八年级上册数学 全册全套试卷测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学全册全套试卷测试卷附答案

一、八年级数学三角形填空题(难)

1.一个多边形内角和是一个四边形内角和的4倍,则这个多边形的边数是_________

【答案】10

【解析】

【分析】

【详解】

解:本题根据题意可得:(n-2)×180°=4×360°,解得:n=10.

故答案为:10 .

考点:多边形的内角和定理.

2.若(a﹣4)2+|b﹣9|=0,则以a、b为边长的等腰三角形的周长为_______.

【答案】22

【解析】

【分析】

先根据非负数的性质列式求出a、b再根据等腰三角形和三角形三边关系分情况讨论求解即可.

【详解】

解:根据题意得,a-4=0,b-9=0,

解得a=4,b=9,

①若a=4是腰长,则底边为9,三角形的三边分别为4、4、9,不能组成三角形,

②若b=9是腰长,则底边为4,三角形的三边分别为9、9、4,能组成三角形,周长

=9+9+4=22.

【点睛】

本题主要考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,解决本题的关键是要熟练掌握非负数的非负性质和三角形三边关系.

3.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=______.

【答案】240.

【解析】

【详解】

试题分析:∠1+∠2=180°+60°=240°.

考点:1.三角形的外角性质;2.三角形内角和定理.

4.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.

【答案】74°

【解析】

【分析】

【详解】

试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.

∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,

∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣

∴∠ACE=1

2

∠CDA=50°.

∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣

∠DCF=75°.

考点:三角形内角和定理.

5.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为4cm,△OBC的面积_____cm2.

cm.

【答案】242

【解析】

【分析】

由BE=EO可证得EF∥BC,从而可得∠FOC=∠OCF,即得OF=CF;可知△AEF等于AB+AC,所以根据题中的条件可得出BC及O到BC的距离,从而能求出△OBC的面积.

【详解】

∵BE=EO,∴∠EBO=∠EOB=∠OBC,∴EF∥BC,∴∠FOC=∠OCB=∠OCF,

∴OF=CF;△AEF等于AB+AC,

又∵△ABC的周长比△AEF的周长大12cm,∴可得BC=12cm,

根据角平分线的性质可得O到BC的距离为4cm,

∴S△OBC=1

×12×4=24cm2.

2

考点:1.三角形的面积;2.三角形三边关系.

6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.

【答案】40.

【解析】

【分析】

利用三角形的内角和和四边形的内角和即可求得.

【详解】

∵△ABC沿着DE翻折,

∴∠1+2∠BED=180°,∠2+2∠BDE=180°,

∴∠1+∠2+2(∠BED+∠BDE)=360°,

而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,

∴80°+2(180°﹣∠B)=360°,

∴∠B=40°.

故答案为:40°.

【点睛】

本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.

二、八年级数学三角形选择题(难)

7.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()

A.x>5 B.x<7 C.2

【答案】D

【解析】

如图所示:

AB=5,AC=7,

设BC=2a,AD=x,

延长AD至E,使AD=DE,

在△BDE与△CDA中,

∵AD=DE,BD=CD,∠ADC=∠BDE,

∴△BDE≌△CDA,

∴AE=2x,BE=AC=7,

在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,

∴1<x<6.

故选D.

8.如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()

A.65°B.70°C.75°D.80°

【答案】D

【解析】

【分析】

由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.

【详解】

解:∵AB∥CD,

∴∠C=∠1=45°,

∵∠3是△CDE的一个外角,

∴∠3=∠C+∠2=45°+35°=80°,

故选:D.

【点睛】

本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,

相关文档
最新文档