2021年 中考数学 专题训练:与圆有关的性质(含答案)

合集下载

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。

2020-2021中考数学圆的综合(大题培优 易错 难题)及答案

2020-2021中考数学圆的综合(大题培优 易错 难题)及答案

2020-2021中考数学圆的综合(大题培优易错难题)及答案一、圆的综合1.如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【答案】(1)证明见解析(2)23【解析】【分析】(1)根据垂径定理的推论即可得到OD⊥BC,再根据∠BDM=∠DBC,即可判定BC∥DM,进而得到OD⊥DM,据此可得直线DM是⊙O的切线;(2)根据三角形内心的定义以及圆周角定理,得到∠BED=∠EBD,即可得出DB=DE,再判定△DBF∽△DAB,即可得到DB2=DF•DA,据此解答即可.【详解】(1)如图所示,连接OD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD CD=,∴OD⊥BC.又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM.又∵OD为⊙O半径,∴直线DM是⊙O的切线.(2)连接BE.∵E为内心,∴∠ABE=∠CBE.∵∠BAD=∠CAD,∠DBC=∠CAD,∴∠BAD=∠DBC,∴∠BAE+∠ABE=∠CBE+∠DBC,即∠BED=∠DBE,∴BD=DE.又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴DF DBDB DA=,即DB2=DF•DA.∵DF=2,AF=4,∴DA=DF+AF=6,∴DB2=DF•DA=12,∴DB=DE=23.【点睛】本题主要考查了三角形的内心与外心,圆周角定理以及垂径定理的综合应用,解题时注意:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.2.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠B=60°,求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值.【答案】(1)证明见解析;(2)8.【解析】(1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可;(2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案.试题解析:连接AD,OA,∵∠ADC=∠B,∠B=60°,∴∠ADC=60°,∵CD是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,∵AP=AC,OA=OC,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA⊥AP,∵OA为半径,∴AP是⊙O切线.(2)连接AD,BD,∵CD是直径,∴∠DBC=90°,∵CD=4,B为弧CD中点,∴BD=BC=,∴∠BDC=∠BCD=45°,∴∠DAB=∠DCB=45°,即∠BDE=∠DAB,∵∠DBE=∠DBA,∴△DBE∽△ABD,∴,∴BE•AB=BD•BD=.考点:1.切线的判定;2.相似三角形的判定与性质.3.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正=上半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x=于点M,BC边交x轴于点N(如图).时停止旋转,旋转过程中,AB边交直线y x(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明(3)设MBN你的结论.【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析【解析】试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;(3)利用全等把△MBN 的各边整理到成与正方形的边长有关的式子.试题解析:(1)∵A 点第一次落在直线y=x 上时停止旋转,直线y=x 与y 轴的夹角是45°,∴OA 旋转了45°.∴OA 在旋转过程中所扫过的面积为24523602ππ⨯=. (2)∵MN ∥AC ,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM .∴BM=BN .又∵BA=BC ,∴AM=CN .又∵OA=OC ,∠OAM=∠OCN ,∴△OAM ≌△OCN .∴∠AOM=∠CON=12(∠AOC-∠MON )=12(90°-45°)=22.5°. ∴旋转过程中,当MN 和AC 平行时,正方形OABC 旋转的度数为45°-22.5°=22.5°. (3)在旋转正方形OABC 的过程中,p 值无变化.证明:延长BA 交y 轴于E 点,则∠AOE=45°-∠AOM ,∠CON=90°-45°-∠AOM=45°-∠AOM ,∴∠AOE=∠CON .又∵OA=OC ,∠OAE=180°-90°=90°=∠OCN .∴△OAE ≌△OCN .∴OE=ON ,AE=CN .又∵∠MOE=∠MON=45°,OM=OM ,∴△OME ≌△OMN .∴MN=ME=AM+AE .∴MN=AM+CN ,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC 的过程中,p 值无变化.考点:旋转的性质.4.如图1,将长为10的线段OA 绕点O 旋转90°得到OB ,点A 的运动轨迹为AB ,P 是半径OB 上一动点,Q 是AB 上的一动点,连接PQ.发现:∠POQ =________时,PQ 有最大值,最大值为________;思考:(1)如图2,若P 是OB 中点,且QP ⊥OB 于点P ,求BQ 的长;(2)如图3,将扇形AOB 沿折痕AP 折叠,使点B 的对应点B′恰好落在OA 的延长线上,求阴影部分面积;探究:如图4,将扇形OAB 沿PQ 折叠,使折叠后的弧QB′恰好与半径OA 相切,切点为C ,若OP =6,求点O 到折痕PQ 的距离.【答案】发现: 90°,102; 思考:(1)10 3π=;(2)25π−1002+100;(3)点O 到折痕PQ 的距离为30.【解析】 分析:发现:先判断出当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,即可得出结论;思考:(1)先判断出∠POQ=60°,最后用弧长用弧长公式即可得出结论;(2)先在Rt △B'OP 中,OP 2+(102−10)2=(10-OP )2,解得OP=102−10,最后用面积的和差即可得出结论.探究:先找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,证明四边形OCO′B 是矩形,由勾股定理求O′B ,从而求出OO′的长,则OM=12OO′=30. 详解:发现:∵P 是半径OB 上一动点,Q 是AB 上的一动点,∴当PQ 取最大时,点Q 与点A 重合,点P 与点B 重合,此时,∠POQ=90°,PQ=22OA OB +=102;思考:(1)如图,连接OQ ,∵点P 是OB 的中点,∴OP=12OB=12OQ . ∵QP ⊥OB ,∴∠OPQ=90° 在Rt △OPQ 中,cos ∠QOP=12OP OQ =, ∴∠QOP=60°,∴l BQ =6010101803ππ⨯=; (2)由折叠的性质可得,BP =B ′P ,AB ′=AB =2,在Rt △B'OP 中,OP 22−10)2=(10-OP )2解得OP=102−10, S 阴影=S 扇形AOB -2S △AOP =290101210(10210)3602π⨯-⨯⨯⨯- =25π−1002+100;探究:如图2,找点O 关于PQ 的对称点O′,连接OO′、O′B 、O′C 、O′P ,则OM=O′M ,OO′⊥PQ ,O′P=OP=3,点O′是B Q '所在圆的圆心,∴O′C=OB=10,∵折叠后的弧QB′恰好与半径OA 相切于C 点,∴O′C ⊥AO ,∴O′C ∥OB ,∴四边形OCO′B 是矩形,在Rt △O′BP 中,O′B=226425-=,在Rt △OBO′K ,OO′=2210(25)=230-,∴OM=12OO′=12×230=30, 即O 到折痕PQ 的距离为30.点睛:本题考查了折叠问题和圆的切线的性质、矩形的性质和判定,熟练掌握弧长公式l=180n R π(n 为圆心角度数,R 为圆半径),明确过圆的切线垂直于过切点的半径,这是常考的性质;对称点的连线被对称轴垂直平分.5.如图,在⊙O 中,直径AB ⊥弦CD 于点E ,连接AC ,BC ,点F 是BA 延长线上的一点,且∠FCA =∠B .(1)求证:CF 是⊙O 的切线; (2)若AE =4,tan ∠ACD = 12,求AB 和FC 的长.【答案】(1)见解析;(2) ⑵AB=20 , 403CF =【解析】 分析:(1)连接OC ,根据圆周角定理证明OC ⊥CF 即可;(2)通过正切值和圆周角定理,以及∠FCA =∠B 求出CE 、BE 的长,即可得到AB 长,然后根据直径和半径的关系求出OE 的长,再根据两角对应相等的两三角形相似(或射影定理)证明△OCE ∽△CFE ,即可根据相似三角形的对应线段成比例求解.详解:⑴证明:连结OC∵AB 是⊙O 的直径∴∠ACB=90° ∴∠B+∠BAC=90°∵OA=OC∴∠BAC=∠OCA∵∠B=∠FCA∴∠FCA+∠OCA=90°即∠OCF=90°∵C 在⊙O 上∴CF 是⊙O 的切线⑵∵AE=4,tan ∠ACD12AE EC = ∴CE=8 ∵直径AB ⊥弦CD 于点E∴AD AC =∵∠FCA =∠B∴∠B=∠ACD=∠FCA∴∠EOC=∠ECA∴tan ∠B=tan ∠ACD=1=2CE BE ∴BE=16∴AB=20∴OE=AB÷2-AE=6∵CE ⊥AB∴∠CEO=∠FCE=90°∴△OCE ∽△CFE∴OC OE CF CE=即106=8 CF∴40CF3=点睛:此题主要考查了圆的综合知识,关键是熟知圆周角定理和切线的判定与性质,结合相似三角形的判定与性质和解直角三角形的知识求解,利用数形结合和方程思想是解题的突破点,有一定的难度,是一道综合性的题目.6.已知,如图:O1为x轴上一点,以O1为圆心作⊙O1交x轴于C、D两点,交y轴于M、N两点,∠CMD的外角平分线交⊙O1于点E,AB是弦,且AB∥CD,直线DM的解析式为y=3x+3.(1)如图1,求⊙O1半径及点E的坐标.(2)如图2,过E作EF⊥BC于F,若A、B为弧CND上两动点且弦AB∥CD,试问:BF+CF 与AC之间是否存在某种等量关系?请写出你的结论,并证明.(3)在(2)的条件下,EF交⊙O1于点G,问弦BG的长度是否变化?若不变直接写出BG 的长(不写过程),若变化自画图说明理由.【答案】(1)r=5 E(4,5)(2)BF+CF=AC (3)弦BG的长度不变,等于2【解析】分析:(1)连接ED、EC、EO1、MO1,如图1,可以证到∠ECD=∠SME=∠EMC=∠EDC,从而可以证到∠EO1D=∠EO1C=90°.由直线DM的解析式为y=3x+3可得OD=1,OM=3.设⊙O1的半径为r.在Rt△MOO1中利用勾股定理就可解决问题.(2)过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.由AB∥DC可证到BD=AC,易证四边形O1PFQ是矩形,从而有O1P=FQ,∠PO1Q=90°,进而有∠EO1P=∠CO1Q,从而可以证到△EPO1≌△CQO1,则有PO1=QO1.根据三角形中位线定理可得FQ=12BD.从而可以得到BF+CF=2FQ=AC.(3)连接EO1,ED,EB,BG,如图3.易证EF∥BD,则有∠GEB=∠EBD,从而有BG=ED,也就有BG=DE.在Rt△EO1D中运用勾股定理求出ED,就可解决问题.详解:(1)连接ED、EC、EO1、MO1,如图1.∵ME平分∠SMC,∴∠SME=∠EMC.∵∠SME=∠ECD,∠EMC=∠EDC,∴∠ECD=∠EDC,∴∠EO1D=∠EO1C.∵∠EO1D+∠EO1C=180°,∴∠EO1D=∠EO1C=90°.∵直线DM的解析式为y=3x+3,∴点M的坐标为(0,3),点D的坐标为(﹣1,0),∴OD=1,OM=3.设⊙O1的半径为r,则MO1=DO1=r.在Rt△MOO1中,(r﹣1)2+32=r2.解得:r=5,∴OO1=4,EO1=5,∴⊙O1半径为5,点E的坐标为(4,5).(2)BF+CF=AC.理由如下:过点O1作O1P⊥EG于P,过点O1作O1Q⊥BC于Q,连接EO1、DB,如图2.∵AB∥DC,∴∠DCA=∠BAC,∴AD=BC BD∴,=AC,∴BD=AC.∵O1P⊥EG,O1Q⊥BC,EF⊥BF,∴∠O1PF=∠PFQ=∠O1QF=90°,∴四边形O1PFQ是矩形,∴O1P=FQ,∠PO1Q=90°,∴∠EO1P=90°﹣∠PO1C=∠CO1Q.在△EPO1和△CQO1中,111111EO P CO QEPO CQOO E O C∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EPO1≌△CQO1,∴PO1=QO1,∴FQ=QO1.∵QO1⊥BC,∴BQ=CQ.∵CO1=DO1,∴O1Q=12BD ,∴FQ=12BD.∵BF+CF=FQ+BQ+CF=FQ+CQ+CF=2FQ,∴BF+CF=BD=AC.(3)连接EO1,ED,EB,BG,如图3.∵DC是⊙O1的直径,∴∠DBC=90°,∴∠DBC+∠EFB=180°,∴EF∥BD,∴∠GEB=∠EBD,∴BG=ED,∴BG=DE.∵DO1=EO1=5,EO1⊥DO1,∴DE=52,∴BG=52,∴弦BG的长度不变,等于52.点睛:本题考查了圆周角定理、圆内接四边形的性质、弧与弦的关系、垂径定理、全等三角形的判定与性质、矩形的判定与性质、三角形中位线定理、平行线的判定与性质、勾股定理等知识,综合性比较强,有一定的难度.而由AB∥DC证到AC=BD是解决第(2)小题的关键,由EG∥DB证到BG=DE是解决第(3)小题的关键.7.如图,在ABC ∆中,90,BAC ∠=︒ 2,AB AC ==AD BC ⊥,垂足为D ,过,A D 的⊙O 分别与,AB AC 交于点,E F ,连接,,EF DE DF .(1)求证:ADE ∆≌CDF ∆;(2)当BC 与⊙O 相切时,求⊙O 的面积.【答案】(1)见解析;(2)24π.【解析】 分析:(1)由等腰直角三角形的性质知AD =CD 、∠1=∠C =45°,由∠EAF =90°知EF 是⊙O 的直径,据此知∠2+∠4=∠3+∠4=90°,得∠2=∠3,利用“ASA”证明即可得; (2)当BC 与⊙O 相切时,AD 是直径,根据∠C =45°、AC =2可得AD =1,利用圆的面积公式可得答案.详解:(1)如图,∵AB =AC ,∠BAC =90°,∴∠C =45°.又∵AD ⊥BC ,AB =AC ,∴∠1=12∠BAC =45°,BD =CD ,∠ADC =90°. 又∵∠BAC =90°,BD =CD ,∴AD =CD . 又∵∠EAF =90°,∴EF 是⊙O 的直径,∴∠EDF =90°,∴∠2+∠4=90°.又∵∠3+∠4=90°,∴∠2=∠3.在△ADE 和△CDF 中.∵123C AD CD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE ≌△CDF (ASA ).(2)当BC 与⊙O 相切时,AD 是直径.在Rt △ADC 中,∠C =45°,AC 2,∴sin ∠C =AD AC ,∴AD =AC sin ∠C =1,∴⊙O 的半径为12,∴⊙O 的面积为24π. 点睛:本题主要考查圆的综合问题,解题的关键是熟练掌握等腰直角三角形的性质、全等三角形的判定与性质、与圆有关的位置关系等知识点.8.如图,已知⊙O 的半径为1,PQ 是⊙O 的直径,n 个相同的正三角形沿PQ 排成一列,所有正三角形都关于PQ 对称,其中第一个△A 1B 1C 1的顶点A 1与点P 重合,第二个△A 2B 2C 2的顶点A 2是B 1C 1与PQ 的交点,…,最后一个△A n B n C n 的顶点B n 、C n 在圆上.如图1,当n=1时,正三角形的边长a 1=_____;如图2,当n=2时,正三角形的边长a 2=_____;如图3,正三角形的边长a n =_____(用含n 的代数式表示).38313 24313n+ 【解析】 分析:(1)设PQ 与11B C 交于点D ,连接1B O ,得出OD=1A D -O 1A ,用含1a 的代数式表示OD ,在△O 1B D 中,根据勾股定理求出正三角形的边长1a ;(2)设PQ 与2B 2C 交于点E ,连接2B O ,得出OE=1A E-O 1A ,用含2a 的代数式表示OE ,在△O 2B E 中,根据勾股定理求出正三角形的边长2a ;(3)设PQ 与n B n C 交于点F ,连接n B O ,得出OF=1A F-O 1A ,用含an 的代数式表示OF ,在△O n B F 中,根据勾股定理求出正三角形的边长an . 本题解析:(1)易知△A 1B 1C 1的高为323 ∴a 13.(2)设△A 1B 1C 1的高为h ,则A 2O =1-h ,连结B 2O ,设B 2C 2与PQ 交于点F ,则有OF =2h -1. ∵B 2O 2=OF 2+B 2F 2,∴1=(2h -1)2+2212a ⎛⎫ ⎪⎝⎭. ∵h 32,∴1=32-1)2+14a 22, 解得a 283 . (3)同(2),连结B n O ,设B n C n 与PQ 交于点F ,则有B n O 2=OF 2+B n F 2, 即1=(nh -1)2+212n a ⎛⎫ ⎪⎝⎭ . ∵h =32 a n ,∴1=14a n 2+231n na ⎫⎪⎪⎝⎭ ,解得a n =24331n n + .9.如图1,延长⊙O 的直径AB 至点C ,使得BC=12AB ,点P 是⊙O 上半部分的一个动点(点P 不与A 、B 重合),连结OP ,CP .(1)∠C 的最大度数为 ;(2)当⊙O 的半径为3时,△OPC 的面积有没有最大值?若有,说明原因并求出最大值;若没有,请说明理由;(3)如图2,延长PO 交⊙O 于点D ,连结DB ,当CP=DB 时,求证:CP 是⊙O 的切线.【答案】(1)30°;(2)有最大值为9,理由见解析;(3)证明见解析.【解析】试题分析:(1)当PC 与⊙O 相切时,∠OCP 的度数最大,根据切线的性质即可求得; (2)由△OPC 的边OC 是定值,得到当OC 边上的高为最大值时,△OPC 的面积最大,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大,于是得到结论;(3)根据全等三角形的性质得到AP=DB ,根据等腰三角形的性质得到∠A=∠C ,得到CO=OB+OB=AB ,推出△APB ≌△CPO ,根据全等三角形的性质得到∠CPO=∠APB ,根据圆周角定理得到∠APB=90°,即可得到结论.试题解析:(1)当PC 与⊙O 相切时,∠OCP 最大.如图1,所示:∵sin ∠OCP=OP OC =24=12,∴∠OCP=30° ∴∠OCP 的最大度数为30°,故答案为:30°;(2)有最大值,理由: ∵△OPC 的边OC 是定值,∴当OC 边上的高为最大值时,△OPC 的面积最大,而点P 在⊙O 上半圆上运动,当PO ⊥OC 时,取得最大值,即此时OC 边上的高最大, 也就是高为半径长,∴最大值S △OPC =12OC•OP=12×6×3=9; (3)连结AP ,BP ,如图2, 在△OAP 与△OBD 中,OA OD AOP BOD OP OB =⎧⎪∠=∠⎨⎪=⎩,∴△OAP ≌△OBD ,∴AP=DB ,∵PC=DB,∴AP=PC,∵PA=PC,∴∠A=∠C,∵BC=12AB=OB,∴CO=OB+OB=AB,在△APB和△CPO中,AP CPA CAB CO=⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△CPO,∴∠CPO=∠APB,∵AB为直径,∴∠APB=90°,∴∠CPO=90°,∴PC切⊙O于点P,即CP是⊙O的切线.10.(1)问题背景如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为BmC上一动点(不与B,C重合),求证:2PA=PB+PC.小明同学观察到图中自点A出发有三条线段AB,AP,AC,且AB=AC,这就为旋转作了铺垫.于是,小明同学有如下思考过程:第一步:将△PAC绕着点A顺时针旋转90°至△QAB(如图①);第二步:证明Q,B,P三点共线,进而原题得证.请你根据小明同学的思考过程完成证明过程.(2)类比迁移如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.(3)拓展延伸如图③,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=43AC,AB⊥AC,垂足为A,则OC的最小值为.【答案】(1)证明见解析;(2)OC最小值是32﹣3;(3)32.【解析】试题分析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①),只要证明△APQ 是等腰直角三角形即可解决问题;(2)如图②中,连接OA,将△OAC绕点O顺时针旋转90°至△QAB,连接OB,OQ,在△BOQ中,利用三边关系定理即可解决问题;(3)如图③构造相似三角形即可解决问题.作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.由△QAB∽OAC,推出BQ=43OC,当BQ最小时,OC最小;试题解析:(1)将△PAC绕着点A顺时针旋转90°至△QAB(如图①);∵BC是直径,∴∠BAC=90°,∵AB=AC,∴∠ACB=∠ABC=45°,由旋转可得∠QBA=∠PCA,∠ACB=∠APB=45°,PC=QB,∵∠PCA+∠PBA=180°,∴∠QBA+∠PBA=180°,∴Q,B,P三点共线,∴∠QAB+∠BAP=∠BAP+∠PAC=90°,∴QP2=AP2+AQ2=2AP2,∴QP=2AP=QB+BP=PC+PB,∴2AP=PC+PB.(2)如图②中,连接OA,将△OAC绕点A顺时针旋转90°至△QAB,连接OB,OQ,∵AB⊥AC,∴∠BAC=90°,由旋转可得QB=OC,AQ=OA,∠QAB=∠OAC,∴∠QAB+∠BAO=∠BAO+∠OAC=90°,∴在Rt△OAQ中,2,AO=3 ,∴在△OQB中,BQ≥OQ﹣2﹣3 ,即OC最小值是2﹣3;(3)如图③中,作AQ⊥OA,使得AQ=43OA,连接OQ,BQ,OB.∵∠QAO=∠BAC=90°,∠QAB=∠OAC ,∵QA AB OA AC ==43, ∴△QAB ∽OAC ,∴BQ=43OC , 当BQ 最小时,OC 最小,易知OA=3,AQ=4,OQ=5,BQ≥OQ ﹣OB ,∴OQ≥2,] ∴BQ 的最小值为2,∴OC 的最小值为34×2=32, 故答案为32. 【点睛】本题主要考查的圆、旋转、相似等知识,能根据题意正确的添加辅助线是解题的关键.11.如图1,四边形ABCD 为⊙O 内接四边形,连接AC 、CO 、BO ,点C 为弧BD 的中点. (1)求证:∠DAC=∠ACO+∠ABO ;(2)如图2,点E 在OC 上,连接EB ,延长CO 交AB 于点F ,若∠DAB=∠OBA+∠EBA .求证:EF=EB ;(3)在(2)的条件下,如图3,若OE+EB=AB ,CE=2,AB=13,求AD 的长.【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.【解析】试题分析:(1)如图1中,连接OA ,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO ,由点C 是BD 中点,推出CD CB = ,推出∠BAC=∠DAC ,即可推出∠DAC=∠ACO+∠ABO ; (2)想办法证明∠EFB=∠EBF 即可;(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .首先证明△EFB 是等边三角形,再证明△ACK ≌△ACT ,Rt △DKC ≌Rt △BTC ,延长即可解决问题;试题解析:(1)如图1中,连接OA ,∵OA=OC ,∴∠1=∠ACO ,∵OA=OB ,∴∠2=∠ABO ,∴∠CAB=∠1+∠2=∠ACO+∠ABO ,∵点C 是BD 中点,∴CD CB =,∴∠BAC=∠DAC ,∴∠DAC=∠ACO+∠ABO .(2)如图2中,∵∠BAD=∠BAC+∠DAC=2∠CAB ,∠COB=2∠BAC ,∴∠BAD=∠BOC ,∵∠DAB=∠OBA+∠EBA ,∴∠BOC=∠OBA+∠EBA ,∴∠EFB=∠EBF ,∴EF=EB .(3)如图3中,过点O 作OH ⊥AB ,垂足为H ,延长BE 交HO 的延长线于G ,作BN ⊥CF 于N ,作CK ⊥AD 于K ,连接OA .作CT ∠⊥AB 于T .∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,∵∠EFB=∠EBF ,∴∠G=∠HOF ,∵∠HOF=∠EOG ,∴∠G=∠EOG ,∴EG=EO ,∵OH ⊥AB ,∴AB=2HB ,∵OE+EB=AB ,∴GE+EB=2HB ,∴GB=2HB ,∴cos ∠GBA=12HB GB = ,∴∠GBA=60°, ∴△EFB 是等边三角形,设HF=a ,∵∠FOH=30°,∴OF=2FH=2a ,∵AB=13,∴EF=EB=FB=FH+BH=a+132,∴OE=EF﹣OF=FB﹣OF=132﹣a,OB=OC=OE+EC=132﹣a+2=172﹣a,∵NE=12EF=12a+134,∴ON=OE=EN=(132﹣a)﹣(12a+134)=134﹣32a,∵BO2﹣ON2=EB2﹣EN2,∴(172﹣a)2﹣(134﹣32a)2=(a+132)2﹣(12a+134)2,解得a=32或﹣10(舍弃),∴OE=5,EB=8,OB=7,∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,∵CD CB,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,∵FT=12FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.12.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.(1)求证:CE是⊙O的切线;(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.【答案】(1)证明见解析;(2)【解析】【分析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.【详解】(1)证明:连接OC,AC.∵CF⊥AB,CE⊥AD,且CE=CF.∴∠CAE=∠CAB.∵OC=OA,∴∠CAB=∠OCA.∴∠CAE=∠OCA.∴OC∥AE.∴∠OCE+∠AEC=180°,∵∠AEC=90°,∴∠OCE=90°即OC⊥CE,∵OC是⊙O的半径,点C为半径外端,∴CE是⊙O的切线.(2)解:∵AD=CD,∴∠DAC=∠DCA=∠CAB,∴DC∥AB,∵∠CAE=∠OCA,∴OC∥AD,∴四边形AOCD是平行四边形,∴OC=AD=a,AB=2a,∵∠CAE=∠CAB,∴CD=CB=a,∴CB=OC=OB,∴△OCB是等边三角形,在Rt△CFB中,CF=,∴S四边形ABCD=(DC+AB)•CF=【点睛】本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.13.在平面直角坐标系中,已知点A(2,0),点B(0,),点O(0,0).△AOB 绕着O顺时针旋转,得△A'OB',点A、B旋转后的对应点为A',B',记旋转角为α.(Ⅰ)如图1,A'B'恰好经过点A时,求此时旋转角α的度数,并求出点B'的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,求证:AA'⊥BB';(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).【答案】(Ⅰ)α=60°,B'(3,);(Ⅱ)见解析;(Ⅲ)点P纵坐标的最小值为﹣2.【解析】【分析】(Ⅰ)作辅助线,先根据点A(2,0),点B(0,),确定∠ABO=30°,证明△AOA'是等边三角形,得旋转角α=60°,证明△COB'是30°的直角三角形,可得B'的坐标;(Ⅱ)依据旋转的性质可得∠BOB'=∠AOA'=α,OB=OB',OA=OA',即可得出∠OBB'=∠OA'A =(180°﹣α),再根据∠BOA'=90°+α,四边形OBPA'的内角和为360°,即可得到∠BPA'=90°,即AA'⊥BB';(Ⅲ)作AB的中点M(1,),连接MP,依据点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,即可得到当PM∥y轴时,点P纵坐标的最小值为﹣2.【详解】解:(Ⅰ)如图1,过B'作B'C⊥x轴于C,∵OA=2,OB=2,∠AOB=90°,∴∠ABO=30°,∠BAO=60°,由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°,∵OB=OB'=2,∠COB'=90°﹣60°=30°,∴B'C=OB’=,∴OC=3,∴B'(3,),(Ⅱ)证明:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为-2.理由是:如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=2为半径的圆,除去点(2,2),∴当PM⊥x轴时,点P纵坐标的最小值为﹣2.【点睛】本题属于几何变换综合题,主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和以及圆周角定理的综合运用,解决问题的关键是判断点P的轨迹为以点M为圆心,以MP 为半径的圆.14..如图,△ABC中,∠ACB=90°,∠A=30°,AB=6.D是线段AC上一个动点(不与点A重合),⊙D与AB相切,切点为E,⊙D交射线..DC于点F,过F作FG⊥EF交直线..BC于点G,设⊙D的半径为r.(1)求证AE=EF;(2)当⊙D与直线BC相切时,求r的值;(3)当点G落在⊙D内部时,直接写出r的取值范围.【答案】(1)见解析,(2)r=3,(3)63 35r<<【解析】【分析】(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,即可求解;(2)如图2所示,连接DE,当圆与BC相切时,切点为F,∠A=30°,AB=6,则BF=3,AD=2r,由勾股定理,即可求解;(3)分点F在线段AC上、点F在线段AC的延长线上两种情况,分别求解即可.【详解】解:设圆的半径为r;(1)连接DE,则∠ADE=60°=∠DEF+∠DFE,而∠DEF=∠DFE,则∠DEF=∠DFE=30°=∠A,∴AE=EF;(2)如图2所示,连接DE,当圆与BC相切时,切点为F∠A=30°,AB=6,则BF=3,AD=2r ,由勾股定理得:(3r )2+9=36,解得:r=3; (3)①当点F 在线段AC 上时,如图3所示,连接DE 、DG ,333,3933FC r GC FC r =-==-②当点F 在线段AC 的延长线上时,如图4所示,连接DE 、DG ,333,3339FC r GC FC r ===-两种情况下GC 符号相反,GC 2相同,由勾股定理得:DG 2=CD 2+CG 2,点G 在圆的内部,故:DG2<r2,即:22(332)(339)2r r r +-<整理得:25113180r r -+<6335r <<【点睛】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.15.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ; (2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.【答案】(1)22;(2)224r ≤≤;(3)25252t --<<--或6<r <8.【解析】【分析】(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可.【详解】(1)过点O 作OD ⊥AB 交AB 于点D ,根据“非常距离”的定义可知,d (点O ,AB )=OD=2AB 2244+2; (2)如图,当d(⊙O,AB)=0时,过点O作OE⊥AB,则OE=22,OB=OA=4,∵⊙O与线段AB的“非常距离”为0,∴224r≤≤;(3)当⊙T在△ABC左侧时,如图,当⊙T与BC相切时,d=0,2236+35,过点C作CE⊥y轴,过点T作TF⊥BC,则△TFH∽△BEC,∴TF THBE BC=,即2635,∴5∵HO∥CE,∴△BHO∽△BEC,∴HO=2,此时5,0);当d=2时,如图,同理可得,此时T (252--);∵0<d <2,∴25252t --<<--;当⊙T 在△ABC 右侧时,如图,当p=0时,t=6,当p=2时,t=8.∵0<d <2,∴6<r <8;综上,25252t -<<或6<r <8.【点睛】本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.。

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分

专题27圆的有关性质(优选真题60道)-学易金卷:三年(2021-2023)中考数学真题分
47.(2021•德阳)在锐角三角形ABC中,∠A=30°,BC=2,设BC边上的高为h,则h的取值范围是.
48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14, 取1.73)
A.95°B.100°C.105°D.130°
16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是( )
A.40°B.45°C.50°D.55°
17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F是劣弧 上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为( )
31.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)
32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为.
三.解答题(共12小题)
49.(2023•北京)如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠ADB.
(1)求证DB平分∠ADC,并求∠BAD的大小;
(2)过点C作CF∥AD交AB的延长线于点F,若AC=AD,BF=2,求此圆半径的长.
50.(2023•内蒙古)如图,AB是⊙O的直径,AC是弦,D是 上一点,P是AB延长线上一点,连接AD,DC,CP.

2021中考数学二轮冲刺训练:圆的有关性质含答案

2021中考数学二轮冲刺训练:圆的有关性质含答案

2021中考数学 二轮冲刺训练:圆的有关性质一、选择题1. 已知:如图,OA ,OB 是⊙O的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为( )A .45°B .35°C .25°D .20°2. 如图,BC是半圆O 的直径,D ,E 是上两点,连接BD ,CE 并延长交于点A ,连接OD ,OE ,如果∠A=70°,那么∠DOE 的度数为 ( )A .35°B .38°C .40°D .42°3. 如图,在⊙O中,若C 是AB ︵的中点,∠A =50°,则∠BOC 的度数是( )A .40°B .45°C .50°D .60°4. 如图所示,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,CD ⊥AB.若∠DAB =65°,则∠BOC 等于( )A .25°B .50°C .130°D .155°5. 2018·济宁如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A.50°B.60°C.80°D.100°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为()A.3 B.2.5 C.4 D.3.57. 如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°8. (2019•镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,DC CB=.若∠=︒,则ABC∠的度数等于110CA.55︒B.60︒C.65︒D.70︒二、填空题9. 在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为.10. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE,若∠ABC=64°,则∠BAE的度数为.11.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.12. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)13. 如图,半径为5的⊙P 与y 轴交于点M(0,-4),N(0,-10),则圆心P 的坐标为________.14. 如图所示,在半圆O 中,AB 为直径,P 为AB ︵的中点,分别在AP ︵和PB ︵上取其中点A 1和B 1,再在P A ︵1和PB ︵1上分别取其中点A 2和B 2.若一直这样取下去,则∠A n OB n =________°.15. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC交于点D ,则AD 的长为________.16. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C ,D 与点A ,B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P.若CD =3,AB =8,PM =l ,则l 的最大值是________.三、解答题17. 如图,AB 是☉O 的直径,C 是☉O 上一点,过点O 作OD ⊥AB ,交BC 的延长线于点D ,交AC 于点E ,F 是DE 的中点,连接CF . (1)求证:CF 是☉O 的切线; (2)若∠A=22.5°,求证:AC=DC.18. 如图,在⊙O中,AC ︵=CB ︵,CD ⊥OA 于点D ,CE ⊥OB 于点E.求证:AD =BE.19. 如图,AB是☉O 的直径,DO ⊥AB 于点O ,连接DA 交☉O 于点C ,过点C 作☉O的切线交DO 于点E ,连接BC 交DO 于点F . (1)求证:CE=EF .(2)连接AF 并延长,交☉O 于点G .填空:①当∠D 的度数为 时,四边形ECFG 为菱形; ②当∠D 的度数为 时,四边形ECOG 为正方形.20.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF·ED;(3)求证:AD是⊙O的切线.21.如图,AB为⊙O的直径,P点为半径OA上异于点O和点A的一个点,过P点作与直径AB 垂直的弦CD,连接AD,作BE⊥AB,OE//AD交BE于E点,连接AE、DE,AE交CD于点F.(1)求证:DE为⊙O的切线;(2)若⊙O的半径为3,sin∠ADP=13,求AD;(3)请猜想PF与FD的数量关系,并加以证明.22.在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2-5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图①);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n既为该方程的另一个实数根.(1)在图②中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图①,请证明“第三步”操作得到的m就是方程x2-5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程ax2+bx +c=0(a≠0,b2-4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1).Q(m2,n2)就是符合要求的一对固定点?答案一、选择题1. 【答案】A2. 【答案】C[解析]∵∠A=70°,∴∠B +∠C=110°,∴∠BOE +∠COD=220°,∴∠DOE=∠BOE +∠COD -180°=40°,故选C .3. 【答案】A[解析] ∵∠A =50°,OA =OB ,∴∠B =∠A =50°,∴∠AOB =180°-50°-50°=80°. ∵C 是AB ︵的中点, ∴∠BOC =12∠AOB =40°. 故选A.4. 【答案】C5. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.6. 【答案】C7. 【答案】C[解析] 设圆心为O ,连接OA ,OB ,如图.∵弦AB 的长度等于圆半径的2倍, 即AB =2OA ,∴AB2=2OA2.∵OA =OB ,∴AB2=OA2+OB2,∴△OAB 为等腰直角三角形,∠AOB =90°, ∴∠ASB =12∠AOB =45°.故选C.8. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB ,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .二、填空题9. 【答案】5 [解析]如图,已知☉O ,圆内接正方形ABCD.连接OB ,OC ,过O 作OE ⊥BC ,设此正方形的边长为a ,由垂径定理及正方形的性质得出OE=BE=,由勾股定理得OE 2+BE 2=OB 2,即2+2=52,解得a=5.10. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.11.【答案】35 【解析】∵OA =OB =OC ,∴∠OAB =∠B ,∠C =∠OAC ,∵∠AOB =40°,∴∠B=∠OAB =70°,∵CD ∥AB ,∴∠BAC =∠C ,∴∠OAC =∠BAC =12∠OAB =35°.12. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB , ∴四边形OACB 是菱形.13. 【答案】(-4,-7)[解析] 过点P 作PH ⊥MN 于点H ,连接PM ,则MH =12MN =3,OH =OM +MH =7.由勾股定理,得PH =4,∴圆心P 的坐标为(-4,-7).14. 【答案】(902n -1) [解析] 当n =1时,∠A 1OB 1=90°;当n =2时,∠A 2OB 2=90°2=45°所以∠A n OB n =(902n -1)°.15. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵, ∴AO ⊥BC ,垂足为D , 则BD =12BC = 3. 在Rt △OBD 中, ∵BD2+OD2=OB2, 即(3)2+OD2=22, 解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1; 当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.16. 【答案】34 [解析] 如图,当CD ∥AB 时,PM 的长最大,连接OM ,OC .∵CD ∥AB ,CP ⊥AB ,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】证明:(1)∵AB是☉O的直径,∴∠ACB=90°,∴∠ACD=90°.∵点F是ED的中点,∴CF=EF=DF,∴∠AEO=∠FEC=∠FCE.∵OA=OC,∴∠OCA=∠OAC.∵OD⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠FCE=90°,即OC⊥FC,∵OC是☉O的半径,∴CF与☉O相切.(2)∵OD⊥AB,AC⊥BD,∴∠AOE=∠ACD=90°.∵∠AEO=∠DEC,∴∠OAE=∠CDE=22.5°.连接AD ,∵AO=BO ,OD ⊥AB ,∴AD=BD ,∴∠ADO=∠BDO=22.5°,∴∠ADB=45°,∴∠CAD=90°-∠ADB=45°=∠ADB ,∴AC=CD.18. 【答案】证明:如图,连接OC. ∵AC ︵=CB ︵,∴∠AOC =∠BOC.∵CD ⊥OA 于点D ,CE ⊥OB 于点E ,∴∠CDO =∠CEO =90°.在△COD 与△COE 中,⎩⎨⎧∠AOC =∠BOC ,∠CDO =∠CEO ,CO =CO ,∴△COD ≌△COE(AAS),∴OD =OE.又∵AO =BO ,∴AO -OD =BO -OE ,即AD =BE.19. 【答案】解:(1)证明:连接OC.∵CE 是☉O 的切线,∴OC ⊥CE.∴∠FCO +∠ECF=90°.∵DO ⊥AB ,∴∠B +∠BFO=90°.∵∠CFE=∠BFO ,∴∠B +∠CFE=90°.∵OC=OB ,∴∠FCO=∠B.∴∠ECF=∠CFE.∴CE=EF .(2)∵AB 是☉O 的直径,∴∠ACB=90°.∴∠DCF=90°.∴∠DCE +∠ECF=90°,∠D +∠EFC=90°.由(1)得∠ECF=∠CFE ,∴∠D=∠DCE.∴ED=EC.∴ED=EC=EF .即点E 为线段DF 的中点.①四边形ECFG 为菱形时,CF=CE.∵CE=EF ,∴CE=CF=EF .∴△CEF 为等边三角形.∴∠CFE=60°.∴∠D=30°.故填30°.②四边形ECOG 为正方形时,△ECO 为等腰直角三角形.∴∠CEF=45°.∵∠CEF=∠D +∠DCE ,∴∠D=∠DCE=22.5°.故填22.5°.20. 【答案】(1)解:∵AB =AC ,∠BAC =36°,∴∠ABC =∠ACB =12(180°-36°)=72°,∴∠AFB =∠ACB =72°,∵BD 平分∠ABC ,∴∠DBC =36°,∵AD ∥BC ,∴∠D =∠DBC =36°,∴∠DAF =∠AFB -∠D =72°-36°=36°;(2)证明:∵∠EAF =∠FBC =∠D ,∠AEF =∠AED ,∴△EAF ∽△EDA , ∴AE DE =EF EA ,∴AE 2=EF ·ED ;(3)证明:如解图,过点A 作BC 的垂线,G 为垂足,∵AB =AC ,∴AG 垂直平分BC ,∴AG 过圆心O ,∵AD ∥BC ,∴AD ⊥AG ,∴AD 是⊙O 的切线.解图21. 【答案】(1)证明:如解图,连接OD ,∵OA =OD ,∴∠OAD =∠ODA ,∵OE ∥AD ,∴∠OAD =∠BOE ,∠DOE =∠ODA ,∴∠BOE =∠DOE ,在△BOE 和△DOE 中,⎩⎪⎨⎪⎧OB =OD ∠BOE =∠DOE OE =OE, ∴△BOE ≌△DOE (SAS),∴∠ODE =∠OBE ,∵BE ⊥AB ,∴∠OBE =90°,∴∠ODE =90°,∵OD 为⊙O 的半径,∴DE 为⊙O 的切线;(2)解:如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ADB =90°,∴∠ABD +∠BAD =90°,∵AB ⊥CD ,∴∠ADP +∠BAD =90°,∴∠ABD =∠ADP ,∴sin ∠ABD =AD AB =sin ∠ADP =13, ∵⊙O 的半径为3,∴AB =6,∴AD =13AB =2;解图 (3)解:猜想PF =FD ,证明:∵CD ⊥AB ,BE ⊥AB ,∴CD ∥BE ,∴△APF ∽△ABE ,∴PF BE =AP AB ,∴PF =AP ·BE AB ,在△APD 和△OBE 中,⎩⎪⎨⎪⎧∠APD =∠OBE ∠P AD =∠BOE , ∴△APD ∽△OBE ,∴PD BE =AP OB, ∴PD =AP ·BE OB ,∵AB =2OB ,∴PF =12PD , ∴PF =FD .22. 【答案】【思路分析】(1)因为点C 是x 轴上的一动点,且∠ACB =90°保持不变,所以由圆周角的性质得,点C 必在以AB 为直径的圆上,所以以AB 为直径画圆,与x 轴相交于两点,除点C 的另一点就是所求;(2)因为∠ACB =90°,∠AOC =90°,所以过点B 作BE ⊥x 轴,垂足为E ,则构造了一个“K”字型的基本图形,再由相似三角的性质得出比例式,化简后得m 2-5m +2=0,问题得证;(3)由(2)中的证明过程可知,一个二次项系数为1的一元二次方程,一次项系数是点A 的横坐标与点B 的横坐标的和的相反数;常数项是点A的纵坐标与点B 的纵坐标的积,先把方程ax 2+bx +c =0,化为 x 2+b a x +c a=0,再根据上述关系写出一对固定点的坐标;(4)由(2)的证明中知,本题的关键点在“K”字型的构造,所以本小题解题的关键是要抓住图②中的“K”字型,只要P 、Q 两点分别在AD 、BD 上,过P 、Q 分别作x 轴垂线,垂足为M 、N ,这样就构造出满足条件的基本图形,再应用相似三角形的性质,可得相应的关系式.图① 图②(1)解:如解图①,先作出AB 的中点O 1,以O 1为圆心,12AB 为半径画圆.x 轴上另外一个交点即为D 点;(4分)(2)证明:如解图①,过点B 作x 轴的垂线交x 轴于点E ,∵∠ADB =90°,∴∠ADO +∠BDE =90°,∵∠OAD +∠ADO =90°,∴∠OAD =∠BDE ,∵∠AOD =∠DEB =90°,∴△AOD ∽△DEB ,(6分)∴AO DE =OD EB ,即15-m =m 2,∴m 2-5m +2=0,∴m 是x 2-5x +2=0的一个实根;(8分)(3)解:(0,1),(-b a ,c a )或(0,1a ),(-b a ,c );(10分)(4)解:在解图②中,P 在AD 上,Q 在BD 上,过P ,Q 分别作x 轴的垂线交x 轴于M ,N.由(2)知△PMD ∽△DNQ ,∴n 1m 2-x =x -m 1n 2,(12分) ∴x 2-(m 1+m 2)x +m 1m 2+n 1n 2=0与ax 2+bx +c =0同解,∴-b a =m 1+m 2;c a =m 1m 2+n 1n 2.(14分)【难点突破】本题是一道考查数形结合思想的题.本题解题的突破口要抓住∠ACB =90°保持不变的特征,构造相似三角形中的基本图形,通过数形结合的方法,以相似三角形的比例式为桥梁,以此获得关于m 的等量关系,从而使问题得以解决.。

2021年中考数学一轮专题训练:与圆相关的计算含答案

2021年中考数学一轮专题训练:与圆相关的计算含答案

2021中考数学一轮专题训练:与圆相关的计算一、选择题(本大题共10道小题)1. 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.92. 如图所示的扇形纸片半径为5 cm,用它围成一个圆锥的侧面,该圆锥的高是4 cm,则该圆锥的底面周长是( )A. 3πcmB. 4πcmC. 5πcmD. 6πcm3. (2020·南充)如图,AB是O的直径,CD是弦,点,C D在直径AB的两侧.若::2:7:11AOC AOD DOB∠∠∠=,4CD=,则CD的长为()O DCBAA.2πB.4πC2πD2π4. (2019•温州)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.3π2B.2πC.3πD.6π5. 2019·唐山乐亭期末如图,圆锥的底面半径OB=6 cm,高OC=8 cm,则这个圆锥的侧面积是( )A .30 cm 2B .60π cm 2C .30π cm 2D .48π cm 26. 如图,一段公路的转弯处是一段圆弧(AB ︵),则AB ︵的展直长度为()A .3π mB .6π mC .9π mD .12π m7. 如图,△ABC 内接于⊙O ,若∠A =45°,⊙O 的半径r =4,则阴影部分的面积为( )A .4π-8B .2πC .4πD .8π-88. 如图在扇形OAB 中,∠AOB =150°,AC =AO =6,D 为AC 的中点,当弦AC沿AB ︵运动时,点D 所经过的路径长为( )图A .3π B.3πC.32 3πD .4π9. 如图,C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在AB︵上的点D 处,且BD ︵l ∶AD ︵l =1∶3(BD ︵l 表示BD︵的长).若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1∶3B .1∶πC .1∶4D .2∶910. 如图,将两张完全相同的正六边形纸片(边长为2a )重合在一起,下面一张纸片保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分的面积之比是( )A .5∶2B .3∶2C .3∶1D .2∶1二、填空题(本大题共10道小题)11. 若正六边形的内切圆半径为2,则其外接圆半径为 .12. 如图,△ABC 是☉O 的内接三角形,∠BAC=60°,的长是,则☉O 的半径是 .13. (2020·哈尔滨)一个扇形的面积是13π2cm ,半径是6cm ,则此扇形的圆心角是 度.14. 已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是________.15. (2020·武威)若一个扇形的圆心角为60°,面积为cm2,则这个扇形的弧长为cm(结果保留π).16. (2020·新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°,若将扇形BAC剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.17. (2019•海南)如图,O与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧BD所对的圆心角BOD∠的大小为__________度.18. (2020·凉山州)如图,点C、D分别是半圆AOB上的三等分点.若阴影部分的面积是32π,则半圆的半径OA的长为.DCB19. 如图,⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则BD︵所对的圆心角∠BOD的大小为________度.20. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10 m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4 m,则S=________m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变.则在BC的变化过程中,当S取得最小值时,边BC的长为________m.①②三、解答题(本大题共6道小题)21. 如图是两个半圆,点O为大半圆的圆心,AB是大半圆的弦且与小半圆相切,AB=24,求图中阴影部分的面积.22. 如图,在△ABC中,AB=AC,以AB为直径的☉O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与☉O的位置关系,并说明理由;(2)求证:点H为CE的中点.23. 如图,☉O与△ABC的AC边相切于点C,与AB,BC边分别交于点D,E,DE∥OA,CE是☉O的直径.(1)求证:AB是☉O的切线;(2)若BD=4,CE=6,求AC的长.24. 当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷.如图是某汽车的一个雨刷的转动示意图,雨刷杆AB与雨刷CD在B处固定连接(不能转动),当杆AB绕点A转动90°时,雨刷CD扫过的面积是图中阴影部分的面积,现量得CD=90 cm,∠DBA=20°,AC=115 cm,DA=35 cm,试从以上信息中选择所需要的数据,求出雨刷扫过的面积.25. 已知扇形的圆心角为120°,面积为300π cm2.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,则这个圆锥的体积是多少?26. (2019•襄阳)如图,点E 是ABC △的内心,AE 的延长线和ABC △的外接圆圆O相交于点D ,过D 作直线DG BC ∥. (1)求证:DG 是圆O 的切线;(2)若6DE =,63BC =,求优弧BAC 的长.答案一、选择题(本大题共10道小题)1. 【答案】A2.【答案】D 【解析】如解图,由题意可知,OA =4 cm ,AB =5cm ,在Rt △AOB 中,利用勾股定理可求得OB =3 cm ,∴该圆锥的底面周长是6π cm.3. 【答案】D【解析】∵AB 是直接,∠AOD :∠ DOB=7:11,∴∠AOD=70°.又∵∠COA :∠ AOD=2:7,∴∠=20°,∴∠COD=90°. ∵CD=4,∴22OC =∴222CD ππ==.故选D. 4. 【答案】C【解析】该扇形的弧长=90π63π180⨯=.故选C .5. 【答案】B6. 【答案】B[解析] AB ︵的展直长度=108π·10180=6π(m).故选B.7. 【答案】A[解析] 由题意可知∠BOC =2∠A =45°×2=90°.∵S 阴影=S 扇形OBC -S △OBC ,S 扇形OBC =14S 圆=14π×42=4π,S △OBC =12×42=8,所以阴影部分的面积为4π-8.故选A.8. 【答案】C[解析] 如图∵D为AC的中点,AC=AO=6,∴OD⊥AC,∴AD=12AC=12AO,∴∠AOD=30°,OD=3 3. 作BF=AC,E为BF的中点.同理可得∠BOE=30°,∴∠DOE=150°-60°=90°,∴点D所经过的路径长为nπR180=90π×3 3180=3 32π.9. 【答案】D10. 【答案】C[解析] 正六边形的面积=6×34×(2a)2=6 3a2,阴影部分的面积=a·2 3a=2 3a2,∴空白部分与阴影部分的面积之比是=6 3a2∶2 3a2=3∶1.二、填空题(本大题共10道小题)11. 【答案】[解析]如图,已知正六边形ABCDEF,连接OE,作OM⊥EF于M,则OE=EF,EM=FM,OM=2,∠EOM=30°,在Rt△OEM中,cos∠EOM=,∴=,解得OE=,故其外接圆半径为.12. 【答案】2[解析]连接OB,OC,∵∠BAC=60°,∴∠BOC=120°,∵的长为π,∴设☉O半径为r,得=π,解得r=2.即☉O的半径为2.13. 【答案】130【解析】本题考查了扇形面积公式计算,注意公式的灵活运用是解题关键,根据S =360r 2πn =36062 πn =13π,解得:n =130°,因此本题答案为130.14. 【答案】24π15. 【答案】设扇形的半径为R ,弧长为l ,根据扇形面积公式得;=,解得:R =1, ∵扇形的面积=lR =,解得:l =π. 故答案为:.16. 【答案】3【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,ADOD ⊥AC ,所以AC =2AD=BC l =60180×π×.设此圆锥的底面圆的半径为r ,则2πr,解得r.17. 【答案】144【解析】五边形ABCDE 是正五边形,∴(52)1801085E A -⨯︒∠=∠==︒.∵AB 、DE 与O 相切,∴90OBA ODE ∠=∠=︒,∴(52)1809010810890144BOD ∠=-⨯----=︒︒︒︒︒︒,故答案为:144.18. 【答案】3【解析】如答图,连接OC 、OD 、CD ,则∠AOC =∠COD =∠BOD =60°.∵OB =OD =OC ,∴△OCD 和△OBD 均为正三角形.∴∠ODC =∠BOD =60°.∴AB ∥CD .∴S △BCD =S △OCD .∴S 阴影部分=S 扇形OCD .∴26033602r ππ⋅=.解得r =3,于是半圆的半径OA 的长为3.故答案为3.19. 【答案】144[解析] ∵⊙O 与正五边形ABCDE 的边AB ,DE 分别相切于点B ,D ,∴OB ⊥AB ,OD ⊥DE.∵正五边形每个内角均为108°, ∴∠BOD =∠C +∠OBC +∠ODC =108°×3-90°×2=144°.20. 【答案】88π;52 【解析】(1)因为AB +BC =10 m ,BC =4 m ,则AB =6m ,小狗活动的范围包括三个部分,第一部分是以点B 为圆心,10为半径,圆心角为270°的扇面;第二部分是以C 为圆心,6为半径,圆心角为90°的扇形,第三部分是以A 为圆心,4为半径,圆心角为90°的扇形,则S =270π·102360+90π·62360+90π·42360=88πm 2;(2)当在右侧有一个等边三角形时,设BC =x 米,根据题意得S =270π·102360+30π·(10-x )2360+90π·x 2360=π3x 2-53πx +2503π,所以当x =-(-53π)÷(2×π3)=52时,S 最小,即此时BC 的长为52米.三、解答题(本大题共6道小题)21. 【答案】[解析] 小圆向右平移,使它的圆心与大圆的圆心重合,于是阴影部分的面积可转化为大半圆的面积减去小半圆的面积.解:将小半圆向右平移,使两半圆的圆心重合,如图,连接OB ,过点O 作OC ⊥AB 于点C ,则AC =BC =12.∵AB 是大半圆的弦且与小半圆相切, ∴OC 为小半圆的半径,∴S 阴影=S 大半圆-S 小半圆=12π·OB2-12π·OC2=12π(OB2-OC2)=12π·BC2=72π.22. 【答案】[解析](1)连接OD ,AD ,先利用圆周角定理得到∠ADB=90°,再根据等腰三角形的性质得BD=CD ,再证明OD 为△ABC 的中位线得到OD ∥AC ,根据DH ⊥AC ,所以OD ⊥DH ,然后根据切线的判定定理可判断DH 为☉O 的切线.(2)连接DE ,由圆内接四边形的性质得∠DEC=∠B ,再证明∠DEC=∠C ,然后根据等腰三角形的性质得到CH=EH. 解:(1)DH 与☉O 相切.理由如下: 连接OD ,AD ,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为☉O的切线.(2)证明:连接DE,如图,∵四边形ABDE为☉O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点.23. 【答案】解:(1)证明:连接OD,∵DE∥OA,∴∠AOC=∠OED,∠AOD=∠ODE,∵OD=OE,∴∠OED=∠ODE,∴∠AOC=∠AOD,又∵OA=OA,OD=OC,∴△AOC≌△AOD(SAS),∴∠ADO=∠ACO.∵CE是☉O的直径,AC为☉O的切线,∴OC⊥AC,∴∠OCA=90°,∴∠ADO=∠OCA=90°,∴OD⊥AB.∵OD为☉O的半径,∴AB 是☉O 的切线.(2)∵CE=6,∴OD=OC=3, ∵∠BDO=180°-∠ADO=90°, ∴BO 2=BD 2+OD 2, ∴OB==5,∴BC=8,∵∠BDO=∠OCA=90°,∠B=∠B , ∴△BDO ∽△BCA , ∴=,∴=, ∴AC=6.24. 【答案】解:由题意可知△ACD ≌△AC′D′,所以可将△AC′D′旋转到△ACD 处,使阴影部分面积成为一部分环形面积,可通过两扇形面积之差求得, 即雨刷CD 扫过的面积S 阴影=S 扇形ACC′-S 扇形ADD′=90π×1152360-90π×352360=π4(115+35)×(115-35)=3000π(cm2). 答:雨刷扫过的面积为3000π cm2.25. 【答案】解:(1)设扇形的半径为r cm.由题意,得120π×r2360=300π,解得r =30,∴扇形的弧长=120π×30180=20π(cm). (2)设圆锥的底面圆的半径为x cm , 则2π·x =20π,解得x =10,∴圆锥的高=302-102=20 2(cm), ∴圆锥的体积=13·π·102·20 2= 2000 23π(cm3).26. 【答案】(1)连接OD 交BC 于H ,如图,∵点E 是ABC △的内心,∴AD 平分BAC ∠,即BAD CAD ∠=∠, ∴BD CD =,∴OD BC ,BH CH =,∵DG BC ∥, ∴OD DG ⊥, ∴DG 是圆O 的切线. (2)连接BD 、OB ,如图, ∵点E 是ABC △的内心, ∴ABE CBE ∠=∠, ∵DBC BAD ∠=∠,∴DEB BAD ABE DBC CBE DBE ∠=∠+∠=∠+∠=∠, ∴6DB DE ==, ∵1332BH BC == 在Rt BDH △中,333sin 62BH BDH BD ∠===, ∴60BDH ∠=︒, 而OB OD =,∴OBD △为等边三角形, ∴60BOD ∠=︒,6OB BD ==, ∴120BOC ∠=︒, ∴优弧BAC 的长=(360120)π68π180-⋅⋅=.2021中考数学 一轮专题训练:与圆有关的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A .与圆有公共点的直线B .垂直于圆的半径的直线C .到圆心的距离等于半径的直线D .经过圆的直径一端的直线2. 2019·泰安如图,△ABC 是⊙O 的内接三角形,∠A =119°,过点C 的圆的切线交BO 的延长线于点P ,则∠P 的度数为( )A .32°B .31°C .29°D .61°3. 2018·舟山用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是( ) A .点在圆内B .点在圆上C .点在圆心上D .点在圆上或圆内4. 2020·武汉模拟在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以点A 为圆心,4.8为半径的圆与直线BC 的公共点的个数为( ) A .0B .1C .2D .不能确定5. 如图,在矩形ABCD 中,AB =3,AD =4.若以点A 为圆心,4为半径作⊙A ,则下列各点中在⊙A 外的是( )A.点A B.点BC.点C D.点D6. 在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O为圆心,OA长为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为()A.E,F,G B.F,G,HC.G,H,E D.H,E,F7.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°.过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°8. 如图,⊙O的半径为2,点O到直线l的距离为3,P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.13B. 5 C.3 D.29. 如图,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA ,CB 分别相交于点P ,Q ,则线段PQ 的最小值为( )A .5B .4 2C .4.75D .4.810. 如图0,在Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )图0A.32 B .2C.81313 D.121313二、填空题(本大题共10道小题)11. 如图,P A ,PB是☉O 的切线,A ,B 为切点,点C ,D 在☉O 上.若∠P=102°,则∠A+∠C= .12. 如图,菱形ABOC 的边AB ,AC 分别与☉O 相切于点D ,E ,若点D 是AB的中点,则∠DOE= .13. (2019•河池)如图,PA、PB是O的切线,A、B为切点,∠OAB=38°,则∠P=__________ .14. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A 上,点________在⊙A外.15. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.16. 2019·兴化期中已知等边三角形ABC的边长为2,D为BC的中点,连接AD.点O在线段AD上运动(不与端点A,D重合),以点O为圆心,33为半径作圆,当⊙O与△ABC的边有且只有两个公共点时,DO的取值范围为________.17. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB只有一个公共点,则R的取值范围是______________.18. 已知l1∥l2,l1,l2之间的距离是3 cm,圆心O到直线l1的距离是1 cm,如果圆O与直线l1,l2有三个公共点,那么圆O的半径为________cm.19. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O的半径为________.20. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共6道小题)21. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.22. 如图,在等腰三角形ABC中,AB=AC.以AC为直径作☉O交BC于点D,过点D作DE⊥AB,垂足为E.(1)求证:DE是☉O的切线.(2)若DE=,∠C=30°,求的长.23. 如图,已知平面直角坐标系中,A(0,4),B(4,4),C(6,2).(1)写出经过A,B,C三点的圆弧所在圆的圆心M的坐标:(________,________);(2)判断点D(5,-2)与⊙M的位置关系.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.25. 如图,AB是☉O的直径,点C,D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为☉O的切线.(2)判断四边形AOCD是否为菱形?并说明理由.26. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】B5. 【答案】C6. 【答案】A[解析] 设小正方形的边长为1个单位长度,所以OA=12+22= 5. 因为OE=2<OA,所以点E在⊙O内;OF=2<OA,所以点F在⊙O内;OG=1<OA,所以点G在⊙O内;OH=22+22=2 2>OA,所以点H在⊙O外.故选A.7. 【答案】B 【解析】∵∠A=25°,∠ACB=90°,∴∠ABC=65°.如解图,连接OC.∵OB=O C,∴∠ABC=∠BCO=65°.∵CD是⊙的切线,∴OC⊥CD,∴∠OCD=90°,∴∠BCD=90°-∠BCO=25°,∴∠D=∠ABC-∠BCD=65°-25°=40°.解图8. 【答案】B[解析] ∵PQ与⊙O相切,∴∠OQP=90°,∴PQ=OP2-OQ2=OP2-22,∴当OP最小时,PQ最小.而OP的最小值是点O到直线l的距离3,∴PQ的最小值为32-22= 5.故选B.9. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.10. 【答案】B[解析] ∵∠ABC=90°,∴∠ABP+∠PBC=90°.∵∠P AB=∠PBC,∴∠ABP+∠P AB=90°,∴∠APB=90°,∴点P在以AB为直径的圆上,设圆心为O,连接OC交⊙O于点P,此时CP 最小.在Rt△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC=5,OP=OB=3,∴PC=OC-OP=5-3=2,∴PC的最小值为2.二、填空题(本大题共10道小题)11. 【答案】219°[解析]连接AB,∵P A ,PB 是☉O 的切线, ∴P A=PB. ∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°. ∵∠DAB +∠C=180°,∴∠P AD +∠C=∠P AB +∠DAB +∠C=180°+39°=219°.12. 【答案】60°[解析]连接OA ,∵四边形ABOC 是菱形, ∴BA=BO ,∵AB 与☉O 相切于点D , ∴OD ⊥AB. ∵D 是AB 的中点,∴OD 是AB 的垂直平分线,∴OA=OB , ∴△AOB 是等边三角形, ∴∠AOD=∠AOB=30°, 同理∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°, 故答案为60°. 113. 【答案】76【解析】∵PA PB 、是O 的切线,∴PA PB PA OA =⊥,,∴90PAB PBA OAP ∠=∠∠=︒,,∴90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒, ∴180525276P ∠=︒-︒-︒=︒,故答案为:76.14. 【答案】OB ,DC [解析] ∵四边形ABCD 为正方形,∴AC ⊥BD ,AO=BO =CO =DO. 设AO =BO =x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x =22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.15. 【答案】3<r <5[解析] 连接BD.在Rt △ABD 中,AB =4,AD =3,则BD=32+42=5.由题图可知3<r <5.16. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D 为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与△ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O经过△ABC的顶点A时,⊙O与△ABC的边有三个公共点,则当33<DO≤2 33时,⊙O与△ABC的边有四个或三个公共点.(4)如图④所示,当2 33<DO<3时,⊙O与△ABC的边有两个公共点.综上,当0<DO<33或2 33<DO<3时,⊙O与△ABC的边只有两个公共点.故答案为0<DO<33或2 33<DO< 3.17. 【答案】R=4.8或6<R≤8[解析] 当⊙C与AB相切时,如图①,过点C作CD⊥AB于点D.根据勾股定理,得AB=AC2+BC2=62+82=10.根据三角形的面积公式,得12AB·CD=12AC·BC,解得CD=4.8,所以R=4.8;当⊙C与AB相交时,如图②,此时R大于AC的长,而小于或等于BC的长,即6<R≤8.18. 【答案】2或4 [解析] 设圆O 的半径为r cm 如图①所示,r -1=3,得r =4;如图②所示,r +1=3,得r =2.19.【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵B C 与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △O DF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图20. 【答案】相交[解析] ∵⊙M 的圆心为M (-2,2),则⊙M 关于y 轴对称的⊙M ′的圆心为M ′(2,2).因为M ′B =2>点M ′到直线AB 的距离,所以直线AB 与⊙M ′相交.三、解答题(本大题共6道小题)21. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D. ∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.22. 【答案】解:(1)证明:如图,连接OD,∵OC=OD,AB=AC,∴∠1=∠C,∠C=∠B.∴∠1=∠B.∵DE⊥AB,∴∠2+∠B=90°.∴∠2+∠1=90°,∴∠ODE=90°,∴DE为☉O的切线.(2)连接AD,∵AC为☉O的直径,∴∠ADC=90°.∵AB=AC,∴∠B=∠C=30°,BD=CD.∴∠AOD=60°.∵DE=,∴BD=CD=2,∴OC=2,∴的长=π×2=π.23. 【答案】解:(1)20(2)∵⊙M的半径AM=22+42=2 5,线段MD=(5-2)2+22=13<2 5,∴点D在⊙M内.24. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.25. 【答案】解:(1)证明:如图,连接OD,∵点C,D为半圆O的三等分点,∴∠AOD=∠COD=∠COB=60°.∵OA=OD,∴△AOD为等边三角形,∴∠DAO=60°,∴AE∥OC.∵CE⊥AD,∴CE⊥OC,∴CE为☉O的切线.(2)四边形AOCD为菱形.理由:∵OD=OC,∠COD=60°,∴△OCD为等边三角形,∴CD=CO.同理:AD=AO.∵AO=CO,∴AD=AO=CO=DC,∴四边形AOCD为菱形.26. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l. 又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF+∠B=180°,∴90°+∠DAE+∠B=180°,∴∠DAE=90°-∠B,∴∠BAF=∠DAE.。

2021年中考数学 一轮专题训练:圆的有关性质(含答案)

2021年中考数学 一轮专题训练:圆的有关性质(含答案)

2021中考数学 一轮专题训练:圆的有关性质一、选择题(本大题共10道小题)1. 如图,在⊙O 中,AB ︵=CD ︵,∠1=45°,则∠2等于( )A .60°B .30°C .45°D .40°2. 如图所示,AB是⊙O 的直径,C ,D 是⊙O 上的两点,CD ⊥AB.若∠DAB =65°,则∠BOC 等于( )A .25°B .50°C .130°D .155°3.如图,四边形ABCD 内接于⊙O ,F 是CD︵上一点,且DF︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC =105°,∠BA C =25°,则∠E 的度数为( ) A . 45° B . 50° C . 55° D . 60°4. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A.30°B.40°C.50°D.60°5. 如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB 相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OPC.OB⊥AC D.AC平分OB6.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=22,BD=3,则AB的长为( )A. 2B. 3C. 4D. 57. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm9. 如图,在半径为13的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是()A.2 6 B.2 10 C.2 11 D.4 310. 如图,AB是⊙O的直径,点C,D在⊙O上,∠BOC=110°,AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°二、填空题(本大题共10道小题)11. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.12. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.13. 2018·毕节如图,AB是⊙O的直径,C,D为半圆的三等分点,CE⊥AB于点E,则∠ACE的度数为________.14. 当宽为3 cm的刻度尺的一边与⊙O相切于点A时,另一边与⊙O的两个交点B,C处的读数如图所示(单位:cm),那么该圆的半径为________cm.15. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B 两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.16. 如图,四边形ABCD内接于⊙O,AB为⊙O的直径,C为弧BD的中点.若∠DAB=40°,则∠ABC=________°.17. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.18. 如图,在⊙O中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD⊥OC 交⊙O 于点D ,则CD 的最大值为________.19. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm ,则水位上升________cm. 链接听P39例4归纳总结20. 如图,AB ,CD是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是⊙O 的直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为________.三、解答题(本大题共6道小题)21. 2018·牡丹江 如图,在⊙O 中,AB ︵=2AC ︵,AD ⊥OC 于点D .求证:AB =2AD .22.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC. (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.23. 2018·天津 如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OC D 的大小.24.如图,△ABC 内接于⊙O ,AB =AC ,∠BAC =36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F . (1)求∠DAF 的度数; (2)求证:AE 2=EF ·ED ; (3)求证:AD 是⊙O 的切线.25. 如图,AB是☉O的直径,点C为的中点,CF为☉O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.26. 已知OA=5,sin∠O=35,点D为线段OA上的动点,以A为圆心、AD为半径作⊙A.(1)如图1,若⊙A交∠O于B、C两点,设OD=x,BC=y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OB翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.2021中考数学一轮专题训练:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】C3. 【答案】B 【解析】∵四边形ABCD是圆内接四边形,∠ABC=105°,∴∠ADC=75°,∵=,∴∠BAC=∠DCF=25°,∴∠E=∠ADC-∠DCF=50°.4. 【答案】D5. 【答案】A[解析] ∵AD是⊙O的直径,∴∠ACD=90°.∵四边形OBCD是平行四边形,∴CD∥OB,CD=OB,∴∠CPO=90°,即OB⊥AC,∴选项C正确;∴CP=AP.又∵OA=OD,∴OP是△ACD的中位线,∴CD=2OP,∴选项B正确;∴CD=OB=2OP,即P是OB的中点,∴AC平分OB,∴选项D正确.6. 【答案】B 【解析】由垂径定理可得DH=2,所以BH=BD2-DH2=1,又可得△DHB∽△ADB,所以有BD2=BH·BA,(3)2=1×BA,AB=3.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC= 3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】C9. 【答案】C[解析] 过点O作OF⊥CD于点F,OG⊥AB于点G,连接OB,OD,OE,如图所示.则DF=CF,AG=BG=12AB=3,∴EG=AG-AE=2.在Rt△BOG中,OG=OB2-BG2=13-9=2,∴EG=OG,∴△EOG是等腰直角三角形,∴∠OEG=45°,OE=2OG=2 2.∵∠DEB=75°,∴∠OEF=30°,∴OF=12OE= 2.在Rt△ODF中,DF=OD2-OF2=13-2=11,∴CD=2DF=2 11.故选C.10. 【答案】D[解析] ∵∠BOC=110°,∴∠AOC=70°.∵AD∥OC,∴∠A=∠AOC=70°.∵OA=OD,∴∠D=∠A=70°.在△OAD中,∠AOD=180°-(∠A+∠D)=40°.二、填空题(本大题共10道小题) 11. 【答案】52° [解析]∵圆内接四边形对角互补, ∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°.∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.12. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.13. 【答案】30°[解析] 如图,连接OC .∵AB 是⊙O 的直径,AC ︵=CD ︵=BD ︵,∴∠AOC =∠COD =∠DOB =60°. ∵OA =OC ,∴△AOC 是等边三角形, ∴∠A =60°.∵CE ⊥OA ,∴∠AEC =90°,∴∠ACE =90°-60°=30°.14. 【答案】25615. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线,∴EF =12AB =5.16. 【答案】70 [解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C 为弧BD 的中点,∴∠CAB =12∠DAB =20°, ∴∠ABC =70°.17. 【答案】52° [解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°. ∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E ,∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.18. 【答案】12 [解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.19. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.20. 【答案】7 2 [解析] 如图,连接OB ,OC ,BC ,则BC 的长即为P A +PC 的最小值.过点C 作CH ⊥AB 于点H ,则四边形EFCH 为矩形,∴CH =EF ,EH =CF .根据垂径定理,得BE =12AB =4,CF =12CD =3,∴OE =OB 2-BE 2=52-42=3,OF =OC 2-CF 2=52-32=4, ∴CH =EF =OE +OF =3+4=7,BH =BE +EH =BE +CF =4+3=7. 在Rt △BCH 中,由勾股定理,得BC =7 2,则P A +PC 的最小值为72.三、解答题(本大题共6道小题)21. 【答案】证明:如图,延长AD 交⊙O 于点E ,∵OC ⊥AD ,∴AE ︵=2AC ︵,AE =2AD .∵AB ︵=2AC ︵,∴AE ︵=AB ︵,∴AB =AE ,∴AB =2AD .22. 【答案】(1)证明:如解图,连接DO ,∴∠BOD =2∠BCD =∠A ,(2分)解图又∵∠DEA =∠CBA ,∴∠DEA +∠DOE =∠CAB +∠CBA ,又∵∠ACB =90°,∴∠ODE =∠ACB =90°,(5分)∴OD ⊥DE ,又∵OD 是⊙O 的半径,∴DE 与⊙O 相切.(7分)(2)解:如解图,连接BD ,可得△FBD ∽△DBO ,∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.23. 【答案】解:(1)如图①,连接OD .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠BAC =90°-38°=52°.∵D 为AB ︵的中点,∠AOB =180°,∴∠AOD =90°,∴∠ABD =12∠AOD =45°.(2)如图②,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.∵DP ∥AC ,∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的一个外角,∴∠AOD =∠P +∠ODP =128°,∴∠ACD =64°.∵OC =OA ,∠BAC =38°,∴∠OCA =∠BAC =38°,∴∠OCD=∠ACD-∠OCA=64°-38°=26°.24. 【答案】(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12(180°-36°)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠DBC=36°,∵AD∥BC,∴∠D=∠DBC=36°,∴∠DAF=∠AFB-∠D=72°-36°=36°;(2)证明:∵∠EAF=∠FBC=∠D,∠AEF=∠AED,∴△EAF∽△EDA,∴AEDE=EF EA,∴AE2=EF·ED;(3)证明:如解图,过点A作BC的垂线,G为垂足,∵AB=AC,∴AG垂直平分BC,∴AG过圆心O,∵AD∥BC,∴AD⊥AG,∴AD是⊙O的切线.解图25. 【答案】解:(1)证明:∵C是的中点,∴=.∵AB是☉O的直径,且CF⊥AB,∴=,∴=,∴CD=BF.在△BFG和△CDG中,∵∴△BFG≌△CDG(AAS).(2)如图,过C作CH⊥AD,交AD延长线于H,连接AC,BC,∵=,∴∠HAC=∠BAC.∵CE⊥AB,∴CH=CE.∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH.∵=,∴CD=BC.又∵CH=CE,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=AD+DH=2+2=4,∴AB=4+2=6.∵AB是☉O的直径,∴∠ACB=90°,∴∠ACB=∠BEC,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴=,∴BC2=AB·BE=6×2=12,∴BF=BC=2.26. 【答案】(1)如图2,作AE ⊥BC ,垂足为E ,那么E 是BC 的中点.在Rt △OAE 中,OA =5,sin ∠O =35,所以AE =3. 在Rt △BAE 中,AB =AD =5-x ,AE =3,BE =1122BC y =, 由勾股定理,得2221(5)3()2x y -=+. 整理,得221016y x x =-+.定义域是0≤x <2.图2 图3(2)①如图3,将⊙A 沿直线OB 翻折后得到⊙A ′,AA ′=2AE =6.作A ′H ⊥OA ,垂足为H .在Rt △A ′AH 中,AA ′=6,sin ∠A ′=35,所以AH =185,A ′H =245. 若⊙A ′与直线OA 相切,那么半径等于A ′H .解方程2455x -=,得15x =. ②如图4,在Rt △A ′DH 中,222241814'()(5)25555A D x x x =+--=-+. 对于⊙A ′,R =5-x ;对于⊙D ,r =DO =x ;圆心距d =A ′D .如果两圆外切,由d =R +r ,得2142555x x x x -+=-+.解得145x =(如图4). 如果两圆内切,由d =|R -r |,得21425|5|5x x x x -+=--. 解得86515x =>.所以两圆不可能内切.图4 图5考点伸展当D为OA的中点时,⊙A′与以D为圆心、DA为半径的⊙D是什么位置关系?⊙A′和⊙D等圆,R=52,两圆不可能内切.当D为OA的中点时,DH=AH-AD=18511 5210-=.此时'5A D==<.因此两圆的半径和大于圆心距,此时两圆是相交的(如图5).。

2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案

2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(二)1.在Rt△ABC中,∠ABC=90°,tan A=,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.2.如图,PA、PB为⊙O的切线,A、B为切点,点C为半圆弧的中点,连AC交PO于E 点.(1)求证:PB=PE;(2)若tan∠CPO=,求sin∠PAC的值.3.在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cos C=(如图).M是边BC 上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.(1)设CE=,求证:四边形AMCD是平行四边形;(2)联结EM,设∠FMB=∠EMC,求CE的长;(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.4.已知如图,⊙O的直径BC=4,==,点P是射线BD上的一个动点.(1)如图1,求BD的长;(2)如图1,若PB=8,连接PC,求证PC为⊙O的切线;(3)如图2,连接AP,点P在运动过程中,求AP+PB的最小值.5.如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PB=PA,射线PO交⊙O于C、D两点.(1)求证:PB是⊙O的切线;(2)求证:AC平分∠PAB;(3)若⊙O的直径是6,AB=2,则点D与△PAB的内切圆上各点之间距离的最大值为.6.国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD =∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD=,AB=4,求DC的长.7.如图,直线l1⊥l2,O为垂足,以O圆心,的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,请说明理由.8.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC 与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.9.如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交AB于点E,连接CE,且CB=CE.(1)求证:CE是⊙O的切线;(2)若CD=2,AB=4,求⊙O的半径.10.如图,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D.(1)判断△ABD的形状,并说明理由;(2)求点O到弦BD的距离.(3)求CD的长.11.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若,求弦AB的长;12.如图,在Rt△ABC中,∠ABC=90°.以AB为直径作⊙O交AC于点D,过点D作DE ⊥AB于点E,F为DE中点,连接AF并延长交BC于点G,连接DG.求证:(1)BG=CG;(2)DG是⊙O的切线.13.如图,直线AF与⊙O相切于点A,弦BC∥AF,连接BO并延长,交⊙O于点E,连接CE并延长,交AF于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求DE的长.14.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O,交BC于E,过点B作∠CBD =∠A,过点C作CD⊥BD于D.(1)求证:BD是⊙O的切线;(2)若CD=2,BC=2,求⊙O的直径.15.如图,AB是⊙O的直径.四边形ABCD内接于⊙O,AD=CD,对角线AC与BD交于点E,在BD的延长线上取一点F,使DF=DE,连接AF.(1)求证:AF是⊙O的切线.(2)若AD=5,AC=8,求⊙O的半径.参考答案1.解:在Rt△ABC中,tan A=,AC=5,设∠A=α,则BC=3,AB=4=BM,sin A==sinα,cos A==cosα,(1)如图1,∵MC=MA=5,过点M作MN⊥CD于点N,∵MC=MD,则CN=CD,在Rt△AMN中,MN=AM sin A=(4+4)×=,则CD=2CN=2=2=;(2)如图1,设CD=2m,则CM2=BC2+MB2=9+x2,则MN2=CM2﹣m2=x2+9﹣m2,在Rt△AMN中,AN2+MN2=AM2,即(5+m)2+9+x2﹣m2=(4+x)2,解得m=(4x﹣9),则MN==(x+4);则S=CD•MN+×AM•BC=(8x2+39x﹣72);∵m=(4x﹣9)>0,∴x>;(3)如图2,过点M作MN⊥CD于点N,过点P作PD⊥CM于点P,设圆的半径为r,∵△ECD与△EMC相似,则∠ECD=∠EMC=∠ACB=α,在Rt△DPM中,DP=DM sin∠EMC=r sinα=r,MP=r cosα=r,则CP=r﹣MP=r﹣r=r,CD==r=2CN,∴MN==r,∵tan A==,解得r=3,则BM===6.2.(1)证明:连接OA,OC,∵OA=OC,∴∠OAC=∠OCA,∵点C为半圆弧的中点,∴∠COE=90°,∴∠OCA+∠OEC=90°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠OAC+∠PAE=90°,∴∠PAE=∠OEC,∵∠OEC=∠AEP,∴∠PAE=∠AEP,∵PA、PB为⊙O的切线,∴PA=PE=PB;(2)解:∵tan∠CPO==,设OC=3k,OP=5k,∴OA=OC=3k,∴PA=PE=4k,过A作AH⊥PO于H,∴OP•AH=PA•OA,∴AH==k,∴OH==k,∵∠AHE=∠COE=90°,∠AEH=∠CEO,∴△AHE∽△COE,∴,∴OE=k,∴CE==k,∴sin∠PAC=sin∠CEO===.3.(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,在Rt△CGM中,CM===3,∴AD=CM,∵AD∥CM,∴四边形AMCD是平行四边形.(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.∵ME=MC,MT⊥EC,∴CT=ET,∴cos C==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,∴MH=CM﹣CH=k,∴tan∠EMH=,∵∠FMB=∠EMC,∴tan∠FMB===,∴BM=,∴CM=BC﹣BM==5k,∴CE=6k=.(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.∴AD=BP=3,在Rt△CDP中,cos C==,∵CD=5,∴PC=3,AB=PD=4,∴BC=3+3=6,设CM=AM=x,在Rt△ABM中,则有x2=42+(6﹣x)2,解得x=,∴⊙M的半径为.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.设CM=ME=MP=x,则DN=x﹣3,∵DM2=MN2+DN2=MP2﹣DP2,∴42+(x﹣3)2=x2﹣32,∴x=,综上所述,满足条件的⊙M的半径为或.4.解:(1)∵BC是直径,==,则、、均为60°的弧,则∠DBC=30°,连接OA交BD于点H,∵BC=4,则BO=CO=2,在Rt△BOH中,BH=BO cos∠DBC=2×=3,则BD=2BH=6;(2)在Rt△BCD中,BC=4,∠DBC=30°,则CD=CB=2,PD=PB﹣BD=8﹣6=2,在Rt△CDP中,PC2=CD2+PD2=4+(2)2=16,在△BCP中,BC2=(4)2=48,BP2=64,则PB2=CB2+PC2,故△BPC为直角三角形,故PC⊥CB,故PC为⊙O的切线;(3)过点A作AH⊥BC交BD于点P,在Rt△PBH中,∠DBC=30°,则PH=PB,即AP+PB=AP+PH=AH为最小,∵、均为60°的弧,则∠ABO=60°,而AO=BO,故△ABO为边长为2的等边三角形,则AH=AB sin60°=2×=3,即AP+PB的最小值为3.5.(1)证明:如图1中,连接OA,OB.∵PA是切线,∴PA⊥OA,∴∠PAO=90°,在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)证明:如图1中,设∠PAC=α.∵∠PAO=90°,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α,∵PA=PB,OA=OB,∴PO垂直平分线段AB,∴∠CAB=90°∠ACO=90°﹣(90°﹣α)=α,∴∠PAC=∠CAB,∴AC平分∠PAB.(3)解:如图2中,设AB交OP于点M.∵PA,PB是⊙O的切线,∴OP平分∠APB,∵AC平分∠PAB,∴点C是△PAB的内心,设△PAB的内切圆⊙C交PC于H,∵⊙O的直径为6,∴OA=3,∵OP垂直平分线AB,AB=2,∴AM=BM=,∴OM===2,∵OC=3,∴CH=CM=3﹣2=1,∵点D到⊙C上各点的最大距离为DH,∴最大距离DH=CD+CH=6+1=7.故答案为7.6.(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠FAD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD==BC,∵∠ABD=30°,AB=4,∴AG==2,BG=AG=2,∴DG===,∴BD=BG+DG=,∵BC是直径,∴∠BDC=90°,∴.7.解:(1)如图1,连接OA,则OA=,∵CA为⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠ACB=30°,CA平分∠OCB,∴∠OCA=∠ACB=30°,则在Rt△AOC中,OC=2OA=2;(2)存在.由题意可分三种情况,①当边AB,BC都是⊙O的“相伴切边”时,即OA⊥AB,∵∠BAC=90°,即AC⊥AB,∴O,A,C三点共线,又∵点C落在射线ON上,且不在⊙O内,∴点A只能在点M或点N处,如图2,当点A在点N处时,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC﹣AO=,当点A在点M处时,如图3,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC+AO=3,②当边AC,BC都是⊙O的“相伴切边”时,则OA⊥AC,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,如图4,设BC与⊙O相切于点D,连接OD,则OD⊥CD,设AB=x,则BC=2x,AC==x,∴OB=OA+AB=+x,∵∠BAC=∠BDO=90°,∠B=∠B,∴△ABC∽△DBO,∴,即,解得,x=2﹣或x=0(舍去),经检验,x=2﹣是所列方程的解.∴AC=x=2﹣3.③当边AC,AB都是⊙O的“相伴切边”时,∵AC是⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,∴AB不可能是⊙O的“相伴切边”,则AC,AB不能同时是⊙O的“相伴切边”;综上可得,AC的长是或3或2﹣3.8.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.9.(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=4,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(4)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(4)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3.10.解:(1)△ABD是等腰直角三角形,理由如下:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴,∴AD=BD,∴△ABD是等腰直角三角形;(2)过O作OE⊥DB于E,如图所示:则∠OEB=90°,∵AB=10cm,∴OB=AB=5(cm),由(1)得:△ABD是等腰直角三角形,∴∠ABD=45°,∴△OBE是等腰直角三角形,∴OE=OB=(cm),即点O到弦BD的距离为cm;(3)过B作BF⊥CD于F,如图所示:则∠BFC=∠BFD=90°,∵∠ACB=90°,∴BC===8(cm),∵∠BCD=45°,∴△BCF是等腰直角三角形,∴CF=BF=BC=4(cm),由(1)得:△ABD是等腰直角三角形,∴BD=AB=5(cm),∴DF===3,∴CD=CF+DF=4+3=7(cm).11.(1)证明:∵PG平分∠EPF,∴∠DPO=∠BPO,∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴PA=OA;(2)过点O作OH⊥AB于点H,如图,则AH=BH,在Rt△OPH中,tan∠OPH==,设OH=x,则PH=2x,由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102解得x1=0(不合题意,舍去),x2=8,∴AH=6,∴AB=2AH=12.12.证明:(1)∵DE⊥AB,∴∠AED=∠ABC=90°,∴DE∥BC,∴△AEF∽△ABG,△ADF∽△ACG,∴,=,∴,∵F为DE中点,∴EF=DF,∴BG=CG;(2)连接OD,BD,OG,∵AB为⊙O的直径,∴AD⊥BD,∵AO=BO,BG=CG,∴OG∥AC,∴OG⊥BD,∴BF=DF,∴DG=BG,在△ODG与△OBG中,,∴△ODG≌△OBG(SSS),∴∠ODG=∠OBG=90°,∴DG是⊙O的切线.13.(1)证明:∵BE是⊙O的直径,∴∠BCE=90°,∵BC∥AF,∴∠CDF=∠ACE=90°,∵AF与⊙O相切于点A,∴∠OAF=90°,∴∠OAF=∠CDF,∴CE∥OA;(2)解:如图,作OH⊥CE于点H,由垂径定理知:CH=EH,∵OB=OE,∴OH是△ECB的中位线,∴OH=BC=24=12,在Rt△OEH中,根据勾股定理,得EH===5,∵OH⊥CE,∴∠OHD=90°,由(1)知:∠CDA=∠OAD=90°,∴四边形OADH是矩形,∴DH=OA=13,∴DE=DH﹣EH=13﹣5=8.14.解:(1)如图,连接AE,∵AB为直径,∴∠AEB=90°,∵△ABC是等腰三角形,AB=AC,∴∠BAE=BAC,∵∠CBD=∠BAC,∴∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBD=90°,∴∠ABD=90°,∴AB⊥BD,∵AB为直径,∴BD是⊙O的切线;(2)由(1)知:△ABC是等腰三角形,AE⊥BC,∴BE=CE=BC=,∵CD⊥BD,∴∠CDB=∠AEB=90°,∵∠CBD=∠BAE,∴△CBD∽△BAE,∴=,∴=,∴AB=3.∴⊙O的直径为3.15.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥EF,∠BAD+∠ABD=90°,又∵DF=DE,∴AF=AE,∴∠FAD=∠EAD.∴∠FAD=∠EAD=∠ACD=∠ABD,∴∠FAB=∠FAD+∠BAD=∠BAD+∠ABD=90°,∴AF是⊙O的切线.(2)如图,连接OD交AC于M,∵AD=CD,∴,∴OD⊥AC,AM=CM=AC=4,∴AD=CD=5,在Rt△DMC中,DM==3.设⊙O的半径为x,则OM=x﹣3,∵OM2+AM2=OA2,∴(x﹣3)2+42=x2,∴x=.⊙O的半径即OA=.。

2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)(含答案)

2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)(含答案)

2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)1.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2;以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3;以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中弧的长 .2.如图,△ABC 的内切圆⊙O 分别与三角形三边相切于点D 、E 、F ,若∠DFE =55°,则∠A = °.3.如图,在Rt △ABC 中,点D 是AB 上的一点,将Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 的对应点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,若AC =2BC =2,则阴影部分的面积是 .4.如图,以半圆的一条弦AN为对称轴,将AN弧折叠过来和直径MN交于点B,如果MB:BN =2:3,若MN=10,那么弦AN的长为.5.如图,PA与⊙O切于点A,PO的延长线交⊙O于点B,若⊙O的半径为3,∠APB=54°,则弧AB的长度为.6.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).7.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.8.在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.9.如图,在⊙O中,,AB=3,则AC=.10.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).11.如图,⊙O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB 的长是.13.过三点A(3,3)、B(7,3)、C(5,6)的圆的圆心坐标为.14.如图,在扇形OAB中,∠AOB=90°,OA=1,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则线段AC的长等于.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分=.面积S阴影16.如图,在边长为的正八边形ABCDEFGH中,点P在CD上,则△PGH的面积为.17.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.18.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD 相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.19.如图,⊙O的半径为5,弦AB的长为5,C为⊙O内一动点,且△ACB=90°,则△ABC的周长的最大值为.20.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.参考答案1.解:连接P1O1,P2O2,P3O3,P4Q4,…,如图所示:∵P1是⊙1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=×2π•OO n=π×2n﹣1=2n﹣2π,∴n=2020时,=22020﹣2π=22018π,故答案为:22018π.2.解:连接OD,OE,如图所示:则∠ADO=∠AEO=90°;由圆周角定理知,∠DOE=2∠DFE=110°;∴∠A =360°﹣∠ADO ﹣∠AEO ﹣∠DOE =70°.故答案为:70.3.解:如图,连接CD 、CD ′,∵Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 与点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,∴∠DCD ′=∠ACA ′=∠BCB ′=90°,CB =CD =CB ′=CD ′=,AC =A ′C =2,∴∠BCD +∠DCB ′=∠B ′CD ′+∠DCB ′=90°,∴∠DCB =∠D ′CB ′,∴△DCB ≌△D ′CB ′(SAS ),由旋转可知:△ABC ≌△A ′CB ′,∴S △DCB =S △D ′CB ′,S △ABC =S △A ′CB ′,∴S △BCD +S △A ′CD ′=S △ABC∴S 阴影=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △BCD ﹣S △A ′CD ′=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣(S △BCD +S △A ′CD ′)=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △A ′CB ′=S 扇形ACA ′﹣S 扇形DCD ′=﹣=.故答案为.4.解:连接MA并延长至M',使AM'=AM,连接M'N,交半圆于D,连接AD,如图所示:∵MN是半圆的直径,∴∠MAN=90°,∴AN⊥AM,∵AM'=AM,∴M′N=MN=10,∵MB:BN=2:3,∴MB=4,BN=6,由折叠的性质得:AD=AB,BN=DN,∴DM'=BM=4,∵四边形AMND是圆内接四边形,∴∠M'AD=∠M'NM,∵∠M'=∠M',∴△M'AD∽△M'NM,∴=,∴M′A•M′M=M′D•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故答案为:4.5.解:连接OA,∵PA与⊙O切于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APB=54°,∴∠AOB=∠APB+∠PAO=54°+90°=144°,∵⊙O的半径为3,∴弧AB的长度为=π.故答案为:π.6.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).7.解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.8.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.9.解:∵在⊙O中,,∴AC=AB=3,故答案为:310.解:∵五边形ABCDE是正五边形,∴五边形ABCDE为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2+2.11.解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π,故答案为:3π.12.解:连接OA,∵半径OC⊥AB,∴AD=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.解:如图,在平面直角坐标系中画出点A、B、C,连接AB、AC、BC,过C作CE⊥AB于E,设所求的圆的圆心为D,半径为r,连接AD∵A(3,3)、B(7,3)∴圆心D在直线x=5上∴D的横坐标为5∵C(5,6)∴CE=3∵CD=r∴DE=3﹣r在Rt△DAE中,由勾股定理得:AE2+DE2=AD2∴22+(3﹣r)2=r2解得r=∴点D的纵坐标为6﹣=∴D(5,)故答案为:(5,).14.解:连接OD,BC,AB,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴OB=BD=OD,∴△BOD是等边三角形,∴∠OBD=60°,即旋转角等于60°,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=OB=,故答案为:15.解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COB=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC =S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.16.解:作正八边形的外接圆O,则∠HGD=×360°=90°,∠FGD=×360°=45°,在正八边形ABCDEFGH中,CD∥HG,∴S△HGP =S△CDH,过F作FM⊥DG于M,过E作EN⊥DG于N,在Rt△GMF中,∠FGD=45°,GF=,∴GM=GF=1,同理,DN=1,∵MN=EF=,∴GD=1++1=2+,∴S△HGP =S△HGD=HG•GD=.故答案为:+1.17.解:过D作DE⊥AB交⊙O于E,连接CE交AB于P,连接OE,作OF⊥CE于F,如图所示:此时CP+PD=CE最小.,∴∠BOE=∠BOD=36°,∵∠AOC=96°,∴∠BOC=84°,∴∠COE=∠BOC+∠BOE=120°,∵OC=OE=6,∴∠OCE=∠OEC=30°,∵OF⊥CE,∴CF=EF,OF=OC=3,CF=OF=3,∴CE=2CF=6.即CP+PD的最小值为6;故答案为:6.18.解:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵AD=,CD=2,∴AC==,∵AB=BC,∴∠1=∠2,过F作FM⊥AD于M,FN⊥CD于N,∴FM=FN,∴====2,∴AF=AC=,∵将△ABF沿AB翻折,得到△ABG,∴∠GAE=∠CAE,∴==3,∵AG=AF=,∵∠BAG=∠BAC=45°,∴∠GAC=90°,∴CG==,∴EG=CG=,∴tan∠CGA==3,过A作AH⊥EG于H,∴HG=AG•cos∠AGH=×=,AH=AG•sin∠AGH=×=1,∴EH=EG﹣HG=,∴AE==,∵AB=AC=,∴BE=AB﹣AE=.故答案为:.19.解:如图,连接OA、OB,∵OA=OB=5,AB=5,∵52+52=(5)2∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵△ACB=90°,即当点C与点O重合时,△ABC的周长最大,因为AB是定值,AO+BO是直径最大,则△ABC的周长的最大值为:10+5.故答案为:10+5.20.解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.。

备考2021年九年级中考数学专题训练:《圆的综合》(五)

备考2021年九年级中考数学专题训练:《圆的综合》(五)

备考2021年九年级中考数学专题训练:《圆的综合》(五)1.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连结CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.(1)求证:CD=BF;(2)求证:PC是⊙O的切线;(3)若tan F=,AG﹣BG=,求ED的值.2.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.3.已知如图,△ABC中AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=6,cos C=,求⊙O的直径.4.已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.5.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.6.如图,AB是⊙O的直径,BD、CD分别是过⊙O上点B、点C的切线,且∠BDC=110°,连结AC.(1)求∠A的度数;(2)若⊙O的直径为6,求的长.(结果保留π)7.如图,在Rt△ABC中,AC<AB,∠BAC=90°,以AB为直径作⊙O交BC于点D,E是AC的中点,连接ED.点F在上,连接BF并延长交AC的延长线于点G.(1)求证:DE是⊙O的切线;(2)连接AF,求的最大值.8.已知:AB为⊙O直径,点C为⊙O上一点,弦CD⊥AB,垂足为H,点E为上一点,连接CE、DE、DB,∠CDE=2∠CDB.(1)如图1,求证:CE=CD;(2)如图2,过点A作AM⊥CE,垂足为M,连接BE交CD于G,连接M,求证:MH∥EB;(3)如图3,在(2)的条件下,连接AE,若ED=,CM=,求△ABE的面积.9.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=2,求EF的长.10.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.参考答案1.解:(1)连接BC,∵BE=DE,∴∠BDE=∠DBE,在△BCD与△DFB中,∴△BCD≌△DFB(AAS)∴CD=BF(2)连接OC,∵∠COB=2∠CDB,∠CEB=∠CDB+∠DBE=2∠CDB ∴∠COB=∠CEB,∵PC=PE,∴∠COB=∠CEB=∠PCE,∵AB⊥CD,∴∠COB+∠OCG=90°,∴∠PCE+∠OCG=∠PCO=90°,∴OC⊥CP∵OC是半径,∴PC是⊙O的切线,(3)连接AD,∵AB是直径,∴∠ADB=90°,∵AB⊥CD,∴=,∴∠BDG=∠A=∠F∵tan∠F=∴tan∠A==,即AG=GD同理可得:BG=GD,∴AG﹣BG=GD﹣GD=,解得:GD=2,∴CD=2GD=4,∴BG=∴由勾股定理可知:BD=∵∠BCD=∠EDB,∠BDC=∠EBD,∴△BCD∽△EDB∴=∵BC=BD,∴ED===2.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,1又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.3.(1)证明:连接OM.∵OB=OM,∴∠1=∠3,又BM平分∠ABC交AE于点M,∴∠1=∠2,∴∠2=∠3,∴OM∥BE.∵AB=AC,AE是角平分线,∴AE⊥BC,∴OM⊥AE,∴AE与⊙O相切;(2)解:设圆的半径是r.∵AB=AC,AE是角平分线,∴BE=CE=3,∠ABC=∠C,又cos C=,∴AB=BE÷cos B=12,则OA=12﹣r.∵OM∥BE,即,解得r=2.4.则圆的直径是4.8.4.解:如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,∴DE是⊙O的切线;(2)∵⊙O半径是5,∴AB=10,∵△ABC是等腰三角形,且AD⊥BC,∴∠CAD=∠BAD=60°,在Rt△ADB中,BD=sin60°•AB=5,∴BC=10.5.(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.6.解:(1)连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°;(2)∵⊙O的直径为6,∵∠BOC=70°,∴的长==.7.(1)证明:连接OD,AD.∵AB为⊙O直径,点D在⊙O上,∴∠ADB=90°,∴∠ADC=90°,∵E是AC的中点,∴DE=AE,∴∠EAD=∠EDA,∵OA=OD,∴∠OAD=∠ODA,∵∠OAD+∠EAD=∠BAC=90°,∴∠ODA+∠EDA=90°,即∠ODE=90°,∴OD⊥DE,∵D是半径OD的外端点,∴DE是⊙O的切线;(2)解:过点F作FH⊥AB于点H,连接OF,∴∠AHF=90°.∵AB为⊙O直径,点F在⊙O上,∴∠AFB=90°,∴∠BAF+∠ABF=90°.∵∠BAC=90°,∴∠G+∠ABF=90°,又∠AHF=∠GAB=90°,∴△AFH∽△GBA,∴,由垂线段最短可得FH≤OF,当且仅当点H,O重合时等号成立.∵AC<AB,∴上存在点F使得FO⊥AB,此时点H,O重合,∴≤,即的最大值为.8.解:(1)∵AB为直径,CD⊥AB,∴,∴∠CEB=∠BED=∠CDB,∴∠CED=2∠CDB,又∵∠CDE=2∠CDB,∴∠CED=∠CDE,∴CE=CD;(2)∵弧AE=弧AE,∴∠ACE=∠ABE,∵AM⊥CE,CH⊥AB,∴∠AHC=∠AMC,则∠AHM=∠ACM,∴∠AHM=∠ABE,∴MH∥BE;(3)连接BC、AD、AE,过A作AF⊥DE,则∠AEF=∠ACD=∠ADC=∠AEC,∴△AEF≌△AEM(AAS),∴AF=AM,同理△AFD≌△AMC(AAS),∴MC=FD=FE+ED∴MC=EM+ED∴CM=+=∴CE=CM+ME=+=6 ∴CD=6,CH=3,∵MH∥BE,∴=,则HG=,CG=,∵弧BC=弧BD,∴∠BCD=∠CEB,∴△CGB∽△ECB,相似比CG:CE=:6=4:5,∴设BG=16k,BC=20k,BE=25k,过点C作CN⊥BE于N,∵∠CBE=∠CDE=2∠CEB,作NQ=NB,可证QC=QE=BC=25k,BQ=5k,BN=k,EN=k,∵CB2﹣BN2=CE2﹣EN2,∴(20k)2﹣(k)2=62﹣(k)2,解得k=,∴BC=20k=4,BH =,BC2=BH•BA,42=BA,BA==2R,∴⊙O半径为,则AB=,∵HG=,BH=,则tan∠ABE===tanα,则sinα=,cos,△ABE的面积=AB2sinαcosα=.9.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=2,∴,∴EF=4.10.解:(1)证明:连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.。

圆的有关计算(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)

圆的有关计算(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关计算(优选真题60道)一.选择题(共20小题)1.(2023•大连)圆心角为90°,半径为3的扇形弧长为( ) A .2πB .3πC .32πD .12π【分析】根据弧长公式计算即可. 【解答】解:l =nπr 180=90⋅π×3180=32π,∴该扇形的弧长为32π. 故选:C .【点评】本题考查弧长的计算,关键是掌握弧长的计算公式.2.(2023•湘潭)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中AA′̂的长为( )A .4πB .6πC .8πD .16π【分析】根据圆锥的侧面展开图中弧的长等于圆锥底面周长即可得出答案. 【解答】解:这个圆锥的侧面展开图中AA′̂的长为2π×4=8π. 故选:C .【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1.圆锥的母线长为扇形的半径,2.圆锥的底面圆周长为扇形的弧长.3.(2023•鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是( )A .5√3−√33πB .5√3−4πC .5√3−2πD .10√3−2π【分析】连接OD.解直角三角形求出∠DOB=60°,BC=4√3,再根据S阴=S△ACB﹣S△COD﹣S扇形ODB,求解即可.【解答】解:连接OD.在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=√3AB=4√3,∴OC=OD=OB=2√3,∴∠DOB=2∠C=60°,∴S阴=S△ACB﹣S△COD﹣S扇形ODB=12×4×4√3−12×2√3×2√3×√32−60π⋅(2√3)2360=8√3−3√3−2π=5√3−2π.故选:C.【点评】本题考查扇形的面积,解直角三角形,勾股定理等知识,解题的关键是学会利用分割法求阴影部分的面积.4.(2023•通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB̂于点D,点C是半径OB上一动点,若OA=1,则阴影部分周长的最小值为()A.√2+π6B.√2+π3C.2√2+π6D.2√2+π3【分析】作D点关于直线OB的对称点E,连接AE,与OB的交点为C点,此时阴影部分周长最小,最小值为AE的长与弧AD的和.【解答】解:作D点关于直线OB的对称点E,连接AE,与OB的交点为C点,此时阴影部分周长最小,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB̂于点D,∴∠AOD=∠BOD=30°,由轴对称的性质,∠EOB =∠BOD =30°,OE =OD , ∴∠AOE =90°,∴△AOE 是等腰直角三角形, ∵OA =1,∴AE =√2,AD̂的长=30π×1180=π6, ∴阴影部分周长的最小值为√2+π6, 故选:A .【点评】本题考查了弧长的计算,勾股定理,轴对称﹣最短路线问题,证得△AOE 为等腰直角三角形是解题的关键.5.(2023•张家界)“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”.若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于( )A .πB .3πC .2πD .2π−√3【分析】由等边三角形的性质得到AB ̂=BC ̂=AC ̂,由弧长公式求出AB ̂的长=π,即可求出“莱洛三角形”的周长.【解答】解:∵△ABC 是等边三角形, ∴AB =BC =AC =3,∠A =∠B =∠C =60°, ∴AB ̂=BC ̂=AC ̂, ∵AB̂的长=60π×3180=π,∴该“莱洛三角形”的周长是3π. 故选:B .【点评】本题考查弧长的计算,等边三角形的性质,关键是由弧长公式求出AB̂的长. 6.(2023•滨州)如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为( )A .14πcm 2B .13πcm 2C .12πcm 2D .πcm 2【分析】根据扇形面积的计算方法进行计算即可.【解答】解:如图,连接O1A ,O2A ,O1B ,O3B ,O2C ,O3C ,O1O2,O1O3,O2O3,则△O1AO2,△O1BO3,△O2CO3,△O1O2O3是边长为1的正三角形, 所以,S 阴影部分=3S 扇形O 1O 2A =3×60π×12360=π2(cm2),故选:C .【点评】本题考查扇形面积的计算,掌握扇形面积的计算方法是正确解答的前提.7.(2023•广元)如图,半径为5的扇形AOB 中,∠AOB =90°,C 是AB ̂上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,若CD =CE ,则图中阴影部分面积为( )A .25π16B .25π8C .25π6D .25π4【分析】先连接OC ,然后根据正方形的性质和图形,可以得到阴影部分的面积等于扇形BOC 的面积,然后代入数据计算即可.【解答】解:连接OC,如图所示,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴∠AOB=∠ODC=∠OEC=90°,∴四边形OECD是矩形,∵CD=CE,∴四边形OECD是正方形,∴∠COE=90°,△DCE和△OEC全等,∴S阴影=S△DCE+S半弓形DCE=S△OCE+S半弓形DCE=S扇形COB=45π×52360=25π8,故选:B.【点评】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.(2023•宜宾)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB̂是以点O为圆心、OA为半径的圆弧,N是AB的中点.MN⊥AB.“会圆术”给出AB̂的弧长l的近似值计算公式:l=AB+MN2OA.当OA=4,∠AOB=60°时,则l的值为()A.11﹣2√3B.11﹣4√3C.8﹣2√3D.8﹣4√3【分析】连接ON,根据AB̂是以O为圆心,OA为半径的圆弧,N是AB的中点,MN⊥AB,知ON⊥AB,M,N,O共线,由OA=4,∠AOB=60°,知△AOB是等边三角形,得ON=OA•sin60°=2√3,即得MN=OM﹣ON=4﹣2√3,故l=AB+MN2OA =4+(4−2√3)24=11﹣4√3.【解答】解:连接ON,如图:∵AB ̂是以O 为圆心,OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB , ∴ON ⊥AB , ∴M ,N ,O 共线, ∵OA =4,∠AOB =60°, ∴△AOB 是等边三角形, ∴OA =AB =4,∠OAN =60°, ∴ON =OA •sin60°=2√3, ∴MN =OM ﹣ON =4﹣2√3, ∴l =AB +MN 2OA=4+(4−2√3)24=11﹣4√3;故选:B .【点评】本题考查弧长的计算,解题的关键是读懂题意,作出辅助线求ON 的长度.9.(2023•连云港)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是( )A .414π﹣20B .412π﹣20C .20πD .20【分析】根据矩形的性质可求出BD ,再根据图形中各个部分面积之间的关系,即S 阴影部分=S 以AD 为直径的圆+S 以AB 为直径的圆+S 矩形ABCD ﹣S 以BD 为直径的圆进行计算即可. 【解答】解:如图,连接BD ,则BD 过点O , 在Rt △ABD 中,AB =4,BC =5,S 阴影部分=S 以AD 为直径的圆+S 以AB 为直径的圆+S 矩形ABCD ﹣S 以BD 为直径的圆 =π×(42)2+π×(52)2+4×5﹣π×(BD 2)2=41π4+20−41π4=20,故选:D .【点评】本题考查勾股定理,矩形的性质以及扇形面积的计算,掌握矩形的性质、勾股定理以及扇形面积的计算方法是正确解答的前提.10.(2023•山西)蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点P ,Q ,M 均为正六边形的顶点.若点P ,Q 的坐标分别为(−2√3,3),(0,﹣3),则点M 的坐标为( )A .(3√3,﹣2)B .(3√3,2)C .(2,﹣3√3)D .(﹣2,﹣3√3)【分析】设中间正六边形的中心为D ,连接DB .判断出OC ,CM 的长,可得结论. 【解答】解:设中间正六边形的中心为D ,连接DB .∵点P ,Q 的坐标分别为(−2√3,3),(0,﹣3),图中是7个全等的正六边形,∴OA=OB=√3,∴OC=3√3,∵DQ=DB=2OD,∴OD=1,QD=DB=CM=2,∴M(3√3,﹣2),故选:A.【点评】本题考查正多边形与圆,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.11.(2023•河北)如图,点P1~P8是⊙O的八等分点.若△P1P3P7,四边形P3P4P6P7的周长分别为a,b,则下列正确的是()A.a<b B.a=bC.a>b D.a,b大小无法比较【分析】利用三角形的三边关系,正多边形的性质证明即可.【解答】解:连接P4P5,P5P6.∵点P1~P8是⊙O的八等分点,∴P3P4=P4P5=P5P6=P6P7,P1P7=P1P3=P4P6,∴b﹣a=P3P4+P7P6﹣P1P3,∵P5P4+P5P6>P4P6,∴P3P4+P7P6>P1P3,∴b ﹣a >0, ∴a <b , 故选:A .【点评】本题考查正多边形于圆,三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(2023•内江)如图,正六边形ABCDEF 内接于⊙O ,点P 在AB ̂上,点Q 是DE ̂的中点,则∠CPQ 的度数为( )A .30°B .45°C .36°D .60°【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可. 【解答】解:如图,连接OC ,OD ,OQ ,OE , ∵正六边形ABCDEF ,Q 是DE ̂的中点, ∴∠COD =∠DOE =360°6=60°,∠DOQ =∠EOQ =12∠DOE =30°,∴∠COQ =∠COD+∠DOQ =90°, ∴∠CPQ =12∠COQ =45°, 故选:B .【点评】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.13.(2022•绵阳)在2022年北京冬奥会开幕式和闭幕式中,一片“雪花”的故事展现了“世界大同、天下一家”的主题,让世界观众感受了中国人的浪漫.如图,将“雪花”图案(边长为4的正六边形ABCDEF )放在平面直角坐标系中,若AB 与x 轴垂直,顶点A 的坐标为(2,﹣3),则顶点C 的坐标为( )A .(2﹣2√3,3)B .(0,1+2√3)C .(2−√3,3)D .(2﹣2√3,2+√3)【分析】根据正六边形的性质以及坐标与图形的性质进行计算即可. 【解答】解:如图,连接BD 交CF 于点M ,则点B (2,1), 在Rt △BCM 中,BC =4,∠BCM =12×120°=60°, ∴CM =12BC =2,BM =√32BC =2√3, ∴点C 的横坐标为﹣(2√3−2)=2﹣2√3,纵坐标为1+2=3, ∴点C 的坐标为(2﹣2√3,3), 故选:A .【点评】本题考查正多边形与圆,勾股定理,掌握正六边形的性质以及勾股定理是正确计算的前提,理解坐标与图形的性质是解决问题的关键.14.(2022•泰安)如图,四边形ABCD 中,∠A =60°,AB ∥CD ,DE ⊥AD 交AB 于点E ,以点E 为圆心,DE 为半径,且DE =6的圆交CD 于点F ,则阴影部分的面积为( )A .6π﹣9√3B .12π﹣9√3C .6π−9√32D .12π−9√32【分析】根据平行线的性质,扇形的面积公式,三角形面积公式解答即可.【解答】解:过点E作EG⊥DF交DF于点G,∵∠A=60°,AB∥CD,DE⊥AD交AB于点E,∴∠GDE=∠DEA=30°,∵DE=EF,∴∠EDF=∠EFD=30°,∴∠DEF=120°,∵∠GDE=30°,DE=6,∴GE=3,DG=3√3,∴DF=6√3,阴影部分的面积=120π×36360−12×6√3×3=12π﹣9√3,故选:B.【点评】本题主要考查了扇形面积和平行线的性质,熟练掌握扇形面积公式是解决本题的关键.15.(2022•山西)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在AB̂上的点C处,图中阴影部分的面积为()A.3π﹣3√3B.3π−9√32C.2π﹣3√3D.6π−9√32【分析】根据折叠的想找得到AC=AO,BC=BO,推出四边形AOBC是菱形,连接OC交AB于D,根据等边三角形的性质得到∠CAO=∠AOC=60°,求得∠AOB=120°,根据菱形和扇形的面积公式即可得到结论.【解答】解:沿AB折叠扇形纸片,点O恰好落在AB̂上的点C处,∴AC=AO,BC=BO,∵AO =BO ,∴四边形AOBC 是菱形, 连接OC 交AB 于D , ∵OC =OA ,∴△AOC 是等边三角形, ∴∠CAO =∠AOC =60°, ∴∠AOB =120°, ∵AC =3, ∴OC =3,AD =√32AC =3√32, ∴AB =2AD =3√3,∴图中阴影部分的面积=S 扇形AOB ﹣S 菱形AOBC =120π×32360−12×3×3√3=3π−9√32,故选:B .【点评】本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.16.(2022•广西)如图,在△ABC 中,CA =CB =4,∠BAC =α,将△ABC 绕点A 逆时针旋转2α,得到△AB ′C ′,连接B ′C 并延长交AB 于点D ,当B ′D ⊥AB 时,BB′̂的长是( )A .2√33π B .4√33π C .8√39π D .10√39π【分析】证明α=30°,根据已知可算出AD 的长度,根据弧长公式即可得出答案. 【解答】解:∵CA =CB ,CD ⊥AB , ∴AD =DB =12AB ′.∴∠AB ′D =30°, ∴α=30°, ∵AC =4,∴AD =AC •cos30°=4×√32=2√3,∴AB =2AD =4√3,∴BB′̂的长度l =nπr 180=60×π×4√3180=4√33π. 故选:B .【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.17.(2022•绵阳)如图,锚标浮筒是打捞作业中用来标记锚或沉船位置的,它的上下两部分是圆锥,中间是圆柱(单位:mm ).电镀时,如果每平方米用锌0.1千克,电镀1000个这样的锚标浮筒,需要多少千克锌?(π的值取3.14)( )A .282.6B .282600000C .357.96D .357960000【分析】由图形可知,浮筒的表面积=2S 圆锥侧面积+S 圆柱侧面积,由题给图形的数据可分别求出圆锥的侧面积和圆柱的侧面积,即可求得浮筒表面积,又已知每平方米用锌0.1kg ,可求出一个浮筒需用锌量,即可求出1000个这样的锚标浮筒需用锌量.【解答】解:由图形可知圆锥的底面圆的半径为0.3m , 圆锥的高为0.4m ,则圆锥的母线长为:√0.32+0.42=0.5m . ∴圆锥的侧面积S1=π×0.3×0.5=0.15π(m2), ∵圆柱的高为1m .圆柱的侧面积S2=2π×0.3×1=0.6π(m2), ∴浮筒的表面积=2S1+S2=0.9π(m2), ∵每平方米用锌0.1kg ,∴一个浮筒需用锌:0.9π×0.1kg ,∴1000个这样的锚标浮筒需用锌:1000×0.9π×0.1=90π≈282.6(kg ). 故选:A .【点评】本题考查了圆锥表面积的计算和圆柱表面积的计算在实际问题中的运用,解题的关键是了解几何体的构成,难度中等.18.(2022•遵义)如图,在正方形ABCD 中,AC 和BD 交于点O ,过点O 的直线EF 交AB 于点E (E 不与A ,B 重合),交CD 于点F .以点O 为圆心,OC 为半径的圆交直线EF 于点M ,N .若AB =1,则图中阴影部分的面积为( )A .π8−18B .π8−14C .π2−18D .π2−14【分析】图中阴影部分的面积等于扇形DOC 的面积减去△DOC 的面积. 【解答】解:以OD 为半径作弧DN , ∵四边形ABCD 是正方形, ∴OB =OD =OC ,∠DOC =90°, ∵∠EOB =∠FOD ,∴S 扇形BOM =S 扇形DON , ∴S 阴影=S 扇形DOC ﹣S △DOC =90π×(√22)2360−14×1×1=π8−14,故选:B .【点评】本题考查了正方形的性质,扇形的面积,关键是求出阴影部分的面积等于扇形DOC的面积减去△DOC 的面积.19.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个相邻刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为()A.23π−√32B.23π−√3C.43π﹣2√3D.43π−√3【分析】连接OA、OB,过点O作OC⊥AB,根据等边三角形的判定得出△AOB为等边三角形,再根据扇形面积公式求出S扇形AOB=23π,再根据三角形面积公式求出S△AOB=√3,进而求出阴影部分的面积.【解答】解:连接OA、OB,过点O作OC⊥AB,由题意可知:∠AOB=60°,∵OA=OB,∴△AOB为等边三角形,∴AB=AO=BO=2∴S扇形AOB=60π×22360=23π,∵OC⊥AB,∴∠OCA=90°,AC=1,∴OC=√3,∴S△AOB=12×2×√3=√3,∴阴影部分的面积为:23π−√3;故选:B.【点评】本题考查有关扇形面积、弧长的计算,熟练应用面积公式,其中作出辅助线是解题关键.20.(2021•包头)如图,在Rt△ABC中,∠ACB=90°,AB=√5,BC=2,以点A为圆心,AC的长为半径画弧,交AB于点D,交AC于点C,以点B为圆心,AC的长为半径画弧,交AB于点E,交BC于点F,则图中阴影部分的面积为()A.8﹣πB.4﹣πC.2−π4D.1−π4【分析】先根据直角三角形中的勾股定理求得AC=1,再将求不规则的阴影部分面积转化为求规则图形的面积:S阴影部分=S△ABC﹣(S扇形EBF+S扇形DAC),将相关量代入求解即可.【解答】解:根据题意可知AC=√AB2−BC2=√√52−22=1,则BE=BF=AD=AC=1,设∠B=n°,∠A=m°,∵∠ACB=90°,∴∠B+∠A=90°,即n+m=90,∴S阴影部分=S△ABC﹣(S扇形EBF+S扇形DAC)=12×2×1−(nπ×12360+mπ×12360)=1−(n+m)π360=1−π4,故选:D.【点评】本题考查扇形面积的计算及勾股定理,通常需要将不规则图形的面积转化为规则图形的面积来进行求解.二.填空题(共20小题)21.(2023•吉林)如图①,A,B表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O是圆心,半径r为15m,点A,B是圆上的两点,圆心角∠AOB=120°,则AB的长为m.(结果保留π)【分析】由弧长公式:l =nπr 180(l 是弧长,n 是扇形圆心角的度数,r 是扇形的半径长),由此即可计算.【解答】解:∵∠AOB =120°,⊙O 半径r 为15m , ∴AB̂的长=120π×15180=10π(m ).故答案为:10π.【点评】本题考查弧长的计算,关键是掌握弧长公式.22.(2023•徐州)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l 为6cm ,扇形的圆心角θ为120°,则圆锥的底面圆的半径r 为 cm .【分析】首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得圆锥的底面圆的半径r .【解答】解:由题意得:母线l =6,θ=120°, 2πr =120π×6180,∴r =2(cm ). 故答案为:2.【点评】本题考查了圆锥的计算及其应用问题,解题的关键是灵活运用有关定理来分析、判断、推理或解答.23.(2023•内蒙古)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为.【分析】根据正方形的性质得出阴影部分的面积为扇形BED的面积,然后由勾股定理得出BD=2√2,再由扇形面积公式求解即可.【解答】解:∵四边形ABCD是正方形,∴AO=CO,BO=DO,AD=CD,∠DBE=45°,∴△AOD≌△COB(SSS),∵正方形ABCD的边长为2,∴BD=√22+22=2√2,=π,∴阴影部分的面积为扇形BED的面积,即45π⋅(2√2)2360故答案为:π.【点评】本题主要考查正方形的性质以及扇形的面积,能够理解题意,将阴影部分的面积转化为扇形BED 的面积是解题的关键.24.(2023•齐齐哈尔)若圆锥的底面半径长2cm,母线长3cm,则该圆锥的侧面积为cm2.(结果保留π)【分析】解析圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×2×3÷2=6π (cm²)故答案为:6π.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.25.(2023•邵阳)如图,某数学兴趣小组用一张半径为30cm的扇形纸板做成一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的底面半径为8cm,那么这张扇形纸板的面积为cm2.(结果保留π)【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【解答】解:这张扇形纸板的面积=1•2π•8•30=240π(cm2).2故答案为:240π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.26.(2023•扬州)用半径为24cm,面积为120πcm2的扇形纸片,围成一个圆锥的侧面,则这个圆锥的底面圆的半径为cm.【分析】根据扇形面积公式计算即可.【解答】解:设圆锥的底面圆的半径为rcm,×2πr×24=120π,则12解得:r=5,故答案为:5.【点评】本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.27.(2023•金华)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.【分析】连接OE,OD,由等腰三角形的性质推出∠C=∠ODB,得到OD∥AC,推出∠EOD=∠AEO,由OÊ的长.=OA,∠OEA=∠BAC=50°,因此∠∠EOD=∠BAC=50°,由弧长公式即可求出DE【解答】解:连接OE,OD,∵OD =OB , ∴∠B =∠ODB , ∵AB =AC , ∴∠B =∠C , ∴∠C =∠ODB , ∴OD ∥AC , ∴∠EOD =∠AEO , ∵OE =OA ,∴∠OEA =∠BAC =50°, ∴∠EOD =∠BAC =50°, ∵OD =12AB =12×6=3(cm ), ∴DÊ的长=50π×3180=56π(cm ).故答案为:56π.【点评】本题考查弧长的计算,等腰三角形的性质,平行线的性质,关键是由等腰三角形的性质推出OD ∥AC ,从而求出∠EOD 的度数.28.(2023•苏州)如图,在▱ABCD 中,AB =√3+1,BC =2,AH ⊥CD ,垂足为H ,AH =√3.以点A 为圆心,AH 长为半径画弧,与AB ,AC ,AD 分别交于点E ,F ,G .若用扇形AEF 围成一个圆锥的侧面,记这个圆锥底面圆的半径为r 1;用扇形AHG 围成另一个圆锥的侧面,记这个圆锥底面圆的半径为r 2,则r 1﹣r 2= .(结果保留根号)【分析】根据平行四边形的性质以及正弦函数的定义求出∠D =60°,∠BAC =45°,利用弧长公式以及圆的周长公式求出r1,r2即可.【解答】解:在▱ABCD中,AB=√3+1,BC=2,∴AD=BC=2,CD=AB=√3+1,AB∥CD.∵AH⊥CD,垂足为H,AH=√3,∴sinD=AHAD =√32,∴∠D=60°,∴∠DAH=90°﹣∠D=30°,∴DH=12AD=1,∴CH=CD﹣DH=√3+1﹣1=√3,∴CH=AH,∵AH⊥CD,∴△ACH是等腰直角三角形,∴∠ACH=∠CAH=45°,∵AB∥CD,∴∠BAC=∠ACH=45°,∴45π×√3180=2πr1,解得r1=√38,30π×√3 180=2πr2,解得r2=√312,∴r1﹣r2=√38−√312=√324.故答案为:√324.【点评】本题考查了圆锥的计算,平行四边形的性质,解直角三角形,弧长公式,求出∠D=60°,∠BAC =45°是解决本题的关键.29.(2023•云南)数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为分米.【分析】根据勾股定理计算即可.【解答】解:由勾股定理得:圆锥的高为:√42−12=√15(分米),故答案为:√15.【点评】本题考查的是圆锥的计算,熟记勾股定理是解题的关键.30.(2023•浙江)一副三角板ABC和DEF中,∠C=∠D=90°,∠B=30°,∠E=45°,BC=EF=12.将它们叠合在一起,边BC与EF重合,CD与AB相交于点G(如图1),此时线段CG的长是6√6−6√2.现将△DEF绕点C(F)按顺时针方向旋转(如图2),边EF与AB相交于点H,连结DH,在旋转0°到60°的过程中,线段DH扫过的面积是.【分析】如图1,过点G作GK⊥BC于K,则∠CKG=∠BKG=90°,由等腰直角三角形性质可得CK=GK=√22CG,进而得出BK=BC﹣CK=12−√22CG,利用解直角三角形可得BK=√3GK,建立方程求解即可得出答案;如图2,以C为圆心,CD为半径作圆,当△CDE绕点C旋转60°时,CE′交AB于H′,连接DD′,过点D作DM ⊥AB于M,过点C作CN⊥DD′于N,则∠BCE′=∠DCD′=60°,点D的运动轨迹为DD′̂,点H的运动轨迹为线段BH′,因此在旋转0°到60°的过程中,线段DH扫过的面积为S△BDD′+S扇形CDD′﹣S△CDD′,再利用等腰直角三角形性质、相似三角形的判定和性质、扇形面积公式即可求得答案.【解答】解:如图1,过点G作GK⊥BC于K,则∠CKG=∠BKG=90°,∵∠BCD=45°,∴△CGK是等腰直角三角形,∴CK=GK=√22CG,∵BC=12,∴BK=BC﹣CK=12−√22CG,在Rt△BGK中,∠GBK=30°,∴GKBK =tan∠GBK=tan30°=√33,即12−√22CG =√3×√22CG , ∴CG =6√6−6√2;如图2,以C 为圆心,CD 为半径作圆,当△CDE 绕点C 旋转60°时,CE ′交AB 于H ′,连接DD ′,过点D 作DM ⊥AB 于M ,过点C 作CN ⊥DD ′于N ,则∠BCE ′=∠DCD ′=60°,点D 的运动轨迹为DD′̂,点H 的运动轨迹为线段BH ′,∴在旋转0°到60°的过程中,线段DH 扫过的面积为S △BDD ′+S 扇形CDD ′﹣S △CDD ′,∵CD =BC •cosCBD =12cos45°=6√2,∴DG =CD ﹣CG =6√2−(6√6−6√2)=12√2−6√6,∵∠BCD+∠ABC =60°+30°=90°,∴∠BH ′C =90°,在Rt △BCH ′中,CH ′=BC •sin30°=12×12=6,BH ′=BC •cos30°=12×√32=6√3,∵△CD ′E ′是等腰直角三角形,∠CD ′E ′=90°,D ′H ′⊥CE ′,∴D ′H ′=12CE ′=6, ∴BD ′=6√3+6,∵DM ⊥AB ,∴∠DMG =90°,∴∠DMG =∠CH ′G ,∵∠DGM =∠CGH ′,∴△DGM ∽△CGH ′,∴DM CH′=DG CG ,即DM 6=√2−6√66√6−6√2,∵CD′=CD=6√2,∠DCD′=60°,∴△CDD′是等边三角形,∴∠CDD′=60°,∵CN⊥DD′,∴CN=CD•sin∠CDD′=6√2sin60°=3√6,∴S△BDD′+S扇形CDD′﹣S△CDD′=12×(6√3+6)×(3√3−3)+60π⋅(6√2)2360−12×6√2×3√6=18+12π﹣18√3;故答案为:6√6−6√2;18+12π﹣18√3.【点评】本题是三角形综合题,考查了直角三角形性质,等腰直角三角形性质,等边三角形的判定和性质,解直角三角形,相似三角形的判定和性质等,得出DH扫过的面积为S△BDD′+S扇形CDD′﹣S△CDD′是解题关键.31.(2023•重庆)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为(结果保留π).【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为12×4×2−2×45π×22360=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.32.(2023•重庆)如图,⊙O是矩形ABCD的外接圆,若AB=4,AD=3,则图中阴影部分的面积为.(结果保留π)【分析】连接BD,根据圆周角定理证得BD是⊙O的直径,利用勾股定理求得直径,然后利用圆的面积减去矩形的面积即可求得阴影部分的面积.【解答】解:连接BD,∵∠BAD=90°,∴BD是⊙O的直径,∵AB=4,AD=3,∴BD=√AD2+AB2=√32+42=5,∴S阴影=S⊙O﹣S矩形ABCD=π×(52)2−3×4=254π﹣12.故答案为:254π﹣12.【点评】本题考查了圆的面积和矩形的面积,解题的关键是明确阴影部分的面积是圆的面积减去矩形的面积,属于中考常考题型.33.(2022•重庆)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE 可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC ⊥BD ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠BAC =∠ACD =30°,AB =BC =CD =DA =2,在Rt △AOB 中,AB =2,∠BAO =30°,∴BO =12AB =1,AO =√32AB =√3,∴AC =2OA =2√3,BD =2BO =2,∴S 菱形ABCD =12AC •BD =2√3,∴S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE=2√3−60π×22360 =6√3−2π3, 故答案为:6√3−2π3.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.34.(2022•广州)如图,在△ABC 中,AB =AC ,点O 在边AC 上,以O 为圆心,4为半径的圆恰好过点C ,且与边AB 相切于点D ,交BC 于点E ,则劣弧DE ̂的长是 .(结果保留π)【分析】连接OD ,OE ,根据等腰三角形的性质和三角形内角和定理可得∠A =∠COE ,再根据切线的性质和平角的定义可得∠DOE =90°,然后利用弧长公式进行计算即可解答.【解答】解:如图,连接OD ,OE ,∵OC =OE ,∴∠OCE =∠OEC ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ABC =∠OEC ,∴AB ∥OE ,∴∠BDO+∠DOE =180°,∵AB 是切线,∴∠BDO =90°,∴∠DOE =180°﹣∠DOE =90°,∴劣弧DÊ的长是90×π×4180=2π.故答案为:2π.【点评】本题考查了弧长的计算,等腰三角形的性质,熟练掌握切线的性质是解题的关键.35.(2022•重庆)如图,在矩形ABCD 中,AB =1,BC =2,以B 为圆心,BC 的长为半径画弧,交AD 于点E .则图中阴影部分的面积为 .(结果保留π)【分析】先根据锐角三角函数求出∠AEB =30°,再根据扇形面积公式求出阴影部分的面积.【解答】解:∵以B为圆心,BC的长为半径画弧,交AD于点E,∴BE=BC=2,在矩形ABCD中,∠A=∠ABC=90°,AB=1,BC=2,∴sin∠AEB=ABBE =12,∴∠AEB=30°,∴∠EBA=60°,∴∠EBC=30°,∴阴影部分的面积:S=30π×22360=13π,故答案为:13π.【点评】本题考查有关扇形面积的相关计算、矩形的性质,掌握扇形面积公式和矩形的性质的应用,其中根据锐角三角函数求出角的度数是解题关键.36.(2023•陕西)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为.【分析】根据正八边形的性质得出四边形CEGF是矩形,△ACE、△BFG是等腰直角三角形,AC=CF=FB=EG=2,再根据矩形的性质以及直角三角形的边角关系求出AE,GE,BG即可.【解答】解:如图,过点F作FG⊥AB于G,由题意可知,四边形CEGF是矩形,△ACE、△BFG是等腰直角三角形,AC=CF=FB=EG=2,在Rt△ACE中,AC=2,AE=CE,∴AE=CE=√22AC=√2,同理BG=√2,∴AB=EG+BG=2+√2,故答案为:2+√2.【点评】本题考查正多边形和圆,掌握正八边形的性质以及直角三角形的边角关系是正确解答的前提.37.(2023•河北)将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l上.两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l平行,有两边分别经过两侧正六边形的一个顶点.则图2中:(1)∠α=度;(2)中间正六边形的中心到直线l的距离为(结果保留根号).【分析】(1)作图后,结合正多边形的外角的求法即可得到结论;(2)把问题转化为图形问题,首先作出图形,标出相应的字母,把正六边形的中心到直线l的距离转化为求ON=OM+BE,再根据正六边形的性质以及三角函数的定义,分别求出OM,BE即可.【解答】解:(1)作图如图所示,∵多边形是正六边形,∴∠ACB=60°,∵BC∥直线l,∴∠ABC=90°,∴α=30°;故答案为:30°;(2)取中间正六边形的中心为O,作图如图所示,由题意得,AG∥BF,AB∥GF,BF⊥AB,∴四边形ABFG为矩形,∴AB=GF,∵∠BAC=∠FGH,∠ABC=∠GFH=90°,∴△ABC≌△GFH(SAS),∴BC=FH,在Rt△PDE中,DE=1,PE=√3,由图1知AG=BF=2PE=2√3,OM=PE=√3,∵BC=12(BF−CH)=√3−1,∴AB=BCtan∠BAC =√3−1√33=3−√3,∴BD=2−AB=√3−1,∵DE=12×2=1,∴BE=BD+DE=√3,∴ON=OM+BE=2√3.∴中间正六边形的中心到直线l的距离为2√3,故答案为:2√3.【点评】本题考查了正多边形与圆,正六边形的性质,解直角三角形,全等三角形的判定和性质,正确地作出辅助线是解题的关键.38.(2023•衡阳)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是.【分析】先求出多边形的每一个内角为108°,可得到∠O=36°,即可求解.【解答】解:∵多边形是正五边形,∴正五边形的每一个内角为:15×180°×(5﹣2)=108°,∴∠O=180°﹣(180°﹣108°)×2=36°,∴正五边形的个数是360°÷36°=10.故答案为:10.【点评】本题主要考查正多边形与圆,多边形内角和问题,熟练掌握相关知识点是解题关键.39.(2023•杭州)如图,六边形ABCDEF是⊙O的内接正六边形,设正六边形ABCDEF的面积为S1,△ACE的面积为S2,则S1S2=.【分析】连接OA,OC,OE,首先证明出△ACE 是⊙O的内接正三角形,然后证明出△BAC≌△OAC(ASA),得到S△ABC=S△AEE=S△CDES△AOC=S△OAE=S△OCE,进而求解即可.【解答】解:如图所示,连接OA,OC,OE.∵六边形ABCDEF是⊙O的内接正六边形,∴AC=AE=CE,∴△ACE是⊙O的内接正三角形,∵∠B=120°,AB=BC,∴∠BAC=∠BCA=12(180°﹣∠B)=30°,∵∠CAE=60°,∴∠OAC=∠OAE=30°,∴∠BAC=∠OAC=30°,同理可得,∠BCA=∠OCA=30°,又∵AC=AC,∴△BAC≌△OAC(ASA),∴S△BAC=S△AOC,圆和正六边形的性质可得,S△BAC=S△AFE=S△CDE,由圆和正三角形的性质可得,S△OAC=S△OAE=S△OCE,∵S1=S△BAC+S△AEF+S△CDE+S△OAC+S△OAE+S△OCE=2(S△OAC+S△OAE+S△OCE)=2S2,=2,∴S1S2故答案为:2【点评】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.40.(2023•连云港)以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则正六边形ABCDEF至少旋转°.【分析】以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,即∠DCD'是旋转角,∠BCD=120°,要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则∠DCD'至少要旋转60°.【解答】解:∵多边形ABCDEF是正六边形,∴∠BCD=120°,要使新正六边形A′B′CD′E′F′的顶点D′落在直线BC上,则∠DCD'至少为60°,则正六边形ABCDEF至少旋转60°.故答案为:60°.【点评】本题考查多边形的性质和旋转的性质,熟悉性质是解题关键.。

2021年九年级数学中考一轮复习知识点中考真题演练:圆的有关性质(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:圆的有关性质(附答案)

2021年九年级数学中考一轮复习中考真题演练:圆的有关性质(附答案)1.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣72.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000D.4×1023.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm5.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°7.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°9.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°10.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.11.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.12.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =2,则弦AB的长为.13.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.14.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB =120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=度.17.如图,在⊙O中,,∠A=40°,则∠B=度.18.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.19.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.20.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.21.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.22.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.23.如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.24.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.25.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.26.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27.如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.参考答案1.解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.2.解:根据图形可知,两圆相切,过点O作OP垂直O1O2于P,则:PO1=PO2=200 PO=R﹣50根据勾股定理可得:2002+(R﹣50)2=(R+50)2解得:R=200∴D=2R=400=4×102.故选:D.3.解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.4.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.5.解:如图;以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;∵CB=CE,∴∠CBE=∠CEB;∵∠DAC=∠CBE,∴∠DAC=∠CEB;∵AC=CE,∴∠CAE=∠CEA,∴∠CAE﹣∠DAC=∠CEA﹣∠CED,即∠DAE=∠DEA;∴AD=DE;∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,∴AC+BC>BD+AD;故选:C.6.解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.7.解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.9.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.10.解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.11.解:S阴=πab.故答案为:πab.12.解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=,∴AM=2,∴AB=2AM=4.故答案为:12或4.13.解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.14.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.15.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.16.解:连接OA、OB、OC、OD,∵OA=OB=OC=OD=1,AB=,CD=1,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,△COD是等边三角形,∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,∵∠CDB=∠CAB,∠ODB=∠OBD,∴α=180°﹣∠CAB﹣∠OBA﹣∠OBD=180°﹣∠OBA﹣(∠CDB+∠ODB)=180°﹣45°﹣60°=75°.17.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.18.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.19.解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.20.证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).21.(1)证明:∵AD是⊙O的直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,,∴△BED≌△CEF(ASA),∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∵∠AEC=∠CED,∠CAE=∠ECD,∴△AEC∽△CED,∴=,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.22.解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.23.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.24.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.25.(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.26.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.27.证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°.∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;(2)由(1)可知,∠AEC=90°,则AC是直径,设AC、BD相交于点O;∵ABCD是平行四边形,∴O为圆心,OB=OD,∴OM=ON,∴OB﹣OM=OD﹣ON,∴BM=DN.。

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)

2021年九年级数学中考复习专题之圆:切线的判定与性质(一)一.选择题1.下列说法中,正确的是()A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,m的值为()A.4或﹣4 B.4﹣或4+C.﹣4+或4+ D.4﹣或4+ 3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则4.如图,∠ACB=60°,半径为3的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.3 B.3C.6πD.5.如图,AB是⊙O的直径,=,过点C作BD的垂线交BD的延长线于点E,交BA 的延长线于点F,已知AB=2,∠F=30°,则四边形ABEC的面积是()A.2B.C.D.6.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.7.已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C在⊙D外;③直线CM与⊙D相切.其中正确的有()A.0个B.1个C.2个D.3个8.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线9.如图,在矩形ABCD中,BC=8,以AB为直径作⊙O,将矩形ABCD绕点B旋转,使所得矩形A'BC'D'的边C'D'与⊙O相切,切点为E,边A'B与⊙O相交于点F.若BF=8,则CD长为()A.9 B.10 C.8D.1210.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56 B.72 C.56或72 D.不存在二.填空题11.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.12.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P.当⊙P与矩形ABCD的边相切时,CP的长为.13.如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB 上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为.14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是.15.如图,直线y=x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.三.解答题16.如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.17.如图,圆O的直径AB=12cm,C为AB延长线上一点,点P为中点,过点B作弦BD∥CP,连接PD.(1)求证:CP与圆O相切;(2)若∠C=∠D,求四边形BCPD的面积.18.如图,在△ABC中,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E,延长DE交CA的延长线于点F,延长BA交⊙O于G,且∠BAF=2∠C.(1)求证:DE为⊙O的切线;(2)若tan∠EFC=,求的值.19.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE、DE、BD,BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC,求证:四边形OEDB是菱形.参考答案一.选择题1.解:A、圆的切线垂直于经过切点的半径;故本选项正确;B、经过圆心且垂直于切线的直线必经过切点;故本选项错误;C、经过切点且垂直于切线的直线必经过圆心;故本选项错误;D、经过半径的外端且垂直于这条半径的直线是圆的切线;故本选项错误;故选:A.2.解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=,∴A(0,1),B(,0),∴AB=2;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC~△BAO,∴=,即=,∴BM=4,∴OM=4﹣,或OM=4+.∴m=﹣4,m=4+.故选:C.3.解:如图1,过点N作NC⊥AM于点C,∵直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,⊙O的半径为1,∴CN=AB=2,∵∠1=60°,∴MN==,故A与B正确;如图3,若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOM′,故MN上的高为1,即O到MN的距离等于半径.故C正确;如图2,∵MN是切线,⊙O与l1和l2分别相切于点A和点B,∴∠AMO=∠1=30°,∴AM=;∵∠AM′O=60°,∴AM′=,∴若MN与⊙O相切,则AM=或;故D错误.故选:D.4.解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OP=OD=3,∴CD=3.故选:B.5.解:连接OD、OC、BC,如图:∵AB是⊙O的直径,AB=2,∴∠ACB=90°,OA=OB=AB=1,∵BE⊥FE,∠F=30°,∴∠ABC=90°﹣∠F=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∵=,∴∠AOC=∠COD=60°,∵OA=OC,∴△AOC是边长为1的等边三角形,∴AC=OA=1,∠OAC=60°,∴∠ABC=90°﹣60°=30°,∴BC=AC=,∠CBE=60°﹣30°=30°,∴CE=BC=,BE=CE=,∴四边形ABEC的面积=△ABC的面积+△BCE的面积=×1×+××=;故选:B.6.解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.7.解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故③正确;故选:C.8.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.9.解:连接OE,延长EO交BF于点M,∵C'D'与⊙O相切,∴∠OEC′=90°,又矩形A'BC'D'中,A'B∥C'D',∴∠EMB=90°,∴BM=FM,∵矩形ABCD绕点B旋转所得矩形为A′BC′D′,∴∠C′=∠C=90°,AB=CD,BC=B′C=8,∴四边形EMBC'为矩形,∴ME=8,设OB=OE=x,则OM=8﹣x,∵OM2+BM2=OB2,∴(8﹣x)2+42=x2,解得x=5,∴AB=CD=10.故选:B.10.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二.填空题(共5小题)11.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),12.解:作PE⊥AD于E,PF⊥AB于F,在Rt△ABC中,AC==5,由题意可知,⊙P只能与矩形ABCD的边AD、AB相切,当⊙P与AD相切时,PE=PC,∵PE⊥AD,CD⊥AD,∴PE∥CD,∴△APE∽△ACD,∴=,即=,解得,CP=,当⊙P与AB相切时,PF=PC,∵PF⊥AB,CB⊥AB,∴PF∥BC,∴△APE∽△ACD,∴=,即=,解得,CP=,综上所述,当⊙P与矩形ABCD的边相切时,CP的长或,故答案为:或.13.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,∵AB=,∴AE=BE=AB=4,∴DE=,∴点P是线段AD上运动时,⊙P不可能与AB相切,分两种情况:①当⊙P与AC相切时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴,即,∴;②⊙P与BC相切时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴,即,∴DP=,∴AP=10﹣,综上,AP的长为或.14.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.15.解:∵直线y=x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=3,∴A(3,0),B(0.﹣3),∴OA=3,OB=3,∴AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=2,∴OP=3﹣2或OP=3+2,∴P(3﹣2,0)或P(3+2,0),故答案为(3﹣2,0)或P(3+2,0).三.解答题(共5小题)16.证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.17.(1)证明:连接OP,交BD于点E,∵点P为的中点.∴BD⊥OP,∵BD∥CP,∴∠OEB=∠OPC=90°∴PC⊥OP,∴CP与⊙O相切于点P;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.18.解:(1)连接OD,∵OC=OD,∴∠C=∠ODC,∵∠BAF=2∠C,∠BAF=∠B+∠C,∴∠B=∠C,∴∠B=∠ODC,∴AB∥OD,∵DE⊥AB,∴OD⊥DF,∴DE为⊙O的切线;(2)过O作OH⊥AG于点H,则AH=GH,EF∥OH,∴∠AOH=∠EFA,∵tan∠EFC=,∴tan∠AOH==,∴设AH=3x,则AG=2AH=6x,OH=4x,∴,∴AC=2AO=10x,OD=OA=5x,∵tan∠EFC==,设AE=3y,则EF=4y,∴AF=,∵AE∥OD,∴△AEF∽△ODF,∴,即,∴,∴AE=3y=2x,∴BE=AB﹣AE=10x﹣2x=8x,∴=.19.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BPA,∠PAO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BPA,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)∵OE∥BD,∴∠OEB=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠DBE,∵BF=BC,∠ADB=90°,∴∠CBD=∠EBD,∵∠DEB=∠DBC,∴∠EBD=∠DBE,∴∠DEB=∠OBE,∴ED∥OB,∵ED∥OB,OE∥BD,OE=OB,∴四边形OEDB是菱形.。

2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)

2021年中考数学真题分类汇编:专题24圆的有关性质(解析版)

2021年中考数学真题分类汇编:专题24圆的有关性质一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒ 【答案】D【分析】先证明,AB CD =再利用等弧的性质及圆周角定理可得答案.【详解】 解: 点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,,AB CD ∴=114221,22CED AOB ∴∠=∠=⨯︒=︒ 故选:.D【点睛】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键.2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在【答案】D【分析】根据垂径定理可直接进行排除选项.【详解】解:由垂径定理的推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧”可知:小铭忽略了垂径定理中的“弦不能是直径”这一条件,因为一个圆中的任意两条直径都互相平分,但不垂直,所以小铭说法错误,小熹所说的反例即为两条直径的情况下;故选D.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交AB 厘米.若从目前太阳所处位置到太阳完全跳出于A,B两点,他测得“图上”圆的半径为10厘米,16海平面的时间为16分钟,则“图上”太阳升起的速度为().A.1.0厘米/分B.0.8厘米分C.12厘米/分D.1.4厘米/分【答案】A【分析】首先过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,由垂径定理,即可求得OC的长,继而求得CD的长,又由从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,即可求得“图上”太阳升起的速度.【详解】解:过⊙O的圆心O作CD⊙AB于C,交⊙O于D,连接OA,⊙AC=12AB=12×16=8(厘米),在Rt⊙AOC中,6OC===(厘米),⊙CD=OC+OD=16(厘米),⊙从目前太阳所处位置到太阳完全跳出海面的时间为16分钟,⊙16÷16=1(厘米/分).⊙“图上”太阳升起的速度为1.0厘米/分.故选:A.【点睛】此题考查了垂径定理的应用.解题的关键是结合图形构造直角三角形,利用勾股定理求解.4.(2021·山东聊城市·中考真题)如图,A,B,C是半径为1的⊙O上的三个点,若AB⊙CAB=30°,则⊙ABC的度数为()A.95°B.100°C.105°D.110°【答案】C【分析】连接OB,OC,根据勾股定理逆定理可得⊙AOB=90°,⊙ABO=⊙BAO=45°,根据圆周角定理可得⊙COB=2⊙CAB=60°,⊙OBC=⊙OCB=60°,由此可求得答案.【详解】解:如图,连接OB,OC,⊙OA =OB =1,AB⊙OA 2+OB 2=AB 2,⊙⊙AOB =90°,又⊙OA =OB ,⊙⊙ABO =⊙BAO =45°,⊙⊙CAB =30°,⊙⊙COB =2⊙CAB =60°,又⊙OC =OB ,⊙⊙OBC =⊙OCB =60°,⊙⊙ABC =⊙ABO +⊙OBC =105°,故选:C .【点睛】本题考查了勾股定理的逆定理,等腰三角形的性质,圆周角定理,熟练掌握圆周角定理是解决本题的关键. 5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒【答案】B【分析】 根据画图过程,得到OD =OC ,由等边对等角与三角形内角和定理得到⊙ODC =⊙OCD =70︒,同理得到⊙DOE =⊙DEO =40⊙,由⊙OCD 为⊙DCE 的外角,得到结果.【详解】解:⊙以O 为圆心,OD 长为半径画MN ,交OB 于点C ,⊙OD =OC ,⊙⊙ODC =⊙OCD ,⊙⊙AOB =40⊙,⊙⊙ODC =⊙OCD =118040702⨯︒-︒=︒, ⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,⊙DO =DE ,⊙⊙DOE =⊙DEO =40⊙,⊙⊙OCD 为⊙DCE 的外角,⊙⊙OCD =⊙DEC +⊙CDE ,⊙70⊙=40⊙+⊙CDE ,⊙⊙CDE =30⊙,故选:B .【点睛】本题考查了等腰三角形的判定与性质、以及三角形外角的性质,关键在于等边对等角与三角形的外角等于与它不相邻的两个内角之和两个知识点的熟练运用.6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒【答案】A【分析】 先根据圆内接四边形的性质可得60BAD ∠=︒,再根据圆周角定理可得90BAE ∠=︒,然后根据角的和差即可得.【详解】 解:四边形ABCD 是O 的内接四边形,180BCD BAD ∴∠+∠=︒,2BCD BAD ∠=∠,1180603BAD =⨯︒∴∠=︒, BE 是O 的直径,90BAE ∴∠=︒,906030DAE BAE BAD ∴∠=∠-∠=︒-︒=︒,故选:A .【点睛】本题考查了圆内接四边形的性质、圆周角定理,熟练掌握圆内接四边形的性质是解题关键.7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°【答案】C【分析】根据直径所对的圆周角是90︒,可知90ACB AFB ∠=∠=︒,根据3BC AC =,可知ABC ∠、BAC ∠的度数,根据直角三角形斜边上的中线等于斜边的一半可知,AHC 为等腰三角形,再根据CAE BFG BCA ∽∽可求得CBF ∠的度数.【详解】解:⊙AB 为O 的直径,⊙90ACB AFB ∠=∠=︒,⊙3BC AC =,⊙=22.5ABC ∠︒,=67.5BAC ∠︒,⊙点H 是AG 的中点,⊙CE AH =,⊙CAH ACH ∠=∠,⊙CD AB ⊥,⊙AEC GCA ∽,又⊙,CAF CBF CGA FGB ∠=∠∠=∠,⊙AEC GCA GFB ∽∽,⊙90ACE ECB ABC ECB ∠+∠=∠+∠=︒,⊙ABE ABC ∠=∠,⊙AEC GCA GFB ACB ∽∽∽,⊙22.5ABC ACE GAC GBF ∠=∠=∠=∠=︒,⊙=22.5CBF ∠︒,故选:C .【点睛】本题主要考查圆周角定理,垂径定理,相似三角形,直角三角形斜边上中线等知识点,找出图形中几个相似三角形是解题关键.8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD ∠的度数为( )A .15︒B .22.5︒C .30D .45︒【答案】B【分析】连接OD ,根据垂径定理得CD =2DE ,从而得ODE 是等腰直角三角形,根据圆周角定理即可求解.【详解】解:连接OD ,⊙AB 是O 的直径,弦CD AB ⊥于点E ,⊙CD =2DE ,⊙2CD OE =,⊙DE =OE ,⊙ODE 是等腰直角三角形,即⊙BOD =45°,⊙BCD ∠=12⊙BOD =22.5°, 故选B .【点睛】本题主要考查圆的基本性质,熟练掌握垂径定理和圆周角定理,是解题的关键.9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-【答案】D【分析】 作OC ⊙AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出⊙A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB 的长,最后求它们的差即可.【详解】解:作OC ⊙AB 于C ,如图,则AC =BC ,⊙OA =OB ,⊙⊙A =⊙B =12(180°-⊙AOB )=30°, 在Rt ⊙AOC 中,OC =12OA =9,AC =⊙AB =2AC =又⊙12018180AB π⨯⨯==12π,⊙走便民路比走观赏路少走12π-故选D .【点睛】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°【答案】A【分析】直接根据直径所对的圆周角为直角进行求解即可.【详解】⊙AB 是⊙O 的直径,⊙⊙ACB =90°,⊙在Rt ⊙ABC 中,⊙B =90°-⊙A =70°,故选:A .【点睛】本题考查直径所对的圆周角为直角,理解基本定理是解题关键.11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅【答案】B【分析】 根据垂径定理、锐角三角函数的定义进行判断即可解答.【详解】解:⊙AB 是O 的直径,弦CD OA ⊥于点E , ⊙12DE CD = 在Rt EDO ∆中,OD m =,AOD α∠=∠ ⊙tan =DE OEα ⊙=tan 2tan DE CD OE αα=,故选项A 错误,不符合题意;又sin DE ODα= ⊙sin DE OD α=⊙22sin CD DE m α==,故选项B 正确,符合题意; 又cos OE ODα= ⊙cos cos OE OD m αα==⊙AO DO m ==⊙cos AE AO OE m m α=-=-,故选项C 错误,不符合题意;⊙2sin CD m α=,cos OE m α= ⊙2112sin cos sin cos 22COD S CD OE m m m αααα∆=⨯=⨯⨯=,故选项D 错误,不符合题意; 故选B .【点睛】本题考查了垂径定理,锐角三角函数的定义以及三角形面积公式的应用,解本题的关键是熟记垂径定理和锐角三角函数的定义.12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°【答案】B【分析】 连接AD ,由切线性质可得⊙ADB =⊙ADC =90°,根据AB=2AD 及锐角的三角函数可求得⊙BAD =60°,易求得⊙ADE =72°,由AD=AE 可求得⊙DAE =36°,则⊙GAC =96°,根据圆周角定理即可求得⊙GFE 的度数.【详解】解:连接AD ,则AD =AG =3,⊙BC与圆A相切于点D,⊙⊙ADB=⊙ADC=90°,在Rt⊙ADB中,AB=6,则cos⊙BAD=ADAB=12,⊙⊙BAD=60°,⊙⊙CDE=18°,⊙⊙ADE=90°﹣18°=72°,⊙AD=AE,⊙⊙ADE=⊙AED=72°,⊙⊙DAE=180°﹣2×72°=36°,⊙⊙GAC=36°+60°=96°,⊙⊙GFE=12⊙GAC=48°,故选:B.【点睛】本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得⊙BAD=60°是解答的关键.13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD内接于O,点P在AB上,则P∠的度数为()A.30B.45︒C.60︒D.90︒【答案】B【分析】连接OB ,OC ,由正方形ABCD 的性质得90BOC ∠=°,再根据圆周角与圆心角的关系即可得出结论.【详解】解:连接OB ,OC ,如图,⊙正方形ABCD 内接于O ,⊙90BOC ∠=° ⊙11904522BPC BOC ∠=∠=⨯︒=︒ 故选:B .【点睛】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm 【答案】B【分析】根据直径是圆中最长的弦,知该圆的直径是10cm ;最短弦即是过点P 且垂直于过点P 的直径的弦;根据垂径定理即可求得CP 的长,再进一步根据勾股定理,可以求得OP 的长.【详解】解:如图所示,CD ⊙AB 于点P .根据题意,得AB =10cm ,CD =6cm .⊙OC =5,CP =3⊙CD ⊙AB ,⊙CP =12CD =3cm .根据勾股定理,得OP .故选B .【点睛】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦.15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .19【答案】A【分析】 先利用垂径定理得出AE =EC ,CF =FD ,再利用勾股定理列方程即可【详解】解:连接OC⊙AB ⊙CD , OE ⊙AC⊙ AE =EC ,CF =FD⊙OE =3,OB =5⊙OB =OC =OA =5⊙在Rt ⊙OAE 中4AE =⊙AE =EC =4设OF =x ,则有2222AC AF OC OF -=-22228(5)5x x -+=-x =1.4在Rt ⊙OFC 中, 4.8FC ==⊙29.6CD FC ==故选:A【点睛】本题考查垂径定理、勾股定理、方程思想是解题关键16.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒ 【答案】C【分析】由切线的性质得出⊙OAP =⊙OBP =90°,利用四边形内角和可求⊙AOB =110°,再利用圆周角定理可求⊙ADB =55°,再根据圆内接四边形对角互补可求⊙ACB .【详解】解:如图所示,连接OA ,OB ,在优弧AB 上取点D ,连接AD ,BD ,⊙AP 、BP 是切线,⊙⊙OAP =⊙OBP =90°,⊙⊙AOB =360°-90°-90°-70°=110°,⊙⊙ADB =55°,又⊙圆内接四边形的对角互补,⊙⊙ACB =180°-⊙ADB =180°-55°=125°.故选:C .【点睛】本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA 、OB ,求出⊙AOB .17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 【答案】D【分析】由题意知90APC ∠=︒,又AC 长度一定,则点P 的运动轨迹是以AC 中点O 为圆心,12AC 长为半径的圆弧,所以当B 、P 、O 三点共线时,BP 最短;在Rt BCO ∆中,利用勾股定理可求BO 的长,并得到点P 是BO 的中点,由线段长度即可得到PCO ∆是等边三角形,利用特殊Rt APC ∆三边关系即可求解.【详解】解:222PA PC AC +=∴90APC ∠=︒取AC 中点O ,并以O 为圆心,12AC 长为半径画圆 由题意知:当B 、P 、O 三点共线时,BP 最短AO PO CO ∴== 11322CO AC BC ==⨯==BO ∴=BP BO PO ∴=-=∴点P 是BO 的中点∴在Rt BCO ∆中,12CP BO PO === ∴PCO ∆是等边三角形∴60ACP ∠=︒ ∴在Rt APC ∆中,tan 603AP CP =⨯︒=12APC S AP CP ∆∴=⨯==【点睛】本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P 的运动轨迹,即隐形圆.18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B .2C D .4 【答案】A【分析】连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB ,结合直角三角形斜边中线等于斜边的一半求得点A ,D ,F ,E 四点共圆,⊙DFE =90°,然后根据勾股定理及正方形的判定和性质求得AE 的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊙AC ,FM ⊙AB⊙在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,⊙AG =DG =EG又⊙AG =FG⊙点A ,D ,F ,E 四点共圆,且DE 是圆的直径⊙⊙DFE =90°⊙在Rt ⊙ABC 中,AB =AC =5,点F 是BC 的中点,⊙CF =BF =122BC =,FN =FM =52 又⊙FN ⊙AC ,FM ⊙AB ,90BAC ∠=︒⊙四边形NAMF 是正方形⊙AN =AM =FN =52又⊙90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒⊙NFD MFE ∠=∠⊙⊙NFD ⊙⊙MFE⊙ME =DN =AN -AD =12 ⊙AE =AM +ME =3⊙在Rt ⊙DAE 中,DE故选:A .【点睛】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.19.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,6 【答案】D【分析】先根据题意得出OA =8,OC =2,再根据勾股定理计算即可【详解】解:由题意可知:AC =AB⊙()8,0A ,()2,0C -⊙OA =8,OC =2⊙AC =AB =10在Rt ⊙OAB 中,6OB ==⊙B (0,6)故选:D【点睛】本题考查勾股定理、正确写出点的坐标,圆的半径相等、熟练进行勾股定理的计算是关键 20.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .3【答案】C【分析】 根据圆周角定理求出⊙COB 的度数,再求出⊙OBD 的度数,根据“30°的锐角所对的直角边等于斜边的一半”求出OD 的长度.【详解】⊙ ⊙BAC =30°,⊙⊙COB =60°,⊙⊙ODB =90°,⊙⊙OBD =30°,⊙OB =4,⊙OD =12OB =142⨯=2. 故选:C .【点睛】本题考查了圆周角定理,直角三角形的性质,掌握相关定理和性质是解题的关键.21.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒【答案】C【分析】连接OB ,由题意易得⊙BOD =60°,然后根据圆周角定理可进行求解.【详解】解:连接OB ,如图所示:⊙()2,0A ,()4,0D ,⊙2,4OA OB OE OD ====, ⊙12OA OB =, ⊙四边形OABC 是矩形,⊙90OAB ∠=︒,⊙30OBA ∠=︒,⊙9060BOD OBA ∠=︒-∠=︒, ⊙1302BED BOD ∠=∠=︒; 故选C .【点睛】本题主要考查圆周角定理、矩形的性质及含30°的直角三角形的性质,熟练掌握圆周角定理、矩形的性质及含30°的直角三角形的性质是解题的关键.22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒【答案】D【分析】 先利用直径所对的圆周角是直角得到⊙ACB =90°,从而求出⊙BAC ,再利用同弧所对的圆周角相等即可求出⊙BDC .【详解】解:⊙C ,D 是⊙O 上直径AB 两侧的两点,⊙⊙ACB =90°,⊙⊙ABC =25°,⊙⊙BAC =90°-25°=65°,⊙⊙BDC =⊙BAC =65°,故选:D .【点睛】本题考查了圆周角定理的推论,即直径所对的圆周角是90°和同弧或等弧所对的圆周角相等,解决本题的关键是牢记相关概念与推论,本题蕴含了属性结合的思想方法.23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ;⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对【答案】D【分析】 ⊙、根据“弦的垂直平分线经过圆心”,可证四边形MENF 的形状;⊙、在确定点P 的过程中,看⊙MOF =40°是否唯一即可.【详解】解:⊙、如图所示.⊙MN 是AB 的垂直平分线,EF 是AP 的垂直平分线,⊙MN 和EF 都经过圆心O ,线段MN 和EF 是⊙O 的直径.⊙OM =ON ,OE =OF .⊙四边形MENF 是平行四边形.⊙线段MN 是⊙O 的直径,⊙⊙MEN =90°.⊙平行四边形MENF 是矩形.⊙结论⊙正确;⊙、如图2,当点P 在直线MN 左侧且AP =AB 时,⊙AP =AB ,⊙AB AP =.⊙MN ⊙AB ,EF ⊙AP , ⊙1122AE AP AN AB ==,. ⊙AE AN =. ⊙1===202AOE AON AOB ∠∠∠.⊙40EON =∠.⊙=40MOF EON =∠∠.⊙扇形OFM 与扇形OAB 的半径、圆心角度数都分别相等,⊙OFM OAB S S =扇形扇形.如图3,当点P 在直线MN 右侧且BP =AB 时,同理可证:FOM AOB S S =扇形扇形.⊙结论⊙错误.故选:D【点睛】本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .4【答案】A【分析】 先根据垂径定理可得4=AD ,再利用勾股定理可得5OE OA ==,然后根据三角形中位线定理即可得.【详解】解:,8OE AB AB ⊥=,142AD AB ∴==, 3OD =,5OA ∴=,5OE ∴=,OE AB ⊥,90A ADO BC =︒∠∴∠=,//OE FC ∴,又OA OC =,OE ∴是ACF 的中位线,210FC OE ∴==,故选:A .【点睛】本题考查了垂径定理、三角形中位线定理等知识点,熟练掌握垂径定理是解题关键.25.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒【答案】B【分析】首先根据圆周角定理求得BOC ∠的度数,根据AOC ∠的度数求AOB AOC BOC ∠=∠-∠即可.【详解】解:⊙30BAC ∠=︒⊙⊙BOC=223060BAC ∠=⨯︒=︒,⊙90AOC ∠=︒,906030AOB AOC BOC ,故选:B .【点睛】考查了圆周角定理及两锐角互余性质,求得BOC ∠的度数是解题的关键.26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为()A .27︒B .108︒C .116︒D .128︒【答案】B【分析】直接利用圆周角定理即可得.【详解】解:54BAC ∠=︒,∴由圆周角定理得:2108BOC BAC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒【答案】B【分析】 将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.依据在同圆或等圆中相等的圆周角所对的弧相等可证明AC DC DE EB ===,从而可得到弧AC 的度数,由弧AC 的度数可求得⊙B 的度数.【详解】解:将⊙O 沿BC 翻折得到⊙O ′,将⊙O ′沿BD 翻折得到⊙O ″,则⊙O 、⊙O ′、⊙O ″为等圆.⊙⊙O 与⊙O ′为等圆,劣弧AC 与劣弧CD 所对的角均为⊙ABC ,⊙AC CD =.同理:DE CD =.又⊙F 是劣弧BD 的中点,⊙DE BE =.⊙AC DC DE EB ===.⊙弧AC 的度数=180°÷4=45°.⊙⊙B =12×45°=22.5°. ⊙α所在的范围是22.322.7α︒<<︒;故选:B .【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了翻折的性质、弧、弦、圆周角之间的关系、圆内接四边形的性质,等腰三角形的判定,找出图形中的等弧是解题的关键.二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.【答案】5cm【分析】连接BC ,由题意易得30ABC ADC ∠=∠=︒,进而问题可求解.【详解】解:连接BC ,如图所示:⊙30ADC ∠=︒,⊙30ABC ADC ∠=∠=︒,⊙AB 是直径,⊙90ACB ∠=︒,⊙5cm AC =,⊙210cm AB AC ==,⊙O 的半径为5cm ;故答案为5cm .【点睛】本题主要考查圆周角定理及含30°直角三角形的性质,熟练掌握圆周角定理及含30°直角三角形的性质是解29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.【分析】先根据圆的半径相等及圆周角定理得出⊙ABO =45°,再根据垂径定理构造直角三角形,利用锐角三角函数解直角三角形即可【详解】解:连接OB 、OC 、作OD ⊙AB⊙60A ∠=︒⊙⊙BOC =2⊙A =120°⊙OB =OC⊙⊙OBC =30°又75B ∠=︒⊙⊙ABO =45°在Rt ⊙OBD 中,OB =1⊙BD⊙BD =AD =⊙AB【点睛】本题考查垂径定理、圆周角定理,正确使用圆的性质及定理是解题关键30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.【答案】50︒【分析】圆上弧长对应的圆周角等于圆心角的一半,再利用等腰三角形三线合一的性质,即可得出答案.【详解】解:根据圆上弦长对应的圆周角等于圆心角的一半,12A BOC ∠=∠, 100BOC ∴∠=︒,OB OC =, BOC ∴为等腰三角形, 又点D 是BC 的中点,根据等腰三角形三线合一,OD ∴为BOC ∠的角平分线,50BO D ∴∠=︒,故答案是:50︒.【点睛】本题考查了弦长所对应的圆周角等于圆心角的一半和等腰三角形三线合一的性质,解题的关键是:根据性质求出BOC ∠,再利用角平分线或三角形全等都能求出解.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.-【分析】由已知45ADB ∠=︒,2AB =,根据定角定弦,可作出辅助圆,由同弧所对的圆周角等于圆心角的一半可知,点D 在以O 为圆心OB 为半径的圆上,线段CD 长度的最小值为CO OD -.【详解】如图: 以12AB 为半径作圆,过圆心O 作,ON AB OM BC ⊥⊥, 以O 为圆心OB 为半径作圆,则点D 在圆O 上,45ADB ∠=︒90AOB ∠=︒∴2AB =1AN BN ==AO ∴==112ON OM AB ===,3BC =OC ∴==CO OD ∴-线段CD 长度的最小值为-.-【点睛】 本题考查了圆周角与圆心角的关系,圆外一点到圆上的线段最短距离,勾股定理,正确的作出图形是解题的关键.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.【答案】13︒【分析】如图,连接,DC 先证明,BDC BCD ∠=∠再证明,ABE ACD ∠=∠利用三角形的外角可得:,BDC A ACD A ABE ∠=∠+∠=∠+∠再利用直角三角形中两锐角互余可得:()2902,BDC A ABE ∠=︒-∠+∠再解方程可得答案.【详解】解:如图,连接,DC B 是CD 的中点,,,BD BC BDC BCD ∴=∠=∠,DE DE =,ABE ACD ∴∠=∠,BDC A ACD A ABE ∴∠=∠+∠=∠+∠90,32,ABC A ∠=︒∠=︒()2902,BDC A ABE ∴∠=︒-∠+∠45453213.ABE A ∴∠=︒-∠=︒-︒=︒故答案为:13.︒【点睛】本题考查的是圆周角定理,三角形的外角的性质,直角三角形的两锐角互余,掌握圆周角定理的含义是解题的关键.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .【答案】5【分析】连接OA ,由垂径定理得AD =4cm ,设圆的半径为R ,根据勾股定理得到方程2224(2)R R =+-,求解即可【详解】解:连接OA ,⊙C 是AB 的中点,⊙OC AB ⊥ ⊙14cm 2AD AB == 设O 的半径为R ,⊙2cm CD =⊙(2)cm OD OC CD R =-=-在Rt OAD ∆中,222OA AD OD =+,即2224(2)R R =+-,解得,5R =即O 的半径为5cm故答案为:5【点睛】本题考查的是垂径定理及勾股定理,根据垂径定理判断出OC 是AB 的垂直平分线是解答此题的关键. 34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.【答案】40︒【分析】连接BD ,则C D ∠=∠,再根据AD 为直径,求得BAD ∠的度数【详解】如图,连接BD ,则50D C ∠=∠=︒AD 为直径90ABD ∴∠=︒90905040BAD D ∴∠=︒-∠=︒-︒=︒故答案为40︒【点睛】此题主要考查了圆周角定理,圆周角定理是中考中考查重点,熟练掌握圆周角定理是解决问题的关键. 35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.【答案】25【分析】连接OC ,根据等腰三角形的性质和三角形内角和定理得到⊙BOC =100°,求出⊙AOC ,根据等腰三角形的性质计算.【详解】解:连接OC ,⊙OC =OB ,⊙⊙OCB =⊙OBC =40°,⊙⊙BOC =180°-40°×2=100°,⊙⊙AOC =100°+30°=130°,⊙OC =OA ,⊙⊙OAC =⊙OCA =25°,故答案为:25.【点睛】本题考查的是圆的基本性质、等腰三角形的性质,三角形内角和定理,掌握三角形内角和等于180°是解题的关键.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.【答案】【分析】过O 作OE ⊙AB 于C ,根据垂径定理可得AC =BC =12AB ,可求OA =2,OD Rt ⊙AOD 中,由勾股定理AD =,可证⊙OAC ⊙⊙DAO ,由相似三角形性质可求AC 即可. 【详解】 解:过O 作OE ⊙AB 于C ,⊙AB 为弦,⊙AC =BC =12AB ,⊙直线33y x =+与O 相交于A ,B 两点,⊙当y =00x +=,解得x =-2, ⊙OA =2,⊙当x =0时,y =⊙OD=3, 在Rt ⊙AOD中,由勾股定理3AD ===, ⊙⊙ACO =⊙AOD =90°,⊙CAO =⊙OAD ,⊙⊙OAC ⊙⊙DAO ,AC AO AO AD =即2AO AC AD === ⊙AB =2AC故答案为【点睛】本题考查直线与圆的位置关系,垂径定理,直线与两轴交点,勾股定理,三角形相似判定与性质,掌握以上知识、正确添加辅助线是解题关键.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.【答案】(1)⊙2;2;(2)见解析;(3);⊙4 【分析】(1)⊙设O 为圆心,连接BO ,CO ,根据圆周角定理得到⊙BOC =60°,证明⊙OBC 是等边三角形,可得半径;⊙过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,以BC 为底,则当A 与D 重合时,⊙ABC 的面积最大,求出OE ,根据三角形面积公式计算即可;(2)延长BA ′,交圆于点D ,连接CD ,利用三角形外角的性质和圆周角定理证明即可;(3)⊙根据4tan 3DPC ∠=,连接PD ,设点Q 为PD 中点,以点Q 为圆心,12PD 为半径画圆,可得点P 在优弧CPD 上,连接BQ ,与圆Q 交于P ′,可得BP ′即为BP 的最小值,再计算出BQ 和圆Q 的半径,相减即可得到BP ′;⊙根据AD ,CD 和23PCD PAD S S =推出点P 在⊙ADC 的平分线上,从而找到点P 的位置,过点C 作CF ⊙PD ,垂足为F ,解直角三角形即可求出DP .【详解】解:(1)⊙设O 为圆心,连接BO ,CO ,⊙⊙BAC =30°,⊙⊙BOC =60°,又OB =OC ,⊙⊙OBC 是等边三角形,⊙OB =OC =BC =2,即半径为2;⊙⊙⊙ABC 以BC 为底边,BC =2,⊙当点A 到BC 的距离最大时,⊙ABC 的面积最大,如图,过点O 作BC 的垂线,垂足为E ,延长EO ,交圆于D ,⊙BE =CE =1,DO =BO =2,⊙OE⊙DE 2,⊙⊙ABC 的最大面积为)1222⨯⨯2;(2)如图,延长BA ′,交圆于点D ,连接CD ,⊙点D 在圆上,⊙⊙BDC =⊙BAC ,⊙⊙BA ′C =⊙BDC +⊙A ′CD ,⊙⊙BA ′C >⊙BDC ,⊙⊙BA ′C >⊙BAC ,即⊙BA ′C >30°;(3)⊙如图,当点P在BC上,且PC=32时,⊙⊙PCD=90°,AB=CD=2,AD=BC=3,⊙tan⊙DPC=CDPC=43,为定值,连接PD,设点Q为PD中点,以点Q为圆心,12PD为半径画圆,⊙当点P在优弧CPD上时,tan⊙DPC=43,连接BQ,与圆Q交于P′,此时BP′即为BP的最小值,过点Q作QE⊙BE,垂足为E,⊙点Q是PD中点,⊙点E为PC中点,即QE=12CD=1,PE=CE=12PC=34,⊙BE=BC-CE=3-34=94,⊙BQ4,⊙PD 52,⊙圆Q的半径为155 224⨯=,⊙BP′=BQ-P′Q,即BP;⊙⊙AD =3,CD =2,23PCD PAD S S =, 则23CD AD =, ⊙⊙P AD 中AD 边上的高=⊙PCD 中CD 边上的高,即点P 到AD 的距离和点P 到CD 的距离相等,则点P 到AD 和CD 的距离相等,即点P 在⊙ADC 的平分线上,如图,过点C 作CF ⊙PD ,垂足为F ,⊙PD 平分⊙ADC ,⊙⊙ADP =⊙CDP =45°,⊙⊙CDF 为等腰直角三角形,又CD =2,⊙CF =DF⊙tan⊙DPC =CF PF =43,⊙PF =4,⊙PD =DF +PF【点睛】本题是圆的综合题,考查了圆周角定理,三角形的面积,等边三角形的判定和性质,最值问题,解直角三角形,三角形外角的性质,勾股定理,知识点较多,难度较大,解题时要根据已知条件找到点P 的轨迹. 38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.。

备考2021年中考数学复习专题:图形的性质_圆_三角形的外接圆与外心,综合题专训及答案

备考2021年中考数学复习专题:图形的性质_圆_三角形的外接圆与外心,综合题专训及答案

备考2021年中考数学复习专题:图形的性质_圆_三角形的外接圆与外心,综合题专训及答案备考2021中考数学复习专题:图形的性质_圆_三角形的外接圆与外心,综合题专训1、(2017北京.中考真卷) 图1是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt△ABC,∠C=90°,求作Rt△ABC的外接圆.作法:如图2.(1)①分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于P,Q两点;②作直线PQ,交AB于点O;(2)以O为圆心,OA为半径作⊙O.⊙O即为所求作的圆.请回答:该尺规作图的依据是.2、(2016内蒙古自治区.中考真卷) 如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.3、(2016上海.中考真卷) 已知:如图,⊙O是△ABC的外接圆,,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.4、(2017无锡.中考真卷) 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.5、(2016宿迁.中考真卷) 如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.6、(2017山西.中考模拟) 阅读与思考婆罗摩笈多(Brahmagupta),是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数概念及加减法运算仅晚于中国《九章算术》,而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明过程如下:已知:如图1,四边形ABCD内接于⊙O,对角线AC⊥BD于点P,PM⊥AB于点M,延长MP交CD于点N,求证:CN= DN.证明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.∴∠BAP=∠BPM.∵∠DPN=∠BPM,∠BAP=∠BDC.∴…(1) 请你阅读婆罗摩笈多定理的证明过程,完成剩余的证明部分.(2) 已知:如图2,△ABC 内接于⊙O ,∠B=30°,∠ACB=45°,AB=2,点D 在⊙O 上,∠BCD=60°,连接AD ,与B C 交于点P ,作PM ⊥AB 于点M ,延长MP 交CD 于点N ,则PN 的长为.7、(2017南京.中考模拟) 如图,在Rt △ABC 中,∠BAC=90°,AD 是BC 边上的中线,过点D 作BA 的平行线交AC 于点O ,过点A 作BC 的平行线交DO 的延长线于点E ,连接CE .(1) 求证:四边形ADCE 是菱形;(2) 作出△ABC 外接圆,不写作法,请指出圆心与半径;(3) 若AO :BD= :2,求证:点E 在△ABC 的外接圆上.8、(2012杭州.中考真卷)如图,是数轴的一部分,其单位长度为a ,已知△ABC 中,AB=3a ,BC=4a ,AC=5a .(1) 用直尺和圆规作出△ABC (要求:使点A ,C 在数轴上,保留作图痕迹,不必写出作法);(2) 记△ABC 的外接圆的面积为S ,△ABC 的面积为S ,试说明 >π.9、(2020阿荣旗.中考模拟) 如图,在平面直角坐标系中,△ABC 内接于⊙P ,AB 是⊙P 的直径,A (﹣1,0)C (3,2),BC 的延长线交y 轴于点D ,点F 是y 轴上的一动点,连接FC 并延长交x 轴于点E .(1) 求⊙P 的半径;(2) 当∠A=∠DCF 时,求证:CE 是⊙P 的切线.10、(2017武汉.中考模拟) 如图1,在△ABC 中,点D 在边BC 上,∠ABC :∠ACB :∠ADB=1:2:3,⊙O 是△ABD 的外接圆.(1) 求证:AC 是⊙O 的切线;(2) 当BD 是⊙O 的直径时(如图2),求∠CAD 的度数.11、(2017谷城.中考模拟) 如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .圆△(1)求证:∠FBC=∠FCB;(2)已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长.12、(2017.中考模拟) 如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点C,若AC•AB=12,求AC的长.13、(2018长沙.中考真卷) 如图,在△ABC中,AD是边BC上的中线,∠BAD=∠CAD,CE∥AD,CE交BA的延长线于点E ,BC=8,AD=3.(1)求CE的长;(2)求证:△ABC为等腰三角形.(3)求△ABC的外接圆圆心P与内切圆圆心Q之间的距离.14、(2017贵港.中考模拟) 如图,⊙O是△ABC的外接圆,AB是⊙O的直径,经过点A作AE⊥OC,垂足为点D,AE与BC交于点F,与过点B的直线交于点E,且EB=EF.(1)求证:BE是⊙O的切线;(2)若CD=1,cos∠AEB= ,求BE的长.15、(2016泸州.中考真卷) 如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.(1)求证:BE是⊙O的切线;(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BG•BA=48,FG= ,DF=2BF,求AH的值.备考2021中考数学复习专题:图形的性质_圆_三角形的外接圆与外心,综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

2021年中考数学真题分类汇编--圆:与圆有关的计算(老师版)

2021年中考数学真题分类汇编--圆:与圆有关的计算(老师版)

中考真题分类汇编(圆)----与圆有关的计算一、选择题1. (2021•山西)如图,正六边形 ABCDEF 的边长为 2,以 A 为圆心,AC 的长 为半径画弧,得BC ,连接 AC 、AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33πD. 233π解:过B 点作AC 垂线,垂直为G ,根据正六边形性质可知,30CAB BCA ∠=∠=︒,∴22222=222123AC AG AB GH =⨯-=⨯-=,∴S 扇形=260(23)2360ππ⨯⨯=, 故选:A .2. (2021•河北省)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作:①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是()A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【分析】如图,连接EM,EN,MF.NF.根据矩形的判定证明四边形MENF是矩形,再说明∠MOF≠∠AOB,可知(Ⅱ)错误.【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知∠MOF≠∠AOB,∴S扇形FOM≠S扇形AOB,故(Ⅱ)错误,故选:D.3.(2021•四川省成都市)如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为()A.4πB.6πC.8πD.12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正六边形的外角和为360°,∴每一个外角的度数为360°÷6=60°,∴正六边形的每个内角为180°﹣60°=120°,∵正六边形的边长为6,∴S阴影==12π,故选:D4.(2021•湖北省荆州市)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC 长为半径画,点P为菱形内一点,连接P A,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为()A.B.C.2πD.【分析】连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC﹣S△P AB﹣S△PBC即可求得.【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠P AB=∠P AC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△P AB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.5.(2021•四川省广元市)如图,在边长为2的正方形ABCD中,AE是以BC为直径的半圆的切线,则图中阴影部分的面积为()A. 32π+B. 2π- C. 1 D.52π-【答案】D【解析】【分析】取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OF A=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.【详解】解:取BC 的中点O ,设AE 与⊙O 的相切的切点为F ,连接OF 、OE 、OA ,如图所示:∵四边形ABCD 是正方形,且边长为2,∴BC=AB =2,∠ABC=∠BCD =90°,∵AE 是以BC 为直径的半圆的切线,∴OB =OC =OF =1,∠OF A =∠OFE =90°,∴AB =AF =2,CE =CF ,∵OA =OA ,∴Rt △ABO ≌Rt △AFO (HL ),同理可证△OCE ≌△OFE ,∴,AOB AOF COE FOE ∠=∠∠=∠,∴90AOB COE AOB BAO ∠+∠=︒=∠+∠,∴COE BAO ∠=∠,∴ABO OCE ∽, ∴OC CE AB OB=, ∴12CE =, ∴15222222ABO OCE ABCE S S S S S S ππ-=-=+-=+-=阴影半圆半圆四边形; 6.(2021•四川省广元市)如图,从一块直径是2的圆形铁片上剪出一个圆心角为90︒的扇形,将剪下来的扇形围成一个圆锥.那么这个圆锥的底面圆的半径是( )A. 4πB. 24C. 12D. 1【答案】B【解析】【分析】先计算BC 的长度,然后围成的圆锥底面周长等同于BC 的长度,根据公式计算即可.【详解】解:如下图:连接BC ,AO ,∵90BAC ∠=,∴BC 是直径,且BC=2,又∵AB AC =,∴45ABC ACB ∠=∠=,,AO BC ⊥又∵sin 45OA AB ︒=,112OA BC == , ∴ 12sin 452OA AB ===︒ ∴BC 的长度为:9022=1802π⨯,∴围成的底面圆周长为22π, 设圆锥的底面圆的半径为r , 则:222r ππ=, ∴212=224r ππ=⨯. 故选:B7. (2021•浙江省衢州卷) 已知扇形的半径为6,圆心角为150︒.则它的面积是( )A. 32πB. 3πC. 5πD. 15π【答案】D8. (2021•遂宁市) 如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别与BC ,AC 交于点D ,E ,过点D 作DF ⊥AC ,垂足为点F ,若⊙O 的半径为43,∠CDF =15°, 则阴影部分的面积为( )A. 16123π-B. 16243π-C. 20123π-D. 20243π-【答案】A【解析】 【分析】连接AD ,连接OE ,根据圆周角定理得到∠ADB =90°,根据等腰三角形的性质得到∠BAC =2∠DAC =2×15°=30°,求得∠AOE =120°,过O 作OH ⊥AE 于H ,解直角三角形得到OH 3AH =6,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接AD ,连接OE ,∵AB 是直径,∴∠ADB =90°,∴AD ⊥BC ,∴∠ADB =∠ADC =90°,∵DF ⊥AC ,∴∠DFC =∠DF A =90°,∴∠DAC =∠CDF =15°,∵AB =AC ,D 是BC 中点,∴∠BAC =2∠DAC =2×15°=30°,∵OA =OE ,∴∠AOE =120°,过O 作OH ⊥AE 于H ,∵AO 3∴OH =12AO 3, ∴AH 3=6,∴AE =2AH =12,∴S 阴影=S 扇形AOE -S △AOE =(212043112233602π⨯-⨯⨯163π=-故选:A .9. (2021•四川省自贡市)如图,直线22y x =-+与坐标轴交于A 、B 两点,点P 是线段AB 上的一个动点,过点P 作y 轴的平行线交直线3y x =-+于点Q ,OPQ △绕点O 顺时针旋转45°,边PQ 扫过区域(阴影部份)面积的最大值是( )A. 23πB. 12π C. 1116π D. 2132π 【答案】A【解析】【分析】根据题意得OQM OMN S S S =-阴影扇形扇形,设P (a ,2-2a ),则Q (a ,3-a ),利用扇形面积公式得到()21325?8S a a π=-++阴影,利用二次函数的性质求解即可.【详解】解:如图,根据旋转的性质,OPQ OMN ≅,∴OPQ OMN S S =,则OMN OPQ OQM OPN S S S S S =+--阴影扇形扇形OQM OPN S S =-扇形扇形,∵点P 在直线22y x =-+上,点Q 在直线3y x =-+上,且PQ ∥y 轴,设P (a ,2-2a ),则Q (a ,3-a ),∴OP 2=()22222584a a a a +-=-+,OQ 2=()2223269a a a a +-=-+, OQM OPN S S S =-阴影扇形扇形2245?45?360360OQ OP ππ=- ()21325?8a a π=-++, 设22116325333y a a a ⎛⎫=-++=--+ ⎪⎝⎭, ∵30-<,∴当13a =时,y 有最大值,最大值为163, ∴S 阴影的最大值为1612383ππ⨯=. 故选:A .10. (2021•青海省)如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( )A .πm 2B .πm 2C .πm 2D .πm 2【分析】小羊的最大活动区域是一个半径为5、圆心角为90°和一个半径为1、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【解答】解:大扇形的圆心角是90度,半径是5,所以面积==π(m 2);小扇形的圆心角是180°﹣120°=60°,半径是1m ,则面积==(m 2),则小羊A 在草地上的最大活动区域面积=π+=π(m 2). 故选:B .11. (2021•浙江省湖州市)如图,已知在矩形ABCD 中,AB =1,BC =3,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为C 1,当点P 运动时,点C 1也随之运动.若点P 从点A 运动到点D ,则线段CC 1扫过的区域的面积是A .πB .334π+C .332D .2π 【答案】B【解析】如图,C 1运动的路径是以B 为圆心,3为半径,圆心角为120°的弧上运动,故线段CC 1扫过的区域是一个圆心角为120°的扇形+一个以3为边长的等边三角形,故S =22120(3)333(3)36044ππ+⨯=+,故选B .12. (2021•湖南省张家界市)如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,设正方形ABCD 的面积为S ,黑色部分面积为1S ,则1S :S 的比值为(A ).A 8π .B 4π .C 41 .D 2113. (2021•云南省)如图,等边△ABC 的三个顶点都在⊙O 上,AD 是⊙O 的直径.若0A =3,则劣弧BD 的长是( )BA .B .πC .D .2π14. (2021•广西贺州市)如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为( )A. π6B. π3C. π2D. 2π3【答案】C【解析】【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒2222213AD AB BD ∴=-=-=S 扇形AEF 226060(3)3602r πππ⨯=== 故选C .15. (2021•湖北省江汉油田)用半径为30cm ,圆心角为120︒的扇形纸片恰好能围成一个圆锥的侧面,则这个圆锥底面半径为( )A. 5cmB. 10cmC. 15cmD. 20cm【答案】B【解析】【分析】根据圆锥的侧面是一个扇形,这个扇形的弧长等于圆锥底面周长即可得.【详解】解:设这个圆锥底面半径为cmr,由题意得:12030 2180ππ⨯=r,解得10(cm)r=,即这个圆锥底面半径为10cm,故选:B.16.(2021•呼和浩特市)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及π的值都正确的是CA.8(21)sin22.5d-=︒,8sin22.5π≈︒B.4(21)sin22.5d-=︒,4sin22.5π≈︒C.4(21)sin22.5d-=︒,8sin22.5π≈︒D.8(21)sin22.5d-=︒,4sin22.5π≈︒二.填空题1..(2021•湖南省衡阳市)底面半径为3,母线长为4的圆锥的侧面积为12π.(结果保留π)【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×4÷2=12π.故答案为:12π.2.(2021•怀化市)如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是π﹣.(结果保留π)【分析】由∠C=45°根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB﹣S△AOB 可得出结论.【解答】解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB﹣S△AOB==π﹣.故答案为:π﹣.3.(2021•宿迁市)已知圆锥的底面圆半径为4,侧面展开图扇形的圆心角为120°,则它的侧面展开图面积为_____________.【答案】48π【解析】【分析】首先根据底面圆的半径求得扇形的弧长,然后根据弧长公式求得扇形的半径,然后利用公式求得面积即可.【详解】解:∵底面圆的半径为4,∴底面周长为8π,∴侧面展开扇形的弧长为8π,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴120180r π=8π, 解得:r =12,∴侧面积为π×4×12=48π,故答案为:48π.4. (2021•山东省聊城市)用一块弧长16πcm 的扇形铁片,做一个高为6cm 的圆锥形工件侧面(接缝忽略不计),那么这个扇形铁片的面积为_______cm 2【答案】80π【解析】【分析】先求出圆锥的底面半径,再利用勾股定理求出圆锥的母线长,最后利用扇形的面积公式求解即可.【详解】解:∵弧长16πcm 的扇形铁片,∴做一个高为6cm 的圆锥的底面周长为16πcm ,∴圆锥的底面半径为:16π÷2π=8cm ,∴圆锥的母线长为:226810cm +=,∴扇形铁片的面积=16110280ππ⨯⨯=cm 2, 故答案是:80π.5. (2021•山东省泰安市)若△ABC 为直角三角形,AC =BC =4,以BC 为直径画半圆如图所示,则阴影部分的面积为 4 .【分析】连接CD .构建直径所对的圆周角∠BDC =90°,然后利用等腰直角△ABC 的性质:斜边上的中线是斜边的一半、中线与垂线重合,求得CD =BD =AD ,从而求得弦BD 与CD 所对的弓形的面积相等,所以图中阴影部分的面积=直角三角形ABC 的面积﹣直角三角形BCD 的面积.【解答】解:连接CD .∵BC是直径,∴∠BDC=90°,即CD⊥AB;又∵△ABC为等腰直角三角形,∴CD是斜边AB的垂直平分线,∴CD=BD=AD,∴=,∴S弓形BD=S弓形CD,∴S阴影=S Rt△ABC﹣S Rt△BCD;∵△ABC为等腰直角三角形,CD是斜边AB的垂直平分线,∴S Rt△ABC=2S Rt△BCD;又S Rt△ABC=×4×4=8,∴S阴影=4;故答案为:4.6..(2021•湖北省宜昌市)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为(2π﹣2)平方厘米.(圆周率用π表示)【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积等于三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵AB =AC =BC =2厘米,∠BAC =∠ABC =∠ACB =60°,∵AD ⊥BC ,∴BD =CD =1厘米,AD =BD =厘米, ∴△ABC 的面积为BC •AD =(厘米2), S 扇形BAC ==π(厘米2),∴莱洛三角形的面积S =3×π﹣2×=(2π﹣2)厘米2, 故答案为:(2π﹣2).7. (2021•广东省)如题13图,等腰直角三角形ABC 中,90A ∠=︒,4BC =.分别以点B 、点C 为圆心,线段BC 长的一半为半径作圆弧,交AB 、BC 、AC 于点D 、E 、F ,则图中阴影部分的面积为_________.【答案】4π- 【解析】211142π24π424ABC B S S S =-=⨯⨯-⨯⨯=-△⊙阴影,考查阴影面积的求法(主要还是用整体减去局部)8. (2021•湖北省恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径 26 寸.【分析】过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,则CD =1寸,AC =BC =AB ,连接OA ,设圆的半径为x ,利用勾股定理在Rt △OAC 中,列出方程,解方程可得半径,进而直径可求.【解答】解:过圆心O 作OC ⊥AB 于点C ,延长OC 交圆于点D ,连接OA ,如图:∵OC ⊥AB ,∴AC =BC =AB ,.则CD =1寸,AC =BC =AB =5寸.设圆的半径为x 寸,则OC =(x ﹣1)寸.在Rt △OAC 中,由勾股定理得:52+(x ﹣1)2=x 2,解得:x =13.∴圆材直径为2×13=26(寸).故答案为:26.9. (2021•浙江省宁波市) 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,,AC BD 分别与O 相切于点C ,D ,延长,AC BD 交于点P .若120P ∠=︒,O 的半径为6cm ,则图中CD 的长为________cm .(结果保留π)【答案】2π【解析】【分析】连接OC 、OD ,利用切线的性质得到90OCP ODP ∠=∠=︒,根据四边形的内角和求得60COD ∠=︒,再利用弧长公式求得答案.【详解】连接OC 、OD ,∵,AC BD 分别与O 相切于点C ,D ,∴90OCP ODP ∠=∠=︒,∵120P ∠=︒,360OCP ODP P COD ∠+∠+∠+∠=︒,∴60COD ∠=︒,∴CD 的长=6062180(cm ),故答案为:2π..10. (2021•浙江省台州)如图,将线段AB 绕点A 顺时针旋转30°,得到线段AC .若AB =12,则点B 经过的路径BC 长度为_____.(结果保留π)【答案】2π【解析】【分析】直接利用弧长公式即可求解.【详解】解:30122180BC l ππ⋅==, 故答案为:2π.11. 2021•浙江省温州市)若扇形的圆心角为30°,半径为17,则扇形的弧长为π . 【分析】根据弧长公式代入即可.【解答】解:根据弧长公式可得:l===π.故答案为:π.12.(2021•湖北省荆门市)如图,正方形ABCD的边长为2,分别以B,C为圆心,以正方形的边长为半径的圆相交于点P,那么图中阴影部分的面积为2﹣.【分析】连接PB、PC,作PF⊥BC于F,根据等边三角形的性质得到∠PBC=60°,解直角三角形求出BF、PF,根据扇形面积公式、三角形的面积公式计算,得到答案.【解答】解:连接PB、PC,作PF⊥BC于F,∵PB=PC=BC,∴△PBC为等边三角形,∴∠PBC=60°,∠PBA=30°,∴BF=PB•cos60°=PB=1,PF=PB•sin60°=,则图中阴影部分的面积=[扇形ABP的面积﹣(扇形BPC的面积﹣△BPC的面积)]×2=[﹣(﹣×2×)]×2=2﹣,故答案为:2﹣.13.(2021•江苏省盐城市)设圆锥的底面半径为2,母线长为3,该圆锥的侧面积为6π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:该圆锥的侧面积=×2π×2×3=6π.故答案为6π.14.(2021•重庆市A)如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F.若BD=4,∠CAB=36°,则图中阴影部分的面积为___________.(结果保留π).【答案】4 5π【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可.【详解】解:∵矩形ABCD的对角线AC,BD交于点O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴22362423605AOES Sππ⨯⨯===阴影扇形,故答案为:45π.15. (2021•重庆市B)如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为96﹣100π.(结果保留π)【分析】先求出菱形面积,再计算四个扇形的面积即可求解.【解答】解:在菱形ABCD中,有:AC=12,BD=16.∴.∵∠ABC +∠BCD +∠CDA +∠DAB =360°.∴四个扇形的面积,是一个以AB 的长为半径的圆.∴图中阴影部分的面积=×12×16﹣π×102=96﹣100π.故答案为:96﹣100π.16.(2021•湖北省十堰市)如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是_________.【答案】3π-6【解析】【分析】连接BE ,可得ABE △是等腰直角三角形,弓形BE 的面积=2π-,再根据阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积,即可求解.【详解】连接BE ,∵在正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,∴∠AEB =90°,即:AC ⊥BE ,∵∠CAB =45°,∴ABE △是等腰直角三角形,即:AE =BE ,∴弓形BE 的面积=211222242ππ⨯-⨯⨯=-, ∴阴影部分的面积=弓形BE 的面积+扇形CBF 的面积-BCE 的面积=2π-+2454360π⨯⨯-114422⨯⨯⨯=3π-6. 故答案是:3π-6.17. (2021•湖南省永州市)某同学在数学实践活动中,制作了一个侧面积为60π,底面半径为6的圆锥模型(如图所示),则此圆锥的母线长为 .18.(2021•黑龙江省大庆市)一个圆柱形橡皮泥,底面积是12cm 2.高是5cm .如果这个橡皮泥的一半,把它捏成高为5cm 的圆锥,则这个圆锥的底面积是 cm 2;【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm 的圆锥,则圆锥的高为5cm ,故1303Sh , 即15=303S , 解得=18S (cm 2),故填:18.19. (2021•黑龙江省大庆市) 如图,作⊙O 的任意一条直经FC ,分别以F 、C 为圆心,以FO 的长为半径作弧,与⊙O 相交于点E 、A 和D 、B ,顺次连接AB 、BC 、CD 、DE 、EF 、F A ,得到六边形ABCDEF ,则⊙O 的面积与阴影区域的面积的比值为 ;16题图DBE A OF C【分析】可将图中阴影部分的面积转化为两个等边三角形的面积之和,设⊙O 的半径与等边三角形的边长为a ,分别表示出圆的面积和两个等边三角形的面积,即可求解 【详解】连接OE ,OD ,OB ,OA ,由题可得:EF OF OE FA OA AB OB BC OC CD OD ==========,,,,,EFO OFA OAB OBC OCD ∴△△△△△△ODE 为边长相等的等边三角形∴可将图中阴影部分的面积转化为ODE 和OAB 的面积之和,如图所示:设⊙O 的半径与等边三角形的边长为a ,∴⊙O 的面积为22S r a ππ==等边OED 与等边OAB 的边长为a234OAB a S S ∴==△OED △ 23=2OED OABa S S S ∴+=△△阴 ∴⊙O 的面积与阴影部分的面积比为22233S S a π=阴故答案为:233π. 20. (2021•吉林省长春市)如图是圆弧形状的铁轨示意图,半径OA 的长度为200米,圆心角90AOB ∠=︒,则这段铁轨的长度 米,(铁轨的宽度忽略不计,结果保留π)【分析】根据圆的弧长计算公式l =,代入计算即可. 【解答】解:圆弧长是:=100π(米).故答案是:100π.21. (2021•绥化市)一条弧所对的圆心角为135°弧长等于半径为5cm 的圆的周长的3倍,则这条弧的半径为__________cm .【答案】40【解析】【分析】设出弧所在圆的半径,由于弧长等于半径为5cm 的圆的周长的3倍,所以根据原题所给出的等量关系,列出方程,解方程即可.【详解】解:设弧所在圆的半径为r ,由题意得, 135253180r ππ⨯⨯=⨯⨯, 解得,r=40cm .22. (2021•江苏省无锡市)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .【分析】圆锥的底面圆半径为r ,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r ,依题意,得2πr =,解得r =. 故答案为:. 23. (2021•山东省济宁市)如图,△ABC 中,∠ABC =90°,AB =2,AC =4,点O 为BC 的中点,以O 为圆心,以OB 为半径作半圆,交AC 于点D ,则图中阴影部分的面积是 ﹣ .【分析】根据题意,作出合适的辅助线,即可求得DE的长、∠DOB的度数,然后根据图形可知阴影部分的面积是△ABC的面积减去△COD的面积和扇形BOD的面积,从而可以解答本题.【解答】解,连接OD,过D作DE⊥BC于E,在△ABC中,∠ABC=90°,AB=2,AC=4,∴sin C===,BC===2,∴∠C=30°,∴∠DOB=60°,∵OD=BC=,∴DE=,∴阴影部分的面积是:2×2﹣﹣=﹣,故答案为:﹣.24.(2021•呼和浩特市)已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为__________.(用含π的代数式表示),圆心角为__________度.12 ,21625.(2021•齐齐哈尔市)一个圆锥的底面圆半径为6cm,圆锥侧面展开图扇形的圆心角为240°,则圆锥的母线长为_____cm.【答案】9.【解析】【详解】试题分析:求得圆锥的底面周长,利用弧长公式即可求得圆锥的母线长:∵圆锥的底面周长为:2π×6=12π,∴圆锥侧面展开图的弧长为12π.设圆锥的母线长为R,∴24012180Rππ⨯=,解得R=9cm.考点:圆锥的计算.26.(2021•内蒙古通辽市)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是﹣.【分析】连接OA、OB、OM,根据圆周角定理得到∠AOB=120°,求出OM=1,OA=2,再根据三角形中位线性质得到MN∥AC,MN=AC,然后根据三角形相似得到=()2=,故当△ABC的面积最大时,△MBN的面积最大,由C、O、M在一条直线时,△ABC的面积最大,求得△ABC的最大值,进而即可求得△MBN的面积最大值,利用扇形的面积和三角形的面积求得弓形的面积,进而即可求得阴影部分的最大值.【解答】解:连接OA、OB、OM,如图,∵∠ACB=60°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵AM=BM=AB=,∴OM⊥AB,∴tan30°=,∴OM=×=1,∴OA=2OM=2,∵点M、N分别是AB、BC的中点,∴MN∥AC,MN=AC,∴△MBN∽△ABC,∴=()2=,∴当△ABC的面积最大时,△MBN的面积最大,∵C、O、M在一条直线时,△ABC的面积最大,∴△ABC的面积最大值为:××(2+1)=3,∴△MBN的面积最大值为:,∵S弓形=S扇形OAB﹣S△AOB=﹣=﹣,∴此时,S阴影=﹣+=﹣,故答案为:﹣.三、解答题1.(2021•湖北省黄冈市)如图,在Rt△ABC中,∠ACB=90°,AC分别相切于点E,F,BO平分∠ABC(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.【分析】(1)有切点则连圆心,证明垂直关系;无切点则作垂线,证明等于半径;(2)将不规则图形转化为规则图形间的换算.【解答】(1)证明:连接OE,OF,∵BO是∠ABC的平分线,∴OD═OE,OE是圆的一条半径,∴AB是⊙O的切线,故:AB是⊙O的切线.(2)∵BC、AC与圆分别相切于点E,∴OE⊥BC,OF⊥AC,∴四边形OECF是正方形,∴OE═OF═EC═FC═1,∴BC═BE+EC═4,又AC═3,∴S阴影═(S△ABC﹣S正方形OECF﹣优弧所对的S扇形EOF)═×()═﹣.故图中阴影部分的面积是:﹣.2.(2021•湖南省邵阳市)某种冰激凌的外包装可以视为圆锥,它的底面圆直径ED与母线AD长之比为1:2.制作这种外包装需要用如图所示的等腰三角形材料,其中AB=AC,AD⊥BC.将扇形AEF围成圆锥时,AE,AF恰好重合.(1)求这种加工材料的顶角∠BAC的大小.(2)若圆锥底面圆的直径ED为5cm,求加工材料剩余部分(图中阴影部分)的面积.(结果保留π)【分析】(1)设∠BAC=n°.根据弧EF的两种求法,构建方程,可得结论.(2)根据S阴=•BC•AD﹣S扇形AEF求解即可.【解答】解:(1)设∠BAC=n°.由题意得π•DE=,AD=2DE,∴n=90,∴∠BAC=90°.(2)∵AD=2DE=10(cm),∴S阴=•BC•AD﹣S扇形AEF=×10×20﹣=(100﹣25π)cm2.3.(2021•江西省)如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.【分析】(1)先判断出∠CBE=∠D,再用等角的余角相等,即可得出结论;(2)①先判断出OC∥AB,再判断出BC∥OA,进而得出四边形ABCO是平行四边形,即可得出结论;②先求出AC,BC,再用面积的和,即可得出结论.【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∠D=90°﹣∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∴CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.4.(2021•湖北省随州市)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.(1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;(2)①如图1,P是边长为a的正ABC内任意一点,点O为ABC的中心,设点P到ABC各边距离分别为1h,2h,3h,连接AP,BP,CP,由等面积法,易知()123123ABC OAB h h h S a S ++==△△,可得123h h h ++=_____;(结果用含a 的式子表示) ②如图2,P 是边长为a 的正五边形ABCDE 内任意一点,设点P 到五边形ABCDE 各边距离分别为1h ,2h ,3h ,4h ,5h ,参照①的探索过程,试用含a 的式子表示12345h h h h h ++++的值.(参考数据:8tan 3611≈°,11tan 548≈°)(3)①如图3,已知O 的半径为2,点A 为O 外一点,4OA =,AB 切O 于点B ,弦//BC OA ,连接AC ,则图中阴影部分的面积为______;(结果保留π)②如图4,现有六边形花坛ABCDEF ,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形ABCDG ,其中点G 在AF 的延长线上,且要保证改造前后花坛的面积不变,试确定点G 的位置,并说明理由. (1)125,1;(2)①32a;②5516a ;(3)①23π;②见解析. 【分析】(1)根据等积法解得直角三角形斜边上的高的长,及利用内切圆的性质解题即可; (2)①先求得边长为a 的正ABC 的面积,再根据()123123ABC OAB h h h S a S ++==△△解题即可;②设点O 为正五边形ABCDE 的中心,连接OA ,OB ,过O 作OQ AB ⊥于Q ,先由正切定义,解得OQ 的长,由①中结论知,5OAB ABCDE S S =五边形△,继而得到()123451115tan 54222a h h h h h a a ++++=⨯⨯°,据此解题; (3)①由切线性质解得30OAB ∠=︒,再由平行线性质及等腰三角形性质解得60COB ∠=︒,根据平行线间的距离相等,及同底等高或等底同高的两个三角形面积相等的性质,可知图中阴影部分的面积等于扇形OBC 的面积,最后根据扇形面积公式解题;②连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,根据DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△,据此解题.【详解】解:(1)直角三角形的面积为:13462⨯⨯=,5=, 设直角三角形斜边上的高为h ,则1562h ⨯⋅= 125h ∴=设直角三角形内切圆的半径为r ,则11(345)3422++=⨯⨯ 1r ∴=,故答案为:125,1;(2)①边长为a 的正ABC ,面积为:212OAB a S =⋅=△()12322431ABC OAB h h h S S a a =++==△△123h h h =∴++2a ,故答案为:2a ; ②类比①中方法可知()1234512ABCDE a h h h h h S ++++=五边形, 设点O 为正五边形ABCDE 的中心,连接OA ,OB ,由①得5OAB ABCDE S S =五边形△,过O 作OQ AB ⊥于Q ,()1180521085EAB ∠=⨯⨯-=°°, 故54OAQ ∠=°,1tan 54tan 542OQ AQ a =⨯=°°,故()123451115tan 54222a h h h h h a a ++++=⨯⨯°,从而得到: 12345555tan 54216h h h h h a a ++++=≈°. (3)①AB 是O 的切线,OB AB ∴⊥90OBA ∴∠=︒2,4OB OA30OAB ∴∠=︒ 60AOB ∴∠=︒//BC OA60AOB OBC ∴∠=∠=︒OC OB =60OBC OCB ∴∠=∠=︒60COB ∴∠=︒过点O 作OQ BC ⊥//BC OA ,OQ ∴是COB ABC 、的高,ABCOCBSS∴=26060423603603OBCr S S πππ⨯⨯∴====阴影部分扇形故答案为:23π; ②如图,连接DF ,过点E 作//EG DF 交AF 的延长线于G 点,则点G 即为所求,连接DG ,∵DEF ABCDEF ABCDF S S S =+六边形五边形△, ∵//EG DF , ∴DEF DGF S S =△△,∴DGF ABCDEF ABCDF ABCDG S S S S =+=六边形五边形五边形△.5. (2021•襄阳市) 如图,直线AB 经过O 上的点C ,直线BO 与O 交于点F 和点D ,OA 与O 交于点E ,与DC 交于点G ,OA OB =,CA CB =.(1)求证:AB 是O 的切线;(2)若//FC OA ,6CD =,求图中阴影部分面积.【答案】(1)见解析;(2)33 2π26.(2021•贵州省贵阳市)如图,在⊙O中,AC为⊙O的直径,AB为⊙O的弦,点E是的中点,过点E作AB的垂线,交AB于点M,交⊙O于点N,分别连接EB,CN.(1)EM与BE的数量关系是BE=EM;(2)求证:=;(3)若AM=,MB=1,求阴影部分图形的面积.【分析】(1)证得△BME是等腰直角三角形即可得到结论;(2)根据垂径定理得到∠EMB=90°,进而证得∠ABE=∠BEN=45°,得到=,根据题意得到=,进一步得到=;(3)先解直角三角形得到∠EAB=30°,从而得到∠EOB=60°,证得△EOB是等边三角形,则OE=BE=,然后证得△OEB≌△OCN,然后根据扇形的面积公式和三角形面积公式求得即可.【解答】解:(1)∵AC为⊙O的直径,点E是的中点,∴∠ABE=45°,∵AB⊥EN,∴△BME是等腰直角三角形,∴BE=EM,故答案为BE=EM;(2)连接EO,AC是⊙O的直径,E是的中点,∴∠AOE=90°,∴∠ABE=∠AOE=45°,∵EN⊥AB,垂足为点M,∴∠EMB=90°∴∠ABE=∠BEN=45°,∴=,∵点E是的中点,∴=,∴=,∴﹣=﹣,∴=;(3)连接AE,OB,ON,∵EN⊥AB,垂足为点M,∴∠AME=∠EMB=90°,∵BM=1,由(2)得∠ABE=∠BEN=45°,∴EM=BM=1,又∵BE=EM,∴BE=,∵在Rt△AEM中,EM=1,AM=,∴tan∠EAB==,∴∠EAB=30°,∵∠EAB=∠EOB,∴∠EOB=60°,又∵OE=OB,∴△EOB是等边三角形,∴OE=BE=,又∵=,∴BE=CN,∴△OEB≌△OCN(SSS),∴CN=BE=又∵S扇形OCN==,S△OCN=CN•CN=×=,∴S阴影=S扇形OCN﹣S△OCN=﹣.7.(2021•湖北省黄石市)如图,PA、PB是O的切线,A、B是切点,AC是O的直径,连接OP,交O于点D,交AB于点E.(1)求证://BC OP;(2)若E恰好是OD的中点,且四边形OAPB的面积是163,求阴影部分的面积;(3)若1sin3BAC∠=,且23AD=,求切线PA的长.【答案】(1)见解析;(2)823π-;(3)2【解析】。

2021年中考数学二轮复习冲刺集训:圆的有关性质(含答案)

2021年中考数学二轮复习冲刺集训:圆的有关性质(含答案)

2021中考数学冲刺集训:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.103. 如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于()A. 64°B. 58°C. 72°D. 55°4. 如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°5. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°6. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.7 B.27 C.6 D.87. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米8. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题9. 如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.10. 如图,AB 是⊙O的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD=________°.11. 如图0,A ,B 是⊙O 上的两点,AB =10,P 是⊙O 上的动点(点P 与A ,B 两点不重合),连接AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF =________.12. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)13. 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.14. 如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题17. 如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).18. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG . (1)求证:AB =CD ; (2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.19. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE20. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.2021中考数学冲刺集训:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB=AP,∴AB=2BP=2 OB2-OP2.再过点P任作一条弦MN,过点O作OG⊥MN于点G,连接ON.则MN=2GN=2 ON2-OG2.∵OP>OG,OB=ON,∴MN>AB,∴AB是⊙O中的过点P最短的弦.在Rt△OPB中,PO=3,OB=5,由勾股定理,得PB=4,则AB=2PB=8.3. 【答案】B【解析】∵∠D与∠AOC同对弧AC,∴∠AOC=2∠D=2×32°=64°,∵OA=OC,∴∠OAC=∠OCA,在△OAC中,根据三角形内角和为180°,可得∠OAC=12(180°-∠AOC)=12×(180°-64°)=58°.4. 【答案】B5. 【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA=12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.6. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.7. 【答案】D8. 【答案】C[解析] ∵∠ACB =90°,∴点C 在以O 为圆心,OA 长为半径的圆上.第24秒时,∠ACE =48°,∴∠EOA =2∠ACE =96°.二、填空题9. 【答案】35 【解析】∵OA =OB =OC ,∴∠OAB =∠B ,∠C =∠OAC ,∵∠AOB =40°,∴∠B =∠OAB =70°,∵CD ∥AB ,∴∠BAC =∠C ,∴∠OAC=∠BAC =12∠OAB =35°. 10. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.12. 【答案】菱形 [解析] 连接OC.∵C 是AB ︵的中点, ∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB ,∴四边形OACB是菱形.13. 【答案】5[解析] 设圆的半径为x,则OE=x-1.根据垂径定理可知,CE=3,由勾股定理可得32+(x-1)2=x2,解得x=5.故答案为5.14. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B +∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.15. 【答案】65[解析] ∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.16. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.三、解答题17. 【答案】(1)证明:∵BC 2=CD ·CA , ∴BC CA =CD BC , ∵∠C =∠C ,∴△CBD ∽△CAB , ∴∠CBD =∠BAC , 又∵AB 为⊙O 的直径, ∴∠ADB =90°,即∠BAC +∠ABD =90°, ∴∠ABD +∠CBD =90°, 即AB ⊥BC ,又∵AB 为⊙O 的直径, ∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形. 证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC , 又∵△CBD ∽△CAB , ∴∠BAC =∠CBD , ∴∠CBD =∠DAE , ∵∠DAE =∠DBF , ∴∠DBF =∠CBD , ∵∠BDF =90°,∴∠BDC =∠BDF =90°, ∵BD =BD ,∴△BDF ≌△BDC , ∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线, ∴∠ABC =90° ∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20, ∴⊙O 的半径为r =AB2=10, ∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.18. 【答案】(1)证明:∵AC 为直径, ∴∠ABC =∠ADC =90°, ∴∠ABC =∠BAD =90°, ∴BC ∥AD ,∴∠BCA =∠CAD , 又∵AC =CA ,∴△ABC ≌△CDA (AAS), ∴AB =CD ;(2)证明:∵AE 为⊙O 的切线且O 为圆心, ∴OA ⊥AE , 即CA ⊥AE ,∴∠EAB +∠BAC =90°, 而∠BAC +∠BCA =90°, ∴∠EAB =∠BCA , 而∠EBA =∠ABC , ∴△EBA ∽△ABC , ∴EB AB =BA BC , ∴AB 2=BE ·BC , 由(1)知AB =CD , ∴CD 2=BE ·BC ;(3)解:由(2)知CD 2=BE ·BC ,即CD 2=92BC ①,∵FG ∥BC 且点F 为AC 的三等分点, ∴G 为AB 的三等分点, 即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③,将③代入①得,CD =332.19. 【答案】(1)如图,连接OA ,过O 作OF AE 于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵23CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-20. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD 为平行四边形,∴∠BOD =∠BCD ,∠OBC =∠ODC .又∵∠BAD +∠BCD =180°,∠BAD =12∠BOD ,∴12∠BOD +∠BOD =180°,解得∠BOD =120°,∴∠BAD =12∠BOD =12×120°=60°,∠OBC =∠ODC =180°-∠BOD =180°-120°=60°. 又∵∠ABC +∠ADC =180°,∴∠OBA +∠ODA =∠ABC +∠ADC -(∠OBC +∠ODC )=180°-(60°+60°)=60°.②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。

2021年九年级中考第二轮数学专题复习:圆的综合 强化训练(一)

2021年九年级中考第二轮数学专题复习:圆的综合 强化训练(一)

2021年九年级中考第二轮数学专题复习:圆的综合强化训练(一)1.如图,AB,CD是⊙O的两条直径,且AB⊥CD,点E,点F分别在半径OC,OD上(不与点O,点C,点D重合),连接AE,EB,BF,FA.(1)若CE=DF,求证:四边形AEBF是菱形.(2)过点O作OG⊥EB,分别交EB,⊙O于点H,点G,连接BG.①若∠COG=∠EBG,判断△OBG的形状,说明理由.②若点E是OC的中点,求的值.2.已知:在半径为2的扇形AOB中,∠AOB=m°(0<m≤180),点C 是上的一个动点,直线AC与直线OB相交于点D.(1)如图1,当0<m<90,△BCD是等腰三角形时,求∠D的大小(用含m的代数式表示);(2)如图2,当m=90点C是的中点时,联结AB,求的值;(3)将沿AC所在的直线折叠,当折叠后的圆弧与OB所在的直线相切于点E,且OE=1时,求线段AD的长.3.如图,在矩形ABCD中,AB=4,BC=8,点P在边BC上(点P与端点B、C不重合),以P为圆心,PB为半径作圆,圆P与射线BD的另一个交点为点E,直线CE与射线AD交于点G.点M为线段BE的中点,联结PM.设BP=x,BM=y.(1)求y关于x的函数解析式,并写出该函数的定义域;(2)联结AP,当AP∥CE时,求x的值;(3)如果射线EC与圆P的另一个公共点为点F,当△CPF为直角三角形时,求△CPF的面积.4.如图所示,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作CE⊥OB,交⊙O于点C,垂足为点E,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB.(2)求证:BC2=CE•CP.(3)当AB=4时,求劣弧BC长度(结果保留π).5.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D在AB上,AD =2,以点A为圆心,AD长为半径的弧交AC于点E,与BC交于点F ,G,P是上一点.将AP绕点A逆时针旋转120°,得到AQ,连接CQ,AF.(1)若BP与所在圆相切,判断CQ与所在圆的位置关系.并加以证明;(2)求BF的长及扇形EAF的面积;(3)若∠PAB=m°,当∠ACQ=30°,直接写出m的值.6.如图,⊙O是△ABC的外接圆,AB=AC,BO的延长线交AC于点D.(1)求证:∠BAC=2∠ABD;(2)若=,求tan∠ABD.7.已知:如图,在△ABC中,点I是△ABC的内心(三角形三条角平分线的交点),延长AI与△ABC的外接圆交于点D,连接BD,DC.求证:(1)DI=DB;(2)若∠BAC=60°,BC=2,求DI的长.8.有一些代数问题,我们也可以通过几何方法进行求解,例如下面的问题:已知:a>b>0,求证:>.经过思考,小明给出了几何方法的证明,如图:①在直线l上依次取AB=a,BC=b;②以AC为直径作半圆,圆心为O;③过B点作直线l的垂线,与半圆交于点D,连接OD.请回答:(1)连接AD,CD,由作图的过程判断,∠ADC=90°,其依据是;(2)根据作图过程,试求线段BD、OD(用a,b的代数式表示),请写出过程;(3)由BD⊥AC,可知BD<OD,其依据是,由此即证明了这个不等式.9.如图,⊙O是△ABC的外接圆,∠ACB=90°.D是⊙O上一点,连接CD,与AB交于点F,过点A作⊙O的切线交DC延长线于点E,已知AC=EC.(1)求证:AD=AE;(2)若AE=2,EF=2,求⊙O的直径.10.如图,已知Q是∠BAC的边AC上一点,AQ=15,cot∠BAC=,点P 是射线AB上一点,联结PQ,⊙O经过点A且与QP相切于点P,与边AC 相交于另一点D.(1)当圆心O在射线AB上时,求⊙O的半径;(2)当圆心O到直线AB的距离为时,求线段AP的长;(3)试讨论以线段PQ长为半径的⊙P与⊙O的位置关系,并写出相应的线段AP取值范围.11.如图,已知扇形AOB的半径OA=4,∠AOB=90°,点C、D分别在半径OA、OB上(点C不与点A重合),联结CD.点P是弧AB上一点,PC=PD.(1)当cot∠ODC=,以CD为半径的圆D与圆O相切时,求CD的长;(2)当点D与点B重合,点P为弧AB的中点时,求∠OCD的度数;(3)如果OC=2,且四边形ODPC是梯形,求的值.12.如图,已知半圆O的直径AB=4,点P在线段OA上,半圆P与半圆O 相切于点A,点C在半圆P上,CO⊥AB,AC的延长线与半圆O相交于点D,OD与BC相交于点E.(1)求证:AD•AP=OD•AC;(2)设半圆P的半径为x,线段CD的长为y,求y与x之间的函数解析式,并写出定义域;(3)当点E在半圆P上时,求半圆P的半径.13.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD ∥AC交⊙O于点D,连接CD,OC,且OC交DB于点E.若.(1)求∠COB的大小和⊙O的半径长.(2)求由弦CD,BD与弧BC所围成的阴影部分的面积(结果保留π).14.如图1,▱ABCF的顶点A,B,C在⊙O上,AB=AC.(1)求证:AF为⊙O的切线;(2)如图2,CF与⊙O交于点E,连接BE.若AB=BE,CE=EF,求cos∠BEC的值.15.四边形ABCD内接于⊙O,AB是⊙O的直径,AD=CD.(1)如图1,求证∠ABC=2∠ACD;(2)过点D作⊙O的切线,交BC延长线于点P(如图2).若tan∠CAB =,BC=1,求PD的长.参考答案1.解:(1)在⊙中,OA=OB=OC=OD,∵CE=DF,∴OC﹣CE=OD﹣DF,∴OE=OF,∵AB⊥CD,即AB⊥EF,∴四边形AEBF是菱形.(2)①△OBG是等边三角形.理由如下:∵AB⊥CD,OG⊥EB,∴∠COB=∠OHB=90°,∴∠COG=90°﹣∠BOH=∠EBO,∵∠COG=∠EBG,∴∠EBO=∠EBG,∵BH=BH,∠BHO=∠BHG=90°∴△BHO≌△BHG(ASA)∴OB=GB,∵OB=OG,∴OB=OG=GB,∴△OBG是等边三角形.②设⊙的半径长为2m,则OC=OG=OB=2m,∵点E是OC的中点,∴OE=m,∴BE==m;∵∠EOH=90°﹣∠BOH=∠EBO,∴==cos∠EBO,∴=,∴HO=m,∴GH=2m﹣m,∴==.2.解:(1)C在AB弧线上,∴∠OBC为锐角,∴∠CBD为钝角,则△BCD是等腰三角形时,仅有BC=BD这一种情况,∴∠D=∠BCD,连接OC则OA=OC=OB,∴∠OAC=∠OCA,∠OCD=∠OBC,∴∠OBC=∠D+∠BCD=2∠D,在△OCD中,∠COD+2∠D+2∠D=180°,∴∠AOC=m°﹣∠COD=m°+4∠D﹣180°,∴∠AOC=×(180°﹣∠AOC)=180°﹣﹣2∠D,在△AOD中,m°+∠OAC+∠D=180°,∴180°+﹣∠D=180°,∴∠D=;(2)过D作DM⊥AB延长线于M,连接OC,∵C为中点,∴AC=BC,∴∠BAC=∠ABC且AO=CO=BO,∴∠OAC=∠OCA=∠OCB=∠OBC,∴∠ACO+∠BCO=×(360°﹣90°)=135°,∴∠BCD=45°,∴45°+∠ODA=∠ABC+∠ABD=45°+∠ABC,∴∠ABC=∠ADO=∠BAC,∴BD=AB=2(勾股定理),∴BM=DM=2(∠MBD=∠OBA=45°,∴BM=DM),∴AM=AB+BM=2+2,∴AN=AB=,又∵CN⊥AB,DM⊥AB,∴△ANC∽△AMD,∴,∴==6+4;(3)图2如下:∵E为弧线AEC与OB切点,∴A、E、C在半径为2的另一个圆上,∵O′E=2,OE=1,∴OO′=(勾股定理),又∵OA=OC=2,O′A=O′C=2,∴四边形AOCO′是菱形,∴AC⊥OO′且AC、OO′互相平分,且∠O′OE共角,∴△O′OE∽△DOP,∴=且OP=OO′=,∴OP=,∴AP==(Rt△APO′的勾股定理)∴AD=AP+PD=.3.解:(1)在矩形ABCD中,CD=AB=4,BC=8,∠BCD=90°,∴BD==4,∵M为弦BE的中点,P为圆心,∴PM⊥BE,∠BMP=90°,∵AD∥BC,∴∠PBM=∠DBC,∴==cos∠DBC,∴=,∴y=x,当点G与点A重合时,则点E为BD中点,此时y=BD=,由x=,得x=,∴y关于x的函数解析式y=x(≤x<8);(2)如图1,当AP∥CE时,则四边形APCG是平行四边形,AG=PC,∴DG=BP=x.由BM=x,得BE=x,DE=4﹣x∵DG∥BC∴△DGE∽△BCE,∴===;∴=,整理,得x2+8x﹣40=0,解得x 1=﹣4+2,x2=﹣4﹣2(不符合题意,舍去).∴x=﹣4+2.(3)如图2,若∠PFC=90°,则点F与点E重合,不符合题意;如图3,当∠PCF=90°时,则点E与点D重合,此时y=×4=2,由x=2,得x=5,∴PC=8﹣5=3,CF=CD=4,∴S△CPF=×3×4=6;如图4,当∠CPF=90°时,过点E作EQ⊥BC交BC的延长线于点Q,在BC边上取一点H,连接DH,使DH=BH,由图3得,当点E与点D重合时,则点P与图4中的点H重合,此时,CH =3,DH=5,∴CH:CD:DH=3:4:5,∵∠EPQ=∠DHC=2∠DBC,∠Q=∠DCH=90°,∴△EPQ∽△DHC,∴PQ:EQ:PE=3:4:5,∵PE=BP=PF=x,∴EQ=x,PQ=x∵PF∥EQ,∴△CPF∽△CQE,∴===,∴PC=PQ=×x=x,∴8﹣x=x,解得x=6,∴PC=8﹣6=2,PF=6,∴S△CPF=×2×6=6.综上所述,△CPF的面积为6.4.(1)证明:连接AC,BC,∵OC=OA,∴∠OCA=∠OAC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠F=90°,∴AF∥OC,∴∠FAC=∠OCA,∴∠FAC=∠OAC,∴CA平分∠FAB.(2)证明:∵CD是直径,∴∠CBD=90°,∴∠CBP=90°,∵CE⊥OB,∴∠CEB=∠CBP=90°,∵PC切⊙O于点C,∴∠PCB=∠CAB,∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∠BCE+∠ABC=90°,∵∠CAB=∠BCE,∴∠PCB=∠BCE,∴△BCE∽△PCB,∴,∴BC2=CE•CP;(3)解:,设CF=3a,CP=4a,∵BC2=CE•CP=3a•4a=12a2,∴BC=2a,在Rt△BCE中,sin∠CBE=,∴∠CBE=60°,∴∠BCE=30°,∴△COB是等边三角形,∵AB=4,∴OB=BC=2,∴劣弧BC的长==π.5.解:(1)CQ与所在圆相切;证明:由旋转知,AP=AQ,∠PAQ=120°,∵∠BAC=120°,∴∠PAQ=∠BAC,∴∠PAQ﹣∠PAC=∠BAC﹣∠PAC,∴∠ACQ=∠ABP,∵AC=AB,∴△ACQ≌△ABP(SAS),∴∠AQC=∠APB,∵BP与所在圆相切,∴∠APB=90°,∴∠AQC=90°,∵AQ=AP,∴CQ与所在圆相切;(2)如图,过点A作AN⊥BC于N,∵AB=AC=2,∠BAC=120°,∴∠ABC=30°,∴AN=AB=,∴BN=AN=3,①当点F在点G的左边时,过点F作FM⊥AB于M,设FM=m,在Rt△BMF中,BF=2m,BM=m,∴AM=AB﹣BM=(2﹣m),在Rt△AMF中,根据勾股定理得,FM2+AM2=AF2,∴m2+[(2﹣m)]2=22,∴m=1或m=2,∴BF=2m=2或4(舍),∴BF=AF,∴∠BAF=∠ABC=30°,∴∠EAF=90°,∴S扇形EAF==π;②当点F在点G的右边时,同①的方法得,BF=4,S扇形EAF=﹣=;即当BF=2时,扇形EAF的面积为π,当BF=4时,扇形EAF的面积为;(3)由(1)知,△ACQ≌△ABP,∴∠ABP=∠ACQ=30°,∵∠ABP=30°,∴点P在BC上,即点P与点F或G重合,当点P与点F重合时,∠PAB=∠BAF,由(2)知,∠BAF=30°,∴m=30,当点P与点G重合时,∠PAB=∠BAG=90°,∴m=90,即m的值为30或90.6.解:(1)连接AO,并延长交BC于点H,∵AB=AC,∴.∴AH⊥BC.∴AH平分∠BAC.∴∠BAC=2∠BAH.∵OA=OB,∴∠ABD=∠BAH.∴∠BAC=2∠ABD.(2)过A作AE∥BC,交BD延长线于点E,∵AE∥BC,∴.∵AB=AC,AH⊥BC,∴BH=BC.∴.∵AE∥BC,∴.设OB=OA=4a,则OH=3a.∴BH=.AH=OA+OH=7a.∵∠ABD=∠BAH,∴tan∠ABD=tan∠BAH=.7.(1)证明:连接BI,如图1所示:∵点I是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠CAD,∠ABI=∠CBI,∵∠BID=∠BAI+∠IBA,∠IBD=∠CBI+∠CBD,∠CBD=∠CAD,∴∠BID=∠IBD,∴DI=DB;(2)解:过点D作DE⊥BC于E,如图2所示:由(1)得:∠BAD=∠CAD,∴,∴BD=CD,∵DE⊥BC,∴BE=CE=BC=,∵∠BAC=60°,∴∠BAD=∠CAD=30°,∴∠DBC=∠BCD=30°,∴DE=BE=1,BD=2DE=2,∴DI=BD=2.8.解:(1)∵AC为直径,∴∠ADC=90°(直径所对的圆周角是直角).故答案为:直径所对的圆周角是直角;(2)∵BD⊥AC,∴∠ABD=∠CBD=90°.∴∠BAD+∠ADB=90°.∵∠ADC=90°,∴∠CDB+∠ADB=90°.∴∠BAD=∠CDB.∴△ABD∽△DBC.∴.∴BD2=AB•BC=ab.∴BD=.∵AB=a,BC=b,∴AC=a+b.∴OD=.(3)∵BD⊥AC,∴BD<OD(直线外一点到直线上各点的所有连线中,垂线段最短).∴>.故答案为:垂线段最短.9.(1)证明:∵∠ACB=90°.∴AB是⊙O的直径,∵EA是⊙O的切线,∴BA⊥EA,∴∠EAC+∠CAB=90°,∵∠B+∠CAB=90°,∴∠EAC=∠B,∵AC=EC,∴∠EAC=∠E,∴∠E=∠B,∵∠B=∠D,∴∠E=∠D,∴AD=AE;(2)解:∵∠EAF=90°,AE=2,EF=2,∴AF==2,由(1)知:AD=AE=2,∵∠B=∠E,∠ACB=∠EAF=90°,∴△ACB∽△FAE,∴=,∴AB=AC,如图,过点A作AG⊥CD于点G,设AC=EC=t,则CF=2﹣t,∵tan∠E==,sin∠E===,∴AG=,∴FG==,∴EG=EC+CG,∴CG=CF﹣FG=2﹣t﹣=﹣t,∵AC2=AG2+CG2,∴t2=()2+(﹣t)2,解得t=,∴AB=AC=t=3.∴⊙O的直径是3.10.解:(1)如图1中,∵点O在PA上,PQ是⊙O的切线,∴PQ⊥AP,∵cot∠PAQ==,∴可以假设PA=3k,PQ=4k,则AQ=5k=15,∴k=3,∴PA=9,PQ=12,∴⊙O的半径为.(2)如图2﹣1中,当点O在射线AB的上方时,过点Q作QK⊥AB于K,过点O作OH⊥AB于H.∵PQ是⊙O的切线,∴∠PHO=∠OPQ=∠PKQ=90°,∴∠OPH+∠QPK=90°,∠QPK+∠PQK=90°,∴△PHO∽△QKP,∴=,设PA=2m,则AH=PH=m,PK=9﹣2m,∴=,解得,m=或﹣3,经检验,x=是分式方程的解,且符合题意.∴AP=3.如图2﹣2中,当点O在射线AB的下方时,同法可得AP=.综上所述,满足条件的AP的值为3或.(3)如图3﹣1中,当⊙P与⊙O内切时,由△PHO∽△QKP,可得==,∵OH⊥AP,∴AH=PH,∴AP=2PH,QK=2PH,∴PA=QK=12,如图3﹣2中,当⊙O与AC相切于点A时,∵∠OAQ=∠OPQ=90°,OQ=OQ,OA=OP,∴Rt△OAQ≌Rt△OPQ(HL),∴AQ=PQ,∵OA=OP,∴OQ垂直平分线段AP,∴AP=2AH=18,观察图像可知:当⊙O与⊙P内含时,0<AP<12.当⊙O与⊙P内切时,AP=12.当⊙O与⊙P相交时,12<AP<18.11.解:(1)如图1中,∵∠COD=90°,cot∠ODC==,∴可以假设OD=3k,OC=4k,则CD=5k,∵以CD为半径的圆D与圆O相切,∴CD=DB=5k,∴OB=OC=8k,∴AC=OC=4k=2,∴k=,∴CD=.(2)如图2中,连接OP,过点P作PE⊥OA于E,PF⊥OB于F.∵=,∴∠AOP=∠POB,∵PE⊥OA,PF⊥OB,∴PE=PF,∵∠PEC=∠PFB=90°,PD=PC,∴Rt△PEC≌Rt△PFB(HL),∴∠EPC=∠FPB,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠CPB=90°,∴∠PCB=∠PBC=45°,∵OP=OB,∠POB=45°,∴∠OBP=∠OPB=67.5°,∴∠CBO=67.5°﹣45°=22.5°,∴∠OCD=90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC∥PD时,∵OC∥PD,∴∠PDO=∠AOD=90°,∵CE⊥PD,∴∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,设PC=PD=x,EC=OD=y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD=2﹣2,∴==﹣1.如图3﹣2中,当PC∥OD时,∵PC∥OD,∴∠COD=∠OCE=∠CED=90°,∴四边形OCED是矩形,∴OC=DE=2,CE=OD,∵OP=4,OC=2,∴PC===2,∴PD=PC=2,∴PE===2,∴EC=OD=2﹣2,∴===3+,综上所述,的值为﹣1或3+.12.解:(1)连接CP,如图:∵AP=CP,AO=DO,∴∠A=∠ACP=∠ADO,∴△ACP∽△ADO,∴,∴AD•CP=OD•AC,∴AD•AP=OD•AC;(2)∵半圆O的直径AB=4,∴AO=2,∵半圆P的半径为x,∴OP=2﹣x,∵CO⊥AB,∴∠COP=90°,∴CO2=CP2﹣OP2=x2﹣(2﹣x)2=4x﹣4,Rt△AOC中,AC==2,∵∠A=∠ACP=∠ADO,∴CP∥DO,∴,又线段CD的长为y,∴,变形得:y=,x范围是0<x≤2;(3)设半圆P与AB交于G,连接EG,过E作EH⊥AB于H,如图:设半圆P的半径为x,由(2)知AC=2,∵CO⊥AB,∴BC=AC=2,∵CP∥DO,∴,而OB=2,PB=4﹣x,∴,∴BE=,∵点E在半圆P上,∴∠EGB=∠ACB,且∠B=∠B,∴△CAB∽△GEB,∴=,∴,∴EG=,∵AC=BC,∴EG=BG,而BG=AB﹣AG=4﹣2x,∴=4﹣2x,解得x=或(大于2,舍去),∴半圆P的半径为x=.13.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm),∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,∴=,∴OB=5,故⊙O的半径长为5cm;(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°∵∠CED=∠BEO,BE=ED,,∴△CDE≌△OBE(ASA),∴S阴影=S扇形==(cm2).答:阴影部分的面积为cm2.14.(1)证明:连接OB,OC,OA,延长AO交BC于点D,∵AB=AC,OB=OC,∴AD⊥BC,∴∠ADB=90°,∵四边形ABCF为平行四边形,∴AF∥BC,∴∠FAO=∠ADB=90°,∴AF为⊙O的切线;(2)解:连接AE,过点B作BH⊥FC,交FC的延长线于点H,∵四边形ABCF为平行四边形,∴AF=BC,AF∥BC,∴∠FAC=∠ACB,∵AB=AC,∴∠ABC=∠ACB,∵∠AEC+∠AEF=180°,∠AEC+∠ABC=180°,∴∠AEF=∠ABC=∠ACB=∠FAC,∵∠F=∠F,∴△FAE∽△FCA,∴,∴AF2=FE•FC,设CE=EF=1,CH=x,∴AF2=2,∴AF=,∴CF=AB=AC=BE=2,BC=,∵BH2=BC2﹣CH2=BE2﹣EH2,∴,解得,x=,∴EH=,∴cos∠BEC==.15.解:(1)证明:∵AD=CD,∴∠DAC=∠ACD,∴∠ADC+2∠ACD=180°,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∴∠ABC=2∠ACD,(2)连接OD交AC于E,如图:∵PD为⊙O切线,∴OD⊥DP,∵AD=CD,∴弧AD=弧CD,∴OD⊥AC,AE=CE,∵∠DEC=90°,∵AB为直径,∴∠ACB=90°,∴∠ECP=90°,∴四边形DECP是矩形,∴DP=EC,∵tan∠CAB=,BC=1,∴==,∴AC=,∴EC=AC=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。

相关文档
最新文档