高考数学(理)二轮复习专题强化训练:(十一)计数原理、二项式定理、概率理
高三数学二轮复习 1.7.1 计数原理、二项式定理课时巩固过关练 理 新人教版(2021年整理)
2017届高三数学二轮复习1.7.1 计数原理、二项式定理课时巩固过关练理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017届高三数学二轮复习1.7.1 计数原理、二项式定理课时巩固过关练理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017届高三数学二轮复习1.7.1 计数原理、二项式定理课时巩固过关练理新人教版的全部内容。
课时巩固过关练十八计数原理、二项式定理(35分钟55分)一、选择题(每小题5分,共20分)1。
(2016·襄阳一模)从8名女生和4名男生中,选取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的选取方法数为()A。
224 B。
112 C。
56 D.28【解析】选B。
根据分层抽样,从8个人中选取男生1人,女生2人,所以选取2个女生1个男生的方法:=112(种).2。
(2016·三明一模)将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有( )A。
12种B。
20种 C.40种D。
60种【解析】选C.五个元素没有限制全排列数为,由于要求A,B,C的次序一定(按A,B,C或C,B,A),故除以这三个元素的全排列,可得有×2=40(种)。
3。
(2016·郑州一模)设(1+x+x2)n=a0+a1x+…+a2n x2n,则a2+a4+…+a2n的值为( )A。
B.C。
3n-2 D.3n【解析】选B.令x=1,得a0+a1+a2+…+a2n-1+a2n=3n.①再令x=-1得,a0—a1+a2—…—a2n-1+a2n=1。
专题11 计数原理【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
【题目来源】2020年高考数学课标Ⅲ卷理科·第14题
18.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。(用数字填写答案)
【答案】16
解析:方法一:直接法,1女2男,有 ,2女1男,有
【题目栏目】计数原理\二项式定理\二项式定理
【题目来源】2020年高考数学课标Ⅰ卷理科·第8题
5.(2019年高考数学课标Ⅲ卷理科·第4题) 的展开式中 的系数为()
A.12B.16C.20D.24
【答案】【答案】A
【解析】因为 ,所以 的系数为 ,故选A.
【点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数,是常规考法。
(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2017年高考数学课标Ⅲ卷理科·第4题
9.(2017年高考数学课标Ⅱ卷理科·第6题)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()
2013-2022十年全国高考数学真题分类汇编
专题11计数原理
一、选择题
1.(2020年新高考I卷(山东卷)·第3题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同 安排方法共有()
A.120种B.90种
C.60种D.30种
【答案】C
现在可看成是3组同学分配到3个小区,分法有:
根据分步乘法原理,可得不同的安排方法 种
2018年高考数学(浙江省专用)复习专题测试:第11章 计数原理 11.2 二项式定理
(浙江专用)
第十一章 计数原理
§11.2 二项式定理
五年高考
考点 二项式定理及应用
1.(2017课标全国Ⅲ理,4,5分)(x+y)(2x-y)5的展开式中x3y3的系数为 ( A.-80 B.-40 C.40 D.80 )
答案 C 本题考查二项式定理,求特定项的系数.
r 3 r r 3 2 C5 (2x-y)5的展开式的通项为Tr+1= · (2x)5-r· (-y)r=(-1)r· 25-C x5-ryr.其中x2y3项的系数为(-1)3· 22C · 5 · 5 =-40,x y 2 C5 项的系数为(-1)2· 23· =80.于是(x+y)(2x-y)5的展开式中x3y3的系数为-40+80=40.
2 2 Cn C3 C6 C1 C1 C C3 · 4 .从而f(3,0)= 6 =20, f(2,1)= 4 =60, f(1,2)= 6· 4 =36, f(0,3)= 4 =4,故选C.
4.(2016四川,2,5分)设i为虚数单位,则(x+i)6的展开式中含x4的项为 ( A.-15x4 B.15x4 C.-20ix4 D.20ix4
1 C 依题意,令5-2r=3,得r=1,∴(-a)1· 5 =30,a=-6,故选D.
8.(2015陕西,4,5分)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n= ( A.4 答案 -5舍). B.5 C.6 D.7
)
2 2 2 C2 Cn Cn C 因为(x+1)n的展开式中x2的系数为 n =15,亦即n -n=30,解得n=6(n= n ,所以 n =15,即
k
C3 的系数为(-1)3· 22×3-5 5 =-20,故选A.
2023版高考数学一轮总复习第十一章计数原理第二讲二项式定理课件理
2
2 ,因为(1+2)6 的展开式中 2 的系数为C62 ×22 ,故
展开式中 2 2 项的系数是C82
1 6
3
(3)(2 + ) 的第
1 2
×(− ) ×C62 ×22
2
=420,故选A.
1
3
6−
(2 ) ( )
3 6
6
6
+ 1项为+1 =C6
2
+ )(
+)5
的展开式中 3 3 的系数为C53 +C51 =15.故选C.
(2)解法一 (1+2 −
8
) 表示8个因式(1+2
2
−
)的乘积,故其中有2个因式
2
取2,有2个因式取− ,其余的4个因式都取1,可得含 2 2 的项.故展开式中
2
1 2
2
2
2
2
2
项的系数是C8 ×2 ×C6 ×(− ) ×C44 =420,(利用组合知识求解)
80,则a=
.
2
(2)[2019浙江高考]在二项式( 2+x)9的展开式中,常数项是 16 2 ,系数为
有理数的项的个数是
5
.
(3)[2021安徽安庆三模]已知(x+3)6=a0+a1(x+1)+…+a5(x+1)5+a6(x+1)6,
则a4=
60
.
考向1
求二项展开式中的特定项或特定项的系数
解析 (1)二项式的通项公式Tr+1=C5 x5-rar,∵x2的系数80,∴C53 a3=80,∴a=2.
2023人教版高考数学总复习第一部分考点指导第十一章计数原理、概率、随机变量及其分布第二节二项式定理
·角度 2 形如(a+b)m(c+d)n(m,n∈N*)型
[典例 2](1)(2020·全国卷Ⅰ)x+yx2 (x+y)5 的展开式中 x3y3 的系数为(
)
A.5 B.10 C.15 D.20
【解析】选 C.(x+y)5 展开式的通项公式为 Tr+1=Cr5 x5-ryr(r∈N 且 r≤5), 所以x+yx2 与(x+y)5 展开式的乘积可表示为: xTr+1=xCr5 x5-ryr=C5r x6-ryr 或yx2 Tr+1=yx2 C5r x5-ryr=Cr5 x4-ryr+2,
2.求解形如(a+b)m(c+d)n 的展开式问题的思路 (1)若 m,n 中有一个比较小,可考虑把它展开,如(a+b)2·(c+d)n=(a2+2ab+b2)(c+ d)n,然后分别求解. (2)观察(a+b)(c+d)是否可以合并,如(1+x)5·(1-x)7=[(1+x)(1-x)]5(1-x)2 =(1-x2)5(1-x)2. (3)分别得到(a+b)m,(c+d)n 的通项,综合考虑.
3.(二项式系数和)若x+1x n 展开式的二项式系数之和为 64,则展开式的常数项 为( )
A.20 B.60 C.80 D.120 【解析】选 A.二项式系数之和 2n=64,所以 n=6,Tk+1=C6k ·x6-k·1x k =Ck6 x6-2k, 当 6-2k=0,即当 k=3 时为常数项,T4=C36 =20.
A.-30
B.120
C.240
D.420
【解析】选 B.[(x+2y)+z]6 的展开式中含 z2 的项为 C26 (x+2y)4z2,(x+2y)4 的展开式
中 xy3 项的系数为 C43 ×23,x2y2 项的系数为 C24 ×22,所以(x-y)(x+2y+z)6 的展开式
福建高考数学复习计数原理11.3二项式定理课件理新人教A版
关闭
(1)× (2)× (3)√ (4)√ (5)×
答案
-5知识梳理 考点自测
1
2
3
4
5
2.
1 4 2������- ������ 的展开式中的常数项为(
)
A.-24 B.-6 C.6 D.24
关闭
因为二项展开式的通项
������ Tr+1=C4 (2x)4-r
- ������
1 ������
������ 4-r = C4 2 (-1)r· x4-2r,
2 所以令 4-2r=0,即 r=2,故常数项为C4 ×22×(-1)2=24.
关闭
D
解析 答案
-6知识梳理 考点自测
1
2
3
4
5
������
1 2 ������ + 3.(2017广东广州测试)使 2������3 项的n的最小值是( )
(n∈ N*)展开式中含有常数
A.3 B.4 C.5 D.6 2 n-k ∵Tk+1=C������ ������ (x )
考点 1
通项公式及其应用(多考向)
考向1 已知二项式求其特定项(或系数) 5 例1(1)(2017吉林长春模拟) ������ 2 - 2 的展开式中的常数项为 ������3 ( ) A.80 B.-80 C.40 D.-40
8 2 1 2 ������ ,x7 的系数为 (2) ������ - ������ 的展开式中 ������ 10-5r -r 2 5 (1)∵Tr+1=������ C5 (x ) - ������ 3 =(-2)rC5 x ,
-15考点1 考点2 考点3
(3)(方法一)将原式看做 1 + ������ + 通项为
高考数学二轮复习计数原理与概率
6
x
3 2
k
,k≤6,k∈N,
由 6-32k=0,解得k=4,
则 T5=(-1)4×32×C46=135,
√A.144种
C.672种
B.336种 D.1 008种
选取的 3 个名称中含有祝融的共有 C29种不同的情况. 分析选取的 3 个名称的不同情况有 A33种, 其中祝融是第 3 个被分析的情况有 A22种, 故祝融不是第 3 个被分析的情况有 C29(A33-A22)=144(种).
(2)(2022·广东联考)现要安排甲、乙、丙、丁四名志愿者去国家高山滑雪
√D.P(A|C)=P(B|C)
由题知,从 10 个数中随机地抽取 3 个数,共有 C310=120(种)可能情况, 对于A选项,“恰好抽的是2,4,6”和“恰好抽取的是6,7,8”为互斥事 件,则P(AB)=0,而P(A)P(B)≠0,故A选项错误; 对于 B 选项,P(C)=CC31290=13260=130,故 B 选项错误; 对于 C 选项,P(AB)=0,P(C)=130,故 C 选项错误; 对于 D 选项,由于 P(AC)=P(BC)=C129=316,故由条件概率公式得 P(A|C) =P(B|C),故 D 选项正确.
跟踪演练2 (1)(2022·淄博模拟)若(1-x)8=a0+a1(1+x)+a2(1+x)2+…+
a8(1+x)8,则a6等于
A.-448
B.-112
√C.112
D.448
(1-x)8=(x-1)8=[(1+x)-2]8 =a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8, a6=C28×(-2)2=112.
③P(B)=12;④B 与 A1 相互独立.
A1,A2,A3中任何两个事件都不可能同时发生,因此它们两两互斥,
2025版高考数学一轮复习第十一章计数原理概率随机变量及分布列第3讲二项式定理教案理含解析新人教A版
第3讲 二项式定理基础学问整合1.二项式定理的内容(1)(a +b )n =□01C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C n nb n (n ∈N *). (2)第r +1项,T r +1=□02C r na n -rb r . (3)第r +1项的二项式系数为□03C r n (r =0,1,…,n ). 2.二项式系数的性质(1)0≤k ≤n 时,C k n 与C n -k n 的关系是□04相等. (2)二项式系数先增后减中间项最大且n 为偶数时第□05n 2+1项的二项式系数最大,最大为,当n 为奇数时第□07n -12+1或n +12+1项的二项式系数最大,最大为.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =□092n ,C 0n +C 2n +C 4n +…=□102n -1,C 1n +C 3n +C 5n +…=□112n -1.1.留意(a +b )n与(b +a )n虽然相同,但详细到它们绽开式的某一项时是不同的,肯定要留意依次问题.2.解题时,要留意区分二项式系数和项的系数的不同、项数和项的不同. 3.切实理解“常数项”“有理项(字母指数为整数)”“系数最大的项”等概念.1.(2024·全国卷Ⅲ)⎝⎛⎭⎪⎫x 2+2x 5的绽开式中x 4的系数为( )A .10B .20C .40D .80 答案 C解析 由题可得T r +1=C r 5(x 2)5-r⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r .令10-3r =4,则r =2,所以C r 5·2r =C 25×22=40.故选C.2.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7 D .6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.3.(x -y )(x +y )5的绽开式中x 2y 4的系数为( ) A .-10 B .-5 C .5 D .10 答案 B解析 (x +y )5的绽开式的通项公式为T r +1=C r 5·x5-r·y r,令5-r =1,得r =4,令5-r =2,得r =3,∴(x -y )(x +y )5的绽开式中x 2y 4的系数为C 45×1+(-1)×C 35=-5.故选B.4.设(5x -x )n的绽开式的各项系数之和为M ,二项式系数之和为N ,M -N =240,则绽开式中x 3的系数为( )A .500B .-500C .150D .-150 答案 C解析 N =2n,令x =1,则M =(5-1)n=4n=(2n )2.∴(2n )2-2n=240,2n=16,n =4.绽开式中第r +1项T r +1=C r 4·(5x )4-r·(-x )r =(-1)r ·C r 4·54-r·x4-r2.令4-r2=3,即r =2,此时C 24·52·(-1)2=150.5.(2024·绍兴模拟)若⎝⎛⎭⎪⎫ax 2+1x 5的绽开式中x 5的系数是-80,则实数a = ________.答案 -2 解析6.(2024·南昌模拟)(1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6的绽开式中的常数项为________.答案 -5解析 ⎝ ⎛⎭⎪⎫x -1x 6的通项公式为T r +1=C r 6x 6-2r (-1)r ,所以(1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6的常数项为C r 6x6-2r(-1)r (当r =3时)与C r 6x6-2r(-1)r (当r =4时)之和,所以常数项为C 36(-1)3+C 46(-1)4=-20+15=-5.核心考向突破考向一 求绽开式中的特定项或特定系数例1 (1)⎝ ⎛⎭⎪⎫x -13x 18的绽开式中含x 15的项的系数为( )A .153B .-153C .17D .-17 答案 C 解析(2)(2024·山东枣庄模拟)若(x 2-a )⎝⎛⎭⎪⎫x +1x 10的绽开式中x 6的系数为30,则a 等于( )A.13B.12 C .1 D .2 答案 D解析 ⎝⎛⎭⎪⎫x +1x 10绽开式的通项公式为T r +1=C r 10·x 10-r ·⎝ ⎛⎭⎪⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310;令10-2r =6,解得r =2,所以x 6项的系数为C 210,所以(x 2-a )⎝⎛⎭⎪⎫x +1x 10的绽开式中x 6的系数为C 310-a C 210=30,解得a =2.故选D.(3)(2024·浙江高考)二项式⎝⎛⎭⎪⎫3x +12x 8的绽开式的常数项是________.答案 7解析 二项式⎝ ⎛⎭⎪⎫3x +12x 8的绽开式的通项公式为T r +1=C r 8(3x )8-r ⎝ ⎛⎭⎪⎫12x r=C r8·12r ·x8-4r3,令8-4r 3=0得r =2,故所求的常数项为C 28·122=7.触类旁通即时训练 1.(2024·广州调研)⎝ ⎛⎭⎪⎫x -12x9的绽开式中x 3的系数为( )A .-212B .-92 C.92 D.212答案 A解析 二项绽开式的通项T r +1=C r 9x9-r⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12r C r 9x 9-2r ,令9-2r =3,得r =3,绽开式中x 3的系数为⎝ ⎛⎭⎪⎫-123C 39=-18×9×8×73×2×1=-212.故选A.2.(2024·河南信阳模拟)(x 2+1)⎝⎛⎭⎪⎫1x -25的绽开式的常数项是( )A .5B .-10C .-32D .-42 答案 D解析 由于⎝ ⎛⎭⎪⎫1x -25的通项为C r 5·⎝ ⎛⎭⎪⎫1x 5-r ·(-2)r =C r 5(-2)r·xr -52,故(x 2+1)·⎝⎛⎭⎪⎫1x -25的绽开式的常数项是C 15·(-2)+C 55(-2)5=-42.故选D.3.已知⎝ ⎛⎭⎪⎫a x-x 29的绽开式中x 3的系数为94,则a =________. 答案 4 解析 ⎝ ⎛⎭⎪⎫a x-x 29的绽开式的通项公式为T r +1=C r9⎝ ⎛⎭⎪⎫a x 9-r ·⎝⎛⎭⎪⎫-x 2r=(-1)r ·a 9-r·2-r2·C r9·x 32r -9.令32r -9 =3,得r =8,则(-1)8·a ·2-4·C 89=94,解得a =4.考向二 二项式系数与各项的系数问题角度1 二项式绽开式中系数的和例2 (1)(2024·金华模拟)已知⎝⎛⎭⎪⎫x 3+2x n 的绽开式的各项系数和为243,则绽开式中x7的系数为( )A .5B .40C .20D .10 答案 B解析 由⎝⎛⎭⎪⎫x 3+2x n 的绽开式的各项系数和为243,得3n=243,即n =5,∴⎝ ⎛⎭⎪⎫x 3+2x n =⎝ ⎛⎭⎪⎫x 3+2x 5,则T r +1=C r 5·(x 3)5-r ·⎝ ⎛⎭⎪⎫2x r =2r ·C r 5·x 15-4r ,令15-4r =7,得r =2,∴绽开式中x 7的系数为22×C 25=40.故选B.(2)已知(1-2x )7=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,则a 1+a 2+a 3+a 4+a 5+a 6=________,a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=________,a 2+a 4+a 6=________.答案 126 2187 1092 解析 令x =0,得a 0=1.令x =1,得-1=a 0+a 1+a 2+…+a 7. ① 又∵a 7=C 77(-2)7=(-2)7,∴a 1+a 2+…+a 6=-1-a 0-a 7=126. 令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37=2187. ②①+②2,得a 0+a 2+a 4+a 6=1093,∴a 2+a 4+a 6=1092. 触类旁通求二项式系数和的常用方法是赋值法(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n,(ax 2+bx +c )m(a ,b ∈R )的式子,求其绽开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其绽开式各项系数之和,只需令x =y =1即可.即时训练 4.(2024·黄冈质检)若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=( )A .284B .356C .364D .378 答案 C解析 令x =0,则a 0=1;令x =1,则a 0+a 1+a 2+…+a 12=36①; 令x =-1,则a 0-a 1+a 2-…+a 12=1 ②.①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,又a 0=1,所以a 2+a 4+…+a 12=364.5.(2024·郑州一测)在⎝⎛⎭⎪⎫x +3x n的绽开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为________.答案 90解析 令x =1,则⎝⎛⎭⎪⎫x +3x n=4n,所以⎝⎛⎭⎪⎫x +3x n的绽开式中,各项系数和为4n,又二项式系数和为2n,所以4n2n =2n =32,解得n =5.二项绽开式的通项T r +1=C r 5x 5-r ⎝ ⎛⎭⎪⎫3x r =C r53rxr5-32,令5-32r =2,得r =2,所以x 2的系数为C 2532=90.角度2 二项式系数的最值问题例3 (1)(2024·广东广州模拟)已知二项式⎝⎛⎭⎪⎫2x 2-1x n的全部二项式系数之和等于128,那么其绽开式中含1x项的系数是( )A .-84B .-14C .14D .84 答案 A解析 由二项式⎝⎛⎭⎪⎫2x 2-1x n 的绽开式中全部二项式系数的和是128,得2n=128,即n =7,∴⎝⎛⎭⎪⎫2x 2-1x n =⎝ ⎛⎭⎪⎫2x 2-1x 7,则T r +1=C r 7·(2x 2)7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·27-r ·C r 7·x 14-3r.令14-3r =-1,得r =5.∴绽开式中含1x项的系数是-4×C 57=-84.故选A.(2)(2024·安徽马鞍山模拟)二项式⎝⎛⎭⎪⎪⎫3x +13x n 的绽开式中只有第11项的二项式系数最大,则绽开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7 答案 D解析 依据⎝ ⎛⎭⎪⎪⎫3x +13x n 的绽开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x n 的绽开式的通项为T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎪⎫13x r =(3)20-r · C r20·x20-4r 3,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.故选D.触类旁通求二项式系数最大项(1)假如n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n2+1项)的二项式系数最大.即时训练 6.已知(1+x )n的绽开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29答案 D解析 因为绽开式的第4项与第8项的二项式系数相等,所以C 3n =C 7n ,解得n =10,所以依据二项式系数和的相关公式可知,奇数项的二项式系数和为2n -1=29.7.若⎝ ⎛⎭⎪⎫x +2x 2n 的绽开式中只有第6项的二项式系数最大,则绽开式中的常数项是( )A .180B .120C .90D .45 答案 A解析 只有第6项的二项式系数最大,可知n =10,于是绽开式通项为T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-5r 2,令5-5r 2=0,得r =2,所以常数项为22C 210=180.故选A.角度3 项的系数的最值问题例4 (1)(2024·承德模拟)若(1+2x )6的绽开式中其次项大于它的相邻两项,则x 的取值范围是( )A.112<x <15B.16<x <15C.112<x <23D.16<x <25答案 A解析 ∵⎩⎪⎨⎪⎧C 162x >C 06,C 162x >C 262x 2,∴⎩⎪⎨⎪⎧x >112,0<x <15,即112<x <15. (2)若⎝⎛⎭⎪⎫x 3+1x 2n的绽开式中第6项系数最大,则不含x 的项为( )A .210B .10C .462D .252 答案 A解析 ∵第6项系数最大,且项的系数为二项式系数, ∴n 的值可能是9,10,11. 设常数项为T r +1=C r n x3(n -r )x -2r=C r n x3n -5r, 则3n -5r =0,其中n =9,10,11,r ∈N , ∴n =10,r =6,故不含x 的项为T 7=C 610=210. 触类旁通求绽开式系数最大项如求(a +bx )n(a ,b ∈R )的绽开式系数最大的项,一般是采纳待定系数法,设绽开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1从而解出k 来,即得.即时训练 8.(2024·宜昌高三测试)已知(x 23+3x 2)n的绽开式中,各项系数和与它的二项式系数和的比为32.(1)求绽开式中二项式系数最大的项; (2)求绽开式中系数最大的项. 解考向三二项式定理的应用例5 (1)(2024·潍坊模拟)设a∈Z,且0≤a<13,若512024+a能被13整除,则a=( ) A.0 B.1 C.11 D.12答案 D1+1,又由于13解析由于51=52-1,(52-1)2024=C020********-C12024522024+…-C2024202452整除52,所以只需13整除1+a,0≤a<13,a∈Z,所以a=12.(2)0.9910的第一位小数为n1,其次位小数为n2,第三位小数为n3,则n1,n2,n3分别为( )A.9,0,4 B.9,4,0 C.9,2,0 D.9,0,2答案 A解析0.9910=(1-0.01)10=C010·110·(-0.01)0+C110·19·(-0.01)1+C210·18·(-0.01)2+…=1-0.1+0.0045+…≈0.9045.触类旁通二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)绽开后的每一项都含有除式的因式.2二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,1+x n≈1+nx.即时训练9.1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1.∵前10项均能被88整除,∴余数是1.10.1.028的近似值是________(精确到小数点后三位). 答案 1.172解析 1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.1.(2024·江苏模拟)(x 2+x +y )5的绽开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 由二项绽开式通项易知T r +1=C r 5(x 2+x )5-r y r,令r =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t·x t =C t 3x6-t,令t =1,所以x 5y 2的系数为C 25C 13=30.故选C.2.在⎝⎛⎭⎪⎫2+x -x 2024202412的绽开式中x 5的系数为________. 答案 264解析 ⎝ ⎛⎭⎪⎫2+x -x 2024202412=⎣⎢⎡⎦⎥⎤2+x -x 2024202412的绽开式的通项公式为T r +1=C r12(2+x )12-r·⎝ ⎛⎭⎪⎫-x 20242024r ,若要出现x 5项,则需r =0,则T 1=(2+x )12,∴x 5的系数为22C 1012=4C 212=264.答题启示二项式定理探讨两项和的绽开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.对点训练1.(x 2-x +1)10绽开式中x 3的系数为( ) A .-210 B .210 C .30 D .-30 答案 A解析 (x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为-C 910C 89+C 1010(-C 710)=-210.故选A.2.⎝⎛⎭⎪⎪⎫x +13x -4y 7的绽开式中不含x 的项的系数之和为( ) A .-C 37C 3443-47B .-C 27C 2443+47C .-47D .47答案 A11 解析 ⎝ ⎛⎭⎪⎪⎫x +13x -4y 7=⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫x +13x -4y 7的绽开式的通项公式为T r +1=C r 7·⎝ ⎛⎭⎪⎪⎫x +13x 7-r ·(-4y )r,⎝ ⎛⎭⎪⎪⎫x +13x 7-r 的绽开式的通项公式为M k +1=C k 7-r · x 7-r -4k 3,0≤k ≤7-r,0≤r ≤7,k ,r 均为整数,令7-r =4k 3,解得k =0,r =7或k =3,r =3,则不含x 的项的系数之和为(-4)7+C 37C 34(-4)3=-C 37C 3443-47.。
【新高考数学】热点11 计数原理(解析版)
,含
x2 的项的系
数为 (1)2C62 2 (1)3C63 25 ,故选 B.
【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性
质,属于基础题.
3.(2019·湖南高二期中(理))9 件产品中,有 4 件一等品,3 件二等品,2 件三等品,
现在要从中抽出 4 件产品来检查,至少有两件一等品的种数是( )
捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方 法. 标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如 此继续下去,依次即可完成. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 对于二项式定理的应用,只要会求对应的常数项以及对应的 n 项即可,但是应注意是二项 式系数还是系数. 【考查题型】选择题
D. 6
【答案】D
【解析】
【分析】
将二项式变形后得出 1 x 2x2 1 x4 1 x4 x 1 x4 2x2 1 x4 ,得出其展
开式通项为 C4r xr C4m xm1 2C4n xn2 ,然后令 r m 1 n 2 3 ,求出 r 、 m 、 n 的值,再代入展开式通项可得出展开式中含 x3 项的系数.
热点 11 计数原理
【命题趋势】 计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外
在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合 的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考 查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类 型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解. 【满分技巧】
2025版高考数学一轮总复习学案 第10章 第2讲 二项式定理
计数原理、概率、随机变量及其分布
第二讲 二项式定理
知识梳理·双基自测 考点突破·互动探究 名师讲坛·素养提升
知识梳理 · 双基自测
高考一轮总复习 • 数学
知识点一 二项式定理 (a+b)n=C0nan+C1nan-1b+…+Cknan-kbk+…+Cnnbn(n∈N+). 这个公式叫做二项式定理,右边的多项式叫做(a+b)n 的二项展开式, 其中的系数 Ckn(k=0,1,2,…,n)叫做___二__项__式__系__数___,式中的_C_kn_a_n_-_kb_k___ 叫做二项展开式的_通__项__,用 Tk+1 表示,即通项为展开式的第__k_+__1__项: Tk+1=__C__kn_a_n-_k_b_k_______.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
2.求展开式中系数最大的项 如求(a+bx)n(a,b∈R)的展开式系数最大的项,一般是采用待定系 数法,设展开式各项系数分别为 A1,A2,…,An+1,且第 k 项系数最大, 应用AAkk≥ ≥AAkk- +11, 从而解出 k 来,即得.
第十章 计数原理、概率、随机变量及其分布
高考一轮总复习 • 数学
3.(选择性必修3P38T5(1))(1-2x)5(1+3x)4的展开式中按x的升幂排 列的第3项为___-__2_6_x_2_______.
[解析] (1-2x)5、(1+3x)4 的展开式的通项分别为 Tr+1=C5r(-2x)r, Tk+1=Ck4(3x)k,
[解析]
由题意知
n=8.x-21x28 的展开式的通项为
Tr
+
1=
C
r 8
x8
-
r-21x2r=C8r·-21r·x8-3r(r=0,1,2,…,8),令 8-3r=-1,r=3.故所求
高考数学一轮复习 第十一章 计数原理、概率、随机变量及其分布 11.3 二项式定理真题演练集训 理
11.3 二项式定理真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.3 二项式定理真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布11.3 二项式定理真题演练集训理新人教A版的全部内容。
11.3 二项式定理真题演练集训理新人教A版1.[2016·新课标全国卷Ⅰ](2x+x)5的展开式中,x3的系数是________.(用数字填写答案)答案:10解析:由(2x+x)5,得T r+1=C错误!(2x)5-r(错误!)r=25-r C错误!x,令5-错误!=3,得r=4,此时系数为10.2.[2016·北京卷]在(1-2x)6的展开式中,x2的系数为________.(用数字作答)答案:60解析:(1 -2x)6的展开式的通项T r+1=C错误!(-2)r x r,当r=2时,T3=C错误!(-2)2x2=60x2,所以x2的系数为60。
3.[2016·天津卷]错误!8的展开式中x7的系数为________.(用数字作答)答案:-56解析:二项展开式的通项T r+1=C r,8(x2)8-r错误!r=(-1)r C错误!x16-3r,令16-3r=7,得r=3,故x7的系数为-C错误!=-56.4.[2016·山东卷]若错误!5的展开式中x5的系数是-80,则实数a=________。
答案:-2解析:错误!5的展开式的通项T r+1=C错误!(ax2)5-r·x错误!=C错误!a5-r·x,令10-错误!r=5,得r=2,所以C错误!a3=-80,解得a=-2。
高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第3课时 二项式定理.pdf
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第十一章 计数原理、随机变量及分布列第3课时 二项式定理 考情分析考点新知近几年高考二项式定理在理科加试部分考查以后高考将会考查学生应用基础知识、解决实际问题的能力难度将不太大. ①能用计数原理证明二项式定理;会用二项式定理解决与二项式定理有关的简单问题. 会用二项展开式以及展开式的通项特别要注意有关二项式系数与项的系数的区别. 1. (选修23练习5改编)在(x-)的展开式中的系数是________.答案:1 890解析:T+1=x10-r(-)令10-r=6=4=9x6=1 890x(选23P32练习6改编)的展开式的常数项是________.答案:495解析:展开式中+1=x12-rr=(-1)x12-3r当r4时==495为常数项.(选修23习题2改编)若+++…+=363则自然数n=________.答案:13解析:+C+C+C+…+=363+1+C+C+…+=364+C+…+=…==364=13.(选修23习题12改编)已知(1-2x)=a+a+a+…+a那么a+a+…+a=________.答案:-解析:设f(x)=(1-2x)令x=1得a+a+a+…+a=(1-2)=-1令x=0得a=1+a+…+a=-1-a=-2.(选修23习题10改编)在(x+y)的展开式中若第七项系数最大则n的值可能为________.答案:11解析:分三种情况:① 若仅T系数最大则共有13项=12;② 若T与T系数相等且最大则共有12项=11;③ 若T与T系数相等且最大则共有14项=13所以n的值可能等于11 1. 二项式定理(a+b)=an+an-1+…+an-r+…+bn(n∈N).这个公式所表示的定理叫做二项式定理右边的多项式叫做(a+b)的二项展开式其中的系数(r=0)叫做第r+1项的二项式系数.式中的an-r叫做二项式展开式的第r+1项(用T+1表示即展开式的第r+1项;+1=an-r二项展开式形式上的特点(1) 项数为+1(2) 各项的次数都等于二项式的幂指数n即a与b的指数的和为n.(3) 字母a按降幂排列从第一项开始次数由n逐项减1直到零;字母b按升幂排列从第一项起次数由零逐项增1直到n.(4) 二项式的系数从,C,一直到,C. 3. 二项式系数的性质(1) 在二项展开式中与首末两端“等距离”的两项的二项式系数相等.(2) 如果二项式的幂指数是偶数中间项的二项式系数最大;如果二项式的幂指数是奇数中间两项的二项式系数相等并且最大.(3) 二项式系数的和等于即++…+=2(4) 二项式展奇数项的二项式系数的和等于偶数项的二项式系数的和即++…=++…=2-1[备课札记] 题型1 二项式展开式的特定项例1 如果的展开式中第四项和第七项的二项式系数相等求:(1) 展开式的中间项;(2) 展开式中所有的有理项.解:(1) 展开式中第四项和第七项的二项式系数分别是,C,由=,得=9所以展开式的中间项为第5项和第项即T=(-1)(x-3)(x2)5==(-1)(x-3)(x2)4=-(2) 通项为T+1=()8-r=x(r=),为使T+1为有理项必须r是4的倍数所以r=08,共有三个有理项分别是T=x4=x=x==x-2= (1) 若(1+x)的展开式中的系数是x的系数的7倍求n;(2) 已知(ax+1)(a≠0)的展开式中的系数是x的系数与x的系数的等差中项求a;(3) 已知(2x+x)8的展开式中二项式系数最大的项的值等于1 120求x.解:(1) =7,=7n即--40=0.由n∈N*,得n=8.(2) Ca2+a4=2a3,21a2+35a=70a得5a2-10a+3=0=1±. (3) C(2x)4(xlgx)4=1 120(1+)=1所以x=1或=-1=. 题型2 二项式系数例2 已知(x+3x)n的展开式中各项系数和比它的二项式系数和大992求:(1) 展开式2) 展开式中系数最大的项.解:令x=1则展开式中各项系数和为(1+3)=2又展开式中二项式系数和为2-2=992=5.(1) ∵n=5展开式共6项二项式系数最大的项为第3、4两项=(x)3(3x2)2=90x=(x)2(3x2)3=270x(2) 设展开式中第r+1项系数最大则T+1=(x)5-r(3x)r=3x, ∴ ≤r≤,∴ r=4即展开式中第5项系数最大=(x)(3x2)4=405x 已知的展开式中前三项的系数成等差数列.设=a+a+a+…+a求:(1) a5的值;(2)a0-a+a-a+…+(-1)n的值;(3) ai(i=0)的最大值.解:(1) 由题设得C+=2×, 即n-9n+8=0解得n=8=1(舍).+1=C-r令8-r=5=3所以a=7.(2) 在等式的两边取x=-1得a-a+a-a+…+a=(3) 设第r+1的系数最大则即解得r=2或r=3. 所以a系数最大值为7.题型3 二项式定理的综合应用例3 已知展开式中的二项式系数的和比(3a+2b)展开式的二项式系数的和大128求展开式中的系数最大的项和系数最小的项.解:2-2=128=88的通项Tr+1=(x2)8-r=(-1)x16-3r当r=4时展开式中的系数最大即T=70x为展开式中的系数最大的项;当r=3或5时展开式中的系数最小即T=-56x=-56x为展开式中的系数最小的项. 已知(2-)50=a+a+a+…+a其中a是常数计算(a+a+a+…+a)2-(a+a+a+…+a)2. 解:设f(x)=(2-)50, 令x=1得a+a+a+…+a=(2-50, 令x=-1得a-a+a-…+a=(2+)(a0+a+a+…+a)2-(a+a+a+…+a)2 =(a+a+a+…+a)(a0-a+a-…+a) =(2-)(2+)=1. 1. (2013·新课标Ⅱ)已知(1+ax)(1+x)的展开式中x的系数为5则a=________.答案:-1解析:已知(1+ax)(1+x)的展开式中x的系数为+a·=5解得a=-1.(2013·天津理)的二项展开式中的常数项为________.答案:15解析:展开式的通项公式为T+1=x6-kk=x6-(-1)由6-=0得k=4.所以常数项为T+1=(-1)4=15.(2013·大纲版理)(1+x)(1+y)的展开式中x的系数是________.答案:18解析:(x+1)的展开式的通项为T+1=xr,令r=2得到展开式中x的系数是=3.(1+y)的展开式的通项为T+1=yr,令r=2得到展开式中y的系数是C=6(1+x)(1+y)的展开式中x的系数是3×6=18.(2013·辽宁理)使得(n∈N+)的展开式中含有的常数项最小的n为________.答案:5解析:展开式的通项公Tk+1=(3x)n-kk=3n-k-由n-=0得n=所以当k=2时有最小值5. 1. 若n是奇数则7+C-1+C-2+…+C被9除的余数是________.答案:7解析:原式=(7+1)-1=(9-1)-1=9k-2=9k′+7(k和均为正整数).的近似值是___________.(精确到0.001)答案:0.956解析:=(1-0.009)=1-5×0.009+10×(0.009)-…≈1-0.045+0.000 81≈0.956.用二次项定理证明3+2-8n-9能被64整除(n∈N).证明:3+2-8n-9=9+1-8n-9=(8+1)+1-8n-9=8n+1+8n+…+82+8+-8n-9=64(8n-1+8n-2+…+)+8(n +1)+1-8n-9=M×64(记M=8n-1+8n-2+…+).为整数能被64整除.(1) 在(1+x)的展开式中若第3项与第6项系数相等则n等于多少?(2) 的展开式奇数项的二项式系数之和为128求展开式中二项式系数最大项.解:(1) 由已知得=n=7.(2) 由已知得+++…=128-1=128=8而展开式中二项式系数最大项是T+1=(x)4=70x. 一般地对于多项式g(x)=(px+q)=a+a+a+…+a则有:(1) g(x)的常数项的系数为g(0);(2) g(x)的各项的系数和为g(1);(3) g(x)的奇数项的系数和为[g(1)+g(-1)];(4) g(x)的偶数项的系数和为[g(1)-g(-1)]. [备课札记]。
【11】计数原理【2023年高考数学复习——大题狂练解答210道】
2023年高考数学复习——大题狂练:计数原理(15题)一.解答题(共15小题)1.(2022春•杨陵区校级期末)3名男同志和3名女同志到4辆不同的公交车上服务.(1)若每辆车上都需要人但最多安排男、女各1名,有多少种安排方法?(2)若男、女各包2辆车,有多少种安排方法?2.(2022春•济宁期末)已知展开式的二项式系数和为32,各项系数和为243.(1)求n、a的值;(2)若将展开式中的各项重新排列,求有理项互不相邻的概率.3.(2022春•闵行区校级期末)求满足下列方程组的正整数的解:(1);(2).4.(2022春•肇东市校级期末)(1)计算:;(2)已知,(m>1);求的值.5.(2022春•白水县期末)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,求:(1)物理和化学至少选一门的选法种数;(2)物理和化学至少选一门,且物理和历史不同时选的选法种数.6.(2022春•驻马店期末)已知函数.(1)当0<x<1时,求f(f(x))表达式的展开式中二项式系数最大的项;(2)当x>1时,若,求a6.7.(2022春•云浮期末)(1)求(1﹣2x)10展开式中第8项的二项式系数及第4项的系数;(2)若(1﹣2x)10=a0+a1x+⋯+a10x10,求a1+a2+⋯+a10.注:结果用数值表示.8.(2022春•梅州期末)在的展开式的二项式系数和为64.(1)求n的值;(2)求展开式的常数项.9.(2022春•周至县校级期末)某批产品中有一等品100个,二等品80个,三等品30个.从其中任取10个进行检验,那么:(1)全部抽到一等品的结果有多少种?(2)抽不到一等品的结果有多少种?(3)恰抽到5个一等品的结果有多少种?(4)恰抽到1个一等品、2个二等品的结果有多少种?(5)至少抽到1个一等品的结果有多少种?10.(2022春•大兴区期末)将二项式(2x﹣)n展开,若展开式中各项的二项式系数之和为64.(Ⅰ)求n的值;(Ⅱ)求展开式中的常数项.11.(2022春•红桥区校级期末)已知数字1,2,3,4,5.(1)可以组成多少个没有重复数字的五位数;(2)可以组成多少个没有重复数字的五位偶数.12.(2022春•阎良区期末)某学习小组有4名男生和3名女生共7人.(1)将这7人排成一排,4名男生相邻有多少种不同的排法?(2)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种不同的选派方法?13.(2022春•宜春期末)根据条件,分别求解:(1)求(x2﹣2xy+y2)5展开式中x3y7的系数;(2)求值:.14.(2022春•青浦区校级期末)(1)解不等式;(2)已知,,成等差数列,求的值.15.(2022春•海林市校级月考)有6本不同的书,在下列不同的条件下,各有多少种不同的分法?(1)分给甲、乙、丙3人,其中一个人1本,一个人2本,一个人3本;(2)分成三组,一组4本,另外两组各1本;(3)甲得1本,乙得1本,丙得4本.2023年高考数学复习——大题狂练:计数原理(15题)参考答案与试题解析一.解答题(共15小题)1.(2022春•杨陵区校级期末)3名男同志和3名女同志到4辆不同的公交车上服务.(1)若每辆车上都需要人但最多安排男、女各1名,有多少种安排方法?(2)若男、女各包2辆车,有多少种安排方法?【考点】排列、组合及简单计数问题.【专题】计算题;方程思想;转化思想;综合法;排列组合;数学运算.【分析】(1)根据题意,分3步进行分析:①先将3名男同志安排到公交车上,②在剩余的1辆车安排1名女同志,③在安排了男同志的3辆车上安排2名女同志,由分步计数原理计算可得答案;(2)根据题意,分2步进行分析:①将男同志和女同志各自分为2组,②将4组安排到4辆车上,由分步计数原理计算可得答案.【解答】解:(1)根据题意,分3步进行分析:①先将3名男同志安排到公交车上,有A=24种安排方法,②在剩余的1辆车安排1名女同志,有3种安排方法,③在安排了男同志的3辆车上安排2名女同志,有A=6种安排方法,则有24×3×6=432种安排方法;(2)根据题意,分2步进行分析:①男同志分为2组,有C=3种分组方法,同理,将女同志分为2组,也有3种分组方法,②将4组安排到4辆车上,有A=24种安排方法,则有3×3×24=216种安排方法.【点评】本题考查排列组合的应用,涉及分步计数原理的应用,属于基础题.2.(2022春•济宁期末)已知展开式的二项式系数和为32,各项系数和为243.(1)求n、a的值;(2)若将展开式中的各项重新排列,求有理项互不相邻的概率.【考点】二项式定理.【专题】整体思想;综合法;二项式定理;数学运算.【分析】(1)根据题中的条件,列出等式,即可解出;(2)利用二项式定理展开式的通项公式,结合排列组合,即可解出.【解答】解:(1)由题意可知:解得:.(2)由(1)可知二项式为其通项公式为:.由二项式展开式的通项公式可知:当k=1,3,5时,会得到二项式展开式的有理项.所以二项式的展开式中有理项共3项,所以将展开式各项重新排列,其中有理项互不相邻的概率为:.【点评】本题考查了二项式定理,排列组合以及概率,学生的数学运算能力,属于基础题.3.(2022春•闵行区校级期末)求满足下列方程组的正整数的解:(1);(2).【考点】排列及排列数公式;组合及组合数公式.【专题】对应思想;转化法;排列组合;数学运算.【分析】利用排列、组合公式列方程,并化简求值即可,注意n的范围.【解答】解:(1)由=,可得2n(2n﹣1)(2n﹣2)=28n(n﹣1),而n≥2,故2n﹣1=7,可得n=4;(2)﹣=+,可得﹣=+n+1,所以2n+3=,则n2﹣3n﹣4=(n﹣4)(n+10)=0,而n≥2,故n=4.【点评】本题考查了组合数公式的应用问题,也考查了逻辑推理与证明的应用问题,是基础题.4.(2022春•肇东市校级期末)(1)计算:;(2)已知,(m>1);求的值.【考点】排列及排列数公式;组合及组合数公式.【专题】计算题;方程思想;定义法;排列组合;数学运算.【分析】(1)根据排列数的计算公式即可得解;(2)根据结合题意可得m=2,利用化简整理,再代入组合数的计算公式计算.【解答】解:(1)∵,则,∴;(2)∵,则m+2m﹣1=5或m=2m﹣1,解得m=2或m=1(舍去),∵,则.【点评】本题考查了排列组合数公式的应用问题,是基础题目.5.(2022春•白水县期末)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,求:(1)物理和化学至少选一门的选法种数;(2)物理和化学至少选一门,且物理和历史不同时选的选法种数.【考点】排列、组合及简单计数问题.【专题】计算题;方程思想;转化思想;综合法;排列组合;数学运算.【分析】(1)根据题意,用间接法分析:先计算“在7门中任选3门”的选法,排除其中“物理和化学都没有选”的情况,即可得答案;(2)根据题意,分3种情况讨论,由加法原理计算可得答案;【解答】解:(1)根据题意,在7门中任选3门,有C=35种选法,其中物理和化学都没有选的选法有C=10种,则物理和化学至少选一门的选法有35﹣10=25种;(2)根据题意,若物理和化学至少选一门,有3种情况:①只选物理有且物理和历史不同时选,有C C=6种选法;②选化学,不选物理,有C C=10种选法;③物理与化学都选,有C C=4种选法,则有6+10+4=20种选法.【点评】本题考查排列组合的应用,涉及分步、分类计数原理的应用,属于基础题.6.(2022春•驻马店期末)已知函数.(1)当0<x<1时,求f(f(x))表达式的展开式中二项式系数最大的项;(2)当x>1时,若,求a6.【考点】二项式定理.【专题】整体思想;综合法;二项式定理;数学运算.【分析】(1)利用题中的条件,表示出f(f(x)),即可解出;(2)表示出f2(x)的表达式,对代数式x8进行变形,即可解出.【解答】解:(1)∵0<x<1∴∴∴二项式系数最大的项为(2)由题意得,当x>1时,f2(x)=x8=[1﹣(1﹣x)]8∵展开式的通项为:∴,∴a6=28【点评】本题考查了二项式定理,学生的数学运算能力,属于基础题.7.(2022春•云浮期末)(1)求(1﹣2x)10展开式中第8项的二项式系数及第4项的系数;(2)若(1﹣2x)10=a0+a1x+⋯+a10x10,求a1+a2+⋯+a10.注:结果用数值表示.【考点】二项式定理.【专题】整体思想;综合法;二项式定理;数学运算.【分析】(1)利用二项式定理的展开式,即可直接解出;(2)利用赋值法,即可解出.【解答】解:(1)(1﹣2x)10展开式的通项是T r+1=C=(﹣2)r C x r,因此(1﹣2x)10展开式中第8项的二项式系数为,其第4项的系数为.(2)已知,令x=0,得a0=1;令x=1,得.所以a1+a2+⋯+a10=(a0+a1+a2+⋯+a10)﹣a0=0.【点评】本题考查了二项式定理的展开式,学生的数学运算能力,属于基础题.8.(2022春•梅州期末)在的展开式的二项式系数和为64.(1)求n的值;(2)求展开式的常数项.【考点】二项式定理.【专题】对应思想;定义法;二项式定理;数学运算.【分析】(1)根据二项式系数和求出n=6,(2)求出展开式的通项公式,令x的次数为0,进行求解即可.【解答】解:(1)∵的展开式的二项式系数和为64,∴,解得n=6.(2)展开式的通项公式为,令6﹣3r=0,解得r=2,所以常数项为.【点评】本题主要考查二项式定理的应用,根据二项式系数和求出n的值,利用展开式的通项公式进行求解是解决本题的关键,是基础题.9.(2022春•周至县校级期末)某批产品中有一等品100个,二等品80个,三等品30个.从其中任取10个进行检验,那么:(1)全部抽到一等品的结果有多少种?(2)抽不到一等品的结果有多少种?(3)恰抽到5个一等品的结果有多少种?(4)恰抽到1个一等品、2个二等品的结果有多少种?(5)至少抽到1个一等品的结果有多少种?【考点】排列、组合及简单计数问题.【专题】计算题;方程思想;转化思想;综合法;排列组合;数学运算.【分析】(1)根据题意,在100个一等品中选10个即可,由组合数公式计算可得答案;(2)根据题意,在二等品、三等品中选10个即可,由组合数公式计算可得答案;(3)根据题意,在100个一等品中选5个,在二等品、三等品中选5个即可,由组合数公式计算可得答案;(4)根据题意,在100个一等品中选1个,在80个二等品中选2个,在30个三等品中选7个即可,由组合数公式计算可得答案;(5)根据题意,先计算“在所有产品中任取10件”的取法,排除其中“没有1件一等品”的取法,分析可得答案.【解答】解:(1)根据题意,要求全部抽到一等品,在100个一等品中选10个即可,有种取法,(2)抽不到一等品,在二等品、三等品中选10个即可,有种取法,(3)恰好抽到5个一等品,还有5件是二等品或三等品,在100个一等品中选5个,在二等品、三等品中选5个即可,有种抽取方法,(4)恰抽到1个一等品、2个二等品,还有7个是三等品,在100个一等品中选1个,在80个二等品中选2个,在30个三等品中选7个即可,有种抽取方法,(5)在所有产品中任取10件,有种取法,其中没有1件一等品的取法有种,则至少抽到1个一等品的结果有种.【点评】本题考查分步计数原理的应用,注意组合数公式的应用,属于基础题.10.(2022春•大兴区期末)将二项式(2x﹣)n展开,若展开式中各项的二项式系数之和为64.(Ⅰ)求n的值;(Ⅱ)求展开式中的常数项.【考点】二项式定理.【专题】转化思想;综合法;二项式定理;数学运算.【分析】(Ⅰ)根据二项式系数和公式建立方程即可求解;(Ⅱ)求出展开式的通项公式,令x的指数为0,进而可以求解.【解答】解:(Ⅰ)由题意可得2n=64,解得n=6;(Ⅱ)展开式的通项公式为T=C,r=0,1, (6)令6﹣2r=0,解得r=3,所以展开式的常数项为C=﹣160.【点评】本题考查了二项式定理的应用,考查了学生的运算能力,属于基础题.11.(2022春•红桥区校级期末)已知数字1,2,3,4,5.(1)可以组成多少个没有重复数字的五位数;(2)可以组成多少个没有重复数字的五位偶数.【考点】排列、组合及简单计数问题;计数原理的应用.【专题】对应思想;转化法;排列组合;逻辑推理.【分析】(1)将5个数进行全排列,利用排列数公式即可得出答案;(2)先排个位数,从2,4中选一个数排在个位,其余的位置即剩下的4个数进行全排列,即可得出答案.【解答】解:(1)由题意可得:将5个数进行全排列,即=120个;(2)先排个位数,从2,4中选一个数排在个位有:=2个,其余的位置即剩下的4个数进行全排列,即=24个,所以可以组成=48个没有重复数字的五位偶数.【点评】本题考查了排列组合的混合问题,先选后排是最基本的指导思想,属于基础题.12.(2022春•阎良区期末)某学习小组有4名男生和3名女生共7人.(1)将这7人排成一排,4名男生相邻有多少种不同的排法?(2)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种不同的选派方法?【考点】排列、组合及简单计数问题.【专题】对应思想;转化法;排列组合;逻辑推理.【分析】(1)利用捆绑法求解;(2)先分别选出2名男生和女生,再全排列求解.【解答】解:(1)因为4名男生相邻,所以看作一个元素,则将4个元素全排列再将4个男生全排列,然后由分步计数原理得:•=576种不同的站法;(2)选出2名男生有种选法,选出2名女生有种选法,然后全排列有种排法,再利用分步计数原理得••=432种不同的选派方法.【点评】本题考查了排列组合的混合问题,捆绑法是最基本的指导思想,属于基础题.13.(2022春•宜春期末)根据条件,分别求解:(1)求(x2﹣2xy+y2)5展开式中x3y7的系数;(2)求值:.【考点】二项式定理.【专题】整体思想;综合法;二项式定理;数学运算.【分析】(1)利用二项式定理的展开式,即可解出;(2)利用排列数和组合数公式,即可解出.【解答】解:(1)(x2﹣2xy+y2)5=(x﹣y)10,∴x3y7的系数为:C=﹣120;(2)===.【点评】本题考查了二项式定理,排列数组合数的运算,学生的数学运算能力,属于基础题.14.(2022春•青浦区校级期末)(1)解不等式;(2)已知,,成等差数列,求的值.【考点】组合及组合数公式;等差数列的通项公式;排列及排列数公式.【专题】对应思想;转化法;排列组合;逻辑推理.【分析】(1)由排列数公式及性质列出不等式组即可求解;(2)由题意,2=+,利用组合数公式及性质化简,然后求解方程即可得答案.【解答】解:(1)因为,所以<6×,所以(8﹣m)(7﹣m)<6,又,解得m=6;(2)因为,,成等差数列,所以2=+,所以2=+,即=+,所以n2﹣21n+98=0,又n≥12,且n∈N*,解得n=14,所以,==91.【点评】本题考查了组合数公式的应用问题,也考查了逻辑推理与证明的应用问题,是基础题目.15.(2022春•海林市校级月考)有6本不同的书,在下列不同的条件下,各有多少种不同的分法?(1)分给甲、乙、丙3人,其中一个人1本,一个人2本,一个人3本;(2)分成三组,一组4本,另外两组各1本;(3)甲得1本,乙得1本,丙得4本.【考点】排列、组合及简单计数问题.【专题】对应思想;转化法;排列组合;逻辑推理.【分析】n个不同元素按某些条件分配给k个不同的对象是分配问题,解决此类问题,常先分组后分配.【解答】解:根据题意,有6本不同的书,(1)分给甲、乙、丙3人,其中一个人1本,一个人2本,一个人3本,先将6本不同的书分成1本,2本,3本共3组,有种,再将3组分配给甲、乙、丙3人有种,故共有种;(2)分成三组,一组4本,另外两组各1本,只需从6本中选4本一组,其余2本为两组,共种;(3)甲得1本,乙得1本,丙得4本,分步处理,先从6本中选4本给丙,其余2本分给甲、乙各一本,有种.【点评】本题考查了排列组合的混合问题,属于基础题.考点卡片1.等差数列的通项公式【知识点的认识】等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代入2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第一项这个数列是等差数列,但如果把首项放进去的话就不是等差数列,题中a n的求法是数列当中常用到的方式,大家可以熟记一下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为首项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的一个重要性质,即等差中项的特点,通过这个性质然后解方程一样求出首项和公差即可.【考点点评】求等差数列的通项公式是一种很常见的题型,这里面往往用的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.2.计数原理的应用【知识点的认识】1.两个计数原理(1)分类加法计数原理:N=m1+m2+…+m n(2)分步乘法计数原理:N=m1×m2×…×m n2.两个计数原理的比较分类加法计数原理分步乘法计数原理共同点都是计数原理,即统计完成某件事不同方法种数的原理.不同点分类完成,类类相加分步完成,步步相乘n类方案相互独立,且每类方案中的每种方法都能独立完成这件事n个步骤相互依存,每步依次完成才算完成这件事情(每步中的每一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整【解题方法】1.计数原理的应用(1)如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类加法计数原理;(2)如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步乘法计数原理.2.解题步骤(1)指明要完成一件什么事,并依事件特点确定是“分n类”还是“分n步”;(2)求每“类”或每“步”中不同方法的种数;(3)利用“相加”或“相乘”得到完成事件的方法总数;(4)作答.【命题方向】分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法.常见考题类型:(1)映射问题(2)涂色问题(①区域涂色②点的涂色③线段涂色④面的涂色)(3)排数问题(①允许有重复数字②不允许有重复数字)3.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.4.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n 个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2 .5.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.6.二项式定理【二项式定理】又称牛顿二项式定理.公式(a+b)n=∁n i a n﹣i•b i.通过这个定理可以把一个多项式的多次方拆开.例1:用二项式定理估算1.0110= 1.105.(精确到0.001)解:1.0110=(1+0.01)10=110+C101•19×0.01+C102•18•0.012≈1+0.1+0.0045≈1.105.故答案为:1.105.这个例题考查了二项式定理的应用,也是比较常见的题型.例2:把把二项式定理展开,展开式的第8项的系数是.解:由题意T8=C107×=120×3i=360i.故答案为:360i.通过这两个例题,大家可以看到二项式定理的重点是在定理,这类型的题都是围着这个定理运作,解题的时候一定要牢记展开式的形式,能正确求解就可以了.【性质】1、二项式定理一般地,对于任意正整数n,都有这个公式就叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式.其中各项的系数叫做二项式系数.注意:(1)二项展开式有n+1项;(2)二项式系数与二项展开式系数是两个不同的概念;(3)每一项的次数是一样的,即为n次,展开式依a的降幂排列,b的升幂排列展开;(4)二项式定理通常有如下变形:①;②;(5)要注意逆用二项式定理来分析问题、解决问题.2、二项展开式的通项公式二项展开式的第n+1项叫做二项展开式的通项公式.它体现了二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定的项及其系数方面有着广泛的应用.注意:(1)通项公式表示二项展开式的第r+1项,该项的二项式系数是∁n r;(2)字母b的次数和组合数的上标相同;(3)a与b的次数之和为n.3、二项式系数的性质.(1)对称性:与首末两端“等距离”的两个二项式系数相等,即;(2)增减性与最大值:当k<时,二项式系数是逐渐增大的.由对称性知,它的后半部分是逐渐减小的,且在中间取最大值.当n为偶数时,则中间一项的二项式系数最大;当n为奇数时,则中间的两项,相等,且同时取得最大值.。
高考数学一轮复习规划第十一章第3讲 二项式定理
1.(202X·新高考八省联考)(1+x)2+(1+x)3+…+(1+x)9的 展开式中x2的系数是( )
A.60
B.80
C.84
D.120
解析 (1+x)2+(1+x)3+…+(1+x)9 的展开式中 x2 的系数是 C22+C23+ C24+…+C29,因为 Cmn -1+Cnm=Cnm+1且 C22=C33,所以 C22+C23=C33+C23=C34, 所以 C22+C23+C24=C34+C24=C35,以此类推,C22+C23+C24+…+C29=C39+C29= C310=130××29××18=120.故选 D.
3xr=Cr53rx5-32r,令
5-32r=2,得
r=2,所以
x2
的系
数为 C2532=90.
解析 答案
角度 二项式系数的最值问题
例3 (1)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x +y)2m+1展开式的二项式系数的最大值为b.若13a=7b,则m=( )
A.5
B.6
C.7 解析
∴5<n<7.又 n∈N*,∴n=6.令 x=1,
解析 答案
求展开式中系数最大项
如求(a+bx)n(a,b∈R)的展开式中系数最大的项,一般采用待定系数法,
设展开式各项系数分别为 A1,A2,…,An+1,且第 k 项系数最大,应用
Ak≥Ak-1, Ak≥Ak+1,
从而解出 k 来.
8.已知(x23+3x2)n 的展开式中,各项系数和与它的二项式系
解析
赋值法的应用 (1)对形如(ax+b)n(a,b∈R)的式子求其展开式的各项系数之和,常用 赋值法,只需令 x=1. (2)对形如(ax+by)n(a,b∈R)的式子求其展开式的各项系数之和,只需 令 x=y=1. (3)一般地,对于多项式(a+bx)n=a0+a1x+a2x2+…+anxn,令 g(x)=(a +bx)n,则(a+bx)n 的展开式中各项的系数和为 g(1),(a+bx)n 的展开式中奇 数项的系数和为12[g(1)+g(-1)],(a+bx)n 的展开式中偶数项的系数和为12 [g(1)-g(-1)].
2020版新高考复习理科数学教学案:计数原理、二项式定理、概率含答案
答案:144
调研二 二项式定理
■备考工具——————————————
1.二项式的通项与系数
(a+b)n展开式中的第r+1项为Tr+1=C an-rbr.展开式中C (r=0,1.….n)叫做第r+1项的二项式系数.
2.(1+x)n=1+C x+C x2+…+C xn.
3.二项式系数的性质
对称性
¥
C =C (m≤n)
A. B.
C. D.
解析:通解:由题意知.4位游客各从此地甲、乙、丙三个不同的景点中选择一处游览的选法有34=81种.第一步:从三个不同景点中选出一个景点有2位游客去游览的选法有C 种;第二步:从4位游客中选2位到第一步选出的景点去游览有C 种方法;第三步:余下2位游客到余下的两个景点的分法有A 种.所以每个景点都有人去游览的方法有C C A =36种.于是所求概率为P= = .故选D.
答案:B
4.[20xx·遵义航天中学二模]将5本不同的书分给甲、乙、丙三人.每人至少一本至多两本.则不同的分法种数是( )
A.60B.90
C.120D.180
解析:第一步.将5本不同的书分成3组.一组1本.剩余两个组每组2本.有 种分法;第二步.将分成的3组作全排列.有A 种排法.根据分步乘法计数原理可得不同的分法种数为 ·A =90种不同的分法.故选B.
优解:从6门课程中选3门的不同选法有C 种.而A和B两门课程都不选的选法有C 种.则学生甲不同的选法共有C -C =20-4=16(种).
答案:16
8.[20xx·全国卷Ⅰ]从2位女生.4位男生中选3人参加科技比赛.且至少有1位女生入选.则不同的选法共有________种.(用数字填写答案)
解析:通解:可分两种情况:第一种情况.只有1位女生入选.不同的选法有C C =12(种);第二种情况.有2位女生入选.不同的选法有C C =4(种).
高考数学一轮复习 第十一章 计数原理 11.2 二项式定理的应用对点训练 理-人教版高三全册数学试题
2017高考数学一轮复习 第十一章 计数原理 11.2 二项式定理的应用对点训练 理1. (x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60答案 C解析 由二项展开式通项易知T r +1=C r5(x 2+x )5-r y r,令r =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t·x t =C t 3x6-t,令t =1,所以x 5y 2的系数为C 25C 13=30,故选C.2.已知⎝ ⎛⎭⎪⎫x -a x 5的展开式中含x 23 的项的系数为30,则a =( )A. 3 B .- 3 C .6 D .-6答案 D解析 由二项展开式的通项可得3.二项式(x +1)n (n ∈N +)的展开式中x 2的系数为15,则n =( ) A .7 B .6 C .5 D .4答案 B解析 由(x +1)n =(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n ,知C 2n =15,∴n n -12=15,解得n =6或-5(舍去).故选B.4.已知(1+x )n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29答案 D解析 因为(1+x )n的展开式中第4项与第8项的二项式系数相等,即C mn =C n -mn ,所以C 3n =C 7n ,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.5.在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10答案 C解析 在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15.6.设m 为正整数,(x +y )2m展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b ,若13a =7b ,则m =( )A .5B .6C .7D .8答案 B解析 由题意知a =C m2m ,b =C m +12m +1, ∴13C m 2m =7C m +12m +1, 即13×2m !m !m !=7×2m +1!m +1!m !,解得m =6.7.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 答案 3解析 解法一:直接将(a +x )(1+x )4展开得x 5+(a +4)x 4+(6+4a )x 3+(4+6a )x 2+(1+4a )x +a ,由题意得1+(6+4a )+(1+4a )=32,解得a =3.解法二:(1+x )4展开式的通项为T r +1=C r 4x r ,由题意可知,a (C 14+C 34)+C 04+C 24+C 44=32,解得a =3.8.在(2x -1)5的展开式中,含x 2的项的系数是________.(用数字填写答案). 答案 -40解析 由二项展开式的通项T r +1=C r 5(2x )5-r(-1)r(r =0,1,…,5)知,当r =3时,T 4=C 35(2x )5-3(-1)3=-40x 2,所以含x 2的项的系数是-40.9.(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案) 答案 -20解析 (x +y )8的通项公式为T r +1=C r 8x8-r y r(r =0,1,…,8,r ∈Z ).当r =7时,T 8=C 78xy 7=8xy 7,当r =6时,T 7=C 68x 2y 6=28x 2y 6,所以(x -y )(x +y )8的展开式中含x 2y 7的项为x ·8xy 7-y ·28x 2y 6=-20x 2y 7,故系数为-20.10.若⎝ ⎛⎭⎪⎫ax 2+b x6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.答案 2解析 ⎝⎛⎭⎪⎫ax 2+b x6的展开式的通项为T r +1=C r 6(ax 2)6-r·⎝ ⎛⎭⎪⎫b x r =C r 6a 6-r ·b r x 12-3r , 令12-3r =3,得r =3. 由C r 6a6-r b r=C 36a 3b 3=20,得ab =1.所以a 2+b 2≥2ab =2×1=2.11.⎝ ⎛⎭⎪⎫x y-y x 8的展开式中x 2y 2的系数为________.(用数字作答)答案 70 解析 设⎝⎛⎭⎪⎫x y -y x 8的第r +1项中含有x 2y 2,则T r +1=C r 8⎝ ⎛⎭⎪⎫x y 8-r ⎝⎛⎭⎪⎫-y x r =C r 8·(-1)r·x 8-r - r 2 y r - 8- r2 ,因此8-r -r 2=2,r -8-r2=2,即r =4.故x 2y 2的系数为C 48×(-1)4=8×7×6×54×3×2×1=70.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化训练(十一) 计数原理、二项式定理、概率一、选择题1.[2019·安徽五校联考二]某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的种数为( )A.15 B.30C.35 D.42解析:解法一:甲企业有2人,其余5家企业各有1人,共有7人,所以从7人中任选3人共有C37种情况,发言的3人来自2家企业的情况有C22C15种,所以发言的3人来自3家不同企业的可能情况共有C37-C22C15=30(种),故选B.解法二:发言的3人来自3家不同企业且含甲企业的人的情况有C12C25=20(种);发言的3人来自3家不同企业且不含甲企业的人的情况有C35=10(种).所以发言的3人来自3家不同企业的可能情况共有20+10=30(种),故选B.答案:B2.[2019·长沙四校一模]某校高三年级为了解学情和教情,在该年级6个班中选10名学生参加座谈会,要求每班至少派1名学生参加,其中高三(1)班至少派2名学生参加,则不同的选派方式有( )A.72种B.60种C.50种D.56种解析:首先需满足高三(1)班选2名学生,其余班级各选1名学生,然后只需分配剩下的3个名额,这3个名额可以分到一个班,有C16种分法,也可以分到两个班,其中一个班1名,一个班2名,有A26种分法,还可以分到三个班,每班1名,有C36种分法.因此不同的选派方式共有C16+A26+C36=56(种).故选D.答案:D3.[2019·合肥质检二]某部队在一次军演中要先后执行六项不同的任务,要求是:任务A必须排在前三项执行,且执行任务A之后需立即执行任务E;任务B、任务C不能相邻.则不同的执行方案共有( )A. 36种B. 44种C. 48种D. 54种解析:由题意知任务A,E必须相邻,且只能安排为AE,由此分三类完成,(1)当AE排第一、二位置时,用○表示其他任务,则顺序为AE○○○○,余下四项任务,先全排D,F 两项任务,然后将任务B,C插入D,F两项任务形成的三个空隙中,有A22A23种方法.(2)当AE排第二、三位置时,顺序为○AE○○○,余下四项任务又分为两类:①B,C两项任务中一项排第一位置,剩余三项任务排在后三个位置,有A 12A 33种方法;②D ,F 两项任务中一项排第一位置,剩余三项任务排在后三个位置,且任务B ,C 不相邻,有A 12A 22种方法.(3)当AE 排第三、四位置时,顺序为○○AE ○○,第一、二位置必须分别排来自B ,C 和D ,F 中的一个,余下两项任务排在后两个位置,有C 12C 12A 22A 22种方法.根据分类加法计数原理知不同的执行方案共有A 22A 23+A 12A 33+A 12A 22+C 12C 12A 22A 22=44(种),故选B.答案:B4.[2019·广州调研]已知甲袋中有1个黄球和1个红球,乙袋中有2个黄球和2个红球,现随机从甲袋中取出1个球放入乙袋中,再从乙袋中随机取出1个球,则从乙袋中取出的球是红球的概率为( )A.13B.12C.59D.29解析:设事件A :“从甲袋中取出1个红球放入乙袋中,再从乙袋中取出1个红球”,事件B :“从甲袋中取出1个黄球放入乙袋中,再从乙袋中取出1个红球”,根据题意知所求概率为P (A +B )=P (A )+P (B )=12×35+12×25=12.故选B.答案:B5.[2019·合肥质检]某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5的五个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则中奖.按照这样的规则摸奖,中奖的概率为( )A.45B.1925C.2350D.41100解析:分为两个互斥事件:记“第一次取出的两球号码连号中奖”为事件A ,记“第二次取出的两球与第一次取出的未中奖的两球号码相同中奖”为事件B ,则由题意得P (A )=4C 25=25,P (B )=C 25-4C 25C 25=350,则每位顾客摸球中奖的概率为P (A )+P (B )=25+350=2350,故选C.答案:C6.[2019·石家庄质检]袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数:343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B.16 C.29D.518解析:由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29,故选C.答案:C7.[2019·广州综合测试]刘徽是我国魏晋时期的数学家,在其撰写的《九章算术注》中首创“割圆术”,所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.如图所示,圆内接正十二边形的中心为圆心O ,圆O 的半径为2,现随机向圆O 内投放a 粒豆子,其中有b 粒豆子落在正十二边形内(a ,b ∈N *,b <a ),则圆周率的近似值为( )A.b aB.a bC.3a bD.3b a解析:依题意可得360°12=30°,则正十二边形的面积为12×12×2×2×sin30°=12.又圆的半径为2,所以圆的面积为4π,现向圆内随机投入a 粒豆子,有b 粒豆子落在正十二边形内,根据几何概型可得124π=b a ,则π=3ab,选C.答案:C8.[2019·南昌一模]2021年广东新高考将实行3+1+2模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.今年高一的小明与小芳都准备选历史与政治,假若他们都对后面三科没有偏好,则他们选课相同的概率为( )A.136B.116C.18D.16解析:由题意,从政治、地理、化学、生物中四选二,共有C 24=6(种)方法,所以他们选课相同的概率为16,故选D.答案:D9.[2019·武汉2月调研]已知某口袋中装有2个红球,3个白球和1个蓝球,从中任取3个球,则其中恰有两种颜色的概率是( )A.35B.45C.720D.1320解析:依题意,从口袋中任取3个球,共有C 36=20(种)取法,从口袋中任取3个球,恰有两种颜色的取法有C 33+C 22C 13+C 12C 23+C 23C 11=13(种),所以所求的概率P =1320,故选D.答案:D10.[2019·洛阳统考二]如图所示,三国时代数学家在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为30°,若向弦图内随机抛掷200颗米粒(大小忽略不计,取3≈1.732),则落在小正方形(阴影)内的米粒数大约为( )A .20B .27C .54D .64解析:设大正方形的边长为2,则小正方形的边长为3-1,所以向弦图内随机投掷一颗米粒,落入小正方形(阴影)内的概率为(3-1)24=1-32,向弦图内随机抛掷200颗米粒,落入小正方形(阴影)内的米粒数大约为200×⎝ ⎛⎭⎪⎫1-32≈27,故选B. 答案:B11.[2019·石家庄一模]袋子中装有大小、形状完全相同的2个白球和2个红球,现从中不放回地摸取2个球,已知第二次摸到的是红球,则第一次摸到红球的概率为( )A.16B.13C.12D.15解析:设“第二次摸到红球”为事件A ,“第一次摸到红球”为事件B ,∵P (A )=2×1+2×24×3=12,P (AB )=24×3=16,∴P (B |A )=P (AB )P (A )=13,∴在第二次摸到红球的条件下,第一次摸到红球的概率为13,故选B.答案:B12.[2019·武汉4月调研]大学生小明与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小明恰好分配到甲村小学的概率为( )A.112B.12C.13D.16解析:依题意,小明与另外3名大学生分配到某乡镇甲、乙、丙3个村小学的分配方法是1个学校2人,另外2个学校各1人,共有C 24A 33=36(种)分配方法,若小明必分配到甲村小学,有C 23A 22+C 13A 22=12(种)分配方法,根据古典概型的概率计算公式得所求的概率为1236=13,故选C. 答案:C13.[2019·武汉4月调研]为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,他前一球投进则后一球投进的概率为34,他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第2球投进的概率为( )A.34 B.58 C.716D.916解析:设篮球运动员投进第n -1(n ≥2,n ∈N *)个球的概率为P n -1,第n -1个球投不进的概率为1-P n -1,则他投进第n 个球的概率为P n =34P n -1+14(1-P n -1)=14+12P n -1,∴P n -12=12⎝⎛⎭⎪⎫P n -1-12.∴P n -12=⎝ ⎛⎭⎪⎫P 1-12·⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n -1×14=⎝ ⎛⎭⎪⎫12n +1.∴P n =⎝ ⎛⎭⎪⎫12n +1+12(n ∈N *),∴P 2=58.故选B.答案:B14.[2019·福建质检]某商场通过转动如图所示的质地均匀的6等分的圆盘进行抽奖活动,当指针指向阴影区域时为中奖.规定每位顾客有3次抽奖机会,但中奖1次就停止抽奖.假设每次抽奖相互独立,则顾客中奖的概率是( )A.427B.13C.59D.1927解析:记顾客中奖为事件A ,恰抽1次就中奖为事件A 1,恰抽2次中奖为事件A 2,恰抽3次中奖为事件A 3.每次抽奖相互独立,每次抽奖中奖的概率均为13,∴P (A )=P (A 1)+P (A 2)+P (A 3)=13+23×13+23×23×13=1927,故选D.答案:D15.[2019·济南模拟]2019年1月1日,济南轨道交通1号线试运行,济南轨道交通集团面向广大市民开展“参观体验,征求意见”活动,市民可以通过济南地铁APP 抢票,小陈抢到了三张体验票,准备从四位朋友小王,小张,小刘,小李中随机选择两位与自己一起去参加体验活动,则小王和小李至多一人被选中的概率为( )A.16B.13C.23D.56解析:通解:若小王和小李都没被选中,则有C 22种方法,若小王和小李有一人被选中,则有C 12C 12种方法,故所求概率P =C 22+C 12C 12C 24=56. 优解:若小王和小李都被选中,则有1种方法,故所求概率P =1-1C 24=56.答案:D二、填空题16.[2019·惠州调研]某公司招聘5名员工,分给下属的甲、乙两个部门,其中2名英语翻译人员不能分给同一部门,另3名电脑编程人员不能都分给同一部门,则不同的分配方案种数是________.解析:由题意可得,①甲部门要2个电脑编程人员,则有3种情况;2名英语翻译人员的分配方法有2种.根据分步乘法计数原理,分配方案共有3×2=6(种).②甲部门要1个电脑编程人员,则有3种情况;2名英语翻译人员的分配方法有2种.根据分步乘法计数原理,分配方案共有3×2=6(种).由分类加法计数原理,可得不同的分配方案共有6+6=12(种).答案:1217.[2019·合肥调研]将红、黄、蓝三种颜色的三颗棋子分别放入3×3方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,且不在3×3方格图所在正方形的同一条对角线上,则不同的放法共有________种.解析:要想任意两颗棋子不在同一行、同一列和同一条对角线上,则三颗棋子必有一颗在正方形方格的顶点,另两颗在对角顶点的两侧,如图所示,由于正方形有四个顶点,故有四个不同的相对位置,又三颗棋子颜色不同,故不同的放法共有4A33=24(种).答案:2418.[2019·开封定位考试]从甲、乙等5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,乙只能参加数学竞赛,则不同的参赛方案种数为________.解析:分三种情形讨论:①甲、乙都选,不同的参赛方案有C12A23=12(种);②选乙不选甲,不同的参赛方案有A33=6(种);③选甲不选乙,不同的参赛方案有C13A33=18(种).所以满足条件的不同的参赛方案种数为12+6+18=36.答案:3619.[2019·江西五校联考](x2+1)(x-1)5的展开式中含x5的系数为________.解析:在(x 2+1)(x -1)5的展开式中要想出现x 5,有两种可能,其一,在第一个多项式中取x 2,在第二个展开式中取C 25x 3(-1)2,即x 2C 25x 3(-1)2=10x 5;其二,在第一个多项式中取1,在第二个展开式中取C 05x 5,即1×C 05x 5=x 5.10x 5+x 5=11x 5,所以x 5的系数为11.答案:1120.[2019·郑州质量预测一]已知⎝ ⎛⎭⎪⎫1x+x 2n 的展开式的各项系数和为64,则展开式中x3的系数为________.解析:令x =1,得2n =64,解得n =6,则⎝ ⎛⎭⎪⎫1x+x 26的展开式的通项T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r x 2r =C r6x 3r -6,令3r -6=3,得r =3,故x 3的系数为C 36=20.答案:2021.[2019·山西八校联考]如图所示的长方形内,两个半圆均以长方形的一边为直径且与对边相切,在长方形内随机取一点,则此点取自阴影部分的概率是________.解析:设半圆的半径为2,则长方形的宽为2,长为4,长方形的面积为2×4=8.在阴影中作如图所示的辅助线,则易知S阴影=2⎝ ⎛⎭⎪⎫12×22×2π3-12×2×2×si n 2π3=8π3-2 3.所以此点取自阴影部分的概率是8π3-238=π3-34.答案:π3-3422.[2019·福州质量抽测]甲、乙、丙三位同学独立解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为12,13,14,则有人能够解决这个问题的概率为________.解析:这个问题没有被解决的概率为⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1-14=14,故有人能够解决这个问题的概率为1-14=34. 答案:34。