计量经济学第六章-自相关资料
第六章 自相关(计量经济学课件,南京农业大学-周曙东)
E(εt ) = 0
εt 为白噪声
Var (εt ) = s2 Cov(εt , εt+s ) = 0
Yt= bo + b1 Xt + ut
(1)
如果自相关系数 为已知,将上式滞后一期
Yt-1= bo + b1 Xt-1 + ut-1
两边乘以
Yt-1= bo + b1 Xt-1 + ut-1
= (X’ P’ P X ) -1 X’ P’ P Y
= (X’ -1 X ) -1 X’ -1 Y
~ B
称为广义最小二乘估计量
1、 当 = I 时, B~ = ( X’ X ) -1 X’ Y ,广义最小二乘 估计量就是普通最小二乘估计量。
2、 当模型存在异方差时:
12
0
...
0
Ω
0
2 2
三、杜宾两步法
这种方法是先估计^ 再作差分变换,然后用OLS法来
估计参数。步骤是: 1、将模型(3)的差分形式写为
Yt = bo (1 )+ Yt-1 + b1 Xt b1 Xt-1 + Vt
Yt = ao + Yt-1 + a1 Xt + a2 Xt-1 + Vt
式中:
ao = bo (1 )
如b图所示,散点在II, IV象限,
表明存在负自相关。
二、杜宾—瓦森检验
DW检验是检验自相关的最著名、最常用的 方法。
1、适用条件 2、检验步骤
–(1)提出假设 –(2)构造统计量 –(3)检验判断
1、适用条件
(1)回归模型中含有截距项; (2)解释变量与随机扰动项不相关; (3)随机扰动项是一阶自相关; (4)回归模型解释变量中不包含滞后因变量; (5)样本容量比较大。
计量经济学 第六章 自相关
计量经济学
第六章
自相关
6
一阶自相关系数
自相关系数 的定义与普通相关系的公式形式相同
n
utut-1
t=2
n
n
ut2
u2 t 1
t2
t2
的取值范围为 -1 1
(6.1)
式(6.1)中 ut-1是 ut 滞后一期的随机误差项。 因此,将式(6.1)计算的自相关系数 称为一阶 自相关系数。
模型中
ut
是
-1
ut
滞后一期的值,因此称为一阶。
此式中的 也称为一阶自相关系数。
18
如果式中的随机误差项 vt 不是经典误差项,即
其中包含有 ut 的成份,如包含有 ut2 则需将 vt
显含在回归模型中,其为
ut = 1ut-1 + 2ut-2 + vt
其中,1 为一阶自相关系数,2为二阶自相关系
另外回归模型中的解释变量在不同时期通常是
正相关的,对于
Xt和
X
t
来说
j
Xt Xt+j 是大于0的。
33
因此,普通最小二乘法的方差 Var(ˆ2) = 2 Σxt2
通常会低估 ˆ2 的真实方差。当 较大和 Xt 有
较强的正自相关时,普通最小二乘估计量的方 差会有很大偏差,这会夸大估计量的估计精度, 即得到较小的标准误。 因此在有自相关时,普通最小二乘估计 ˆ2 的标 准误就不可靠了。
许多农产品的供给呈现为 蛛网现象,供给对价格的 反应要滞后一段时间,因 为供给需要经过一定的时
间才能实现。如果时期 t
的价格 Pt 低于上一期的 价格 Pt-1 ,农民就会减少 时期 t 1 的生产量。如
计量经济学第六章 自相关
X X
t
t+ j
是大于0的。
43
ˆ ) = 2 Σx2 因此,普通最小二乘法的方差 Var( 2 t ˆ 的真实方差。当 较大和 X 有 通常会低估 2 t
较强的正自相关时,普通最小二乘估计量的方
差会有很大偏差,这会夸大估计量的估计精度,
即得到较小的标准误。
ˆ 的标 因此在有自相关时,普通最小二乘估计 2
,
由于使用了广义差分数据,样本容量减少了1个,为22
个。查5%显著水平的DW统计表可知dL = 0.997,dU
。
= 1.174,模型中DW = 1.3979> dU, 说明广义差 分模型中已无自相关。同时,可决系数R2、t、F统计 量均达到理想水平。 10
最终模型结果
由差分方程可知:
7.7649 ˆ 1 41 .9271 1 0.8148
vt 是经典误差项,满足零均值 E(vt ) = 0 ,同方
差 Var(v ) = 2 ,无自相关 E(vt vs ) 0 (t s ) t v 的假定。
32
33
可以推得:
E(ut ) = r E(vt-r ) = 0
r =0
∞
2 σ 2 Var(vt ) = 2 n Var(vt-r ) = v 2 = u 1- r =0
R 2 0.9966 F 4122.531
2
检验结果表明:回归系数的标准误差非常小,t 统 计量较大,说明居民收入 X 对居民储蓄存款 Y 的 影响非常显著。同时可决系数也非常高,F统计量 为4122.531,也表明模型异常的显著。
但此估计结果可能是虚假的,t统计量和F统计量
都被虚假地夸大,因此所得结果是不可信的。为
最新-第六章自相关-PPT文档资料
第三、OLS估计量的方差是有偏的。 第四、T检验和F检验一般是不可靠的。 第五、计算得到的误差方差
2
RSS/d.f.
是真实的σ2有偏估计量,可能低估,也可能高估
第六、通常计算的R2也不能测度真实的R2
第七、预测的方差和标准差可能也是无效 的。
Q产出量 解释变量 资本(K)劳动(L) 技术(T)
注意:有些因素如政策因素对产出是有影响的但并没有 包含在解释变量中,所以应当包含在随机误差项中。
如果该影响构成随机误差项的的主要部分,则可能 出现序列相关
这是由于政策的影响是连续的。
而在做产出对劳力和资本投入的回 归中,我们用了季度时间序列数据。如 果某一季度的产出受到罢工的影响,却 没有理由认为这一生产中断会持续到下 一季度,就是说,即令本季度产出下降, 却没有理由预期下一季度的产出也下降。
表明干扰中的一个上升线性趋势
表明干扰中的一个下降线性趋势 表明干扰中兼有线性和二次趋势项
表示无系统性模样,符合于经典线性回归 模型的无相关假定。
§6.2 自相关产生的原因和后果
一、自相关产生的原因 1、被解释变量的自相关 • 滞后效应
在一个消费支出对收入的时间序列回归中, 人们常常发现当前时期的消费支出除了依赖于 其他变量外,还依赖于前期的消费支出,就是:
3、随机扰动项本身的特性所决定
• 惯性
在许多情况下,真实扰动项的逐次值是相关的。 例如干旱、暴风雨、地震、战争、罢工等纯随 机因素所产生的影响,将延续一个时期以上。 显然,在农业生产中,由于反常的天气所引起 的欠收,将会在几个时期内影响其他的经济变 量;还有,地震对于某个地区经济发展的影响, 也将持续若干年,等等。诸如此类的原因,导 致了扰动项的自相关。
第六章 自相关 《计量经济学》PPT课件
[(
1
ˆ
)
1
xt
ut
]2
(1 ˆ1)2 xt2 2(1 ˆ1) xt ut ut2
(6.2.11)
其中 xt ut xt ut (1 ˆ1) xt2
u
2 t
ut ut
ut2
1 n
ut ut
t t
(1
1 n
)
u
2 t
2 n
ut
t t
ut
所以
2 t
(1
ˆ 1 )2
xt2
第六章 自相关 【本章要点】(1)自相关的概念,自相关强度的 量度—自相关系数,了解经济现象中自相关产生 的原因;(2)自相关性对模型参数估计的影响; (3)检验自相关性的主要方法;(4)消除自相 关影响的方法。 §6.1 自相关 一、自相关的概念
如果经典回归的基本假定4遭到破坏,则
COV(ut ,us)=E(ut us)≠0 , t≠s , t,s=1,2, …,n,即u的取值与 它的前一期或前几期的取值相关,则称u存在序列相关 或自相关。 自相关有正自相关和负自相关之分,对随机项的时间 序列u1,u2,…,un,…,当ut > 0时,随后的若干个随机项 ut+1,u t+2,…都有大于0的倾向,当ut < 0时,随后若干个 随机项都有小于0的倾向,我们说u具有正相关性;而 负自相关则意味着两个相继的随机项ut和ut+1具有正负 号相反的倾向。在经济数据中,常见的是正自相关现象。
(4)根据样本容量n,自变量个数和显著水平0.05 (或0.01)从D-W检验临界值表中查出dL和du。 (5)将d 的现实值与临界值进行比较: ①若d < dL,则否定H0,即u存在一阶线性正自相关; ②若d > 4- dL,则否定H0,即u存在一阶线性负自相关; ③若du< d < 4- du,则不否定 H0,即u不存在(一阶)线 性自相关;
计量经济学第六章自相关
计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。
自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。
1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。
自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。
因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。
2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。
假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。
自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。
数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。
3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。
一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。
若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。
3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。
高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。
通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。
3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。
异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。
因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。
4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。
南开大学计量经济学第6章自相关
经济模型中最常见的是一阶自回归形式。
T
ut ut1
依据 OLS 公式,模型 ut = 1 ut -1 + vt 中1 的估计公式是
aˆ1
=
t=2 T
。
ut12
t=2
若把 ut, u t-1 看作两个变量,则它们的相关系数是 ˆ =
T
ut ut1
t=2
。
T
T
ut 2
u t 1 2
(2)样本容量T
21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96
22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94 (3)原回归模型中解 23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92 释变量个数k(不包括
《Econometrics》 《计量经济学》
攸频
nkeconometrics126 南开大学经济学院数量经济研究所
第六章 自相关
Autocorrelation
§6.1 基本概念、类型及来源 §6.2 自相关的后果 §6.3 自相关的检验(DW检验、LM检验) §6.4 自相关的修正(GLS) §6.5 案例
同理,Cov(ut, ut - s) = s Var(ut)
自相关的表现形式
§6.1.3 自相关的来源
(1)惯性 大多数经济时间数据都有一个明显的特点,即
具有惯性。 如:经济周期
棘轮效应
(2)设定偏误:模型中遗漏了显著的变量
例如:如果对羊肉需求的正确模型应为
Yt=b0+b1X1t+b2X2t+b3X3t+ut
计量经济学自相关
Yt Yt 1 (1 ) 1 ( X 1t X 1t 1 ) 2 ( X 2t X 2t 1 ) k ( X kt X kt 1 ) t
* * X 2t X 2t 1 … X2 t
令: Yt Yt 1 Yt (1 ) * X 1t X 1t 1 X 1*t * * 则: Yt* * 1 X 1*t 2 X 2 X t k kt t
四、回归检验法
回归检验法的优点是:(1)适合于任何形式的自相关检验,(2) 若结论是存在自相关,则同时能提供出自相关的具体形式与 参数的估计值。缺点是计算量大。回归检验法的步骤如下: ①用给定样本估计模型并计算残差et。 ②对残差序列et , (t = 1 ,2 ,… , T ) 用普通最小二乘法进 行不同形式的回归拟合。如: et et 1 t
* * Yt* * 1 X 1*t 2 X 2 X t k kt t
第四步:利用广义最小二乘估计量,计算原模型参数估计值:
ˆ* ˆ ˆ 1
ˆ ˆ
第五步:根据原回归模型及估计值计算残差 et :
ˆ X ˆ X ˆ X ˆ et Yt 1 1t 2 2t k kt
t 1 t 1
二、DW检验
2 et21 2 et et 1
t 2 t 2 2 e t 1 t 2 T
TTΒιβλιοθήκη 2(1 e et 2 T t 2
T
t t 1
2 e t 1
ˆ) ) 2(1
e e ˆ t 其中, 即可表示为 对 t 1 做回归的系数估计值,可等价 于 et 与 et 1 的相关系数。
计量经济学自相关实验报告
第六章自相关实验报告一、研究目的对于广大的中国农村人口而言,其消费总量比重却不高。
农村居民的收入和消费是一个值得研究的问题。
消费模型是研究居民消费行为的常用工具。
通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。
同时,农村居民消费模型也能用于农村居民消费水平的预测。
二、模型设定影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为:+β1X t+ U tY t=β参数说明:Y——农村居民人均消费支出 (单位:元)tX——农村居民人均纯收入(单位:元)tU t——随机误差项收集到数据如下(见表2-1)表2-1 1985-2011年农村居民人均收入和消费单位:元注:资料来源于《中国统计年鉴》1986-2012。
为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均收入和现价人均消费支出的数据,而需要用经消费价格进行调整后的1985年可比价格及人均纯收入和人均消费支出的数据做回归分析。
根据表2-1中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得如下结果。
表2-2 最小二乘估计结果Dependent Variable: YMethod: Least SquaresDate: 12/04/13 Time: 20:00Sample: 1985 2011Included observations: 27Coefficient Std. Error t-Statistic Prob.C 45.40225 10.30225 4.407025 0.0002X 0.718526 0.012526 57.36069 0.0000R-squared 0.992459 Mean dependent var 580.5296 Adjusted R-squared 0.992157 S.D. dependent var 256.4506 S.E. of regression 22.71079 Akaike info criterion 9.154744 Sum squared resid 12894.50 Schwarz criterion 9.250732 Log likelihood -121.5890 Hannan-Quinn criter. 9.183287 F-statistic 3290.249 Durbin-Watson stat 0.528075 Prob(F-statistic) 0.000000由以上结果得到以下方程:^Y t=45.4022545+0.718526X t(6.1)(10.30225)(0.012526)t = (4.407025) (57.36069)R2=0.992459--R2=0.992157 F=3290.249 DW=0.528075该回归方程可决系数较高,回归系数均显著。
第六章 自相关 《计量经济学》PPT课件
由于解释变量之一是被解释变量的滞后值,称为自 回归模型。人们的消费习惯不会轻易改变,从而 对模型产生自相关性。
(3)模型设定偏误(specification error)。
一是应含而未含变量(excluded variable)设定偏 误;二是不正确的函数形式。例
Yi
1
2 X 2i
3
X
2 2i
ui
• 同时,可以推出下列结论
•
E(ut ) mE(vtm ) 0
m0
(6.1.14)
•
Var(ut
)
m0
2 mVar (vt
m
)
1
2 v
2
(6.1.15)
三、自相关产生的原因
(1)惯性(inertia)。
大多数经济时间序列都一个明显的特点,就是它的 惯性或黏滞。例如,GDP、价格指数、就业等时 间序列都呈现出一定的周期性。这种“内在的动 力”惯性往往产生序列自相关。
E ( ˆ2
)
E
(
xt yt xt2
)
E(2
xtut xt2
)
•
2
xt E(ut ) xt2
2
(6.2.5)
• 即参数 2的OLS估计量为无偏估计量。
在随机干扰项不满足无自相关条件时,得到OLS估 计量的方差为:
Var(ˆ2
)
E(ˆ2
2
)
E(
xtut xt2
)2
1 ( xt2 )2
下,经济变量也是正相关,式子(6.2.6)括号内的数值是 大于0的。也就是说,仍使用式子(6.2.3)作为参数估计 量的方差将会低估真实的方差。
• 当随机干扰项不存在自相关时, 2 的无偏估计为:
计量经济学 第六章 自相关
5
3、模型设定不当
(1)数学模型设定不当 比如我们在非线性回归模型中介绍的产品总成本Y和产量X 的回归模型为:
Yt b0 b1 X t b2 X b3 X t
2 t 3 t
但如果用线性模型来替代
Yt b0 b1 X t t
2 3
那么随机误差项
vt b2 X t b3 X t t
若d 0.562, 则0 d d L , 存在一阶正自相关
若d 3.521, 则4 d L d 4, 存在一阶负自相关
若d 2, 则dU d 4 dU , 不存在一阶自相关 若d 1.267, 则d L d dU , 无法确定模型中是否存在一阶自相关 若d 2.980, 则4 dU d 4 d L , 无法确定模型中是否存在一阶自相关
无自相关 区域
负自相关区域 正自相 关区域
0
dL
dU
2
4 dU
4 dL 4
17
例题6.1
在给定的显著性水平=0.05条件下,n 10, k 1
查表得下限值d L 0.879, 上限值dU 1.320 又可以计算得4 dU 2.68, 上限值4 d L 3.121
2 2
若nR ( p ), 拒绝原假设,原模型存在自相关
2 2
若nR ( p), 接受原假设,原模型不存在自相关
2 2
拒绝域
接受域
( p )
2
nR
2
( p )
2
nR
2
22
6.4 自相关的修正
• 自相关修正的基本原理:通过差分变换,对原始数据进行 修正。自相关修正主要有三种方法。 • 1、广义差分法
计量经济学 第六章 自相关性
第六章自相关性6.1 自相关性:6.1.1. 非自相关假定由第2章知回归模型的假定条件之一是,Cov(u i, u j) = E(u i u j) = 0, (i, j∈T, i≠j), (6.1)即误差项u t的取值在时间上是相互无关的。
称误差项u t非自相关。
如果Cov (u i,u j ) ≠ 0, (i≠j)则称误差项u t存在自相关。
自相关又称序列相关。
原指一随机变量在时间上与其滞后项之间的相关。
这里主要是指回归模型中随机误差项u t与其滞后项的相关关系。
自相关也是相关关系的一种。
6.1.2.一阶自相关自相关按形式可分为两类。
(1)一阶自回归形式当误差项u t只与其滞后一期值有关时,即u t = f (u t - 1) + v t称u t具有一阶自回归形式。
(2) 高阶自回归形式当误差项u t的本期值不仅与其前一期值有关,而且与其前若干期的值都有关系时,即u t = f (u t– 1, u t– 2 , …u t– p ) + v t则称u t具有P阶自回归形式。
通常假定误差项的自相关是线性的。
因计量经济模型中自相关的最常见形式是一阶自回归形式,所以下面重点讨论误差项的线性一阶自回归形式,即u t = α1 u t -1 + v t(6.2)其中α1是自回归系数,v t 是随机误差项。
v t 满足通常假设E(v t) = 0, t = 1, 2 …,T,Var(v t) = σv2, t = 1, 2 …,T,Cov(v i , v j ) = 0, i ≠ j , i , j = 1, 2 …, T , Cov(u t -1, v t ) = 0, t = 1, 2 …, T ,依据普通最小二乘法公式,模型(6.2)中 α1 的估计公式是,1ˆa= ∑∑=-=-Tt t Tt t t u u u 22121(1ˆβ=∑---2)())((x x x x y y t t t ) (6.3)其中T 是样本容量。
金融学《自相关》课件
●一阶自回归形式较为简单 ●在实际计量分析中处理一阶自回归形式常能取得较好
效果
一阶自回归形式自相关的性质
对于 ut ut1 t 可以证明:
ut (ut2 t1) t
2 (ut3 t2 ) t1 t
3(ut4
第三节 自相关的检验
一、图解法
用样本回归剩余 et 代替ut,绘制以 et 为纵坐标,以 et1
或时间顺序 t 为横坐标的坐标图,观测是否存在自相关,
如
横坐标为 t
et
et
•
•
• •• •
• •
• •
•• ••
•• ••
•
•• •
•
•
••
•
t
••• •
••
• ••
••
• •
•
•
et 1
••
et
•
•
2 u,在
少数情况下也有可能高估 ˆ2* 的真实方差,但对OLS估计量
方差的估计也是有偏的。
真实方差 :
n1 n1
Var(ˆ2)
2 u
k xt xtk
[1 2 t1 k1
]
xt2
xt2
用 ei2 还会低估 ut 的真实方差,因为证明见教材p160(6.20)
E( ei2) 2[(n 2) (2
t 3 )
2 t2
t 1
t
t t1 2t2 3t3
u t
t t1 2t2 3t3
一般关系: ut ut1 t ktk
期望为
k 0
E(ut ) k E(tk ) 0
计量经济学第六章
εt遵循0均值、同方差、无 序列相关的各条OLS假定
以双变量回归模型和 AR (1)为例。 Yt = β1 + β 2 X t + u t u t = ρu t −1 + ε t Yt = β1 + β 2 X t + ut (1) ( 2)
ρYt −1 = ρβ 1 + ρβ 2 X t −1 + ρu t −1
3、回归检验法
~ ~ et 为被解释变量, et −1 、 以 以各种可能的相关量, 诸如以 ~ ~ et − 2 、 et 2 等为解释变量,建立各种方程:
~ ~ e t = ρ e t −1 + ε t
~ = ρ e + ρ ~ +ε ~ et 1 t −1 2 et − 2 t
……
如果存在某一种函数形式,使得方程显著成 立,则说明原模型存在序列相关性。 回归检验法的优点 回归检验法 优点是:(1)能够确定序列相 优点 关的形式,(2)适用于任何类型序列相关性问 题的检验。
+ ⋯ + β k ( X kt − ρ1 X kt −1 − ⋯ − ρl X kt − l ) + ε t
该模型为广义差分模型 广义差分模型,不存在序列相关问题。 广义差分模型 可商行OLS估计。
ρ未知时序列相关的修正
应用广义差分法, 应用广义差分法,必须已知随机误差项的相关系数 ρ1, ρ2, … , ρp 。 实际上, 人们并不知道它们的具体数值 , 所以 实际上 , 人们并不知道它们的具体数值, 必须首先对它们商行估计。 必须首先对它们商行估计。
如果怀疑随机扰动项存在pρ1µt −1 + ρ 2 µt − 2 ⋯ + ρ p µt − p + ε t
计量经济学第六章自相关
计量经济学第六章自相关在计量经济学的学习中,自相关是一个重要且颇具挑战性的概念。
自相关,简单来说,就是指在时间序列或横截面数据中,观测值之间存在的某种相关性。
想象一下,我们在研究某个经济变量随时间的变化情况,比如一家公司的销售额。
如果在不同的时间段,销售额的变化不是相互独立的,而是存在一定的关联,这就可能出现了自相关现象。
自相关产生的原因多种多样。
其中一个常见的原因是经济变量的惯性。
例如,消费者的消费习惯往往具有一定的延续性,不会突然发生巨大的改变。
这就导致消费数据在不同时期可能存在相关性。
另一个可能的原因是模型设定的不准确。
如果我们在构建计量经济模型时,遗漏了某些重要的解释变量,那么残差项就可能包含这些被遗漏变量的影响,从而导致自相关。
自相关的存在会给我们的计量经济分析带来一系列问题。
首先,它会影响参数估计的有效性。
在存在自相关的情况下,传统的最小二乘法(OLS)估计得到的参数估计值不再是最优的,估计的方差也会被低估,这可能导致我们对参数的显著性做出错误的判断。
其次,自相关会使我们对模型的假设检验失效。
假设检验是基于一定的统计分布进行的,如果存在自相关,这些分布就不再适用,从而导致检验结果的不可靠。
那么,如何检测自相关呢?常用的方法有图形法、杜宾瓦特森(DurbinWatson)检验等。
图形法是通过绘制残差的序列图来直观地观察是否存在自相关。
如果残差呈现出某种周期性或趋势性,那么就可能存在自相关。
杜宾瓦特森检验则是一种基于统计量的检验方法。
它通过计算一个特定的统计量,并与临界值进行比较来判断是否存在自相关。
如果经过检测发现存在自相关,我们就需要采取相应的方法来处理。
一种常见的方法是广义最小二乘法(GLS)。
GLS通过对原模型进行变换,使得变换后的模型不存在自相关,从而得到更有效的参数估计。
另外,还可以使用一阶差分法。
这种方法将原变量的一阶差分作为新的变量进行回归分析,从而消除可能存在的自相关。
计量经济学课件:第六章-自相关性
第六章 自相关性本章教学要求:本章是违背古典假定情况下线性回归描写的参数估计的又一问题。
通过本章的学习应达到:掌握自相关的基本概念,产生自相关的背景;自相关出现对模型影响的后果;诊断自相关存在的方法和修正自相关的方法。
能够运用本章的知识独立解决模型中的自相关问题。
经过第四、五、六章的学习,要求自行选择一个实际经济问题,建立模型,并判断和解决上述可能存在的问题。
第一节 自相关性的概念一、一个例子研究中国城镇居民消费函数,其中选取了两个变量,城镇家庭商品性支出(现价)和城镇家庭可支配收入(现价),分别记为CSJTZC 和CSJTSR ,时间从1978年到1997年,n=20。
但为了剔除物价的影响,分别对CSJTZC 和CSJTSR 除以物价(用CPI 表示),这里CPI 为城镇居民消费物价指数(以1990年为100%),经过扣除价格因素以后,记CPICSJTSRX CPICSJTZCY ==即如下表回归以后得到的残差为Dependent Variable: YMethod: Least SquaresDate: 10/27/04 Time: 09:39Sample: 1978 1997Included observations: 20Std. Error t-Statistic Prob.Variable CoefficientC-103.369278.80739-1.3116690.2061X0.9235510.01603357.603880.00003939.341 R-squared0.994605Mean dependentvarAdjusted R-squared0.994305S.D. dependent var2124.467S.E. of regression160.3247Akaike info criterion13.08692Sum squared resid462671.9Schwarz criterion13.18649Log likelihood -128.8692 F-statistic 3318.207 Durbin-Watson stat1.208037 Prob(F-statistic)0.000000二、什么是自相关性在引出自相关性的概念之前,根据建立中国城镇居民储蓄函数,经用最小二乘法估计出参数后,得到残差序列,由此画出残差图(残差序列自身的关系),从图形上看存在t e 对1 t e 的线性关系,残差的这种现象说明了什么?下面给出序列自相关的定义。
计量经济学 张晓桐版 第六章 自相关
(2)分别用DW、LM统计量检验误差项 ut是否存在自相关。
已知DW = 0.60,若给定a = 0.05,查附表4,得DW检验临界值dL = 1.26,dU = 1.44。 因为 DW = 0.60 1.26,认为误差项ut存在严重的正自相关。
LM 统计量既可检验一阶自相关,也可检验高阶自相关。 LM 检验是通过一个辅助回归式完成的,具体步骤如下。
Yt = 0 + 1 X1 t + 2 X2 t + … + k Xk t + ut 考虑误差项为 n 阶自回归形式 ut = 1 ut-1 + … + n ut - n + vt H0: 1 = 2 = …= n = 0
第6章 自相关
非自相关假定 自相关的来源与后果 自相关检验 自相关的解决方法 克服自相关的矩阵描述(不讲) 自相关系数的估计 案例分析
6.1非自相关假定:Cov(ui, uj ) = E(ui uj) = 0, (i, j T, i j)
如果Cov (ui , uj ) 0, (i, j T, i j)则称误差项ut存在自相关。 自相关又称序列相关。也是相关关系的一种。 自相关按形式可分为两类: (1)一阶自回归形式。ut = f (ut-1) (2)高阶自回归形式。ut = f (ut – 1, u t – 2 , … ) 经济计量模型中自相关的最常见形式是一阶线性自回归形式。
2 1
t2
6.3 自相关检验
的取值范围是 [-1, 1],所以DW统计量的取值范围是 [0, 4]。
与 DW 值的对应关系及意义
计量经济学(第六章自相关)
所以在有自有关时,一般最小二乘估计 ˆ2 旳原 则误就不可靠了。
Econometrics 2003
20
一种被低估了旳原则误意味着一种较大旳t统计
量。所以,当 0时,一般t统计量都很大。
这种有偏旳t统计量不能用来判断回归系数旳明 显性。 综上所述,在自有关情形下,不论考虑自有关, 还是忽视自有关,一般旳回归系统明显性旳t检 验都将是无效旳。 类似地,因为自有关旳存在,参数旳最小二乘估 计量是无效旳,使得F检验和t检验不再可靠。
cov(i , j ) E(i j ) 0存在i j
常见于时间序列数据。
Econometrics 2003
3
自有关类型:一阶自有关
一阶自相关:Cov(ut , ut1) 0;
若进一步,有ut=ut1+t ,
则称ut一阶线性自相关
(其中 |
|
1,
为白噪声序列,
t
即E(t ) 0, Cov(t , s ) 0(t s),
作为散布点绘图,假如大部分点落在第Ⅰ、Ⅲ象限,表白
随机误差项 ut 存在着正自有关。
Econometrics 2003
25
et
et
et-1et 1
图 6.2 et与et-1旳关系
假如大部分点落在第Ⅱ、Ⅳ象限,那么随机误
差项 ut 存在着负自有关。
Econometrics 2003
26
et
t
二、对模型检验旳影响
Econometrics 2003
30
n
n
n
et2 +
e2 t -1
-
2
et et -1
DW = t=2
t=2 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、时间顺序图—将残差对时间描点
e
e
a
t
b
t
• 如a图所示,扰动项为锯齿型,et随时间变化频繁 地改变符号,表明存在负自相关。
• 如b图所示,扰动项为循环型,et随时间变化不频 繁地改变符号,而是几个正之后跟着几个负的,
几个负之后跟着几个正的,表明存在正自相关。
2、绘制残差et, et-1的图形
• 自相关按形式可分为两类。 • (1)一阶自回归形式
• 当误差项ut只与其滞后一期值有关时,即
ut f (ut1) vt
• 称ut具有一阶自回归形式。
• (2) 高阶自回归形式
• 当误差项ut的本期值不仅与其前一期值有关,而且
与其前若干期的值都有关系时,即
ut f (ut1, t2 ,) vt
• 模型设定偏误: 若所用的数学模型与变量间的真实关系不一致, 误差项常表现出自相关。比如平均成本与产量呈抛 物线关系,当用线性回归模型拟合时,误差项必存 在自相关。
• 回归模型中略去了带有自相关的重要解释变量。 若丢掉了应该列入模型的带有自相关的重要解释变量 ,那么它的影响必然归并到误差项ut中,从而使误差 项呈现自相关。当然略去多个带有自相关的解释变量 ,也许因互相抵消并不使误差项呈现自相关。
=
u2 (xt x)2
当 ut 为一阶自回归形式时
Var ( ˆ1) =
u2 (xt x)2
+2 u 2
ts
(xt (
x)(xs x) s-t (xt x)2 )2
3、参数显著性t检验失效
低估了2,也低估了bi的方差和标准差,等于
夸大了T值,使t检验失去意义
4、降低预测可信度度
参数估计值不具有最小方差性,使预测区间的可信度降低。 所以用依据普通最小二乘法得到的回归方程去预测,预测是无效的。
• 则称ut具有高阶自回归形式。
• 通常假定误差项的自相关是线性的。因计量经济 模型中自相关的最常见形式是一阶自回归形式,所 以下面重点讨论误差项的线性一阶自回归形式,即
•
ut ut1 vt
第一节 自相关的来源和形式
一、自相关的来源
• 经济惯性 大多数经济时间序列都存在自相关。其本期值往 往受滞后值影响。突出特征就是惯性与低灵敏度。 如国民生产总值,固定资产投资,国民消费,物价 指数等随时间缓慢地变化,从而建立模型时导致误 差项自相关。
= (
1 (xt
x)2 )2
E{
(x1- x
)2u12+(x2- x
)2u22+…++(x1- x
)(x3- x
)u1u3+…]}
=
(
(xt x)2 u 2 (xt x)2 )2
+2
ts
(xt (
x)(xs x) (xt x)2 )2
E(ut us)
第六章 自 相 关
在经济计量研究中,自相关是一种常见现象,它是指 随机扰动项序列相邻之间存在相关关系,即各期随机扰 动项不是随机独立的。
在经典线性回归模型基本假定中,我们假设随机扰
动项序列的各项之间不相关,由经典模型的假定条件之一是
,
Cov(ui , u j ) E(uiu j ) 0 i, j T , i j
et
.
... ..
. et ..
..
变量I et e2 e3 e4
..
en
.. ..
变量II et-1 e1 e2 e3
..
en-1
e t-1
..
e t-1
.. .
.
a
b
如a图所示,散点在I,III象限,
表明存在正自相关。
如b图所示,散点在II, IV象限,
表明存在负自相关。
二、杜宾—瓦森检验
DW检验是检验自相关的最著名、最常用的 方法。
• 蛛网现象(Cobweb phenomenon) • 随机扰动项序列本身的自相关 • 数据处理造成自相关-平滑处理
自相关也可能出现在横截面数据中,但主要出现在时 间序列数据中。
二、一阶自回归
线性回归模型
Yt=bo + b1Xt + ut 若 ut 的取值只与它的前一期取值有关,即
ut = f (ut-1 ) 则称为一阶自相关 经典经济计量学对自相关的分析仅限于一阶自
第三节 自 相 关 的 检 验
1、图示法 2、杜宾—瓦森检验(Durbin-Watson) 3、回归检验法 4、偏相关系数检验 5、拉格朗日乘数(LM)检验 其中,4、5为高级自相关检验
一、图示法
1、用给定的样本估计回归模型,计算残差 ,
2、按时间顺序绘制残差et的图形 3、绘制残差et, et-1的图形
= + (X 'X)-1 X ' E(u) =
^
以一元线性回归模型,yt = 0 + 1 xt + ut,为例,
E( ˆ1)=E(
(xt x)(yt y) )= E( (xt x)2
(xt
x)[1(xt (xt x)2
x)
ut
]
)=1+
(xt (xt
x)E(ut x)2
)
=
1、适用条件 2、检验步骤
–(1)提出假设 –(2)构造统计量 –(3)检验判断
即误差项ut的取值在时间上是相互无关的。称误差项ut非自相关。
• 如果这一假定不满足,则 • 称之为自相关。即用符号表示为:
Cov(ui ,u j ) E(uiu j ) 0 i j
•
自相关是对无自相关假定的违反。自相关
主要表现在时间序列中。
• 自相关又称序列相关。原指一随机变量在时间上与其滞后 项之间的相关。这里主要是指回归模型中随机误差项ut与 其滞后项的相关关系。自相关也是相关关系的一种。
回归形式:
ut = ut-1 +εt
为自相关系数 > 0 为正自相关
|| 1 < 0 为负自相关
第二节 自 相 关 的 后 果
1、参数的估计值仍然是线性无偏的
(1) 只要假定条件 Cov(X ' u) = 0 成立,回归系数ˆ 仍具有无偏性。
E( ˆ ) = E[ (X 'X )-1 X 'Y ] = E[ (X 'X )-1 X ' (X + u) ].
1
2、参数的估计值不具有最小方差性,因而
是无效的,不再具有最优性质
以一元线性回归模型,yt = 0 + 1 xt + ut,为例,当 ut 非自相关时
Var ( ˆ1 ) = E( ˆ1 -1)2 = E(
(xt
x)ut
)2
( = E[
(xt x)ut ) 2 ]
(xt x)2
( (xt x)2 )2