正投影、线、面投影资料.

合集下载

第二章 正面投影法基础点的投影

第二章 正面投影法基础点的投影
32
四、两点的相对位置
两点的相对位置指两 点在空间的上下、前后、 左右位置关系。
a

Z a

b


b YW
X


判断方法:
▲ x 坐标大的在左 ▲ y 坐标大的在前 ▲ z 坐标大的在上
b

YH
B点在A点之 前、之右、之 下。
33
• 例题2 已知A点在B点之前5毫米,之上9毫米,之右8 毫米,求A点的投影。
O
(3 )视图的度量性
H
12
视图上物体的相对位置
Y
3、三面投影与三视图
视图就是将物体向投影面 投射所得的图形。 主视图 —— 实体的正面投影 俯视图 —— 实体的水平投影 左视图 —— 实体的侧面投影

1)视图的概念


2)三视图之间的度量对应关系
主视俯视长相等且对正 主视左视高相等且平齐 俯视左视宽相等且对应
YW
x
d
a’ e’ a
a’’ 0
f
e
YH
29
点的投影规律 一点的两投影之间的连线垂直于投影轴; 点的一个投影到某投影轴的距离等于空间点到 与该投影轴相邻的投影面之间的距离。 因此在求作点的'投影时,应保证做到:点 的V面投影与H面投影之间的连线垂直于0X轴, 即a'a上0X ;点的V面投影与W面投影之间的连 线垂直0Z轴,即a' a"上0Z;点的H面投影到0X 轴的距离及点的W面投影到0Z 轴的距离两者相 等,都反映点到V面的距离。
37
5、从属性 点在直线上,则点的投影必在该直线的同面投影上,且分线段的 比,投影后保持不变(AC:CB=ac:cb);点和直线在平面上,它们的投影必 在该平面的同面投影上。

第4讲 正投影基本知识(二)建筑

第4讲 正投影基本知识(二)建筑

返回
例题 判断点C是否在线段AB上。
① a b c ②
a
c

x
a
c
b
o b
x
a
o
c b
点C在直 线AB上
点C不在 直线AB上
返回
例题 判断点K是否在线段AB上。
a k● b
a

k
b
x
a k● b
因k不在ab上, 故点K不在AB上。
另一判断法?
应用定比定理
返回
四)、直线的迹点

c c
a
d
a b d
b c
b d a 如何判断?
对于特殊位置直线, 只有两个同面投影互相 平行,空间直线不一定 平行。 求出侧面投影后可知: AB与CD不平行。
求出侧面投影
⒉ 两直线相交
V a c k C b d K D d k c
交点是两直 线的共有点
b B c a
⒈ 两直线平行
b a A B c C D d V
投影特性:
空间两直线平 行,则其各同面投 影必相互平行,反 之亦然。
H
x
a b
c
d
例1:判断图中两条直线是否平行。

a b d c
x
a
c b d
对于一般位置直 线,只要有两个同面 投影互相平行,空间 两直线就平行。
AB//CD
例2:判断图中两条直线是否平行。
k
d
x
A a
o
b H
x
a
c k d b
o
判别方法:
若空间两直线相交,则其同面投影必 相交,且交点的投影必符合空间一点的投 影规律。

第2章 正投影基础

第2章 正投影基础

第2章正投影基础本章提要本章主要介绍投影法的基本概念和构成物体的基本几何元素点、线、面的投影特性、作图原理和方法;直线与直线、直线与平面的相对位置关系。

为解决求直线的实长和平面的实形的问题,还介绍了点、线、面的变换投影面的方法。

2.1投影法及三视图的形成2.1.1投影法在日常生活中人们注意到,当太阳光或灯光照射物体时,墙壁上或地面上会出现物体的影子。

投影法就源自这种自然现象。

如图2-1所示,平面P为投影面,不属于投影面的定点S为投影中心。

过空间点A由投影中心可引直线SA,SA为投射线。

投射线SA与投影面P的交点a,称作空间点A在投影面P上的投影。

同理,点b是空间点B在投影面P上的投影(注:空间点以大写字母表示,其投影用相应的小写字母表示)。

由此可知,投影法是投射线通过物体向预定投影面进行投影而得到图形的方法。

图2-1投影法图图2-2中心投影法2.1.2投影法的分类投影法一般分为中心投影法和平行投影法两类。

1、中心投影法投射线从投影中心出发的投影法,称为中心投影法,所得到的投影称为中心投影,如图2-2所示,通过投影中心S作出△ABC在投影面P上的投影:投射线SA、SB、SC分别与投影面P交于点a、b、c,而△abc就是△ABC在投影面P上的投影。

在中心投影法中,△ABC的投影△abc的大小随投影中心S距离△ABC的远近或者△ABC 距离投影面P的远近而变化。

因此它不适合绘制机械图样。

但是,根据中心投影法绘制的直观图立体感较强,适用于绘制建筑物的外观图。

2、平行投影法投射线相互平行的投影法,称为平行投影法,所得到的投影称为平行投影。

根据投射线与投影面的相对位置,平行投影法又分为:斜投影法和正投影法。

(1)斜投影法投射线倾斜于投影面时称为斜投影法,所得到的投影称为斜投影,如图2-3所示。

(2)正投影法投射线垂直于投影面时称为正投影法,所得到的投影称为正投影,如图2-4所示。

绘制工程图样主要用正投影,今后如不作特别说明,“投影”即指“正投影”。

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。

主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。

2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。

二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。

三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。

2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。

2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。

形成投影线的方法称为投影法(图2-1)。

(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。

1、中心投影法光线由光源点发出,投射线成束线状。

投影的影子(图形)随光源的方向和距形体的距离而变化。

光源距形体越近,形体投影越大,它不反映形体的真实大小。

2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。

平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。

(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。

(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。

用正投影法得到的投影叫正投影。

三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。

透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。

图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。

机械制图点、线、面的投影

机械制图点、线、面的投影
ax
X
az
A
a’’
W
O
ay
a
a’
az
a’’
a’
az
a’’
X ax XA O aYW YW X ax
YA a aYH
a0
a
O aYW YW
aYH
a0
H
YH
YH
YH
点的三面投影与坐标的关系:AAaa’=’=aa’a’ax=z=aa’’aayy==aaxzOO==XZAA
Aa’=aax=a’’az=ayO=YA
水平面的交线OX称为X轴,侧面与水平面的交线OY称为Y轴,
侧面与正面的交线OZ称为Z轴,三个投影轴垂直相交于一点O,
称为原点。
精选课件
3
回本讲
二、点在三面投影体系中的投影
点在三个投影面上的投影,就是通过这三个点分别向三个投影面所
作垂线的垂足。点三投影.swf 和点三投影展开.swf
Z
V
Z
W
Z
V a’
Y
YH
精选课件
7
回本章 回本讲
二、重影点的投影
若两点的某两个空间坐标值分别相等,则这两点必处于同一条
投射线上,因此,这两点在与投射线垂直的投影面上的投影重影于
一点。 Z
e’
e’’
V e’
c’(d’)
f’
DE C
d’’
O
F
e’’
W
c’’(f’’)
c’(d’)
f’
d
X
d
f
e(c)
f
Y
e(c)
H
d’’
c’’(f’’)
点线面的投影
主讲:郝善齐

三视图(第1课平行、中心、正投影)资料

三视图(第1课平行、中心、正投影)资料
练习:1、四边形的正投影形状可能是:四边形或一条线段
2、同一时刻阳光下的影子长的物体比影子短的物体 高。对吗?
3、太阳光下转动一个正方体,它的投影最多是 边形,最少是 边形
9
你能指出这些图形分别从哪个角度观察得到的吗?
视图
三视图法:从正面、上面和侧面 (左面或右面)三个不同的方向 看一个物体,然后描绘三张所看
左视图:
第二列的方块有 2 个,
动手设计
请画出下面立体图形的三视图。 俯视方向 注意:根据“长对正,高平齐,宽相等” 画 三视图必须遵循的法则作图.
挑战中考
2008年中招试题
4.如图(1)是一些大小相同的小正方体组 成的几何体,其主视图如图(2)所示,则 其俯视图是( B)
图(1)
图(2)
A
B
C A
B
D
3
3、中心投影规律及画法:
灯光下,不同物体的影子 方向可能同也可能不同; 等高物体垂直地面,离光 源近影子短,离光源远影 子长;等长物体平行地面, 离光源近影子长,离光源 远影子短。影长与物长不 一定成比例。
例:如图根据小明和小红的影子确定路灯的位置,并画 出塔的影子。
4
二、正投影(特殊的平行投影)
中的数字表示在该位置小正方
1
体的个数。
你能摆出这个几何体吗?
试画出这个几何体的主 视图与左视图。
主视图:
左视图:
21 2
21
不用摆出这个几何体,你能画出 这个几何体的主视图与左视图吗?
12
思考方法
先根据俯视图确定主视图有 列,
主视图:
再根据数字确定每列的方块有 个,
主视图有 3 列,第一列的方块有 1 个, 第二列的方块有 2 个,第三列的方块有 1 个, 左视图有 2 列, 第一列的方块有 2 个,

机械制图-点、直线、平面的投影

机械制图-点、直线、平面的投影
特殊位置点的应用
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。

第二章 正投影的基本知识

第二章  正投影的基本知识

投影面平行面: 平行于某一个投影面的平面。
一般位置平面: 对三个投影面都倾斜的平面。
图2-33 平面相对于投影面的位置
c′
Z a″
c″ b″
(2)、投影面垂直面
a′ X a b b′
铅垂面
正垂面 侧垂面
YW
c
YH
投影面垂直面的投影特性
•在其垂直的投影面上的投影积聚成与该投影面内的 两根投影轴倾斜的直线;该直线与相邻投影轴的夹 角反映该平面对另两个投影面的倾角。 •另外两个投影面上的投影均为空间平面的类似形。
xA<xB
yA>yB
,
故A点在右,B点在左 ,
YW
故B点在后,A点在前
zA>zB
,
YH
故A点在上,B点在下
2.重影点 空间两点在某一投 影面上的投影重合为一 点时,则称此两点为该 投影面的重影点。 被挡住的投 影加( )
A、C为H面的重影点
a
● ●
a
c
c●

a (c )

A、C为哪个投 影面的重影点 呢?
d”
c”
d
结论:两直线不平行
2.相交 如果空间两直线相交,则它们的同面投 影必定相交,且交点符合点的投影规律;反之, 如果空间两直线的同面投影相交,且交点符合点 的投影规律,则这两直线在空间一定相交。
[例2-5]
判断两直线是否相交?
z
d'
可用两种方法判断: 方法一 分割线段成定比 方法二 画第三投影
Y
YH
2.投影面上的点
到某个投影面的距离(一个坐标值) 为零。
YW YH
Y
3.投影轴上的点 到某两个投影面的距离(二பைடு நூலகம்坐标值)

1. 投影基础

1.  投影基础

X
Y
YH
三个投影面的展开
为了把空间三个投影面上所得到的投影画在一个平面上,需将三个相互垂直的 投影面展开摊平为一个平面。令V面保持不动,H面绕OX轴向下翻转90°,W面绕OZ 轴向右翻转90°,则它们就和V面在同一个平面上了。
三面正投影的放置和标注
展开后的三面正投影,H面投影在V面投影的正下方;W面投影在V面投影的正 右方。按照这种位置画投影图时,在图纸上可以不标注投影面、投影轴和投影图的 名称。
工程管理:P1、P2 造价:P57、P58 建工: P4: 2.2 ,2.3 注意要按比例量尺寸作图!
1.4 点的投影
一、点的两面投影及投影规律 二、点的三面投影及投影规律 三、两点的相对位置
一、 点的两面投影及投影规律
两投影面体系的建立
V
水平投影面 —— H 正面投影面 —— V
O
X
投 影 轴 —— OX
W 投影轴 X 水平投影面 (H面) O H Y
V、W、H面两 两垂直;
OX、OY、OZ 三轴形成一个 空间三维坐标 系。
三面正投影图的形成
砖的三个不同 方向的正投影
三个投影面的展开
Z V Z
V
W
V面不动;W面向右旋转 90°;H面向下旋转90° W X O YW O H OY轴一分为二;属H面的 称YH轴;属W面的称YW轴; H
x
2.两点的相对位置
a
a
b B
A
b
b
a
两点中x值大的点 —— 在左 两点中y 值大的点 —— 在前 两点中z 值大的点 —— 在上
3.重影点及投影可见性
d(c) A B
a b
C
D
a(b)

(刘)第1-4章 正投影法基础及点、线、面的投影

(刘)第1-4章  正投影法基础及点、线、面的投影
在三面投影体系中,用正投影法将物体向各投 影面投射所得到的图形。
三面体投影体系
投影轴
OX轴:V面与H面的交线
OY轴:H面与W面的交线 OZ轴:V面与W面的交线
X
Z
V
W
H Y
o
2.三视图的形成
主视图 左视图 俯视图
⒉ 三个投影面的展开及投影规律

主视
上 右

主视

左视 前
下 后 左
俯视
4、点的两面投影的画法
V
H
通常不画出投影面的边界
二 、点的三面投影
Z
O
W
Y
水平投影面 ---- H 正面投影面 ---- V 侧面投影面 ---- W
H∩V ---- OX V ∩W ---- OZ
H∩W ---- OY
空间点A在三投影面体系上的投影
a 点A的正面投影
a
点A的水平投影 点A的侧面投影
X
Z V
a●

A o

a
a
W
a● H Y
空间点用大写字母表 示,点的投影用小写 字母表示。
空间点在三投影面上的规律
Z V
a

a●
X
W
Z
az
O

a
Y
az
A ● O

X
ax
a
ax
ay
a

ay
H Y
a

Y
ay
(1) aax= aaz=y=A到V面的距离
aax= aay=z=A到H面的距离 aay= aaz=x=A到W面的距离
(2)侧垂线

第二章 正投影法基础

第二章 正投影法基础

b' c' a" c" b"
积聚性
a
实形
c a" b"实形 c"
积聚性
H V W
R //OZ
b a' b' c' b a c
//OY
H
一般位置平面 b'
V W
b"
a' c' b c"
a"
H
c a
投影特性
在H、V、W面内的投影均为空间平面图形的 类似形
四、点、直线、平面投影的应用 直线、
——据立体的投影确定线、面名称及对投影面的相对位置 据立体的投影确定线、 据立体的投影确定线 a' P' b' d' a P (d) c c' a"(c") A
3、点的投影规律的应用 、 据点的投影图确定点的空间位置及两点的相对位置
Z Z
a' (XA,ZA)
ZA XA X YA O
YA
a"(YA,ZA)
X Y1
a' c' b'
O
a" c" b"
Y1
a (c)
Y1
a (XA,YA)
b
Y1
B点在A点的右方、前方、下方 点在A点的右方、前方、
A(XA,YA,ZA)
直线对投影面的位置关系: 直线对投影面的位置关系: 直线倾斜于三个投影面 一般位置直线
直线平行于某一投影面 —— 投影面平行线 直线垂直于某一投影面 —— 投影面垂直线 特殊位置直线
特殊位置的直线
1、投影面平行线 、

机械制图2-正投影基础

机械制图2-正投影基础

2.4.3 直角投影定理
1.一直线平行投影面的垂直相交两直线的投影 垂直相交的两直线,当其中一条直线为投影面平行线时,则两直线 在该投影面上的投影也必定互相垂直.反之,若相交直线在某一投 影面上的投影互相垂直,且其中有一条直线为该平面的平行线,则 这两直线在空间也必定互相垂直.
设相交两直线AB⊥AC且AB‖H面.显然,直线AB垂直于平面ACca. 今ab⊥AB,则ab⊥平面AacC,因此,ab⊥ac,亦即∠bac=90.
2.1.2投影法的分类 投影法的分类
1.中心投影 投射线交于一点的投影,称为中心投影,如图2-3所示. 2.平行投影 假设将中心投影的光源移动到无限远时,投射线可以看做是互相平行的, 在这种情 况下得到的投影,称为平行投影.平行投影又可以分为正投影和斜投影两种. (1)正投影 投射线与投影面垂直时得到的投影,称为正投影. (2)斜投影 投射线与投影面倾斜时得到的投影,称为斜投影. 3.正投影的投影特性 (1)定比不变性 同一直线上两线段长度之比等于其投影长度之比. (2)平行性 两平行直线的投影一般仍互相平行,并且该两平行直 线段的长度之比等于其投影长度之比. (3)积聚性 直线变为线,面变为线. (4)真实性 反映直线的实长或平面的实形. (5)类似性 相类似的平面图形.表现为平面图形的边数,平行关 系,凹凸,直线边或曲线边投影后均保持定比不变性.
(2)两特殊位置平面相交 当相交两平面均为特殊位置平面时,则每一个平面必有一个投影有 积聚性,即可确定交线的一个投影,而另一个投影可以按照面上取 点,取线的方法作出.若相交两个平面同时垂直与=于同一投影面, 则交线必为这个投影面的垂直线.

2.4.2 直线上的点以及两直线的相对位置
1.直线上的点的特性 点在直线上,则点的投影必在该直线的同面投影上.反之,如果点 的投影均在直线的同面投影上,则点必在该直线上,否则,点不在 该直线上.

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影

第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。

主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。

2.1 投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。

二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。

三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。

2.1 投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。

2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。

形成投影线的方法称为投影法(图2-1)。

(a) (b)图2-1 中心投影法图2-2 平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。

1、中心投影法光线由光源点发出,投射线成束线状。

投影的影子(图形)随光源的方向和距形体的距离而变化。

光源距形体越近,形体投影越大,它不反映形体的真实大小。

2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。

平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。

(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。

(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。

用正投影法得到的投影叫正投影。

三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。

透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。

图2-3 透视图图2-4 轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。

第三章 点、直线、平面的投影

第三章  点、直线、平面的投影

侧垂线(垂直于W面,同时平行于H、V面的直线)
V
Z a b ab B W O a Ha X O YW a b Z a(b)
A X
b YH
b
Y
侧面投影积聚为一点;水平投 影及正面投影平行于OX轴,且 反映实长。
投影面垂直线的投影特性
投影面垂直线的投影特性可概括如下:
(1)直线在它所垂直的投影面上的投影积聚成一点;
c'
c
例3:已知C点在直线AB上,求作C点的水平投影。
1、用等比分割作图 2、利用侧面投影作图
a" c" b"
c c
例4:根据投影图判断C点是否在直线AB上。
求解一般位置直线的实长及倾角
根据一般位置直线的投影求解其实长及 倾角是画法几何综合习题中的常遇见的基本 问题之一,也是工程实际中经常需要解决的 问题。而用直角三角形法求解实长及倾角最 为简便、快捷。
一、直线投影的形成
连两 影 一 况 即个 , 直 下 可点 只 线 仍 由 。的 需 , 为 于 投作故直直 影出要线线 ,已获,的 再知得且投 将直直两影 它线线点一 们上的决般 相的投定情
V
a'
b'
B
X
A
O b a H
直线的分类
投影面垂直线 特殊位置直线
直 线
投影面平行线 一般位置直线
二、特殊位置直线
水平投影到OX轴的距 离等于侧面投影到OZ轴 的距离(宽相等)。
a
ay YH
可得出点的投影特性如下: (1)点的投影的连线垂直于相应的投影轴。
(2)点的投影到投影轴的距离,反映该点到相应的投影面的距离。
【例3-1】 已知点A的水平投影a和正面投影a′,求其 侧面投影a″ 解: 作图步骤如下

工程制图第3章点线面投影

工程制图第3章点线面投影
14:10
水平投影ab‖ OYH,正面投影 a’b’ ‖OZ,都不反映实长; a”b”与OYW夹角反映α实际大小, a”b”与OZ夹角反映β实际大小。
投影面平行线的投影特性
名称 水平线(‖H面,对V、W面 倾斜) 正平线(‖V面,对H、W面 倾斜) 侧平线(‖W面,对H、V 面倾斜)
投 影 图
投 影 特 性
二、三视图的投影规律及方位对应关系
主、俯视图——共同反映物体的长度方向的尺寸,简称“长对正”; 主、左视图——共同反映物体的高度方向的尺寸,简称“高平齐”; 俯、左视图——共同反映物体的宽度方向的尺寸,简称“宽相等”。
14:10
3.2 点的投影
一、点的三面投影
空间点用大写拉丁字母 如A、B、C…表示; 水平投影用相应小写字母 a表示; 正面投影用相应小写字母 加一撇a’表示;
侧面投影用相应小写字母 加二撇a”表示。
14:10
二、点的三面投影规律
aa’⊥OX,a’az=aayh=XA (A到W面的距离)
a’a”⊥OZ,a’ax=a”ayw=ZA (A到H面的距离) 点的三投影展开 .swf 14:10
aax=a”az=YA (A到V面的距离)
点的投影
作图时,为了表示aax=a”az的关系,常
用过原点O的45°斜线或以O为圆心的圆弧
14:10
把点的H面与W面投影关系联系起来。
例3-1 已知点A的两面投影,求点A的第三面投影。
解题步骤:
(1) 过原点O作45°辅助线; (2) 过a作平行OX轴的直线与 45°辅助线相交一点;
(3) 过交点作⊥OYW的直线;
(4) 该直线与过a’且平行OX轴 的直线相交于一点即为a” 。
1.侧面投影a”b”=AB; 2.水平投影ab‖ OYH,正 面投影a’b’ ‖OZ,都不反 映实长; 3.a”b”与OYW夹角反映α实 际大小,a”b”与OZ夹角反 映β实际大小。

投影基本知识—投影的概念及分类(建筑构造)

投影基本知识—投影的概念及分类(建筑构造)

二、投影的分类
投影线垂直 于投影面

行投影体投影法正投影(平行正投影)
投影特性
所有平行的投影线均垂直于投影面的投影。
能准确、完整地表达出形体的形状和结构,且作图简便,度量性 较好,故广泛用于工程图。
直观性较差,投影图的识读较难。
二、投影的分类
投影线倾斜 于投影面



投影体


(平行斜投影)
斜投影
投影特性
所有平行的投影线均倾斜于投影面的投影。 直观性较好,但度量性差。
二、投影的分类






中心投影
正投影
斜投影
投影
中心投影 (无法反映物体真实大小)
平行投影
正投影: 投影线垂直于投影面
(反映物体真实大小)
斜投影:投影线倾斜于投影面 (无法反映物体真实大小)
投影的概念及其分类
一、投影的概念

投影面

影子
投影图


光线

投影线

光源
投影中心
光源 光线
落影平面 影子
投影中心 投影线 投影面 投影图
形成投影的三要素:投影线、形体、投影面
二、投影的分类
中 心 投 影 法
物体位置改变, 投影大小也改变
中心投影:所有的投影 线均交于一点的投影。
投影特性
中心投影法得到的投影一般不反映形体的真实大小。 度量性较差,作图复杂。

第三章 正投影法

第三章 正投影法

请点击解答显示其内容
第三节 直线的投影
• 直线的投影 • 直线对一个投影面的投影特性 • 直线在三个投影面中的投影特性 • 直线上点的投影 • 两直线的相对位置
直线的投影
直线的投影
➢直线由两点确定,因此直线的投影即 由该直线上两点的投影所决定
直线对一个投影面的投影特性
➢积聚性
❖当直线垂直于投影面时 ❖在该投影面上的投影重合成一点
在所垂直的投影面上的投影则为重影点。
正垂线
(a’)b’ a” AB b”
a AB
b
铅垂线
a’
a”
AB
AB
b’
b”
侧垂线
AB a’ b’
a”(b”)
a(b)
请点击鼠标左键显示后面内容
AB
a
b
3.投影面倾斜线 —— 一般位置直线
❖类似性
☻当平面图形或线段倾斜于投影面时,平面图 形投影成类似形,线段的投影比实长短
正投影的基本特性(图示)
正投影的基本特性 1
➢线性
❖直线的投影在一般情况下仍是一直线,特殊情 况为点。
正投影的基本特性 2
➢等比性
❖点在线上则点的投影必在直线的同面投影上,点 分直线上两线段长度之比等于其投影长度之比
1. 空间一点 A 的投影
V
a 点在水平面 H 上的投影;x
a' 点在正平面 V 上的投影;
a " 点 在 侧 平 面 W 上 的 投 影 。
Z
a' A a" W
0
a
Y
H
请点击鼠标左键显示后面内容
Z
2. 点的三面投影规律
V a’
az a”

第四章点、直线、平面的正投影规律

第四章点、直线、平面的正投影规律

图29 直线与一般位置平面相交
求直线与一般位置平面的交点K,可按下面 三个步骤进行:
1、过已知直线AB作一铅垂面P位置平面)相 交,为,作为辅助面。
2、求出辅助面P与已知平面的交线MN的投影。 3、求出MN与直线AB的交点K的投影,点K 就是直线与平面的交点。
(a)已知直线AB和 三角形CDE的投影
第四章 点、直线、平面的正投影规律
学习目标和教学要求: : 1、熟练掌握点的三面正投影规律; 2、掌握各种位置点、直线、平面的投
影特性及点、线、面相对位置关系; 3、掌握定比性、两直线的相对位置关
系、直线与平面相对位置关系。
第一节 点的投影
一、点的三面投影
作出一点A的三面投影a、a′、a″(图41)。
其余两个投影平行于相应的投影轴,例 如表4-1中,CD//H,所以cd=C,a´b´//OX, a"b 投影轴而另一个投影倾斜时,它 必然是一根投影面平行线,平行 于该倾斜投影所在的投影面。
3.投影面垂直线
(1)空间关系
投影面垂直线垂直于某一个投影面, 因而平行于另外两个投影面。例如,表 4-2中空间直线EF⊥H,因而EF平行于V 面和W面,简称铅垂线。投影面垂直线除 铅垂线外,还有垂直于V面的正面垂直 线(正垂线),垂直于W面的侧面垂直 线(侧垂线)。
5、用迹线表示的特殊位置平面示例
(1)投影面垂直平面: 平面Q是铅锤面,在两投影面体系
中,有一条迹线垂直于投影轴,另一 条迹线倾斜于投影轴。 (2)投影面平行平面:
平面R是平行于H面的水平面,在 两投影面体系中,只有一条迹线,平 行于投影轴。如图4-23和4-24所示,
如图4-23用迹线表示的垂直于投影面的平面
图4—4投影图上的方位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e f e(f) ●
b
b
d

a(b)
c
ef
投影特性:
① 在其垂直的投影面 上,投影有积聚性。
② 另外两个投影,反映线段实长。且垂直 于相应的投影轴。
⑶ 一般位置直线
b
b
投影特性:
a
a
a b
三个投影都缩短。 即: 都不反映空间线段 的实长及与三个投影面 夹角的实大,且与三根 投影轴都倾斜。
二、直线与点的相对位置
解法一:
a●
az ●a
通过作45°线 使aaz=aax
ax
a●
解法二:
用圆规直接量 取aaz=aax
a● ax
a●
az
a

三、两点的相对位置
两点的相对位置指两 点在空间的上下、前后、
a●
Z ●a
左右位置关系。
b●
● b
X
判断方法:
YW a●
▲ x 坐标大的在左

b
YH
▲ y 坐标大的在前 ▲ z 坐标大的在上
Z
oW
H
Y
三个投影面 互相垂直
空间点A在三个投影面上的投影
a 点A的正面投影 V a●
a 点A的水平投影
A

X
a 点A的侧面投影
a●
Z
● a oW
H Y
空间点用大写字母 表示,点的投影用 小写字母表示。
投影面展开
V a

Z
az
W ●a
不动 V a

X
ax
a● H
O
ay ay
Y
Y X ax 向下翻
b
c●
k
d
a
a
d
k c●
b
先作正面投影
⒊ 两直线交叉
a c
1(2
)
3 ●

●4
c 2

d
两直投为线什影相么特交?性吗:?
b ★ 同名投影可能相交, 但 “交点”不符合空间
b 一个点的投影规律。

a

1
3(4 )
d
★ “交点”是两直线上 的一 对重影点的投影,
Ⅰ、Ⅱ是V面的重影点, 用其可帮助判断两直线 Ⅲ、Ⅳ是H面的重影点。 的空间位置。
判别方法:
◆ 若点在直线上, 则 V
b
点的投影必在直线的同
c
B
名投影上。并将线段的 a
C
同名投影分割成与空间
相同的比例。即:
A
b
AC/CB=ac/cb= ac / cb a c
H
◆若点的投影有一个不 在直线的同名投影上, 则 该点必不在此直线上。
定比定理
例1:判断点C是否在线段AB上。

b
c
a
② a
行,则其各同名投 影必相互平行,反 之亦然。
a c
b
dH
例1:判断图中两条直线是否平行。
① b
a c
a
c
d
对于一般位置直
线,只要有两个同名
投影互相平行,空间
两直线就平行。
bd
AB//CD
例2:判断图中两条直线是否平行。

c
a
d b
c b
c a
对于特殊位置直线,
只有两个同名投影互相
b d 平行,空间直线不一定
●a ● b
就得到直线的同名投影。 一、直线的投影特性
⒈ 直线对一个投影面的投影特性
A●
B

M●
A●
a● b●
●B
α A●
B●

a≡b≡m
直线垂直于投影面 投影重合为一点
积聚性
●b a●
直线平行于投影面 投影反映线段实长
ab=AB
●b a●
直线倾斜于投影面 投影比空间线段短
ab=ABcosα
⒉ 直线在三个投影面中的投影特性
c●
b
c
b
a
ac b
点C在直 线AB上
点C不在 直线AB上
例2:判断点K是否在线段AB上。
a
a
k● b
●k b 因k不在a b上,
a
故点K不在AB上。
k●
b
另一判断法? 应用定比定理
三、两直线的相对位置
空间两直线的相对位置分为:
平行、相交、交叉。
⒈ 两直线平行
投影特性:
b a
A
V d
B c
C
D
空间两直线平
Z
向右翻
az
A

a● H
●a
O
W
ay
Y
a ●
X ax
Z az
a

O
Y
ay
Z
V
a

az
A
X ax

●a
W O
a●
ay
Y
a●
ay
点的投影规律:
H Y
① aa⊥OX轴 aa⊥OZ轴
② aaaaaaxyx===aaaaaazz=y==xyz===AAA到到到WVH面面面的的的距距距离离离
例:已知点的两个投影,求第三投影。
正平线(平行于V面)
投影面平行线
侧平线(平行于W面)
平行于某一投影面而 与其余两投影面倾斜
水平线(平行于H面)
统称特殊位置直线
正垂线(垂直于V面)
投影面垂直线 侧垂线(垂直于W面) 垂直于某一投影面
铅垂线(垂直于H面)
一般位置直线 与三个投影面都倾斜的直线
⑴ 投影面平行线
水平线
正平线
a b a b 实长 a
● a
A在P面上的投影。
点在一个投影面上
的投影不能确定点的空 间位置。
P
● b B1 B2 ● B3 ●

解决办法? 采用多面投影。
二、点的三面投影
投影面
◆正面投影面(简称正 V
面或V面)
◆水平投影面(简称水
平面或H面)
X
◆侧面投影面(简称侧
面或W面)
投影轴
OX轴 V面与H面的交线 OY轴 H面与W面的交线 OZ轴 V面与W面的交线
平行投影法
且投 垂射 直线 于互 投相 影平 面行
直角(正)投影法
且投 倾射 斜线 于互 投相 影平 面行
投影特性
斜角投影法
投影大小与物体和投影面之间的距离无关。 度量性较好 工程图样多数采用正投影法绘制。
2·2 点的投影
一、点在一个投影面上的投影
P
过空间点A的投射线 与投影面P的交点即为点 A●
第二章 正投影法基本原理
2·1 投影的形成及常用的投影方法
画透视图
中心投影法
画斜轴测图
投影方法
斜角投影法
平行投影法
直角投影法(正投影法)
画工程图样 及正轴测图
投射中心 物体
投影面
中心投影法
投射线 投影
物体位置改 变,投影大
小也改变
投影特性
投射中心、物体、投影面三者之间 的相对距离对投影的大小有影响。 度量性较差
a
b α γ
b
侧平线
a
a 实长
β
b
α b
a β γ
b
实长
a
ba
b
与H面的夹角:α 与V面的角:β
与W面的夹角: γ
投 影 特 性:
① 在其平行的那个投影面上的投影反映实长, 并反映直线与另两投影面倾角的实大。
② 另两个投影面上的投影平行于相应的投影 轴。
⑵ 投影面垂直线
铅垂线
正垂线
侧垂线
a
a
c(d) d c ●
B点在A点之 前、之右、之
下。
重影点:
A、C为H面的重影点
a
空间两点在某一投 ●
●a
影面上的投影重合为一 c●
●c
点时,则称此两点为该
投影面的重影点。

a (c)
被挡住的投 影加( )
A、C为哪个投 影面的重影点 呢?
2·3 直线的投影
两点确定一条直线,将两 a● b 点的同名投影用直线连接, ●
平行。
da
求出侧面投影后可知:
如何判断?
求出侧面投影 AB与CD不平行。
⒉ 两直线相交
V c
a A a
b k
C d
B
KD
d
交点是两直 线的共有点
b c k
a
d
k c
b
Ha
d
判别方法:
ck
b
若空间两直线相交,则其同名投影必
相交,且交点的投影必符合空间一点的投 影规律。
例:过C点作水平线CD与AB相交。
相关文档
最新文档