答:当两车相距120km 时,乙车行驶了1h 或3h.。
八年级数学上册 第四章 一次函数阶段专题复习课时练 (新版)北师大版-(新版)北师大版初中八年级上册
一次函数【核心考点训练】考点一:函数的概念1.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是( )A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数【解析】选D.A.y=(x)2=x2,y是x的函数,故本选项错误;B.每一个学生对应一个身高,y是x的函数,故本选项错误;C.y=π×(x)2=πx2,y是x的函数,故本选项错误;D.y=±,每一个x的值对应两个y值,y不是x的函数,故本选项正确.2.函数y=有意义的自变量x的取值X围是( )≤≠1≥1 D.x<1【解析】选C.根据被开方数有意义的条件,得x-1≥0,解得:x≥1.3.根据如图所示的程序计算函数值,若输入的x的值为,则输出的函数值为( )A. B. C. D.【解析】≤≤4,所以当x=时,y==.【专家点评】1.命题角度:本部分内容主要考查函数自变量的取值X围、求函数值、已知函数值求相应的自变量的值.2.解题关键:(1)求自变量的取值X围时实际问题要考虑实际意义.(2)熟练掌握求代数式的值的方法.(3)熟练掌握解方程的方法.考点二:函数的图象1.洗衣机在洗涤衣服时,每洗一遍都经历注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(L)与洗一遍的时间x(min)之间函数关系的图象大致为( )【解析】选D.每洗一遍,注水阶段,洗衣机内的水量从0开始逐渐增多,清洗阶段,洗衣机内的水量不变且保持一段时间,排水阶段,洗衣机内的水量开始减少,直至排空为0,纵观各选项,只有D选项图象符合.2.如图,一次函数y=kx+b(k<0)的图象经过点A.当y>3时,x的取值X围是__________.【解析】由函数图象可知,当x<2时,函数图象在y=3的上方,所以当y>3时,x的取值X围是x<2.答案:x<2【专家点评】1.命题角度:本部分内容主要考查利用函数图象求函数表达式及从函数图象上得到一些信息解决实际问题.2.特别提醒:(1)正确理解图象中两个变量的意义.(2)从图象中获取正确的数学信息.(3)熟练掌握图象上升、下降及水平各段的数学意义和实际应用.考点三:一次函数的应用1.某市打市话的收费标准是:每次3min以内(含3min)收费0.2元,以后每分钟收费0.1元(不足1min按1min计).某天小芳给同学打了一个6min的市话,所用费为0.5元;小刚现准备给同学打市话6min,他经过思考以后,决定先打3min,挂断后再打3min,这样只需费0.4元.如果你想给某同学打市话,准备通话10min,则你所需要的费至少为( )【解析】选B.由已知通过分析可得:根据小刚通话的方式进行,需要费最少,即先打3min,挂断后再打3min,再挂断打(10-3-3)min,则费用为:0.2+0.2+0.2+0.1=0.7(元).2.一件工作,甲、乙两人合作5h后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是( )【解析】,再根据前段合作5h完成,可求甲的工作效率是,大于乙的工作效率.3.如图,l A,l B分别表示A步行与B骑自行车在同一路上行驶的路程s与时间t的关系.(1)B出发时与A相距________km.(2)B走了一段路后,自行车发生故障,进行修理,所用的时间是________h.(3)B出发后________h与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,______h与A相遇,相遇点离B的出发点________km.在图中表示出这个相遇点C.【解析】(1)依题意得B出发时与A相距10km.(2)B走了一段路后,自行车发生故障,进行修理,所用的时间是1h.(3)B出发后3h与A相遇.÷0.5=15(km/h),A的速度为(22.5-10)÷3=(km/h),并且出发时和A相距10km,10÷=(h),相遇点离B的出发点×15=(km).相遇点C如图所示.【专家点评】1.命题角度:本部分内容主要考查运用一次函数的性质去解决实际问题.2.解题关键:(1)在理解题意的基础上抽象出实际问题的函数关系.(2)与函数图象结合,正确获取函数图象所表示的实际意义.(3)熟练掌握函数表达式的求法.【综合训练】训练点一:函数的概念1.下列图象中,表示y是x的函数的个数有( )【解析】选B.第一个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象; 第二个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第三个图象,对给定的一些x的值,有两个y值与之对应,不是函数图象;第四个图象,对给定的一些x的值,有两个y值与之对应,不是函数图象.综上所述,表示y是x的函数的有第一个、第二个,共2个.2.函数y=中自变量x的取值X围是( )≥≤2 D.x<2【解析】≥0,解得x≥2.3.已知两个变量x和y,它们之间的3组对应值如表所示,则y与x之间的函数关系式可能是( )x -1 0 1y -1 1 3A.y=xB.y=2x+1C.y=x2+x+1D.y=【解析】选B.把(-1,-1),(0,1),(1,3)分别代入四个答案选项.因为A选项只有(-1,-1)符合,D选项只有(1,3)符合,所以易排除A,D选项.把x=-1代入C选项得y=1,不符合,只有B 选项,把三点代入都符合.训练点二:函数的图象4.周一的升旗仪式上,同学们看到匀速上升的旗子,能反映其高度与时间关系的图象大致是( )【解析】选D.A中,物体的高度先逐步升高,到达最高点后,高度逐渐下降,所以不符合题意;B 中,物体的高度始终不变,也不符合题意;C中随着时间的增大,旗子的高度越来越低,这是降旗的过程,不符合题意.5.下列四幅图象近似刻画两个变量之间的关系,请按图象顺序将下面四种情景与之对应排序( )①一辆汽车在公路上匀速行驶(汽车行驶的路程与时间的关系)②向锥形瓶中匀速注水(水面的高度与注水时间的关系)③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系)④一杯越来越凉的水(水温与时间的关系)A.①②④③B.③④②①C.①④②③D.③②④①【解析】选D.①是匀速行驶,图象是第4个;②表示y随x的变化先较慢后较快属第2个图象;③温度计读数随时间逐渐升高图象是第1个;④的图象应是第3个.6.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家,于是返回家里找作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别为________,________(填写序号).(2)请你为剩下的函数图象写出一个适合的情境.【解析】(1)因为情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,所以只有③符合情境a;因为情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,所以只有①符合,故答案为:③,①.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.训练点三:一次函数的应用“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是( )【解析】÷2=90km/h,A错误;乡村公路行驶了90km,总长不一定是90km,B错误;汽车在乡村公路上行驶速度为90÷1.5=60km/h,C正确;该记者在从出发到到达采访地的时间:2+(360-180)÷60=5h,D错误.8.甲、乙两队举行一年一度的赛龙舟比赛,两队在比赛时的路程s(m)与时间t(min)之间的函数关系图象如图所示,请你根据图象判断,下列说法正确的是( )D.比赛中两队从出发到2.2min时间段,乙队的速度比甲队的速度大【解析】选C.因为s=1000时,t甲=4,t乙=3.8,所以t乙<t甲,乙先到达终点,A错;甲、乙两队公平竞争,赛程都是1000m,谁也不多走,所以B错;当0≤t≤2.2时,甲的图象位于上方,s较大,所以甲速度也较大,D错;s=1000时即到达终点,甲队用时4min,乙队用时3.8min,所以乙队少用4-3.8=0.2(min),即C正确.9.已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是( )【解析】选C.根据题意得y+2x=20,y=-2x+20,因为y>0且2x>y,所以-2x+20>0且2x>-2x+20,所以5<x<10,所以底边长y关于腰长x的函数关系为y=-2x+20(5<x<10).因为k=-2<0,所以y随x的增大而减小.。
北师大版八年级数学上册第四章一次函数练习题(有答案)
一次函数练习题一.选择题1.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是()A.k≥0B.k<0C.k≥﹣3D.k≤﹣32.已知一次函数y=(k+1)x+b的图象与x轴负半轴相交,且函数值y随自变量x的增大而增大,则k,b 的取值情况为()A.k>﹣1,b>0B.k>﹣1,b<0C.k<﹣1,b>0D.k<﹣1,b<03.如图,直线y=kx+b(k≠0)过点A(0,5),B(﹣4,0),则关于x的方程kx+b=0的解是()A.x=﹣4B.x=5C.x=﹣D.x=﹣4.如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A.x>﹣2B.x<﹣2C.x>1D.x<l5.直线y=3x+b经过点(m,n),且n﹣3m=8,则b的值是()A.﹣4B.4C.﹣8D.86.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x的不等式k2x >k1x+b的解集为()A.x>3B.x<3C.x>﹣1D.x<﹣17.一次函数y1=ax+b与y2=cx+d的图象如图所示,下列说法:①ab<0;②函数y=ax+d不经过第一象限;③函数y=cx+b中,y随x的增大而增大;④3a+b=3c+d.其中正确的个数有()A.4个B.3个C.2个D.1个8.已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.9.在平面直角坐标系中,将直线y=﹣2x+2关于平行于y轴的一条直线对称后得到直线AB,若直线AB恰好过点(6,2),则直线AB的表达式为()A.y=2x﹣10B.y=﹣2x+14C.y=2x+2D.y=﹣x+510.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是()A.①②③B.①③④C.②③④D.①②④11.已知一次函数的图象经过点A(0,3)且与两坐标轴所围成的三角形的面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=﹣1.5x+3C.y=1.5x+3或y=﹣1.5x+3 D.无法确定二.填空题12.正比例函数y=(m﹣2)x m的图象的经过第象限,y随着x的增大而.13.已知在正比例函数y=﹣2mx中,函数y的值随x值的增大而增大,则点P(m,4)在第象限.14.已知点P(a,3)在一次函数y=x+1的图象上,则a=.15.已知直线y=﹣3x+1上的点P到两坐标轴的距离相等,则点P的坐标是.16.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的若干信息,请你根据表格中的模式数据计算:m+2n=.x……﹣1 1 2 ……y……m 3 n……17.直线y=x+3与两坐标轴围成的三角形的面积为.18.如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为.19.一次函数y=kx+b的图象如图所示,观察图象可得到关于x的方程kx+b=5的解是.三.解答题20.请按步骤画出函数y=﹣2x+4的图象,根据图象回答下列问题:(1)y的值随x值的增大而;(2)图象与x轴的交点坐标是,与y轴的交点坐标是;(3)当x时,y>0.21.在平面直角坐标系中,一次函数y=kx+b的图象(k≠0)与直线y=x﹣2相交于y轴上一点A,且图象经过点B(2,3)点O是坐标原点,求一次函数的解析式和△AOB的面积.22.根据下列条件求出相应的函数表达式:(1)直线y=kx+5经过点(﹣2,﹣1);(2)一次函数中,当x=1时,y=3;当x=﹣1时,y=7.23.如图,已知:直线AB:分别与x轴、y轴交于点A、B,直线CD:y=x+b分别与x轴、y轴交于点C、D,直线AB与CD相交于点P,S△ABD=2.求:(1)b的值和点P的坐标;(2)求△ADP的面积.24.如图y=2x+3与x轴相交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)点C(a,0)为x轴上一个动点,过点C作x轴的垂线,交直线y=2x+3于点D,若线段CD=5,求a的值.25.如图,已知点A(6,0)、点B(0,2).(1)求直线AB所对应的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,试求点C的坐标.26.已知一次函数y=kx+4的图象经过点(﹣3,﹣2),(1)求这个函数表达式;(2)建立适当平面直角坐标系,画出该函数的图象;(3)判断(﹣4,4)是否在此函数的图象上,并说明理由;(4)求出把这条直线向左平移4个单位长度后的函数关系式.27.已知一次函数y=2x+4.(1)求函数图象与x轴的交点A的坐标,与y轴的交点B的坐标;并在平面直角坐标系中在画出函数的图象.(2)利用图象直接写出:当y<0时,x的取值范围.28.如图,一次函数y1=kx+b的图象与y轴交于点B(0,1),与x轴交于点C,且与正比例函数y2=x 的图象交于点A(m,3),结合图象回答下列问题:(1)求m的值和一次函数y1的表达式;(2)求△BOC的面积;(3)当x为何值时,y1•y2<0?请直接写出答案.29.已知一次函数y=kx+b的图象经过点A(﹣1,3)和点B(2,﹣3).(1)求这个一次函数的表达式;(2)求直线AB与坐标轴所围成的三角形的面积;(3)将该函数的图象向右平移6个单位,求平移后的图象与x轴的交点的坐标.30.如图,直线AC:y1=2x+8与直线AB:y2=kx+b交于点A(m,4),直线AB与x轴交于点B,OB=3.(1)求直线AB的解析式;(2)点D是y轴上一点,连接AD,若直线AD将△ABC分为面积相等的两部分,求点D的坐标.31.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)求一次函数的表达式;(2)求直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得P A+PB最小,并求出P的坐标.32.已知直线l1:y=kx+b经过点A(﹣,0)和点B(2,5),求直线l1与y轴的交点坐标.33.如图,直线y=kx+b与x轴,y轴分别交于点A,点B,点A的坐标为(﹣2,0),点B的坐标为(0,4).(1)求直线AB解析式;(2)如图,将△AOB向右平移6个单位长度,得到△A1O1B1,求线段OB1的长;(3)求(2)中△AOB扫过的面积.34.已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.35.已知一次函数的图象如图,求这个一次函数的解析式.36.已知一次函数的图象经过点(﹣2,﹣2)和点(2,4),(1)求这个函数的解析式.(2)求这个函数的图象与y轴的交点坐标.37.已知A(﹣3,0),B(0,6),通过原点O的直线把△OAB分为面积为1:3的两部分,求这条直线的函数解析式.38.如图,直线y=x+4与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BC与x轴相交于点C,若△ABC的面积是16,求点C的坐标.39.一次函数y=kx+b的图象经过点(1,﹣2)和(2,0).(1)求这个一次函数的关系式:(2)将该函数的图象沿x轴向左平移3个单位后,求所得图象对应的函数表达式.参考答案一.选择题1.解:∵一次函数y=kx+3的图象经过第一、二、四象限,∴k<0;故选:B.2.解:由题意,∴,故选:A.3.解:∵直线y=kx+b(k≠0)过点B(﹣4,0),即当x=﹣4时,y=0,∴关于x的方程kx+b=0的解是x=﹣4.故选:A.4.解:如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为C(﹣2,l),所以关于x的不等式﹣x﹣1<kx+b的解集为x>﹣2.故选:A.5.解:∵直线y=3x+b经过点(m,n),∴n=3m+b,∴b=n﹣3m=8.故选:D.6.解:当x<﹣1时,k2x>k1x+b,所以不等式k2x>k1x+b的解集为x<﹣1.故选:D.7.解:由图象可得:a<0,b>0,c>0,d<0,∴ab<0,故①正确;函数y=ax+d的图象经过第二,三,四象限,即不经过第一象限,故②正确,函数y=cx+b中,y随x的增大而增大,故③正确;∵一次函数y1=ax+b与y2=cx+d的图象的交点的横坐标为3,∴3a+b=3c+d,故④正确.综上所述,正确的结论有4个.故选:A.8.解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0.∴函数y=﹣2k﹣b的图象经过第一、二、三象限.∵因为|k|<|﹣2k|,所以一次函数y=kx+b的图象比y=﹣2kx﹣b的图象的倾斜度小,综上所述,符合条件的图象是C选项.故选:C.9.解:由题意得,直线AB的解析式为y=2x+b,∵直线AB恰好过点(6,2),∴2=2×6+b,解得b=﹣10,∴直线AB的表达式为y=2x﹣10,故选:A.10.解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;②关于x的方程kx+b=3的解为x=0,正确;③当x>2时,y<0,正确;④当x<0时,y>3,错误;故选:A.11.解:设一次函数解析式为y=kx+b,把A(0,3)代入得b=3,当y=0时,kx+3=0,解得x=﹣,则直线与x轴的交点坐标为(﹣,0),∵一次函数的图象与两坐标轴所围成的三角形的面积为3,∴×|﹣|×3=3,解得k=±1.5,∴一次函数解析式为y=1.5x+3或y=﹣1.5x+3.故选:C.二.填空题12.解:∵y=(m﹣2)x m是正比例函数,∴m=1,m﹣2=﹣1,即y=(m﹣2)x m的解析式为y=﹣x,∵﹣1<0,∴图象在二、四象限,y随着x的增大而减小.故填:二、四;减小.13.解:∵正比例函数y=﹣2mx中,函数y的值随x值的增大而增大,∴﹣2m>0,解得m<0,∴点P(m,4)在第二象限.故答案为:二.14.解:∵点P(a,3)在一次函数y=x+1的图象上,∴3=a+1,解得,a=2.故答案是:2.15.解:(1)当点P的坐标是(a,a)时,a=﹣3a+1,解得a=,∴点P的坐标是(,).(2)当点P的坐标是(b,﹣b)时,﹣b=﹣3b+1,解得b=,∴点P的坐标是(,﹣).故答案为:()或().16.解:设一次函数解析式为:y=kx+b,则可得:﹣k+b=m①;k+b=3②;2k+b=n③;m+2n=①+2×③=3k+3b=3×3=9.故答案为:9.17.解:当x=0时,y=x+3=3,∴直线y=x+3与y轴的交点坐标为(0,3);当y=0时,x+3=0,解得:x=﹣6,∴直线y=x+3与x轴的交点坐标为(﹣6,0).∴直线y=x+3与两坐标轴围成的三角形的面积=×3×6=9.故答案为:9.18.解:当y=0时,2x+4=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=2x+4=4,则B(0,4),所以AB=,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=2,所以OC=AC﹣AO=2﹣2,所以的C的坐标为:,故答案为:19.解:观察图象知道一次函数y=kx+b(k、b为常数,且k≠0)的图象经过点(4,5),所以关于x的方程kx+b=5的解为x=4,故答案为:x=4.三.解答题20.解:函数y=﹣2x+4,列表:描点,连线,(1)由图象可知,y的值随x值的增大而减小,故答案为:减小;(2)图象与x轴的交点坐标是(2,0),与y轴的交点坐标是(0,4),故答案为:(2,0),(0,4);(3)由图象可得,当x<2时,y>0,故答案为:<2.21.解:∵直线y=x﹣2与y轴的交点A的坐标为(0,﹣2),∴A(0,﹣2),∵图象经过点B(2,3),∴3=2k﹣2,解得k=,∴一次函数的解析式为y=x﹣2,S△AOB=OA•|x B|=×2×2=2.22.解:(1)把(﹣2,﹣1)代入y=kx+5得﹣2k+5=﹣1,解得k=3,所以直线解析式为y=3x+5;(2)设一次函数解析式为y=ax+b,把(1,3)、(﹣1,7)代入得,解得,所以一次函数解析式为y=﹣2x+5.23.解:(1)∵直线AB:分别与x轴、y轴交于点A、B,令y=0则x=﹣2,A(﹣2,0),令x=0则y=1∴B(0,1),又∵S△ABD=2 ∴|BD|•|OA|=2而|OA|=2 ∴|BD|=2,又B(0,1),∴D(0,﹣1)∴b=﹣1;∵直线AB与CD相交于点P,联立两方程得:,解得x=4,y=3,∴P(4,3);(6分)(2)由图象坐标可知:S△ADP=S△ABD+S△BDP=2+|x P|=6或S△ADP=S△P AC+S△DAC=|y P|)=×3×(1+3)=6.(9分)24.解:(1)由题得:∵当y=0时,x=,∴A点的坐标为(,0),∵当x=0时,y=3,∴B点的坐标为(0,3);(2)由题得,点D的横坐标为:a,则纵坐标为2a+3,∴CD=|2a+3|=5解得:a=1,﹣4,∴a的值为1,或﹣4.25.(1)设直线AB所对应的函数表达式为y=kx+b(k≠0).由题意得:解得,k=﹣,b=2,∴直线AB所对应的函数表达式为.(2)由题意得OB=2.又∵△OBC的面积为3,∴△OBC中OB边上的高为3.当x=﹣3时,;当x=3时,.∴点C的坐标为(﹣3,3)或(3,1).26.解:(1)把(﹣3,﹣2)代入解析式得:﹣3k+4=﹣2,解得:k=2 则解析式是:y=2x+4;(2)当x=0时,y=4,则函数经过点(0,4).(3)在y=2x+4中,当x=﹣4时,y=﹣4,则(﹣4,4)不在图象上;(4)函数解析式为:y=2(x+4)+4 即y=2x+12.27.解:(1)∵一次函数y=2x+4,∴当x=0时,y=4,当y=0时,x=﹣2,∵函数图象与x轴的交于点A,与y轴的交于点B,∴点A的坐标为(﹣2,0),点B的坐标为(0,4),函数图象如右图所示;(2)由图象可得,当y<0时,x<﹣2.28.解:(1)∵正比例函数y2=x的图象交于点A(m,3),∴3=m,∴m=4,∴A(4,3);把A(4,3),B(0,1)代入y1=kx+b得,,解得:,∴一次函数y1的表达式为y1=x+1;(2)当y1=0时,x=﹣2,∴C(﹣2,0),∴△BOC的面积==1;(3)由图象知,当﹣2<x<0时,y1•y2<0.29.解:(1)∵一次函数y=kx+b的图象经过点A(﹣1,3)和点B(2,﹣3),∴,解得,∴一次函数为y=﹣2x+1;(2)在y=﹣2x+1中,分别令x=0、y=0,可求得一次函数与两坐标轴的交点坐标分别为(0,1)、(,0),所以直线与两坐标轴围成的三角形的面积为:S=×1×=;(3)函数y=﹣2x+1向右平移6个单位,则可得平移后的函数为y=﹣2(x﹣6)+1,即y=﹣2x+13,令y=0,得x=,所以平移后的图象与x轴的交点的坐标为(,0).30.解:(1)把点A(m,4)代入y1=2x+8,得2m+8=4,解得m=﹣2,∴A(﹣2,4),把A(﹣2,4),B(3,0)代入y2=kx+b,得,解得,∴直线AB的解析式为y=﹣x+;(2)设直线AD交线段BC于点E,则E为BC的中点.∵B(3,0),C(﹣4,0),∴E(﹣,0),设直线AE的解析式为y=px+q.则,解得,∴直线AE的解析式为y=﹣x﹣,∴当x=0时,y=﹣,∴点D的坐标为(0,﹣).31.解:(1)设y与x的函数关系式为y=kx+b,把A(﹣1,﹣1)B(1,﹣3)代入得:﹣k+b=﹣1,k+b=﹣3,解得:k=﹣1,b=﹣2,∴一次函数表达式为:y=﹣x﹣2;(2)设直线与x轴交于C,与y轴交于D,把y=0代入y=﹣x﹣2,解得x=﹣2,∴OC=2,把x=0代入y=﹣x﹣2,解得:y=﹣2,∴OD=2,∴S△COD=×OC×OD=×2×2=2;(3)作A与A1关于x轴对称,连接A1B交x轴于P,则P即为所求,由对称知:A1(﹣1,1),设直线A1B解析式为y=ax+c,得﹣k+b=1,k+b=﹣3,解得:k=﹣2,b=﹣1,∴y=﹣2x﹣1,令y=0得﹣2x﹣1=0,解得:x=﹣,∴P(﹣,0).32.解:将A(﹣,0),B(2,5)代入y=kx+b,得:,解得:,∴直线l1的函数表达式为y=2x+1.当x=0时,y=2×0+1=1,∴直线l1与y轴的交点坐标为(0,1).33.解:(1)∵点A的坐标为(﹣2,0),把A(﹣2,0)和B(0,4)代入y=kx+b中得:,解得:,∴直线AB解析式为:y=2x+4;(2)∵∠AOB=90°,∴∠AO1B1=90°,由平移得:OO1=6,O1B1=OB=4,由勾股定理得:OB1==2,即线段OB1的长是2;(3)△AOB扫过的面积+4×6=28.34.解:(1)根据一次函数解析式的特点,可得出方程组,解得,则得到y=x﹣.(2)根据一次函数的解析式y=x﹣,得到当y=0,x=;当x=0时,y=﹣.所以与x轴的交点坐标(,0),与y轴的交点坐标(0,﹣).(3)在y=x﹣中,令x=0,解得:y=,则函数与y轴的交点是(0,﹣).在y=x﹣中,令y=0,解得:x=.因而此一次函数的图象与两坐标轴所围成的三角形面积是:×=.35.解:设一次函数解析式为y=kx+b(k≠0),由图象可知它经过(0,﹣2),(1,0)两点,∴解得:.∴一次函数的解析式为:y=2x﹣2.36.解:(1)设函数的解析式是y=kx+b,根据题意得:解得:则函数的解析式是y=x+1;(2)在y=x+1中,令x=0,解得y=1因而函数与y轴的交点坐标是(0,1).37.解:设直线y=kx+b,直线与AB边交于点C,S△ABC=OA•OB=×3×6=9,过C作CG⊥OA,CH⊥OB.若S△OAC=S△ABC=,S△OBC=S△ABC=,×3CG=,CG=,×6CH=,则CH=.则C的坐标是(﹣,),则解析式是y=﹣x;若S△OAC=S△ABC=,S△OBC=S△ABC=,即×3CG=,CG=,,6CH=,则CH=.则C的坐标是(﹣,),则函数解析式是y=﹣6x.则函数解析式是:y=﹣x或y=﹣6x.38.解:(1)把x=0代入y=x+4得:y=4,即点B的坐标为:(0,4),把y=0代入y=x+4得:x+4=0,解得:x=﹣6,即点A的坐标为:(﹣6,0),S△AOB==12,即△AOB的面积为12,(2)根据题意得:点B到AC的距离为4,S△ABC==16,解得:AC=8,即点C到点A的距离为8,﹣6﹣8=﹣14,﹣6+8=2,即点C的坐标为:(﹣14,0)或(2,0).39.解:(1)根据题意得:,解得:,∴一次函数的解析式是:y=2x﹣4;(2)由(1)知:一次函数的解析式为y=2x﹣4;将其沿x轴向左平移3个单位长度,得:y=2(x+3)﹣4=2x+2.。
北师大版八年级数学上册第四章4.1--4.4分节练习题含答案
北师大版八年级数学上册第四章4.1--4.4分节练习题含答案4.1 函数一.选择题1.下列图象中,y不是x的函数的是()A .B .C .D .2.下列式子中,y不是x的函数的是()A.y=x2B.y =C.y =D.y =±3.在行进路程s、速度v和时间t的相关计算中,若保持行驶的路程不变,则下列说法正确的是()A.速度v是变量B.时间t是变量C.速度v和时间t都是变量D.速度v、时间t、路程s都是常量4.已知声音在空气中的传播速度与空气的温度有关,在一定范围内,其关系如表所示,下列说法错误的是()温度/℃﹣20﹣100102030318324330336342348传播速度/m/sA.自变量是温度,因变量是传播速度B.温度越高,传播速度越快C.当温度为10℃时,声音5s可以传播1650mD.温度每升高10℃,传播速度增加6m/s5.函数y=中自变量x的取值范围是()A.x≠0 B.x≥2或x≠0 C.x≥2 D.x≤﹣2且x≠0 6.在函数y=+x﹣2中,自变量x的取值范围是()A.x≥﹣4 B.x≠0 C.x≥﹣4且x≠0 D.x>﹣4且x≠0 7.下列函数中,自变量的取值范围不是x≠1的是()A.y=B.y=(x﹣1)﹣1C.y=(x﹣1)0D.y=2x﹣18.函数y=中自变量x的取值范围在数轴上表示正确的是()A.B.C.D.9.根据图中的程序计算y的值,若输入的x值为3,则输出的y值为()A.﹣5 B.5 C.D.410.如图是用程序计算函数值,若输入x=3,y=2,则输出的k的值为()A.B.6 C.D.11.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A .B .C .D .12.某地区用电量与应缴电费之间的关系如下表:则下列叙述错误的是()1234…用电量(千瓦•时)应缴电费(元)0.55 1.10 1.65 2.20…A.用电量每增加1千瓦•时,电费增加0.55元B.若用电量为8千瓦•时,则应缴电费4.4元C.若应缴电费为2.75元,则用电量为6千瓦•时D.应缴电费随用电量的增加而增加二.填空题13.已知y=kx+b,其中y,k,x均不等于零,用y,b,x表示k,则k =.14.下列:①y=x2;②y=2x+1;③y2=2x(x≥0);④y=(x≥0),具有函数关系(自变量为x)的是.15.小亮拿15元钱去文具店买签字笔,每支1.5元,小亮买签字笔后所剩钱数y(元)与买签字笔的支数x(支)之间的关系式为.16.函数y=中,自变量的取值范围是.17.下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…三.解答题18.在一次实验中,小强把一根弹簧的上端固定,在其下端悬挂物体.下面是他测得的弹簧的长度y与所挂物体的质量x的一组对应值:所挂物体的质量x/kg012345弹簧的长度y/cm202224262830(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)填空:①当所挂的物体为3kg时,弹簧长是.不挂重物时,弹簧长是.②当所挂物体的质量为8kg(在弹簧的弹性限度范围内)时,弹簧长度是.19.如图所示,在△ABC中,底边BC=8cm,高AD=6cm,E为AD上一动点,当点E从点D向点A运动时,△BEC的面积发生了变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)若设DE长为x(cm),△BEC的面积为y,求y与x之间的关系式.(3)当DE长度为3cm时,△BEC的面积y是多少?20.求下列函数中自变量x的取值范围.(1)y=3x﹣1;(2)y=+;(3)y=.21.已知y=(a﹣1)x+2a﹣4,当x=﹣1时,y=0.(1)求a的值;(2)当x=1时,求y的值.22.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):x(人)50010001500200025003000…y(元)﹣3000﹣2000﹣1000010002000…(1)在这个变化过程中,是自变量,是因变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)请你估计当每月乘车人数为3500人时,每月利润为多少元?(4)若5月份想获得利润5000元,则请你估计5月份的乘客量需达人.参考答案一.选择题1.C.2.D.3.C.4.C.5.C.6.C.7.D.8.C.9.B.10.B.11.B.12.C.二.填空题13..14.①②.15.y=15﹣1.5x.16.x≥1且x≠3.17.y=﹣x2+2x+3.三.解答题18.(1)反映了弹簧长度y与所挂物体质量x之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量;(2)①根据表格可知:当所挂物体重量为3千克时,弹簧长度为26cm;不挂重物时,弹簧长度为10cm;故答案为:26cm20cm.②根据表格可知:所挂重物每增加1千克,弹簧增长2cm,根据弹簧的长度=弹簧原来的长度+弹簧伸长的长度可知当所挂物体的重量为x千克时,弹簧长度y=2x+20,将x=8代入得y=2×8+20=36.故答案为:36cm.19.(1)在这个变化过程中,自变量为DE的长,因变量是△BEC的面积;(2)y=×BC×DE=4x(0≤x≤6);(3)当x=3时,y=4×3=12(cm2).20.(1)x是任意实数;(2)根据题意得:,解得:x≥2且x≠3;(3)根据题意得:x﹣1≠0,解得:x≠1.21.(1)由y=(a﹣1)x+2a﹣4,当x=﹣1时,y=0,得﹣(a﹣1)+2a﹣4=0,解得a=3;(2)函数解析式为y=2x+2,当x=1时,y=2+2=4.22.(1)在这个变化过程中,每月的乘车人数x是自变量,每月的利润y是因变量;故答案为每月的乘车人数x,每月的利润y;(2)观察表中数据可知,每月乘客量达到观察表中数据可知,每月乘客量达到2000人以上时,该公交车才不会亏损;故答案为2000;(3)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月乘车人数为3500人时,每月利润为3000元;(4)由表中数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,每月利润为0元,则当每月利润为5000元时,每月乘车人数为4500人,故答案为4500.4.2一次函数与正比例函数知识储备:1.一次函数:若两个变量x,y间的对应关系可以表示成____(k,b为常数,k≠0)的形式,则称y是x的一次函数.2.正比例函数:一般地,形如____(k≠0)的函数,称y是x的正比例函数.考前测一.选择题.1.下列函数中,正比例函数是( )A.y=-xB.y=x+1C.y=x2+1D.y=2.下列函数中,是一次函数但不是正比例函数的是( )A.y=-B.y=-C.y=-D.y=3.函数y=-3x-2,y=x,y=1+,y=x2+4中,一次函数的个数为( )A.1B.2C.3D.44.设圆的面积为S,半径为R,那么下列说法正确的是( )A.S是R的一次函数B.S是R的正比例函数C.S与R2成正比例关系D.以上说法都不正确5.若y=mx+m-1是正比例函数,则m的值为( )A.0B.1C.-1D.26.函数y=mx m-1+(m-1)是一次函数,则( )A.m≠0B.m=2C.m=2或4D.m>2二.填空题.1.当k=____时,函数y=(k+1)x2-|k|+4是一次函数.2.对于圆的周长公式C=2πr,其中自变量是____,因变量是____.3.等腰三角形的顶角y与底角x之间的函数关系为____.4.对于函数y=(k-3)x+k+3,当k=____时,它是正比例函数;当k_ __时,它是一次函数.5.某音像社对外出租的光盘的收费方法是:每张光盘出租后的前两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n>2)应收租金____元.6.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有____根,第n个图形中,火柴棒有__ __根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是____,y是x的___函数.三.解答题.1.已知y+a与x+b(a,b为常数)成正比例.y是x的一次函数吗?请说明理由.2.某种优质蚊香一盘长105 cm,小海点燃后观察发现每小时蚊香缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)该盘蚊香可使用多长时间?3.已知y=(k-1)x|k|+(k2-4)是一次函数.(1)求k的值.(2)求x=3时,y的值.(3)当y=0时,x的值.4.某商人进货时,进价已按原价a扣去了25%.他打算对此货定一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式.5. 赵亮和爸爸上山游玩,赵亮乘坐缆车,爸爸步行,两人相约在山顶的缆车终点会合.已知爸爸行走到缆车终点的路程是缆车到山顶的线路长的2倍,赵亮在爸爸出发后50分钟才乘上缆车,缆车的平均速度为180米/分.设爸爸出发x分后行走的路程为y米.图中的折线表示爸爸在整个行走过程中y随x的变化关系.(1)爸爸行走的总路程是________米,他途中休息了________分.(2)请求出爸爸在休息前后所走的路程段上的步行速度.(3)当赵亮到达缆车终点时,爸爸离缆车终点的路程是多少?6.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元. (1)分别求出0≤x≤200和x>200时,y与x的函数关系式.(2)小明家5月份交纳电费117元,小明家这个月用电多少度?北师大版八年级上册数学期中考试考前复习微专题考前测一次函数与正比例函数(答案)知识储备:1.一次函数:若两个变量x,y间的对应关系可以表示成__y=kx+b__(k,b为常数,k ≠0)的形式,则称y是x的一次函数.2.正比例函数:一般地,形如__y=kx__(k≠0)的函数,称y是x的正比例函数.考前测一.选择题.1.下列函数中,正比例函数是( A )A.y=-xB.y=x+1C.y=x2+1D.y=2.下列函数中,是一次函数但不是正比例函数的是( C )A.y=-B.y=-C.y=-D.y=3.函数y=-3x-2,y=x,y=1+,y=x2+4中,一次函数的个数为( B )A.1B.2C.3D.44.设圆的面积为S,半径为R,那么下列说法正确的是( C )A.S是R的一次函数B.S是R的正比例函数C.S与R2成正比例关系D.以上说法都不正确5.若y=mx+m-1是正比例函数,则m的值为( B )A.0B.1C.-1D.26.函数y=mx m-1+(m-1)是一次函数,则( B )A.m≠0B.m=2C.m=2或4D.m>2二.填空题.1.当k=__1__时,函数y=(k+1)x2-|k|+4是一次函数.2.对于圆的周长公式C=2πr,其中自变量是__r__,因变量是__C__.3.等腰三角形的顶角y与底角x之间的函数关系为__y=-2x+180°__.4.对于函数y=(k-3)x+k+3,当k=__-3__时,它是正比例函数;当k__≠3__时,它是一次函数.5.某音像社对外出租的光盘的收费方法是:每张光盘出租后的前两天,每天收0.8元,以后每天收0.5元,那么一张光盘在出租后n天(n>2)应收租金__(0.5n+0.6)__元.6.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴棒有__13__根,第n个图形中,火柴棒有__(3n+1)__根,若用y表示火柴棒的根数,x表示正方形的个数,则y与x的函数关系式是__y=3x+1__,y是x的__一次__函数.三.解答题.1.已知y+a与x+b(a,b为常数)成正比例.y是x的一次函数吗?请说明理由.答案:是.理由:因为y+a与x+b成正比例,设比例系数为k,则y+a=k(x+b),整理得y=kx+kb-a,所以y是x的一次函数.2.某种优质蚊香一盘长105 cm,小海点燃后观察发现每小时蚊香缩短10 cm.(1)写出蚊香点燃后的长度y(cm)与点燃时间t(h)之间的函数关系式.(2)该盘蚊香可使用多长时间?答案:(1)y=105-10t.(2)当蚊香燃尽时,y=0.由(1),得105-10t=0,即t=10.5,所以该盘蚊香可使用10.5 h.3.已知y=(k-1)x|k|+(k2-4)是一次函数.(1)求k的值.(2)求x=3时,y的值.(3)当y=0时,x的值.答案:(1)由题意可得:|k|=1,k-1≠0,解得:k=-1;(2)当x=3时,y=-2x-3=-9;(3)当y=0时,0=-2x-3,解得:x=-.4.某商人进货时,进价已按原价a扣去了25%.他打算对此货定一新价销售,以便按新价让利20%销售后,还可获得售价的25%的利润.试写出此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式.答案:设新价为b元,则销售价为(1-20%)b,进价为(1-25%)a,(1-20%)b-(1-25%)a 是每件的纯利.所以(1-20%)b-(1-25%)a=(1-20%)b×25%,所以b= a.新价让利总额为y元,售出货物为x件,则y=20%bx=20%×ax=ax.故此商人经销这种货物时按新价让利总额y元与货物售出件数x件之间的函数关系式为y=ax.5. 赵亮和爸爸上山游玩,赵亮乘坐缆车,爸爸步行,两人相约在山顶的缆车终点会合.已知爸爸行走到缆车终点的路程是缆车到山顶的线路长的2倍,赵亮在爸爸出发后50分钟才乘上缆车,缆车的平均速度为180米/分.设爸爸出发x分后行走的路程为y米.图中的折线表示爸爸在整个行走过程中y随x的变化关系.(1)爸爸行走的总路程是________米,他途中休息了________分.(2)请求出爸爸在休息前后所走的路程段上的步行速度.(3)当赵亮到达缆车终点时,爸爸离缆车终点的路程是多少?答案:(1)根据图象知,爸爸行走的总路程是3 600米,他途中休息了20分钟.答案:3 600 20(2)爸爸休息前的速度为=65(米/分),爸爸休息后的速度为=55(米/分).(3)赵亮到达终点所用时间为=10(分),爸爸比赵亮迟到80-50-10=20(分),则赵亮到达终点时,爸爸离缆车终点的路程为20×55=1 100(米).6.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x度时,应交电费y元. (1)分别求出0≤x≤200和x>200时,y与x的函数关系式.(2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案:(1)当0≤x≤200时,y与x的函数关系式是y=0.55x;当x>200时,y与x的函数关系式是y=0.55×200+0.7(x-200),即y=0.7x-30. (2)因为0.55×200=110,小明家5月份的电费超过110元,所以用电超过200度.将y=117代入y=0.7x-30中,得x=210.答:小明家5月份用电210度.4.3 一次函数的图象一.选择题1.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是()A.B.C.D.2.下面所画的函数图象中,不可能是一次函数y=mx+2﹣m图象的是()A.B.C.D.3.一次函数y1=kx+b与y2=bx+k(k,b为常数)在同一平面直角坐标系中大致图象可能是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=﹣mnx(m,n为常数,且mn≠0)的图象不正确的是()A.B.C.D.5.若正比例函数y=kx的图象如图所示,则一次函数y=﹣kx+k的图象大致是()A.B.C.D.6.点P1(x1,y1),点P2(x2,y2)是一次函数y=4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0 C.y1<y2D.y1=y27.一次函数y=mx﹣n与y=mnx(mn≠0),在同一平面直角坐标系的图象不可能是()A.B.C.D.8.若a,b为实数,且++b=3,则直线y=ax﹣b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.已知关于x的多项式x2+kx+1是一个完全平方式,则一次函数y=(k﹣2)x+5经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.如图,平面直角坐标系xOy中,阴影部分(射线y=x,x>0与y正半轴之间,不含边界)的点的坐标(x,y)满足()A.x=y B.x>y>0 C.y>x>0 D.y=x>011.下列一次函数中,y随x值的增大而减小的()A.y=2x+1 B.y=3﹣4x C.y=πx+2 D.y=(5﹣2)x 12.在一次函数y=(k﹣1)x的图象上,y都随x的增大而增大,则k的值可以是()A.﹣1 B.0 C.1 D.213.一次函数y=(m﹣1)x+3,y随x的增大而增大,则m的值可以为()A.0 B.1 C.2 D.﹣214.若点P在一次函数y=x﹣4的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限15.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(1,3)B.y的值随x值的增大而增大C.当x>0时,y<0D.它的图象不经过第三象限二.填空题16.若点P(﹣1,y1)和点Q(﹣2,y2)是一次函数y=﹣x+b的图象上的两点,则y1,y2的大小关系是:y1y2(填“>,<或=”).17.直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直,则a的值为.18.复习课中,教师给出关于x的函数y=﹣2mx+m﹣1(m≠0),学生们在独立思考后,给出了5条关于这个函数的结论:①此函数是一次函数,但不可能是正比例函数;②函数的值y随着自变量x的增大而减小;③该函数图象与y轴的交点在y轴的正半轴上;④若函数图象与x轴交于A(a,0),则a<0.5;⑤此函数图象与直线y=4x﹣3,y轴成的面积必小于0.5.对于以上5个结论正确有个.19.正比例函数y=﹣的图象经过第象限.20.已知正比例函数y=(1+)x,y随着x的增大而增大,则k的取值范围是.21.有一种动画设计,屏幕上的△ABC是黑色区域(含三角形的边界).其中A(﹣1,1),B(2,1),C(1,3).用信号枪沿直线y=kx﹣2发射信号,当信号遇到黑色区域时,区域便由黑变白,则能够使黑色区域变白的k的取值范围是.22.如图,平面直角坐标系中,直线y=﹣x+1与x轴、y轴分别交于点A、B,点P与点O关于直线AB对称,则点P的坐标为.23.如图,直线y=x+3与x轴,y轴分别交于点A和点B,点C,D分别为线段AB,OB 的中点,点P为OA上一动点,则PC+PD的最小值为.24.如图,将直线OA向上平移2个单位长度,则平移后的直线的表达式为.25.要把直线y=3x﹣2向上平移,使其图象经过点(2,10),需要向上平移个单位.三.解答题26.画出下列正比例函数和一次函数的图象:(1)y=2x;(2)y=﹣2x﹣4.27.(1)在平面直角坐标系中,作出y=2x﹣2的图象.(2)根据图象,直接写出y>0时自变量x的取值范围.28.已知一次函数y=(2m+1)x+3+m.(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过点(﹣1,1),求m的值,画出这个函数图象.29.对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|叫做P1,P2两点间的直角距离,记作d(P1,P2).(1)已知A(1,1),B(5,4),求d(A,B).(2)已知点O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出y与x之间的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形.(3)设点P0(x0,y0)是一定点,点Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做点P0到直线y=ax+b的直角距离.试求点M(1,﹣3)到直线y=x+2的直角距离.30.已知正比例函数的图象经过点A(2,3);(1)求出此正比例函数表达式;(2)该直线向上平移3个单位,写出平移后所得直线的表达式,并画出它的图象.参考答案一.选择题1.解:A、一条直线反映k>0,b>0,一条直线反映k>0,b<0,故本选项错误;B、一条直线反映出k>0,b<0,一条直线反映k>0,b<0,一致,故本选项正确;C、一条直线反映k<0,b>0,一条直线反映k>0,b<0,故本选项错误;D、一条直线反映k>0,b<0,一条直线反映k<0,b<0,故本选项错误.故选:B.2.解:根据图象知:A、m<0,2﹣m>0.解得m<0,所以有可能;B、m>0,2﹣m>0.解得0<m<2,所以有可能;C、m<0,2﹣m<0.两不等式无公共部分,所以不可能;D、m>0,2﹣m<0.解得m>2,所以有可能.故选:C.3.解:A、直线y1=kx+b反映k>0,b<0,直线y2=bx+k反映k>0,b>0,故本选项错误;B、直线y1=kx+b反映k<0,b<0,直线y2=bx+k反映k>0,b<0,故本选项错误;C、直线y1=kx+b反映k>0,b<0,直线y2=bx+k反映k<0,b<0,故本选项错误;D、直线y1=kx+b反映k<0,b>0,直线y2=bx+k反映k<0,b>0,一致,故本选项正确.故选:D.4.解:①当﹣mn<0,m,n同号,同正时y=mx+n过一、二、三象限,同负时过二、三、四象限;②当﹣mn>0时,m,n异号,则y=mx+n过一、三、四象限或一、二、四象限.故选:B.5.解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0,∴﹣k>0,∴y=﹣kx+k的图象经过一、三、四象限,故选:D.6.解:∵k=4>0,∴y随x的增大而增大,又∵x1<x2,∴y1<y2.故选:C.7.解:当m>0,n>0时,一次函数y=mx﹣n的图象经过第一、三、四象限,一次函数y =mnx的图象经过第一、三象限,故选项B正确,选项C错误;当m>0,n<0时,一次函数y=mx﹣n的图象经过第一、二、三象限,一次函数y=mnx 的图象经过第二、四象限,故选项A正确;当m<0,n<0时,一次函数y=mx﹣n的图象经过第一、二、四象限,一次函数y=mnx 的图象经过第一、三象限,故选项D正确;故选:C.8.解:∵++b=3,∴,解得a=,∴+b=3,∴b=3,∴直线y=x﹣3,该直线经过第一、三、四象限,不经过第二象限,故选:B.9.解:∵关于x的多项式x2+kx+1是一个完全平方式,∴k=±2,当k=2时,函数y=(2﹣2)x+5=5是常数函数,不是一次函数;当k=﹣2时,一次函数y=(﹣2﹣2)x+5=﹣4x+5,则该函数经过第一、二、四象限,故选:C.10.解:当x=y>0时在射线y=x上,故当y>x>0时点(x,y)在阴影部分内,故选:C.11.解:A、∵k=2>0,∴y随x值的增大而增大;B、∵k=﹣4<0,∴y随x值的增大而减少;C、∵k=π>0,∴y随x值的增大而增大;D、∵k=5﹣2=3>0,∴y随x值的增大而增大.故选:B.12.解:∵一次函数y=(k﹣1)x的图象中,y随x的增大而增大,∴k﹣1>0,解得k>1,∴k可以取2.故选:D.13.解:∵一次函数y=(m﹣1)x+3,若y随x的增大而增大,∴m﹣1>0,解得m>1,只有2合适,故选:C.14.解:∵k=1>0,b=﹣4<0,∴一次函数y=x﹣4的图象经过第一、三、四象限,又∵点P在一次函数y=x﹣4的图象上,∴点P一定不在第二象限.故选:B.15.解:A、当x=1时,y=﹣3×1+1=﹣2,∴点(1,﹣2)在函数y=﹣3x+1的图象,结论A不正确;B、∵k=﹣3<0,∴y随x的增大而减小,结论B不正确;C、当y=0时,﹣3x+1=0,解得:x=,∴当0<x<时,y>0,结论C不正确;D、∵k=﹣3<0,b=1>0,∴函数y=﹣3x+1的图象经过第一、二、四象限,∴函数y=﹣3x+1的图象不经过第三象限,结论D正确.故选:D.二.填空题16.解:∵k=﹣1<0,∴y随x的增大而减小,又∵﹣1>﹣2,∴y1<y2.故答案为:<.17.解:当a=0时,直线ax+y﹣2a+1=0可以写成直线y=﹣1,直线(a+2)x﹣ay+3=0可以写成x=﹣,此时直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直;当a≠0时,直线ax+y﹣2a+1=0可以写成直线y=﹣ax+2a﹣1,直线(a+2)x﹣ay+3=0可以写成直线y=x+,∵直线ax+y﹣2a+1=0与直线(a+2)x﹣ay+3=0垂直,∴﹣a=﹣1,解得a=﹣1;故答案为:0或﹣1.18.解:此函数是一次函数,当m=1时,它是正比例函数,所以①错误;当m<0时,函数的值y随着自变量x的增大而增大,所以②错误;当m<1时,该函数图象与y轴的交点在y轴的负半轴上,所以③错误;若函数图象与x轴交于A(a,0),则﹣2ma+m﹣1=0,解得a==0.5﹣,当m >0时,a<0.5,当m<0时,a>0.5,所以④错误;此函数图象与直线y=4x﹣3的交点坐标为(,﹣1),此直线与y轴的交点坐标为(0,m﹣1),直线y=4x﹣3与y轴的交点坐标为(0,﹣3),所以此函数图象与直线y=4x﹣3、y轴围成的面积=•|m﹣1+3|•=•|m+2|,当m=2时,面积为1,所以⑤错误.故答案为:0.19.解:由正比例函数y=﹣中的k=﹣,知函数y=﹣的图象经过第二、四象限.故答案是:二、四.20.解:∵正比例函数y=(1+)x中,y随x的增大而增大,∴1+>0,即k>﹣5.故答案为:k>﹣5.21.解:∵A(﹣1,1),B(2,1),C(1,3).∴当直线y=kx﹣2经过点A时,﹣k﹣2=1,解得k=﹣3;当直线y=kx﹣2经过点B时,2k﹣2=1,解得k=,∴k≤﹣3或0<k≤.故答案为k≤﹣3或0<k≤.22.解:∵直线y=﹣x+1与x轴、y轴分别交于点A、B,∴A(2,0),B(0,1),∵点P与点O关于直线AB对称,∴直线OP为y=2x,OA=P A,设P(m,2m),则(m﹣2)2+(2m)2=22,解得m1=,m2=0(舍去),∴P的坐标为(,),故答案为(,).23.解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+3中x=0,则y=3,∴点B的坐标为(0,3);令y=x+3中y=0,则x+3=0,解得:x=﹣8,∴点A的坐标为(86,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣4,),点D(0,).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣),∴PC+PD的最小值=CD′==5,故答案为:5.24.解:设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移2个单位长度,则平移后的直线的表达式为:y=2x+2.故答案是:y=2x+2.25.解:设直线y=3x﹣2向上平移h个单位,其图象经过点(2,10),则函数解析式为y=3x﹣2+h,将点(2,10)代入,得10=3×2﹣2+h,解得h=6.故答案为:6.三.解答题26.解:(1)如图所示;(2)如图所示.27.解:(1)列表:描点,连线,;(2)由图象可得,y>0时自变量x的取值范围是x>1.28.解:(1)由题意得:2m+1<0,解得:m<﹣.(2)将点(﹣1,1)代入可得:1=﹣(2m+1)+3+m,解得:m=1,∴y=3x+4,令x=0,则y=4,∴图象经过点(﹣1,1),(0,4),如图:29.解(1)∵A(1,1),B(5,4),∴d(A,B)=|x A﹣x B|+|y A﹣y B|=|1﹣5|+|1﹣4|=7;(2)由题意得d(O,P)=|0﹣x|+|0﹣y|=2,∴|x|+|y|=2,所有符合条件的点P组成的图形如图所示:(3)∵Q点在直线y=x+2,∴Q(x,x+2),∴d(Q,M)=|x Q﹣x M|+|y Q﹣y M|=|x﹣1|+|x+2﹣(﹣3)|=|x﹣1|+|x+5|,又∵x可取一切实数,|x﹣1|+|x+5|表示数轴上实数x所对应的点到数1和﹣5所对应的点的距离之和,其最小值为6,∴M(1,﹣3)到直线y=x+2的直角距离为6.30.解:(1)设正比例函数的解析式为y=kx,把A(2,3),代入得到k=,∴正比例函数的解析式为y=x.(2)将直线y=x向上平移3个单位,得直线y=x+3,如图;4.4一次函数的应用一、选择题1、某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如上图所示,由图中给出的信息可知,营销人员没有销售时(最低工资)的收入是()A.310元B.300元C.290元D.280元2、已知一次函数y=kx-4(k<0)的图象与两坐标轴所围成的三角形的面积等于4,则该一次函数的表达式为()A.y=-x-4B.y=-2x-4C.y=-3x+4D.y=-3x-43、小明和哥哥从家里出发去买书,从家出发走了20分钟到一个离家1 000 m的书店.小明买了书后随即按原路返回;哥哥看了20分钟书后,用15分钟返家.下面的图象表示哥哥离家时间与距离之间关系的是()4、一次函数y kx b =+的图象经过点A (0,2)-和B (3,6)-两点,那么该函数的表达式是( )A .26y x =-+B .823y x =-- C .86y x =-- D .823y x =--5.正比例函数y kx =的图象经过点(1,3)-,那么它一定经过的点是( ) A .(3,1)-B .1(,1)3C .(3,1)-D .1(,1)3-6、甲、乙两人沿相同的路线由A 地到B 地匀速前进,A,B 两地间的路程为20 km .他们前进的路程为s (单位:km),甲出发后的时间为t (单位:h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( ) A.甲的速度是4 km/h B.乙的速度是10 km/h C.乙比甲晚出发1 h D.甲比乙晚到B 地3 h7、如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h 与注水时间t 之间的函数关系图象可能是( )8.小苏和小林在如图①所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m)与跑步时间t (单位:s)的对应关系如图②所示.下列叙述正确的是( )图①图②A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15 s 跑过的路程大于小林前15 s 跑过的路程D.小林在跑最后100 m 的过程中,与小苏相遇2次9.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每时完成的绿化面积是( )A.300 m 2B.150 m 2C.330 m 2D.450 m 2 10、已知两条直线111y k x b =+,222y k x b =+的交点的横坐标为x 0且10k >,20k <,当0x x >时,则( )A .12y y =B .12y y >C .12y y <D .12y y ≥二、填空题11、如果正比例函数的图象经过点(2,4),那么这个函数的表达式为 . 12.已知y 与x 成正比例,且3x =时,6y =-,则y 与x 的函数关系式是 . 13.若直线1y kx =+,经过点(3,2),则k =_______.14.已知一次函数2y kx =-,当2x =时,6y =-,则当3x =-时,y =_______.15.若一次函数(21)y kx k=-+的图象与y轴交于点A(0,2),则k=_____.16.已知点A(3,0),B(0,3)-,C(1,)m在同一条直线上,则m=______.三、解答题17、如图,表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象,两地间的距离是80千米,请根据图象回答下面问题:(1)谁出发的较早?早多长时间?(2)谁到达乙地较早?早到多长时间?(3)途中,自行车和摩托车的速度各是多少?(4)自行车出发几小时后被摩托车追上?此时摩托车出发几个小时?摩托车自行车876543218070605020x(时)40y(千米)301018、某工厂有甲种原料130 kg,乙种原料144 kg.现用这两种原料生产出A,B两种产品共30件.已知生产每件A产品需甲种原料5 kg,乙种原料4 kg,且每件A产品可获利700元;生产每件B产品需甲种原料3 kg,乙种原料6 kg,且每件B产品可获利900元.设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种?(2)设生产这30件产品可获利y元,写出y关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.19、我国每年有大量土地被沙漠吞没,改造沙漠、保护土地资源已是一项十分紧迫的任务.某地现有耕地面积100万km2,沙漠面积为200万km2,土地沙漠化的变化情况如图所示,图中y表示新增沙漠面积(单位:万km2),x表示时间(单位:年).(1)写出y与x之间的函数表达式.(2)若不采取任何措施,10年后该地区将新增加沙漠面积多少?(3)按此趋势继续下去,多少年后本地区将丧失全部的土地资源?(4)如果从现在起开始采取植树造林等措施,每年可改造4万km2沙漠,那么到哪一年底,该地区沙漠面积将减少到176万km2?。
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)
北师大版八年级上册数学第四章《一次函数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r B.某地一天的气温T与时间t C.某班学生的身高y与学生的学号x D.一个正数的平方根与这个数2.一个正比例函数的图象经过点(-2,-4),则它的表达式为( )A.y=-2x B.y=2x C.y=-12x D.y=12x3.【教材P88习题T4改编】正比例函数y=x的图象向上平移2个单位长度,所得函数为( )A.y=x+2 B.y=x-2 C.y=2x D.y=x 24.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为( ) A.x=3B.x=-3C.x=4D.x=-45.已知点P(a,-3)在一次函数y=2x+9的图象上,则a的值为( ) A.-3 B.-6 C.15 D.36.关于函数y=-x2-1,下列说法错误的是( )A.当x=2时,y=-2B.y随x的增大而减小C.若(x1,y1),(x2,y2)为该函数图象上两点,x1>x2,则y1>y2D.图象经过第二、三、四象限7.【教材P98复习题T3变式】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体质量x(kg)间有如下关系(其中x≤12).下列说法不正确的是( )A.x与y都是变量,且x是自变量B.弹簧不挂物体时的长度为10 cmC.物体质量每增加1 kg,弹簧长度增加0.5 cmD.所挂物体质量为7 kg,弹簧长度为14.5 cm8.若直线y=-3x+m与两坐标轴所围成的三角形的面积是6,则m的值为( ) A.6 B.-6 C.±6 D.±39.【教材P99复习题T8变式】已知一次函数y=kx+b,y随着x的增大而减小,且kb>0,则这个函数的大致图象是( )10.【2020·铜仁】如图,在长方形ABCD中,AB=3,BC=4,动点P沿折线BCD 从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x 之间的函数关系的图象大致是( )二、填空题(每题3分,共24分)11.【2021·黑龙江】在函数y =1x -5中,自变量x 的取值范围是__________.12.若函数y =(m +1)x |m |是关于x 的正比例函数,则m =________. 13.直线y =3x +1与y 轴的交点坐标是__________.14.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +1上,则m 与n 的大小关系是__________.15.拖拉机油箱中有54 L 油,拖拉机工作时,每小时平均耗油6 L ,则油箱里剩下的油量Q (L)与拖拉机的工作时间t (h)之间的函数关系式是________________(写出自变量的取值范围).16.【教材P 90习题T 2改编】一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A ,B ,则△AOB 的面积是________.17.如图,过A 点的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的表达式是____________.(第17题) (第18题)18.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法:①两人出发1小时后相遇;②赵明阳跑步的速度为8 km/h;③王浩月到达目的地时两人相距10 km;④王浩月比赵明阳提前1.5 h到目的地.其中错误的序号是________.三、解答题(每题11分,共66分)19.已知y-2与x成正比例,且x=2时,y=4.(1)求y与x之间的函数关系式;(2)若点M(m,3)在这个函数的图象上,求点M的坐标.20.已知一次函数y=(m-3)x+m-8中,y随x的增大而增大.(1)求m的取值范围;(2)如果这个一次函数又是正比例函数,求m的值;(3)如果这个一次函数的图象经过第一、三、四象限,试写一个m的值,不用写理由.21.如图,一次函数y=2x+b的图象与x轴交于点A(2,0),与y轴交于点B.(1)求b的值,(2)若直线AB上的点C在第一象限,且S△AOC=4,求点C的坐标.22.如图,一次函数y=kx+5的图象与y轴交于点B,与正比例函数y=32x的图象交于点P(2,a).(1)求k的值;(2)求△POB的面积.23.水龙头关闭不紧会持续不断地滴水,小明用可以显示水量的容器做实验,并根据实验数据绘制出容器内盛水量y(L)与滴水时间t(h)之间的函数关系图象(如图).请结合图象解答下面的问题:(1)容器内原有水多少升?(2)求y与t之间的函数表达式,并计算在这种滴水状态下一天的滴水量是多少升.24.某通信公司推出①②两种通信收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的收费金额y (元)与通信时间x (分钟)之间的函数关系如图所示.(1)有月租费的收费方式是________(填“①”或“②”),月租费是________元; (2)分别求出①②两种收费方式中,收费金额y (元)与通信时间x (分钟)之间的函数表达式;(3)请你根据用户通信时间的多少,给出经济实惠的选择建议.参考答案一、1.D 2.B 3.A 4.D 5.B 6.C 7.D 8.C 9.B 10.D二、11.x ≠5 12.1 13.(0,1) 14.m <n15.Q =54-6t (0≤t ≤9) 16.14 17.y =-x +3 18.③三、19.解:(1)设y -2=kx (k ≠0).把x =2,y =4代入,得k =1.故y 与x 之间的函数关系式是y =x +2. (2)因为点M (m ,3)在这个函数的图象上, 所以3=m +2,解得m =1.所以点M 的坐标为(1,3).20.解:(1)因为一次函数y =(m -3)x +m -8中,y 随x 的增大而增大,所以m -3>0. 所以m >3.(2)因为这个一次函数是正比例函数, 所以m -8=0,即m =8. (3)答案不唯一,如m =4.21.解:将A (2,0)的坐标代入y =2x +b ,得2×2+b =0,解得b =-4.(2)因为S △AOC =4,点A (2,0), 所以OA =2.所以12OA ·y c =4,解得y c =4.把y =4代入y =2x -4,得2x -4=4, 解得x =4.所以点C 的坐标为(4,4).22.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3).把点P (2,3)的坐标代入y =kx +5,得2k +5=3, 解得k =-1.(2)由(1)知一次函数表达式为y =-x +5. 把x =0代入y =-x +5,得y =5,所以点B的坐标为(0,5).所以S△POB=12×5×2=5.23.解:(1)根据图象可知,当t=0时,y=0.3,即容器内原有水0.3 L.(2)设y与t之间的函数表达式为y=kt+b.将点(0,0.3),(1.5,0.9)的坐标分别代入,得b=0.3,1.5k+b=0.9,解得k=0.4.所以y与t之间的函数表达式为y=0.4t+0.3.当t=24时,y=0.4×24+0.3=9.9,所以在这种滴水状态下一天的滴水量是9.9-0.3=9.6(L).24.解:(1)①;30(2)记有月租费的收费金额为y1(元),无月租费的收费金额为y2(元),则设y1=k1x+30,y2=k2x.将点(500,80)的坐标代入y1=k1x+30,得500k1+30=80,所以k1=0.1,则y1=0.1x+30.将点(500,100)的坐标代入y2=k2x,得500k2=100,所以k2=0.2,则y2=0.2x.所以①②两种收费方式中,收费金额y(元)与通信时间x(分钟)之间的函数表达式分别为y1=0.1x+30,y2=0.2x.(3)当收费相同,即y1=y2时,0.1x+30=0.2x,解得x=300.结合图象,可知当通信时间少于300分钟时,选择收费方式②更实惠;当通信时间超过300分钟时,选择收费方式①更实惠;当通信时间等于300分钟时,选择收费方式①②一样实惠.。
北师大版八年级上册数学第四章 一次函数含答案
北师大版八年级上册数学第四章一次函数含答案一、单选题(共15题,共计45分)1、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h2、某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为()A. B. C.y=-2x D.y=2x3、出生1﹣6个月的婴儿生长发育得非常快,他们的体重y(g)与月龄x(月)间的关系可以用y=a+700x来表示,其中a是婴儿出生时的体重,一个婴儿出生时的体重是3000g,这个婴儿第4个月的体重为( )A.6000gB.5800gC.5000gD.5100g4、如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是()A. B. C. D.5、一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.则8min时容器内的水量为()A.20 LB.25 LC.27LD.30 L6、已知一次函数的图象,如图所示,当时,的取值范围是()A. B. C. D.7、正比例函数如图所示,则这个函数的解析式为( )A.y=xB.y=-xC.y=-2xD.y=8、弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm9、如图,点、、、是正方形四条边(不含端点)上的点,设线段的长为,四边形的面积为,则能够反映与之间函数关系的图象大致是()A. B. C. D.10、已知点都在直线上,则大小关系是()A. B. C. D.不能比较11、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.-112、如图表示某加工厂今年前5个月每月生产某种产品的产量c(件)与时间t (月)之间的关系,则对这种产品来说,该厂()A.1月至3月每月产量逐月增加,4、5两月产量逐月减小B.1月至3月每月产量逐月增加,4、5两月产量与3月持平C.1月至3月每月产量逐月增加,4、5两月产量均停止生产 D.1月至3月每月产量不变, 4、5两月均停止生产13、某种出租车收费标准是:起步价7元(即行驶距离不超过3千米需付7元车费),超过了3千米以后,每增加1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费19元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是A.11B.8C.7D.514、如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A. B. C. D.15、直线y=﹣x+1不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、已知是一次函数,则________.17、如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点A1(1,)作x轴的垂线交于点A2,过点A2作y轴的垂线交于点A3,过点A3作x轴的垂线交于点A4…,一次进行下去,则点的横坐标为________ .18、某水果店五一期间开展促销活动,卖出苹果数量x(kg)与售价y(kg/元)的关系如下表:数量x(kg) 1 2 3 4 5 …售价y(kg/元)9 15 21 27 33 …则售价y(kg/元)与数量x(kg)之间的关系式是________.19、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.20、在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M 的坐标为________ .(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是________ .21、若函数y=2x+b(b为常数)的图象经过点A(0,﹣2),则b=________.22、如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴正半轴于点C,则点C坐标为________.23、已知一次函数的图象经过点和,那么的值为________.24、直线y=-3x+m经过点A(-1,a)、B(4,b),则a________b(填“>”或“<”)25、已知一次函数的图像经过点,则________.三、解答题(共5题,共计25分)26、如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.27、将若干张长为20里面、宽为10里面的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.(1)求2张白纸贴合后的总长度;那么3张白纸粘合后的总长度呢?4张呢?(2)设a张白纸粘合后的总长度为b里面,写出b与a之间的关系式,并求当a=100时,b的值.28、某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.29、某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4kg,乙种材料1kg;生产一件B产品需甲、乙两种材料各3kg.经测算,购买甲、乙两种材料各1kg共需资金60元;购买甲种材料2kg 和乙种材料3kg共需资金155元.(1)甲、乙两种材料每kg分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.30、某工厂以80元/箱的价格购进60箱原材料,准备由甲、乙两车间全部用于生产A产品.甲车间用每箱原材料可生产出A产品12kg,需耗水4吨;乙车间通过节能改造,用每箱原材料可生产出的A产品比甲车间少2kg,但耗水量是甲车间的一半.已知A产品售价为30元/kg,水价为5元/吨.如果要求这两车间生产这批产品的总耗水量不得超过200吨,那么该厂如何分配两车间的生产任务,才能使这次生产所能获取的利润w最大?最大利润是多少?(注:利润=产品总售价﹣购买原材料成本﹣水费)参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、7、B8、B9、A10、C11、B12、B13、B14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、。
2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)
2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)一.选择题(共8小题,满分32分)1.将一次函数y=的图象向左平移2个单位得到的新的函数的表达式()A.y=x+1B.y=x+2C.y=x﹣1D.y=x﹣2 2.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c 千米,则他离起点的距离s与时间t的关系的示意图是()A.B.C.D.3.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米4.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲乙两人间距离为s(单位:千米),甲行驶的时间为(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②乙开车速度是80千米/小时;③出发1.5小时时,乙比甲多行驶了60千米;④出发3小时时,甲乙同时到达终点;其中正确结论的个数是()A.1B.2C.3D.46.宇嘉同学从家出发沿笔直的公路去晨练,他离开家的距离y(米)与时间x(分)的函数关系图象如图所示.下列结论中,不正确的是()A.整个行进过程花了30分钟B.整个行进过程共走了1000米C.在图中停下来休息了5分钟D.返回时速度为100米/分7.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.已知直线y=﹣x+与x轴,y轴分别交于A,B两点,在坐标轴上取一点P,使得△P AB是等腰三角形,则符合条件的点P有()个A.4B.6C.7D.8二.填空题(共10小题,满分40分)9.某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y与x之间的关系为.10.某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.11.我们知道:当x=2时,不论k取何实数,函数y=k(x﹣2)+3的值为3,所以直线y =k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+3k一定经过的定点为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.13.如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.14.一次函数y=2x﹣6的图象与两坐标轴所围成的三角形面积为.15.如图是表示的是甲、乙两人运动的图象,图中s(米)和t(秒)分别表示运动的路程和时间,根据图象判断,快者的速度比慢者的速度每秒快米.16.若一次函数y=kx+3与x轴、y轴分别交于点A、B,且三角形OAB的面积是6,则k =.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM 折叠,点B恰好落在x轴上,则点M的坐标为.三.解答题(共6小题,满分48分)19.如图,在平面直角坐标系xOy中,直线y=﹣x+8分别交x轴、y轴于点A、B,将正比例函数y=2x的图象沿y轴向下平移3个单位长度得到直线l,直线l分别交x轴、y 轴于点C、D,交直线AB于点E.(1)直接写出直线l对应的函数表达式;(2)在直线AB上存在点F(不与点E重合),使BF=BE,求点F的坐标;(3)在x轴上是否存在点P,使∠PDO=2∠PBO?若存在,求点P的坐标;若不存在,请说明理由.20.周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?21.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为米/分钟;F点的坐标为;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.22.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.23.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x (单位:分)之间的关系如图所示:(1)求0≤x≤4时y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?24.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.参考答案一.选择题(共8小题)1.解:∵一次函数y=的图象向左平移2个单位,∴平移后所得图象对应的函数关系式为:y=﹣(x+2)+2,即y=﹣x﹣1.故选:C.2.解:由题意,得路程先增加,路程不变,路程减少,路程又增加,故D符合题意;故选:D.3.解:由图可得,公园离小明家1600米,故A选项正确;∵小明从家出发到公园晨练时,速度为1600÷10=160米/分,小明爸爸从公园按小明的路线返回家中的速度为1600÷50=32米/分,∴小明出后与爸爸第一次相遇的时间为1600÷(160+32)=分钟,故B选项正确;由图可得,30分钟后小明与爸爸第二次相遇时,离家的距离是1600﹣30×32=640米,故D选项错误;∵小明在与爸爸第二次相遇后回到家的时间为:40﹣30=10分,∴小明在公园锻炼一段时间后按原路返回的速度为640÷10=64米/分,∴40﹣1600÷64=15分,∴小明在公园停留的时间为15﹣10=5分钟,故C选项正确;故选:D.4.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:C.5.解:由图象可得,当t=1时,s=0,即出发1小时时,甲乙在途中相遇,故①正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,故②正确;出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故③正确;在1.5小时时,乙到达终点,甲在3小时时到达终点,故④错误,故选:C.6.解:①∵当y=0时,x=0或x=30,∴整个行进过程花了30分钟,A正确;②观察函数图象可知,y的最大值为1000,∵1000×2=2000(米),∴整个行进过程共走了2000米,B错误;③∵15﹣10=5(分钟),∴在途中停下来休息了5分钟,C正确;④∵1000÷(30﹣20)=100(米/分),∴返回时速度为100米/分,D正确.故选:B.7.解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.8.解:如图所示,∵直线y=﹣x+与x轴,y轴分别交于A,B两点,∴A(1,0),B(0,),(1)当AB是底边时,作AB的垂直平分线,∵OA≠OB,∴AB的垂直平分线与x轴,y轴都有交点,此时有2个;(2)当AB是腰时,①以A为圆心,以AB为半径画弧,和x轴交于2点,和y轴交于2点(点B除外),即有3个;②以B为圆心,AB为半径画弧,和x轴交于2点(点A除外),和y轴交于2点,即有3个.其中有3个点,即(﹣1,0)重合.共6个.故选:B.二.填空题(共10小题)9.解:依据题意得:y=7+1.2(x﹣3)=1.2x+3.4,故答案为:y=1.2x+3.4,10.解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.11.解:根据题意,y=(k﹣2)x+3k可化为:y=(x+3)k﹣2x,∴当x=﹣3时,不论k取何实数,函数y=(x+3)k﹣2x的值为6,∴直线y=(k﹣2)x+3k一定经过的定点为(﹣3,6),故答案为:(﹣3,6).12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x ﹣,故答案为:y=x﹣.13.解:由一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点,可得AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6﹣x,AC=10﹣8=2,在Rt△ACP中,由勾股定理可得x2+22=(6﹣x)2,解得x=,∴P(,0);②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(﹣24,0);故答案为:(,0)或(﹣24,0).14.解:∵令x=0,则y=﹣6,令y=0,则x=3,∴一次函数y=2x﹣1的图象与两坐标轴的交点分别为(0,﹣6),(3,0),∴一次函数y=2x﹣1的图象与两坐标轴围成三角形的面积=×3×6=9.故答案为:9.15.解:∵慢者8秒走了64﹣12=52米,快者8秒走了64米,∴快者每秒走:64÷8=8m,慢者每秒走:52÷8=6.5m,所以8﹣6.5=1.5m.故答案为:1.5.16.解:(1)当x=0时,y=3,∴B(0,3),∴OB=3.∵•OA•OB=6,∴3OA=12,∴OA=4,∴A(±4,0).∴0=±4k+3,∴k=±,故答案为±17.解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).18.解:如图所示,当点M在y轴正半轴上时,设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,由直线y=﹣x+4可得,A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∴CO=AC﹣AO=5﹣3=2,∴点C的坐标为(﹣2,0).设M点坐标为(0,b),则OM=b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),如图所示,当点M在y轴负半轴上时,OC=OA+AC=3+5=8,设M点坐标为(0,b),则OM=﹣b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=82+b2,∴b=﹣6,∴M点(0,﹣6),故答案为:(0,)或(0,﹣6).三.解答题(共6小题)19.解:(1)∵l是y=2x向下平移3个单位所得,∴l:y=2x﹣3,(2)∵,解得:,∴E(4,5),∵BF=BE,且F不与E重合,∴F在y轴左侧,又∵y=﹣+8,∴当x=0时,y=8,B(0,8),∴BE==5=BF,设F(x0,﹣x0+8),∴BF==5,解得x0=﹣4,∴F(﹣4,11).(3)由图可知,作PG=PD,G在y轴上,∴∠PGO=∠PDO,又∵∠PDO=2∠PBO,∠PGO=∠PBO+∠BPG,∴∠BPG=∠PBG=∠PDO,∴BG=PG=PD,①P在x轴正半轴,∵l:y=2x﹣3,∴当x0时,y=﹣3,即D(0,﹣3),∴OD=3,∴OG=OD=3,则BF=8﹣3=5=PF,∴OP==4,∴P(4,0).②若P在x轴负半轴,与①同理,P(﹣4,0).综上所述P(4,0),(﹣4,0).20.解:(1)由图象得在甲地游玩的时间是1﹣0.5=0.5(h),小明骑车速度:10÷0.5=20(km/h),故答案为:20,0.5.(2)如图,妈妈驾车速度:20×3=60(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵小明走OA段与走BC段速度不变,∴OA∥BC,设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10,∴y=20x﹣10,设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=﹣80,∴y=60x﹣80,∴,解得:,∴F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.21.解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=﹣96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=﹣96t+2400;(4)根据题意得,240(t﹣2)﹣96t=2400,解得t=20.答:李越与王明第二次相遇时t的值为20.22.解:(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(﹣1,﹣5)及点(2,a)代入一次函数解析式得:﹣k+b=﹣5,2k+b=a,又由(1)知a=1,解方程组得:k=2,b=﹣3;(3)由(2)知一次函数解析式为:y=2x﹣3,直线y=2x﹣3与x轴交点坐标为(,0)∴所求三角形面积=×1×=.23.解:设y=kx.∵图象过(4,20),∴4k=20,∴k=5.∴y=5x(0≤x≤4);(2)设y=kx+b.∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(3)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=,∴每分钟进水、出水各是5升、升.24.解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,即0≤t≤12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.。
初中数学北师大版(2024)八年级上册 第四章 一次函数单元测试(含简单答案)
第四章一次函数一、单选题1.下列曲线中,表示y是x的函数的是()A.B.C.D.2.关于一次函数y=−2x+3,下列结论正确的是( )A.图象过点(1,−1)B.其图象可由y=−2x的图象向上平移3个单位长度得到C.y随x的增大而增大D.图象经过一、二、三象限3.设半径为r的圆的周长为C,则C=2πr,下列说法错误的是()A.常量是π和2B.常量是2C.用C表示r为CD.变量是C和r2π4.在同一直角坐标系中,一次函数y=kx+b和y=bx+k的图象可能正确的是( )A.B.C.D.5.如果M(−1,y1),N(2,y2)是正比例函数y=kx的图象上的两点,且y1>y2.那么符合题意的k的值可能是()A.1B.1C.3D.−236.如图所示,已知点C(1,0),直线y=−x+7与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A.42B.10C.42+4D.127.函数y=|kx|(k≠0)的图象可能是()A.B.C.D.8.我们把三个数的中位数记作Z{a,b,c}.例如Z{1,3,2}=2.函数y=|2x+b|的图象为C1,函数y=Z{x+1,-x+1,3}的图象为C2.图象C1在图象C2的下方点的横坐标x满足-3<x<1,则b的取值范围为()A.0<b<3B.b>3或b<0C.0≤b≤3D.1<b<39.某电视台“走基层”栏目的一位记者乘汽车赴360km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/h B.乡村公路总长为90kmC.汽车在乡村公路上的行驶速度为65km/h D.该记者在出发后5h到达采访地10.如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论:①k<0;②a>0;③b>0:④方程kx+b=x+a的解是x=3,错误的个数是()A.1个B.2个C.3个D.4个二、填空题11.函数y=−3x+6的图象与x轴.y轴围成的三角形面积为.12.如图,购买一种商品,付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次性购买50千克这种商品要付款元.13.直线y=kx+b平行于直线y=−2x,且与y轴交于点(0,3),则此函数的解析式y=.14.已知点A(2,y1),B(3,y2)在直线y=﹣3x+1上,则y1与y2的大小关系为:y1y2.(填“>”,“=”或“<”)15.若y=(m−1)x|m|+2是关于x的一次函数,则m等于.16.已知一次函数y1=kx﹣2k(k是常数)和y2=﹣x+1.若无论x取何值,总有y1>y2,则k的值是.17.杭黄高铁开通运营,已知杭州到黄山距离300千米,现有直达高铁往返两城市之间,该高铁每次到达杭州或黄山后,均需停留一小时再重新出发.暑假期间,铁路局计划在同线路上加开一列慢车直达旅游专列,在试运行期间,该旅游专列与高铁同时从杭州出发,在整个小时两车第一次相遇.两车之间的距离y千米运行过程中,两列车均保持匀速行驶,经过103与行驶时间x小时之间的部分函数关系如图所示,当两车第二次相遇时,该旅游专列共行驶了千米.18.如图,在平面直角坐标系中,点A1(1,1)在直线y=x图象上,过A1点作y轴平行线,交直线y=−x于点B1,以线段A1B1为边在右侧作正方形A1B1C1D1,C1D1所在的直线交y=x 的图象于点A2,交y=−x的图象于点B2,再以线段A2B2为边在右侧作正方形A2B2C2D2⋯依此类推,按照图中反映的规律,第2020个正方形的边长是.三、解答题19.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了表格.距离地面高度(千米)12345温度(℃)201482−4−10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答;(1)如果用ℎ表示距离地面的高度,用t表示温度,写出t与ℎ的关系式;(2)你能计算出距离地面16千米的高空温度是多少吗?x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的20.已知一次函数y=﹣12图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP 的面积关于x的函数关系式,并写出相应x的取值范围.21.已知直线y=-4x+4与x轴和y轴分别交于B、A两点,另一直线经过点B和点D3(11,6).(1)求A、B的坐标;(2)证明:△ABD是直角三角形;(3)在x轴上找点C,使△ACD是以AD为底边的等腰三角形,求出C点坐标.22.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船多少海里?(2)计算走私船与公安艇的速度分别是多少?(3)求出l1,l2的解析式.(4)问6分钟时,走私船与我公安快艇相距多少海里?23.如图1,某地铁车站在出入口设有上、下行自动扶梯和步行楼梯,甲、乙两人从车站入口同时下行去乘坐地铁,甲乘自动扶梯,乙走步行楼梯,乙离地铁进站入口地面的高度ℎ(单位:m)与下行时间x(单位:s)之间具有函数关系ℎ=−15x+6,甲离地铁进站入口地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达地铁进站入口地面.24.已知直线y=kx+b可变形为:kx−y+b=0,则点P(x0, y0)到直线kx−y+b=0的距离d可用公式d=|kx0−y0+b|1+k2计算.例如:求点P(-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x−y+1=0,其中k=1,b=1.所以点P(-2,1)到直线y=x+1的距离为d=|kx0−y0+b|1+k2=|1×(−2)−1+1|1+12=22=2.根据以上材料求:(1)点P(2,-1)到直线y=2x−1的距离;(2)已知M为直线y=−x+2上的点,且M到直线y=2x−1的距离为35,求M的坐标;(3)已知线段y=kx+3(−1≤x≤2)上的点到直线y=x+1的最小距离为1,求k的值.25.如图,一次函数y=x+1的图象分别与x轴,y轴交于点B与点A,直线AC与x轴正半轴交于点C,且∠BAO=45°,OC=2OB.(1)求直线AC的函数表达式;(2)点D在直线AB上且不与点B重合,点E在直线AC上.若以A,D,E为顶点的三角形与△ABC全等,请直接写出点D的坐标(不必写解答过程);(3)已知平面内一点P(m,n),作点P关于直线AB的对称点P1,作P1关于y轴的对称点P2,若P2恰好落在直线AC上,则m,n应满足怎样的等量关系?说明理由.26.某企业准备为员工采购20000袋医用口罩.经市场调研,准备购买A,B,C三种型号的口罩,这三种型号口罩的价格如下表所示:型号A B C价格/(元/袋)303540已知购买B型号口罩的数量是A型号口罩的2倍,设购买A型号口罩x袋,该企业购买口罩的总费用为y元.(1)请求出y与x之间的函数表达式;(2)因为A型号口罩的数量严重不足,口罩生产厂家能提供的A型号口罩的数量不大于C型号口罩的数量,怎样购买能使该企业购买口罩的总费用最少?请求出费用最少的购买方案,并求出总费用的最小值.参考答案:1.D 2.B 3.B 4.B 5.D 6.B 7.C 8.C 9.D 10.A 11.612.42013.−2x +314.>15.−116.−117.25018.2×3201919.(1)t =20−6ℎ(ℎ≥0)(2)距离地面16千米的高空温度是−76℃20.(1)5;(3)当x >2时,△NAP 的面积S=52(x ﹣2);当x <2时,△NAP 的面积S=52(2﹣x ).21.(1)A (0,4),B (3,0);(3)C (14122,0).22.(1)5海里;(2)走私船:1海里/分;公安快艇:1.5海里/分(3)y 1=t+5 ;y 2=32t ;(4)2海里;23.(1)y =−310x +6;(2)甲先到地铁进站入口地面.24.(1)455;(2)M (6,-4)或M (-4,6);(3)k =−2+3或22x+125.(1)y=−12(2)点D的坐标为(−102,1−102)或(1,2)或(102,1+102);(3)2m+1=n,26.(1)y=−20x+800000(2)当购买A型号口罩5000袋,B型号口罩10000袋,C型号口罩5000袋时,该企业购买口罩的总费用最少,总费用的最小值为700000元。
(北师大版)初中数学八年级上册 第四章综合测试试卷02及答案
第四章综合测试一、选择题(每题3分,共30分)1.下列图象中,表示y 是x 的函数的个数有()A .1个B .2个C .3个D .4个2.若一次函数()21y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.一次函数2y x =+的图象与y 轴的交点坐标为( )A .()0,2B .()0,2-C .()2,0D .()2,0-4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.小聪在画一次函数的图象时,当他列表后,发现题中一次函数y x =◆+◆中的k 和b 看不清了,则()x 03y2A .2k =,3b =B .23k =-,2b =C .3k =,2b =D .1k =,1b =-6.点()111,P x y ,()222,P x y 是一次函数43y x =-+图象上的两个点,且12x x <,则1y 与2y 的大小关系是( )A .12y y >B .120y y >>C .12y y <D .12y y =7.为了建设社会主义新农村,某市积极推进“村村通客车工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间道路的改造.下面能反映该工程尚未改造的道路里程y (km )与时间x (天)的函数关系的大致图象是()8.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y (元)与通话时间x (min )之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②12描述的是有月租费的收费方式;③当每月的通话时间为500min 时,选择有月租费的收费方式省钱.其中,正确结论的个数是()第8题图A .0B .1C .2D .39.如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点(),m n ,且26m n +=,则直线AB 的解析式是()第9题图A .23y x =--B .26y x =--C .23y x =-+D .26y x =-+10.(天门)甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②160m =;③点H 的坐标是()7,80;④7.5n =.其中说法正确的是( )第10题图A .①②③B .①②④C .①③④D .①②③④二、填空题(每题3分,共24分)11.已知()3221m y m x -=-是一次函数,则m =________.12.直线21y x =+经过点()0,a ,则a =________.13.已知一次函数()12y m x m =-+-,当m ________时,y 随x 的增大而增大.14.已知直线y kx b =+,若5k b +=-,6kb =,那么该直线不经过第________象限.15.直线2y x b =+与x 轴的交点坐标是()2,0,则关于x 的方程20x b +=的解是________.16.一次函数的图象与直线1y x =-+平行,且过点()8,2,那么此一次函数的表达式为________.17.如图,已知点A 和点B 是直线34y x =上的两点,A 点坐标是32,2æöç÷èø.若5AB =,则点B 的坐标是________.18.直线()1110y k x b k =+>与()2220y k x b k =+<相交于点()2,0-,且两直线与y 轴围成的三角形面积为4,那么12b b -=________.三、解答题(19题6分,20,21题每题9分,22~24题每题10分,25题12分,共66分)19.已知一次函数y ax b =+.(1)当点(),P a b 在第二象限时,直线y ax b =+经过哪几个象限?(2)如果0ab <,且y 随x 的增大而增大,则函数的图象不经过哪些象限?20.一个正比例函数和一个一次函数,它们的图象都经过点()2,2P -,且一次函数的图象与y 轴相交于点()0,4Q .(1)求出这两个函数的表达式;(2)在同一坐标系中,分别画出这两个函数的图象;(3)直接写出一次函数图象在正比例函数图象下方时x 的取值范围.21.如图,直线23y x =+与x 轴相交于点A ,与y 轴相交于点B .(1)求点A ,B 的坐标;(2)求当2x =-时,y 的值,当10y =时,x 的值;(3)过点B 作直线BP 与x 轴相交于点P ,且使2OP OA =,求ABP △的面积.22.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t ,按每吨1.9元收费.如果超过20t ,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为t x ,应收水费为y 元.(1)分别写出每月用水量未超过20t 和超过20t 时,y 与x 之间的函数表达式;(2)若该城市某户5月份水费平均每吨为2.2元,求该户5月份用水多少吨?23.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同,看图解答下列问题:(1)求每种付酬方案y 关于x 的函数表达式;(2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.24.一次函数()0y kx b k =+¹的图象由直线3y x =向下平移得到,且过点()1,2A .(1)求一次函数的解析式;(2)求直线y kx b =+与x 轴的交点B 的坐标;(3)设坐标原点为O ,一条直线过点B ,且与两条坐标轴围成的三角形的面积是12,这条直线与y 轴交于点C ,求直线AC 对应的一次函数的解析式.25.甲、乙两车分别从A ,B 两地同时出发相向而行,并以各自的速度匀速行驶,甲车途经C 地时休息一小时,然后按原速度继续前进到达B 地;乙车从B 地直接到达A 地,如图是甲、乙两车和B 地的距离y (km )与甲车出发时间x (h )的函数图象.(1)直接写出a ,m ,n 的值;(2)求出甲车与B 地的距离y (km )与甲车出发时间x (h )的函数关系式(写出自变量x 的取值范围);(3)当两车相距120km 时,乙车行驶了多长时间?第四章综合测试答案一、1.【答案】B 2.【答案】B 3.【答案】A 4.【答案】A 5.【答案】B 6.【答案】A 7.【答案】D 8.【答案】D 9.【答案】D【解析】原直线的2k =-,向上平移后得到了新直线,那么新直线的2k =-.∵直线AB 经过点(),m n ,且26m n +=,∴直线AB 经过点(),62m m -.可设新直线的解析式为12y x b =-+,把点(),62m m -代到12y x b =-+中,可得16b =.∴直线AB 的解析式是26y x =-+.10.【答案】A【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2-6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离440160km ´=,则160m =,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为()7,80,③正确;乙返回时,甲乙相距80km ,到两车相遇用时()80120800.4¸+=小时,则610.47.4n =++=,④错误.故选A.二、11.【答案】112.【答案】113.【答案】1<14.【答案】一15.【答案】2x =16.【答案】10y x =-+17.【答案】96,2æöç÷èø或32,2æö--ç÷èø【解析】由题意可得,3,4A B A B =两点的纵坐标之差两点的横坐标之差,再由222,,AB A B A B =+两点的纵坐标之差两点的横坐标之差,求得4,A B =两点的横坐标之差,,3A B =两点的纵坐标之差.再分两种情况讨论求解即可.18.【答案】4【解析】如图,在ABC △中,BC 为底,AO 为高,且高为2,面积为4,故ABC △的底边4224BC =´¸=.因为点B 的坐标为()10,b ,点C 的坐标为()20,b ,所以12b b -即是BC 的长,为4.三、19.【答案】解:(1)因为点(),P a b 在第二象限,所以0,0a b <>.所以直线y ax b =+经过第一、二、四象限.(2)因为y 随x 的增大而增大,所以0a >.又因为0ab <,所以0b <.所以一次函数y ax b =+的图象不经过第二象限.20.【答案】解:(1)设正比例函数的表达式为1y k x =,则()122k =´-,解得11k =-.所以正比例函数的表达式为y x =-.设一次函数的表达式为2y k x b =+,则()222k b =´-+,4b =,解得4b =,21k =,所以一次函数的表达式为4y x =+.(2)图略.(3)2x -<.21.【答案】解:(1)当0y =时,230x +=,得32x =-,则3,02A æö-ç÷èø.当0x =时,3y =,则()0,3B .(2)当2x =-时,1y =-;当10y =时,72x =.(3)2OP OA =,3,02A æö-ç÷èø,则点P 的位置有两种情况,点P 在x 轴的正半轴上或点P 在x 轴的负半轴上.当点P 在x 轴负半轴上时,()3,0P -,则ABP △的面积为13933224æö´-´=ç÷èø;当点P 在x 轴的正半轴上时,()3,0P ,则ABP △的面积为132733224æö´´+=ç÷èø.22.【答案】解:(1)当20x ≤时, 1.9y x =;当20x >时,()1.92020 2.8 2.818y x x =´+-´=-.(2)因为5月份水费平均为每吨2.2元,月用水量如果未超过20t ,按每吨1.9元收费,所以该户5月份用水量超过了20t .由2.818 2.2x x -=,解得30x =.答:该户5月份用水30t .23.【答案】解:(1)设方案一的解析式为y kx =,把()40,1600代入解析式,可得40k =,故解析式为40y x =;设方案二的解析式为y ax b =+,把()40,1400和()0,600代入解析式,可得20a =,600b =,故解析式为20600y x =+;(2)根据两直线相交可得方程4020600x x =+,解得30x =.根据两函数图象可知,当30x >时,选择方案一所得报酬高于选择方案二所得报酬.24.【答案】解:(1)根据题意,得3k =,2k b +=,解得1b =-31y x \=-;(2)在31y x =-中,当0y =时,13x =,∴点B 的坐标为1,03æöç÷èø;(3)设直线AC 的解析式为y mx n =+(其中0m ¹),则点C 的坐标为()0,n ,根据题意得111||232BOC S n ´==△,3n \=,3n \=±.当3n =时,2m n +=,解得1m =-,3y x \=-+;当3n =-时,2m n +=,解得5m =,53y x \=-.∴直线AC 的解析式为3y x =-+或53y x =-.25.【答案】解:(1)∵甲车途经C 地时休息一小时,2.51m \-=, 1.5m \=.乙车的速度为1202a m =,即601.5a=,解得90a =.甲车的速度为3003001201 1.5n -=-,解得 3.5n =;(2)设甲车的y 与x 的函数关系式为y kx b =+.①休息前,0 1.5x ≤≤,函数图象经过点()0,300和()1.5,120,所以300b =,1.5120k b +=,所以120k =-,所以120300y x =-+;②休息时,1.5 2.5x <<,120y =;③休息后,2.5 3.5x ≤≤,函数图象经过点()3.5,0,又由题意可知120k =-,故420b =,所以120420y x =-+.综上,y 与x 的函数关系式为 120300(0 1.5),120(1.5 2.5),120420(2.5 3.5);x x y x x x -+ìï=<<íï-+î…………(3)设当两车相距120km 时,乙车行驶了h x .甲车的速度为()()300120 1.5120km/h -¸=,乙车的速度为()120260km/h ¸=.①若相遇前,则12060300120x x +=-,解得1x =;②若相遇后,则()120160300120x x -+=+,解得3x =.答:当两车相距120km 时,乙车行驶了1h 或3h .。
北师大版八年级数学上册《第四章 一次函数》同步练习题(附答案)
北师大版八年级数学上册《第四章一次函数》同步练习题(附答案)基础过关全练知识点1确定一次函数的表达式1.如图,在直角坐标系中,直线l的解析式是()A.y=3x+3B.y=3x-3C.y=-3x+3D.y=-3x-32.【新独家原创】在平面直角坐标系的第四象限内有一点M,点M到x轴的距离为2,到y轴的距离为4,则直线OM的表达式为.3.【一题多变】如图,直线过点A、B(0,-1)、C(4,1),则三角形AOB的面积为. [变式]已知某直线经过点(0,-1),且与两坐标轴围成的三角形的面积为1,则该直线的表达式是.4.【教材变式·P90T2】如图所示,在平面直角坐标系中,过点B(3,0)的直线y1与OAx交于点A,∠CBO=45°.所在直线:y2=12(1)求直线y1的表达式;(2)在y轴上找一点P,使S△AOP=2S△AOB,求P点的坐标.知识点2一次函数与一元一次方程的关系,则一次函5.(2022辽宁沈阳沈北新区期末)已知关于x的方程ax+b=0的解为x=-32数y=ax+b的图象与x轴交点的坐标为() A.(3,0) B.(−2,0)3C.(-2,0)D.(−3,0)26.(2022江西遂川期末)一次函数y=ax+b的图象如图所示,则关于x的方程ax+b+2=0的解为.知识点3一次函数的实际应用7.(2023山东青岛即墨期末)电信公司手机的收费标准有A,B两类,已知每月应缴费用S(元)与通话时间t(分)之间的关系如图所示.当通话时间为200分钟时,按这两类收费标准缴费的差为()()A.10元B.15元C.20元D.30元8.【一题多解】如图所示的是一个沙漏在计时过程中所剩沙子质量y(克)与时间x(小时)之间关系的图象,则从开始计时到沙子漏光所需的时间为小时.9.(2022江西吉安文博学校期中)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做试验,并根据试验数据绘制出如图所示的容器内盛水量W(L)与滴水时间t(h)之间的函数关系图象,请结合图象解答下列问题:(1)容器内原有多少水?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升.能力提升全练10.(2022山东威海中考,6,★★☆)如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN∥PQ,则点N的坐标可能是()A.(2,3)B.(3,3)C.(4,2)D.(5,1)11.(2023广东深圳公明中学期中,21,★★☆)如图,在平面直角坐标系中,过点C(0,6)的直线AB与直线OA相交于点A(4,2).(1)求直线OA及直线AB的解析式;(2)求△AOB的面积;(3)填空:AB∶AC=.12.下图是一个“函数求值机”的示意图,其中y是x的函数.通过该“函数求值机”得到的几组x与y的对应值如下表.输入x…-6 -4 -2 0 2 …输出y…-6 -2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.13.【学科素养·应用意识】李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段儿时间内,水温y(℃)与加热时间x(s)之间近似满足一次函数关系,根据记录的数据,画函数图象如图所示.()(1)加热前水温是℃;(2)求乙壶中水温y关于加热时间x的函数解析式;(3)当甲壶中水温刚达到80 ℃时,乙壶中水温是℃.素养探究全练14.【国防形势与任务】【推理能力】2021年年末,我省某市相关部门接到情报,近海处有一可疑船只A正向公海方向行驶,相关部门迅速派出快艇B追赶(如图1).在图2中,l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中,表示B到海岸的距离与追赶时间之间的关系;(2)设l1与l2对应的一次函数表达式分别为s1=k1t+b1与s2=k2t+b2,求出这两个表达式;(3)15分钟内B能否追上A?为什么?(4)当A逃到离海岸9海里的公海时,B将无法对其进行检查,照此速度,B能否在A 逃入公海前将其拦截?为什么?答案全解全析基础过关全练1.A设直线l的解析式为y=kx+b把点(-1,0),(0,3)代入y=kx+b得-k+b=0,b=3解得k=3∴直线l的解析式为y=3x+3.故选A.2.y=-12x解析设直线OM的表达式为y=kx∵点M到x轴的距离为2,到y轴的距离为4,且M在第四象限,∴M(4,-2).将M(4,-2)代入kx,得-2=4k,∴k=-12∴y=-12x.3.1解析设BC所在直线的函数解析式为y=kx+b将(4,1),(0,-1)代入得4k+b=1,b=-1解得k=12则BC所在直线的函数解析式为y=12x-1.令y=0,则12x-1=0,解得x=2,即A(2,0)所以三角形AOB的面积为12×1×2=1.[变式]y=12x-1或y=-12x-1解析设该直线的表达式为y=kx+b 把(0,-1)代入得b=-1所以y=kx-1把y=0代入得x=1k所以12×1×|1k|=1解得k=12或-12故该直线的表达式为y=12x-1或y=-12x-1.4.解析(1)∵B(3,0),∠CBO=45°,∠COB=90°∴C(0,3).设直线y1的表达式为y1=kx+b把点B(3,0),C(0,3)代入,得3k+b=0,b=3,解得k=-1∴直线y1的表达式为y1=-x+3.(2)设P(0,d)由y=12x得x=2y,将x=2y代入y=-x+3,得3y=3,解得y=1,则x=2.∴点A的坐标为(2,1)∴S△AOB=12×3×1=32.∵S△AOP=2S△AOB∴12×2×|d|=2×32,解得d=±3∴P(0,3)或(0,-3).5.D关于x的方程ax+b=0的解为x=-32,即x=-32时,一次函数y=ax+b的函数值为0,所以一次函数y=ax+b的图象与x轴交点的坐标为(−32,0),故选D.6.x=2解析∵一次函数的图象经过点(0,-1),(-2,0)∴b =-1,-2a +b =0解得a =-12∴y =-12x -1 令y =-2,则-12x -1=-2 解得x =2∴方程ax +b +2=0的解为x =2.7.C 设A 类的S 与t 的关系式为S A =kt +b 将(0,20),(100,30)代入,得b =20,100k +b =30解得k =0.1∴S A =0.1t +20.设B 类的S 与t 的关系式为S B =at 将(100,30)代入,得30=100a解得a =0.3∴S B =0.3t.当t =200时,S A =0.1×200+20=40,S B =0.3×200=60 ∵60-40=20∴按这两类收费标准缴费的差为20元. 故选C.8.353解析 解法一:沙漏漏沙的速度为15−67=97(克/小时)∴从开始计时到沙子漏光所需的时间为15÷97=353(小时).解法二:设函数解析式为y=kx+b将(0,15),(7,6)代入,得15=b,6=7k+b,解得k=-97∴y=-97x+15令-97x+15=0,解得x=353.故所需的时间为353小时.9.解析(1)由题图可知,容器内原有0.3 L水.(2)由题图可知函数图象经过点(0,0.3),故设W与t之间的函数关系式为W=kt+0.3(k≠0).又因为函数图象经过点(1.5,0.9)所以1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9,9.9-0.3=9.6(L)故在这种滴水状态下一天的滴水量为9.6 L.能力提升全练10.C设直线PQ的解析式为y=kx+b则b=2,3k+b=0解得k=-23∴直线PQ的解析式为y=-23x+2∵MN∥PQ∴设直线MN的解析式为y=-23x+t(t≠2)将M(1,4)代入得4=-23+t解得t=143∴直线MN的解析式为y=-23x+143代入各点验证,只有C选项满足,故选C.11.解析(1)设直线OA的解析式为y=kx 将点A(4,2)代入得2=4k解得k=12∴直线OA的解析式为y=12x.设直线AB的解析式为y=ax+b∵A(4,2),C(0,6)在直线AB上∴4a+b=2,b=6解得a=-1,b=6∴直线AB的解析式为y=-x+6.(2)令-x+6=0,则x=6∴B(6,0)∴OB=6∴S△AOB=12OB·y A=12×6×2=6即△AOB的面积为6.(3)∵AB=√(6−4)2+22=2√2,AC=√42+(6−2)2=4√2,∴AB∶AC=1∶2.12.解析(1)当输入的x值为1时,输出的y值为8×1=8.(2)将(-2,2),(0,6)代入y=kx+b,得-2k+b=2,b=6,解得k=2.(3)将y=0代入y=8x,得0=8x,∴x=0<1(舍去).将y=0代入y=2x+6,得0=2x+6,∴x=-3<1,符合题意.∴输出的y值为0时,输入的x值为-3.13.解析(1)由函数图象可知,当x=0时,y=20则加热前水温是20 ℃.(2)因为甲壶比乙壶加热速度快所以乙壶对应的函数图象经过点(0,20),(160,80)设乙壶中水温y关于加热时间x的函数解析式为y=kx+b(k≠0)将(0,20),(160,80)代入,得160k+b=80,b=20解得k=38则乙壶中水温y关于加热时间x的函数解析式为y=38x+20自变量x的取值范围是0≤x≤160.(3)设甲壶中水温y关于加热时间x的函数解析式为y=mx+n(m≠0) 将(0,20),(80,60)代入,得80m+n=60,n=20解得m=12则甲壶中水温y关于加热时间x的函数解析式为y=12x+20当y=80时,12x+20=80,解得x=120将x=120代入y=38x+20,得y=38×120+20=65即当甲壶中水温刚达到80 ℃时,乙壶中水温是65 ℃.素养探究全练14.解析(1)由已知可得直线l1表示B到海岸的距离与追赶时间之间的关系. (2)由题意可得k1、k2的实际意义分别表示快艇B的速度和可疑船只的速度,s1=0.5t,s2=0.2t+5.(3)15分钟内B不能追上A.理由:当t=15时,s2=0.2×15+5=8,s1=0.5×15=7.5∵8>7.5∴15分钟内B不能追上A. (4)B能在A逃入公海前将其拦截.理由:当s2=9时,9=0.2t+5,解得t=20 当t=20时,s1=0.5×20=10∵10>9∴B能在A逃入公海前将其拦截.。
北师大版八年级上册数学第四章测试题(附答案)
(2)解:当0≤x≤1时设y与x之间的函数关系式为y=k1x,由题意,得
40=k1,∴y=40x当1<x≤1.5时y=40;
当1.5<x≤7设y与x之间的函数关系式为y=k2x+b,由题意,得
,解得: ,∴y=40x﹣20.y= .
A. y=5- x(0<x<5) B. y=10-2x(0<x<5)
C. y=5- x( <x<5) D. y=10-2x( <x<5)
4.已知点(-4,y1),(2,y2)都在直线y=-x+b上,则y1,y2大小关系是( )
A. y1>y2 B. y1=y2 C. y1<y2 D.不能比较
5.如果一个正比例函数的图像经过不同象限的两点A(2,m),B(n,3),那么一定有()
解得:x=7.5,
7.5+5=12.5(分),
由函数图象可知,当t=12.5时,s=0,
∴点B的坐标为(12.5,0),
当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),
把C(35,450),B(12.5,0)代入可得:
解得: ,
∴s=20t﹣250,
当35<t≤50时,设CD的解析式为s=k1x+b1,(k1≠0),
x
…
﹣3
﹣2
﹣1
﹣
﹣
1
2
3
4
…
y
…
﹣
﹣
﹣2
﹣
﹣
m
2
n
…
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章一次函数
一、仔细选一选(每小题3分,共30分)
1、下面哪个点不在函数y = -2x+3的图象上()
)1,1 D.(,2) C.(3,0)A.(-5,13) B.(0.5 )2、如图,在直角坐标系中,直线l对应的函数表达式是(
1??x?1y??1y?x?1y?xxy?? B. A. C. D.
)3不经过(3、一次函数y = -2x - D. 第四象限第三象限 B. 第二象限 C. A. 第一象限bkx?y?( ) ,4、直线那么这个一次函数关系式是A(0,2)和B(3,0)两点经过
22x???y1x?2y??y2x?3y?3x? D. B. C. A. 3)x的值随的值增大而增大的是(5、下列函数中,y2x+1
- y= 3x+10 D. B. y=2x - 1 C. y= -3x A. y= -
1( )
y的大小关系是y x+2上,则与y),(2,y)都在直线y=- 、已知点(7-4,21122 D. 不能比较 B. y =y C. y <yA. y >y211221)
k、b应满足( 则8、直线y=k x+b经过一、二、四象限,k<0, b>0
D. B. k>0,b>0 C. k<0, b<0 A. k>0, b<0
、9下图中,表示一次函数的是()。
)x+2的图象大致可能是(10、如下图,同一坐标系中,直线l: y=2x-3和l: y=-3
21y y
y
y lll 1 2 1 lx
1 l
2 ll2
2 x x
lx ( D ) (A). ( C ) ( B ) 1
l二、细心填一填(每小题2分,共28分) 2
11、正比例函数的图象一定经过的点的坐标为_______________.
12、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是.
13、已知一次函数y=kx+5的图象经过点(-1,2),则k= .
14、某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数
关系式是 .
y??2x?3与坐标轴的交点坐标为 . 15、直线1x+2的图象上,则m=____)在函数m+3y=-16、若点(m,217、函数y=x-1一定不经过第象限.
18、一个矩形的周长为6,一条边长为x,另一条边长为y,则用x表示y的函数表达式
为_________________________(0<x<3)
19.已知函数y=(k-1)x+k-1,当k 时,它是一次函数;当k= 时,它是正比例函
数.
20已知直线y=x+b,当b<0时,直线不经过第象限
21.一次函数y=(m-1)x+3,若y随x的增大而增大,则m .
22.拖拉机开始工作时,油箱中有油24升,如果每小时耗油4升,那么油箱中的
剩余油量y(升)和工作时间x(时)之间的函数关系式是 .
23.某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3≤t≤45),则IC卡上所余的费用y(元)与t(分)之间的关系式是 .
24.先画图再填空:(12分)
y?3?3x的图象,并根据图象回答下列问题:作出函数(1)y的值随x的增大而;
Y ;轴的交点坐标是(2)图象与x 与y轴的交点坐标是;
(3)当x 时,y≥0 ;X O
y?3?3x的图象与坐标轴所围4()求函数
.
成的三角形的面积
升,加满燃气5025.(10)有一种节能型轿车的油箱最多可装天燃气(千米)之间的xy(升)与轿车行驶路程后,油箱中的剩余燃气量关系如图所示,根据图象回答下列问题:)一箱天燃气可
供轿车行驶多少千米?(1 200千米消耗燃料多少升?2()轿车每行驶 1000)0≤x≤(3)写出y与x之间的关系式;(
两种计费标准,如下表:、某通讯移动通讯公司手机费用有AB26.(10)
设某用户一个月内手机通话时间为x分钟,请根据上表解答下列问题:(1)按A类收费标准,该用户应缴纳y= 元;按B类收费标准,该用户应缴纳y= 元;BA
(用含x的代数式表示)(2)如果该用户每月通话时间为300分钟,应选择哪种收费方式?(3)如果该用户每月手机费用不超过90元,应选择哪种收费方式?
27.(10)求图象经过点(2,-1),且与直线y=2x+1平行的直线的表达式.。