毕业设计(论文)外文资料翻译
毕业论文(设计)外文文献翻译及原文
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
毕业设计(论文)外文翻译(原文)
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学职业技术学院专业:工商企业管理学生姓名:方智立学号:010*********指导教师单位:桂林电子科技大学职业技术学院姓名:朱芸芸职称:讲师2016年 4 月 1 日Marketing Strategy Analysis of SportsAbstractSports market is a special industry market, which for provide exchange of sports tangible products and services market. Sports market including fixed type, such as sports facilities, sports goods market, Mobile market, such as all kinds of sports service provided by the fitness club. Sports tourism and advertising business, sports goods should be consumers to accept, and occupy a larger market. If success of the sports marketing involves many factors. According to the specific characteristics of sports marketing, develop and implement appropriate marketing strategy is very important. Sports marketing strategy is to the sports business units within a certain period or stage marketing campaign's overall development plan of decision making.This paper argues that the marketing strategy can be further subdivided into market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, Choose a strategy, must conform to the enterprise's own competitive position, product status, to grasp the market opportunity, determined according to the demands of consumers. In this paper, the sports market segmentation marketing strategy for the market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, and discusses the sports marketing how to carry out strategic choice.Keywords: Sports bazaar ; Sports marketing; Marketing strategy1.Sports marketing strategy and characteristics1.1Sports marketing strategyStrategy refers to the planning of overall and profound things. Sports marketing strategy refers to the commodity business units under the guidance of modern marketing concept, to achieve its economic goal for enterprise in a certain period of the overall design and planning of marketing development.Inan increasingly competitive market circumstances, sports business units in order to effectively carry out business activities, to achieve its business objectives, must understand and based on the characteristics of marketing concepts and strategies, and Target the demand of the market, comprehensive analysis and marketing of various environmental factors, choose effective market strategy in the background.1.2The characteristics of the sports marketing strategySports marketing strategy has sports business units within a certain period or stage marketing campaign's overall development plan of decision making. It has the characteristics of the following.(1) Overall importance.Sports marketing strategy is a matter of the global business units, including two aspects the meaning of this global:on the one hand, Sports marketing strategy is the overall design, the development of the business units, including overall planning and the overall strategy and means.On the other hand, Sports marketing strategy decision is a matter of global business units and their all-round development in the future.(2)Secular.Sports marketing strategy is really about the future of sports business units: to achieve the goals of sports marketing strategy, will make the sports business units to produce qualitative leap, but this is not usually that can be done in the short term.Important, sports business units of marketing strategy on the strategic period not only very important to enterprise's survival and development, but also to the long-term development of enterprises play an important role.(3) Systematicness.Sports systemic marketing refers to business units, each part of the work of each link is a contact each other, are closely related to the organic unity of the whole.System have layers, the size and the primary and secondary division, at the next lower level to obey and serve at the next higher level.For a certain sports and business operation entity, the strategy of the whole enterprise as a whole system engineering to overall arrangement, the pursuit of the overall development of the biggest benefits.(4)Adaptability.Sports marketing adaptability, refers to the sports marketing and business operation entity is easily affected by external and internal environment, when the environment changes, sports business units made to adapt themselves to the new environment of the characteristics of rapid response.Sports marketing of the external environment including the market demand, political or economic situation changes, policy and law changes. Similarly, sports business entities internal conditions change will impact on marketing.(5)Risk.Due to sports marketing strategy is the business unit for the marketing activities during the period development collection of expected decision, and this decision is absolutely impossible in various conditions fully mature and information fully, make and sports market, especially the intangible product variety and complexity of the market, make sports marketing strategy has the characteristics of uncertainty and instantaneity, many market opportunities tend to be a passes, no longer to, opportunity and risk coexist.2.Sports marketing strategy comprisedand choiceSports marketing strategies mainly include market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy.2.1 Market orientation strategyMarket positioning refers to the sports business units according to the condition of market competition situation and its own resources, establish and develop differentiated competitive advantage, to make their own products in the consumer formed in the difference between each product unique image and is superior to the competition.This unique image can be tangible or intangible.Enterprise after analyzing the market environment, should highlight its own market advantage, establish market position, Which companies need to know on a certain level of paper generalizes, consumers mind what is the best sports products as expected.2.2 Market entry policyMarket entry strategy is the sports business units at the right time to capture the target market, how to appropriately in the two aspects of production capacity and sales ability to make reliable measures and guarantee, to ensure the decision-making of sports products successfully enter the market.Its content mainly includes the production capacity of decision-making and sales ability to form two aspects.(1) Capacity Decision. In the necessary time, sports business entities formtargetmarket capacity, is one of the important conditions to achieve market goal.Regardless of whether they are sports tangible products and intangible products, generally there are two alternative strategies.①Independent development strategy refers to both tangible products, the development of sports and development of sports intangible products. All on its own strength to expand production scale, enhance the comprehensive production capacity or adjust the structure of the comprehensive production capacity of enterprise, to adapt the demand of product combination structure. ②Comprehensive development strategy, mainly depend on the sports business units of the external forces, namely, through joint, collaboration, subcontract, form a new comprehensive production capacity. Due to participating in planning, control, coordination, etc, are more difficult. Therefore, sports business units must be good at optimizing collaborator, deal with the various cooperation of responsibility, right and benefit, to maintain good relations of cooperation.(2) Sales ability decision. A sports product to enter and occupy the market, production enterprise must have the necessary sales ability and the ability to penetrate the market.Sales ability decision-making main consideration circulation channels and sales, product should be considered when making decisions, market, enterprise, social environment and the factors such as economic effect.2.3 Market development strategyMarket development strategy refers to the perspective of market prospects, the choice of market development means, usually includes two kinds of intensive development and diversified development main form.(1)Intensive development.When some kind of sports products in the market has the potential of further development, the choice of market penetration, product development and market development of three kinds of intensive development form. As the tangible products market, in sports and intangible products are common market and applicable.①Market penetration. on the basis of the existing market scale, increase the sales of existing products. Can use a variety of measures, consolidate old customers, increase the new user. ②Product development Is through developing and improving existing products, make its have some new properties and USES, meet the social demand more. ③market development. Refers to an enterprise that open up new product sales market, in order to increase sales.(2) Diversified development.Diversity is also called the diversification, basically have concentricity scattered scattered, horizontal dispersion and the integrityof three. ①Concentricity is sports business unit USES the original dispersed development technology and the characteristics, with its as the core, the development use different structure similar products. ②Scattered level of sexual development.Was used in the original market advantage, has occupied the market development of technology, nature and purpose of different products. For example, Sports club olicy makers, can through the player transfer channels, to sell players, profit.Others use their sports club or the player's social awareness to participate in the sales promotion of goods, in order to obtain profits. ③Integrity of dispersed development. Refers to the sports business units to expand the business into its original business, technology, market and the product has no connection in the industry. Such as the sports department construction and run a catering and service hotels, hotels, entertainment city, charge for parking lot, etc., is the form of scattered holistic development. Implement the diversification development, can improve the ability of sports business units to adapt to the environment, reduce the risk of a single business, at the same time, may be more fully use of all kinds of resources within the enterprise, make its have more potential development opportunities. However, the development of decentralized often leads to complication of operation and management, and business operation entities such as diversifying some problems.2.4Strategic Marketing CompetitionThe rules of the development of the market is superior bad discard, its characteristic is the petition can promote the economic development of the enterprise and the improvement of economic benefits.Enterprises should establish a clear concept of competition, flexible use of price and non-price competition means, take a man without I have, people have my good, good people knew, new I cheap, cheap I turn the principle and method of making enterprise competitive strategy, must accomplish know fairly well the competition environment and competition situation, can with ease.Enterprise competition environment factors mainly refers to the enterprise in addition to the social and cultural environment stress factors of various aspects, such as management scientist professor Michael porter of Harvard University famous the competitive offer slightly above, an enterprise usually exist competition pressure from five aspects, namely the industry competition pressure, potential to join the pressure from the industry, suppliers forward pressure (by providing raw materials or semi-finished products, to develop into their production products), buyers.(1) The overall competitive strategy. Under different conditions, the enterprise facing the pressure of competition is different, the analysis of the pressure of competition is to understand the purpose of each kind of competition situation of power, so as to make effective competition strategy.Under normal circumstances, the sports business units of competition strategy in general have a low cost strategy, product differentiation strategy and intensive strategy. ①low-cost strategy. Low cost strategy is to point to in under the premise of guarantee the quality of products and services, efforts to reduce the cost of production and sales so that the enterprise product prices lower than competitors' prices, with rapidly expanding sales increase market share. ②Product differentiation strategies. Product differentiation strategy is to point to create a unique characteristic of the enterprise products, to develop unique products or marketing programs, for in such aspects as product or service than competitors are unique. Thus to obtain the difference advantage.The United States, for example, "NIKE" brand sports shoes, NIKE production due to the appearance of novel design, the innovation of the use function and unique, and exquisite packaging, etc., although the price is surprisingly expensive, but occupies considerable market in China, the teenagers are very loving. ③Intensive strategy. Intensive strategy refers to the enterprises focus on one or several market segments provide the most effective service, better meet certain customers with different needs, so as to strive for the local competitive advantage. It is little different from the above three kinds of overall competition strategy, successfully implement these three strategies need different resources and decision-making, also should have different requirements on organization and management.(2) The competitive strategy of enterprises of different competitive position. Where the status of enterprise in market competition, the enterprise can be divided into: market leader, market challenger, market follower. Different competitive position of enterprises, should choose different market competitive strategy.①Dominant market competition strategy. Market power refers to the related products has the highest market share. Such as the current market position and stable dominated by clothing JinMeiLong, "ADIDAS", they are price changes, new product development, sales channel width and promotional efforts in a dominant position, recognized by other sports enterprises. ②The challenger market competition strategy. Market challenger refers to those in a secondary position in the market of the enterprise, such as "lining" brand garment enterprises .Market challenger to choosechallenge object is closely related to the strategic target, for a same object has different goals and strategies Such as attack market leader to gain the market share and product advantage ;Attack power with yourself quite seize its market position; Attacking small businesses taking their customers even small business itself."Lining" to win market price advantage to the international brand, with product quality advantages to gain "anta" challenger "peak" brand's market share. ③Followers of the market competition strategy. Market followers is to point to in a secondary position, under the conditions of "coexistence" market for as much as possible the benefit of the enterprise. Market followers don't need a lot of money, less risky and can obtain high profits, so many enterprises adopt this strategy, especially the sort of small or no fame and status of sports clothing enterprises. As the current sports "philharmonic" brand clothing enterprise in the enterprise.Reference[1] LiJianJun,WangCuiHua:The Research on Marketing Environment Enterprise of Things for Sports Use in China[J] Journal of NanJing institute of sport (social science edition) 2013.(10),36 ~ 48.[2] Discuss Sports market, products and marketing characteristics. [J] journal of xi ' an institute of physical education,2012.(3)101 ~109.[3] HuZhengMing Ed. Marketing Management[M].Shandong people's publishing house,2012.302 ~325.[4] [US]Kotler write. YuLiJun translate. Introduction to Marketing[M].Huaxia Publishing House,2011.333~389.[5] ZhangTongYao.Application areas to promote the marketing advantage analysis of third party logistics[J].Market of China,2010(3)128 ~136.[6] WangHuaiShu.The influence of the logistics quality of marketing[J].Teacher's Journal,2010(3)31 ~38.[7] WangChenWen.Shallow theory of logistics strategy in the role of marketing management[J].Chemical Enterprise Management,2009(7)175 ~178.。
毕业设计论文外文文献翻译
毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。
The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。
Information is available instantaneously which means that change and subsequent market reactions occur very quickly。
The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。
Counterparties can rapidly become problematic。
As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。
【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。
本科毕业设计(论文)外文翻译
华南理工大学本科毕业设计(论文)翻译班级姓名学号指导教师填表日期中文译名水溶性过度金属咔咯配合物对DNA连接和氧化裂解的作用外文原文名DNA Binding and Oxidative Cleavage by a Water-soluble CarboxylManganese(III) Corrole外文原文版出处Chinese Journal of Chemistry,2013,V ol.31(10)译文:吸收光谱,荧光光谱和CD光谱,以及粘度测量已经研究了小牛胸腺DNA(ct-DNA)与锰的咔咯配合物——5,10,15-三(4-羧基苯基)咔咯的相互作用。
结果表明锰的咔咯配合物通过外部沟与ct-DNA结合,该结合常数K b为4.67×104 L•mol−1 。
在多种氧化剂存在下,由Mn III TCPC作用,ct-DNA裂解作用也被研究。
在过氧化氢或叔BuOOH存在下,Mn III TCPC 可以以缺口和线性形式切割超螺旋质粒pBR322,然而以KHSO5作为氧化剂却并没有观察到核酸酶的活性。
抑制剂试验表明,羟基自由基,单线氧没有参与Mn III TCPC为介质的DNA氧化裂解。
在这种氧化裂解反应中,氧代锰(V)的咔咯配合物是可能的活性中间体。
关键词:咔咯,锰,DNA联接,核酸酶活性引言在自然中,经由水解磷酸二酯是金属酶催化的DNA高效裂解的途径。
在过去几十年里,作为探索生物医药的工具和抗癌药物,旨在结合并切割DNA的过渡金属配合物已被广泛研究。
卟啉及其金属配合物在生命系统中无处不在并发挥了重要的作用,例如细胞色素P450,过氧化物酶和过氧化氢酶。
为追求潜在的应用,在光动力疗法,肿瘤显像,人工核酸酶中,许多水溶性卟啉,如阳离子型卟啉,磺化卟啉,羧酸卟啉已经合成,它们中的一些甚至被用在临床诊断和治疗中。
类似的研究已扩大到其他类似卟啉的分子。
咔咯大环化合物与卟啉是有许多相似之处。
咔咯金属配合物的许多性能与卟啉的比较已经引起了人们极大的兴趣。
毕业设计(论文)外文翻译【范本模板】
华南理工大学广州学院本科生毕业设计(论文)翻译英文原文名Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics中文译名对变速箱振动分析的诊断和预测方法综述学院汽车工程学院专业班级车辆工程七班学生姓名刘嘉先学生学号201130085184指导教师李利平填写日期2015年3月15日英文原文版出处:Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach,V A, May 1-4,2000,p. 623-634译文成绩:指导教师(导师组长)签名:译文:简介特征提取技术在文献中有描述;然而,大多数人似乎掩盖所需的特定的预处理功能。
一些文件没有提供足够的细节重现他们的结果,并没有一个全面的比较传统的功能过渡齿轮箱数据。
常用术语,如“残差信号”,是指在不同的文件不同的技术.试图定义了状态维修社区中的常用术语和建立所需的特定的预处理加工特性。
本文的重点是对所使用的齿轮故障检测功能。
功能分为五个不同的组基于预处理的需要。
论文的第一部分将提供预处理流程的概述和其中每个特性计算的处理方案。
在下一节中,为特征提取技术描述,将更详细地讨论每一个功能。
最后一节将简要概述的宾夕法尼亚州立大学陆军研究实验室的CBM工具箱用于齿轮故障诊断。
特征提取概述许多类型的缺陷或损伤会增加机械振动水平。
这些振动水平,然后由加速度转换为电信号进行数据测量。
原则上,关于受监视的计算机的健康的信息被包含在这个振动签名。
因此,新的或当前振动签名可以与以前的签名进行比较,以确定该元件是否正常行为或显示故障的迹象。
在实践中,这种比较是不能奏效的。
由于大的变型中,签名的直接比较是困难的。
相反,一个涉及从所述振动署名数据特征提取更多有用的技术也可以使用。
毕业设计(论文)外文资料翻译(学生用)
毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。
程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。
一般地,我们需要理解连网协议中不同的“层”(Layer)。
而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。
这是一项令人痛苦的工作。
但是,连网本身的概念并不是很难。
我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。
这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。
Java最出色的一个地方就是它的“无痛苦连网”概念。
有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。
我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。
除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。
本章将用一系列易懂的例子解释Java的连网支持。
15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。
早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。
但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。
为达到这个目的,我们采用了IP(互联网地址)的概念。
IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。
我自己的域名是。
所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。
本科毕业设计(论文)外文翻译
重金属污染存在于很多工业的废水中,如电镀,采矿,和制革。
2.实验
2.1化学药剂
本实验所使用的药剂均为分析纯,如无特别说明均购买自日本片山化工。铅离子储备液通过溶解Pb(NO3)2配制,使用时稀释到需要的浓度。HEPES缓冲液购买自Sigma–Aldrich。5 mol/L的HCl和NaOH用来调整pH。
附5
华南理工大学
本科毕业设计(论文)翻译
班级2011环境工程一班
姓名陈光耀
学号201130720022
指导教师韦朝海
填表日期
中文译名
(1)巯基改性纤维素对葡萄糖溶液中铅的吸附(2)黄原酸化橘子皮应用于吸附水中的铅离子
外文原文名
(1)Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass
2.5分析方法
铅离子的浓度用分光光度计在616 nm波长处用铅与偶氮氯膦-III络合物进行分析。葡萄糖含量采用苯酚—硫酸分光光度法测定。所有的实验均进行三次,已经考虑好误差。
3.结果和讨论
3.1FTIR分析和改性脱脂棉对铅(II)的吸附机制
图1是脱脂棉、改性脱脂棉在400-4000 cm-1(A)和2540-2560 cm-1(B)范围内的红外光谱图。可以看出,改性后改性脱脂棉的红外光谱图中在1735.71 cm-1处出现了一个新的吸收峰是酯基C=O的拉伸振动峰,可见改性脱脂棉中已经成功引入巯基官能团。同时,在2550.52 cm-1出现的一个新吸收峰代表的是S-H官能团的弱吸收峰,更深一层的证明了巯基已经嫁接到脱脂棉上。图1(b)是2540-2560 cm-1光谱范围的一个放大图像,可以清楚的观察到S-H官能团的弱吸收峰。进一步证明了酯化改性脱脂棉引入巯基是成功的。而从吸附后的曲线可以看到,2550.52cm-1处S-H的吸收峰消失,证明了硫原子和Pb(II)络合物的形成,同时1735.71cm-1处C=O的吸收峰强度看起来有轻微的减弱可能也是和Pb(II)的络合吸附有关。
毕业设计(论文)外文资料翻译
毕业设计(论文)外文资料翻译题目:On-the-job Training院系名称:管理学院专业班级:工商管理0702班学生姓名:刘月停学号: 20074900818指导教师:张可军教师职称:讲师附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文在职培训在职培训一般是在正常工作条件下对工作技能的培训。
通过在职培训,工人可以掌握一般技能,是可以从一个工作转移到另一个工作的技能。
关于在职训练,通常包括口头和书面指示,示范和观察,动手实践和模仿。
此外,对在职员工的培训过程涉及一个通常是主管或有经验的员工传递知识和技能到一个新手。
在职培训是最古老的培训形式之一。
此前,异地培训教室的出现,唯一的任务是一起学习某一行业或专业,是学徒的做法,在中世纪时,有经验的工匠和新手一起工作教授新员工实用的方法和知识。
在职培训是一种职业培训,在美国它是一种对非管理雇员培训的主要形式。
许多研究表明,它是最有效的职业培训形式。
在职培训大部分是由私营部门提供,但最广泛的研究培训计划由联邦立法的赞助。
在职培训程序从公司监事正规培训到观察学习。
从这个意义上说,在职培训最正式的类型是课堂培训,他们主要在企业内部不同的部门进行。
在国际竞争更广泛的电脑生产过程中使用,更正式更复杂的在职培训的落实已成为在美国公司的关键问题。
在职培训的类型两个不同类型的关于在职培训的频繁杰出的专业文献:结构(计划)和非结构化(计划外)。
非结构是最常见的一种,泛指在职培训主要涉及一个新手与经验丰富的员工的工作,新手在导师的观察下模仿训练的过程。
新工人主要通过试验和学习的方法向经验丰富的工人或者监事学习。
非结构化培训的工作(如产品制造)的要求很低,并不像传授工作技能(如生产产品所需的特定技能)的新工人培训。
因此,非结构化的在职培训往往不能完全按需要的技能传授或持续,因为有经验的员工,有时无法清楚表达执行工作的正确方法,他们每次训练新工人时会使用不同的训练方法。
毕业设计(论文)外文资料翻译【范本模板】
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。
外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。
CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。
0 )的共用部分来使得在两个平台上运行相同的宏。
在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。
ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。
在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。
这将提供在Unix 和NT 之间的一个完美兼容。
CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。
COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。
Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。
ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。
OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。
它能产生独立的计划,它也能建立ActiveX 和服务器。
它可以被编辑。
VB中提供了一个补充文件名为“在线丛书“(VB的5。
毕业设计外文翻译
AT89C51外文翻译DescriptionThe AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51™ instruction-set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel A T89C51 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.Features• Compatible with MCS-51™ Products• 4K Bytes of In-System Reprogrammable Flash Memory– Endurance: 1,000 Write/Erase Cycles• Fully Static Operation: 0 Hz to 24 MHz• Three-Level Program Memory Lock• 128 x 8-Bit Internal RAM• 32 Programmable I/O Lines• Two 16-Bit Timer/Counters• Six Interrupt Sources• Programmable Serial Channel• Low Power Idle and Power Down ModesThe AT89C51 provides the following standard features: 4K bytes of Flash,128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.VCCSupply voltage.GNDGround.Port 0Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as high-impedance inputs.Port 0 may also be configured to be the multiplexed low-order address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.Port 1Port 1 is an 8-bit bi-directional I/O port with internal pullups.The Port 1 output buffers can sink/source four TTL inputs.When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 1 p ins that are externally being pulled low will source current (IIL) because of the internal pullups.Port 1 also receives the low-order address bytes during Flash programming and verification.Port 2Port 2 is an 8-bit bi-directional I/O port with internal pullups.The Port 2 output buffers can sink/source four TTL inputs.When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs,Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.Port 3Port 3 is an 8-bit bi-directional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs.When 1s are written to Port 3 pins they arepulled high by the internal pullups and can be used as inputs. As inputs,Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups. Port 3 also serves the functions of various special features of the AT89C51 as listed below:Port 3 also receives some control signals for Flash programming and verification. RSTReset input. A high on this pin for two machine cycles while the oscillator is running resets the device.ALE/PROGAddress Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.PSENProgram Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.EA/VPPExternal Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up toFFFFH.Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions.This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.XTAL1Input to the inverting oscillator amplifier and input to the internal clock operating circuit.XTAL2Output from the inverting oscillator amplifier.Oscillator CharacteristicsXTAL1 and XTAL2 are the input and output, respectively,of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 2.There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed.Idle ModeIn idle mode, the CPU puts itself to sleep while all the on-chip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.Figure 1. Oscillator ConnectionsNote: C1, C2 = 30 pF ± 10 pF for Crystals= 40 pF ± 10 pF for Ceramic ResonatorsFigure 2. External Clock Drive ConfigurationPower-down ModeIn the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize.Program Memory Lock BitsOn the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below.When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset.If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly.Programming the FlashThe AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH)and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (VCC) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside t he user’s system, while the high-voltage programming mode is compatible with conventional thirdparty Flash or EPROM programmers.The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table.The AT89C51 code memory array is programmed byte-by-byte in either programming mode. To program any non-blank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode. Programming Algorithm: Before programming the A T89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figures 3 and 4. To program the AT89C51, take the following steps.1. Input the desired memory location on the address lines.2. Input the appropriate data byte on the data lines.3. Activate the correct combination of control signals.4. Raise EA/VPP to 12V for the high-voltage programming mode.5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timedand typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address and data for the entire array or until the end of the object file is reached.Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, anattempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY.Program V erify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verificatio n. The lock bits cannot be verified directly. V erification of the lock bits is achieved by observing that their features are enabled.Chip Erase: The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all ―1‖s. The chip erase operation must be executed before the code memory can be re-programmed.Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows.(030H) = 1EH indicates manufactured by Atmel(031H) = 51H indicates 89C51(032H) = FFH indicates 12V programming(032H) = 05H indicates 5V programmingProgramming InterfaceEvery code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion.All major programming vendors offer worldwide support for the Atmelmicrocontroller series. Please contact your local programming vendor for the appropriate software revision.Flash Programming and V erification Waveforms - High-voltage Mode (VPP = 12V)Flash Programming and V erification Waveforms - Low-voltage Mode (VPP = 5V)Flash Programming and Verification Characteristics TA = 0°C to 70°C, VCC = 5.0 ±10%Absolute Maximum Ratings**NOTICE: Str esses beyond those listed under ―Absolute Maximum Ratings‖ may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.DC CharacteristicsTA = -40°C to 85°C, VCC = 5.0V ±20% (unless otherwise noted)Notes: 1. Under steady state (non-transient) conditions, IOL must be externally limited as follows:Maximum IOL per port pin: 10 mAMaximum IOL per 8-bit port: Port 0: 26 mAPorts 1, 2, 3: 15 mAMaximum total IOL for all output pins: 71 mAIf IOL exceeds the test condition, VOL may exceed the related specification. Pins arenot guaranteed to sink current greater than the listed test conditions.2. Minimum VCC for Power-down is 2V.AC CharacteristicsUnder operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other outputs = 80 pF.External Program and Data Memory CharacteristicsExternal Program Memory Read CycleExternal Data Memory Read CycleExternal Data Memory Write CycleExternal Clock Drive WaveformsExternal Clock DriveSerial Port Timing: Shift Register Mode Test Conditions (VCC = 5.0 V ±20%; Load Capacitance = 80 pF)Shift Register Mode Timing WaveformsAC Testing Input/Output Waveforms(1)Note: 1. AC Inputs during testing are driven at VCC - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at VIH min. for a logic 1 and VIL max. for a logic 0.Float Waveforms(1)Note: 1. For timing purposes, a port pin is no longer floating when a 100mV change from load voltage occurs. A port pin begins to float when 100mV change from the loaded VOH/VOL level occurs.AT89C51中文原文AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用A TMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。
毕业设计(论文)外文资料翻译(崔涛)
毕业设计(论文)外文资料翻译学院:机械工程学院专业:机械设计制造及其自动化姓名:崔涛学号: 090501614外文出处: Robotics and Computer-IntegratedManufacturing 25 (2009) 73-80 附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文科学指南机器人和计算机集成制造25(2009)73–80一个外旋轮线专用的固定循环数控铣床Sotiris L. Omirou a, , Andreas C. Nearchou b——弗雷德里克大学机械工程系,尼科西亚,塞浦路斯,塞浦路斯——希腊帕特雷大学工商管理系发表于2006年9月20日,修改更新从2007年7月23日到2007年9月10日。
摘要提出了一个加工外旋轮线边界的特定的铣床组策略,该方法适用于被集成到一个控制器的数控铣床,对于旋转式内燃发动机(汪克尔),旋转活塞泵和一般外旋轮线形外壳的加工设计特别有用。
方案可以提供较高的精度,其中铣机是通过利用数控插补算法实现的,表面质量控制,是通过粗加工和精加工来实现,整个加工任务可以被编程在一块。
最后,该方法的有效性通过仿真试验验证所产生的刀具路径来实现。
关键词:数控;程序加工;刀具路径生成;偏移曲线;外旋轮线1介绍智能周期提供了一种数控机床来完成重复使用的G / M代码语言的新的加工操作的编程方法。
从本质上讲,智能周期是一个指令被预先设定并永久存储的集机控制器。
它们的使用,消除了许多编程的繁琐需要,减少了编程时间,并简化了整个编程过程。
所有数控加工控制是智能的,这些固定循环可以执行一定的代码,输入任何所需的变量信息。
钻,反钻,深孔钻或槽的加工是标准智能循环应用的例子。
然而,标准智能循环在数量和能力有限,无法容纳复杂的几何形状的日益增加的应用需求。
在加工一个外旋轮线构造特征的情况下,不能用标准智能循环处理。
尽管有其重要的加工应用,现代数控系统仍缺乏类似的专用智能周期。
毕业设计(论文)外文翻译
华南理工大学广州学院本科生毕业设计(论文)翻译外文原文名Agency Cost under the Restriction of Free Cash Flow中文译名自由现金流量的限制下的代理成本学院管理学院专业班级会计学3班学生姓名陈洁玉学生学号200930191100指导教师余勍讲师填写日期2015年5月11日外文原文版出处:译文成绩:指导教师(导师组长)签名:译文:自由现金流量的限制下的代理成本摘要代理成本理论是资本结构理论的一个重要分支。
自由现金流代理成本有显着的影响。
在这两个领域相结合的研究,将有助于建立和扩大理论体系。
代理成本理论基础上,本研究首先分类自由现金流以及统计方法的特点。
此外,投资自由现金流代理成本的存在证明了模型。
自由现金流代理成本理论引入限制,分析表明,它会改变代理成本,进而将影响代理成本和资本结构之间的关系,最后,都会影响到最优资本结构点,以保持平衡。
具体地说,自由现金流增加,相应地,债务比例会降低。
关键词:资本结构,现金流,代理成本,非金钱利益1、介绍代理成本理论,金融契约理论,信号模型和新的啄食顺序理论,新的资本结构理论的主要分支。
财务con-道的理论侧重于限制股东的合同行为,解决股东和债权人之间的冲突。
信令模式和新的啄食顺序理论中心解决投资者和管理者之间的冲突。
这两种类型的冲突是在商业组织中的主要冲突。
代理成本理论认为,如何达到平衡这两种类型的冲突,资本结构是如何形成的,这是比前两次在一定程度上更多的理论更全面。
……Agency Cost under the Restriction of Free Cash FlowAbstractAgency cost theory is an important branch of capital structural theory. Free cash flow has significant impact on agency cost. The combination of research on these two fields would help to build and extend the theoretical system. Based on agency cost theory, the present study firstly categorized the characteristics of free cash flow as well as the statistical methodologies. Furthermore, the existence of investing free cash flow in agency cost was proved by a model. Then free cash flow was introduced into agency cost theory as restriction, the analysis shows that it will change agency cost, in turn, will have an impact on the relationship between agency cost and capital structure, finally, will influence the optimal capital structure point to maintain the equilibrium. Concretely, with the increasing free cash flow, correspondingly, debt proportion will decrease.Keywords:Capital Structure,Free Cash Flow,Agency Cost,Non-Pecuniary Benefit1. IntroductionAgency cost theory, financial contract theory, signaling model and new pecking order theory are the main branches of new capital structure theory. Financial con-tract theory focuses on restricting stockholders’ behavior by contract and solving the conflict between stockholders and creditors. Signaling model and new pecking order theory center on solving the conflict between investors and managers. These two types of conflict are the main conflict in business organizations. Agency cost theory considers how equilibrium is reached in both types of conflict and how capital structure is formed, which is more theory is more comprehensive than the previous two to some degree.……。
毕业设计外文文献翻译【范本模板】
毕业设计(论文)外文资料翻译系别:专业:班级:姓名:学号:外文出处:附件: 1. 原文; 2。
译文2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J。
J。
Paredis, H. Benjamin Brown,Pradeep K. KhoslaAbstract:A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware with modular programming tools,allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system,namely,the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software。
1 IntroductionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure。
Forexample,a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore,to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure.We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators。
毕业设计论文外文文献翻译
xxxx大学xxx学院毕业设计(论文)外文文献翻译系部xxxx专业xxxx学生姓名xxxx 学号xxxx指导教师xxxx 职称xxxx2013年3 月Introducing the Spring FrameworkThe Spring Framework: a popular open source application framework that addresses many of the issues outlined in this book. This chapter will introduce the basic ideas of Spring and dis-cuss the central “bean factory” lightweight Inversion-of-Control (IoC) container in detail.Spring makes it particularly easy to implement lightweight, yet extensible, J2EE archi-tectures. It provides an out-of-the-box implementation of the fundamental architectural building blocks we recommend. Spring provides a consistent way of structuring your applications, and provides numerous middle tier features that can make J2EE development significantly easier and more flexible than in traditional approaches.The basic motivations for Spring are:To address areas not well served by other frameworks. There are numerous good solutions to specific areas of J2EE infrastructure: web frameworks, persistence solutions, remoting tools, and so on. However, integrating these tools into a comprehensive architecture can involve significant effort, and can become a burden. Spring aims to provide an end-to-end solution, integrating spe-cialized frameworks into a coherent overall infrastructure. Spring also addresses some areas that other frameworks don’t. For example, few frameworks address generic transaction management, data access object implementation, and gluing all those things together into an application, while still allowing for best-of-breed choice in each area. Hence we term Spring an application framework, rather than a web framework, IoC or AOP framework, or even middle tier framework.To allow for easy adoption. A framework should be cleanly layered, allowing the use of indi-vidual features without imposing a whole worldview on the application. Many Spring features, such as the JDBC abstraction layer or Hibernate integration, can be used in a library style or as part of the Spring end-to-end solution.To deliver ease of use. As we’ve noted, J2EE out of the box is relatively hard to use to solve many common problems. A good infrastructure framework should make simple tasks simple to achieve, without forcing tradeoffs for future complex requirements (like distributed transactions) on the application developer. It should allow developers to leverage J2EE services such as JTA where appropriate, but to avoid dependence on them in cases when they are unnecessarily complex.To make it easier to apply best practices. Spring aims to reduce the cost of adhering to best practices such as programming to interfaces, rather than classes, almost to zero. However, it leaves the choice of architectural style to the developer.Non-invasiveness. Application objects should have minimal dependence on the framework. If leveraging a specific Spring feature, an object should depend only on that particular feature, whether by implementing a callback interface or using the framework as a class library. IoC and AOP are the key enabling technologies for avoiding framework dependence.Consistent configuration. A good infrastructure framework should keep application configuration flexible and consistent, avoiding the need for custom singletons and factories. A single style should be applicable to all configuration needs, from the middle tier to web controllers.Ease of testing. Testing either whole applications or individual application classes in unit tests should be as easy as possible. Replacing resources or application objects with mock objects should be straightforward.To allow for extensibility. Because Spring is itself based on interfaces, rather than classes, it is easy to extend or customize it. Many Spring components use strategy interfaces, allowing easy customization.A Layered Application FrameworkChapter 6 introduced the Spring Framework as a lightweight container, competing with IoC containers such as PicoContainer. While the Spring lightweight container for JavaBeans is a core concept, this is just the foundation for a solution for all middleware layers.Basic Building Blockspring is a full-featured application framework that can be leveraged at many levels. It consists of multi-ple sub-frameworks that are fairly independent but still integrate closely into a one-stop shop, if desired. The key areas are:Bean factory. The Spring lightweight IoC container, capable of configuring and wiring up Java-Beans and most plain Java objects, removing the need for custom singletons and ad hoc configura-tion. Various out-of-the-box implementations include an XML-based bean factory. The lightweight IoC container and its Dependency Injection capabilities will be the main focus of this chapter.Application context. A Spring application context extends the bean factory concept by adding support for message sources and resource loading, and providing hooks into existing environ-ments. Various out-of-the-box implementations include standalone application contexts and an XML-based web application context.AOP framework. The Spring AOP framework provides AOP support for method interception on any class managed by a Spring lightweight container.It supports easy proxying of beans in a bean factory, seamlessly weaving in interceptors and other advice at runtime. Chapter 8 dis-cusses the Spring AOP framework in detail. The main use of the Spring AOP framework is to provide declarative enterprise services for POJOs.Auto-proxying. Spring provides a higher level of abstraction over the AOP framework and low-level services, which offers similar ease-of-use to .NET within a J2EE context. In particular, the provision of declarative enterprise services can be driven by source-level metadata.Transaction management. Spring provides a generic transaction management infrastructure, with pluggable transaction strategies (such as JTA and JDBC) and various means for demarcat-ing transactions in applications. Chapter 9 discusses its rationale and the power and flexibility that it offers.DAO abstraction. Spring defines a set of generic data access exceptions that can be used for cre-ating generic DAO interfaces that throw meaningful exceptions independent of the underlying persistence mechanism. Chapter 10 illustrates the Spring support for DAOs in more detail, examining JDBC, JDO, and Hibernate as implementation strategies.JDBC support. Spring offers two levels of JDBC abstraction that significantly ease the effort of writing JDBC-based DAOs: the org.springframework.jdbc.core package (a template/callback approach) and the org.springframework.jdbc.object package (modeling RDBMS operations as reusable objects). Using the Spring JDBC packages can deliver much greater pro-ductivity and eliminate the potential for common errors such as leaked connections, compared with direct use of JDBC. The Spring JDBC abstraction integrates with the transaction and DAO abstractions.Integration with O/R mapping tools. Spring provides support classesfor O/R Mapping tools like Hibernate, JDO, and iBATIS Database Layer to simplify resource setup, acquisition, and release, and to integrate with the overall transaction and DAO abstractions. These integration packages allow applications to dispense with custom ThreadLocal sessions and native transac-tion handling, regardless of the underlying O/R mapping approach they work with.Web MVC framework. Spring provides a clean implementation of web MVC, consistent with the JavaBean configuration approach. The Spring web framework enables web controllers to be configured within an IoC container, eliminating the need to write any custom code to access business layer services. It provides a generic DispatcherServlet and out-of-the-box controller classes for command and form handling. Request-to-controller mapping, view resolution, locale resolution and other important services are all pluggable, making the framework highly extensi-ble. The web framework is designed to work not only with JSP, but with any view technology, such as Velocity—without the need for additional bridges. Chapter 13 discusses web tier design and the Spring web MVC framework in detail.Remoting support. Spring provides a thin abstraction layer for accessing remote services without hard-coded lookups, and for exposing Spring-managed application beans as remote services. Out-of-the-box support is inc luded for RMI, Caucho’s Hessian and Burlap web service protocols, and WSDL Web Services via JAX-RPC. Chapter 11 discusses lightweight remoting.While Spring addresses areas as diverse as transaction management and web MVC, it uses a consistent approach everywhere. Once you have learned the basic configuration style, you will be able to apply it in many areas. Resources, middle tier objects, and web components are all set up using the same bean configuration mechanism. You can combine your entireconfiguration in one single bean definition file or split it by application modules or layers; the choice is up to you as the application developer. There is no need for diverse configuration files in a variety of formats, spread out across the application.Spring on J2EEAlthough many parts of Spring can be used in any kind of Java environment, it is primarily a J2EE application framework. For example, there are convenience classes for linking JNDI resources into a bean factory, such as JDBC DataSources and EJBs, and integration with JTA for distributed transaction management. In most cases, application objects do not need to work with J2EE APIs directly, improving reusability and meaning that there is no need to write verbose, hard-to-test, JNDI lookups.Thus Spring allows application code to seamlessly integrate into a J2EE environment without being unnecessarily tied to it. You can build upon J2EE services where it makes sense for your application, and choose lighter-weight solutions if there are no complex requirements. For example, you need to use JTA as transaction strategy only if you face distributed transaction requirements. For a single database, there are alternative strategies that do not depend on a J2EE container. Switching between those transac-tion strategies is merely a matter of configuration; Spring’s consistent abstraction avoids any need to change application code.Spring offers support for accessing EJBs. This is an important feature (and relevant even in a book on “J2EE without EJB”) because the u se of dynamic proxies as codeless client-side business delegates means that Spring can make using a local stateless session EJB an implementation-level, rather than a fundamen-tal architectural, choice.Thus if you want to use EJB, you can within a consistent architecture; however, you do not need to make EJB the cornerstone of your architecture. This Spring feature can make devel-oping EJB applications significantly faster, because there is no need to write custom code in service loca-tors or business delegates. Testing EJB client code is also much easier, because it only depends on the EJB’s Business Methods interface (which is not EJB-specific), not on JNDI or the EJB API.Spring also provides support for implementing EJBs, in the form of convenience superclasses for EJB implementation classes, which load a Spring lightweight container based on an environment variable specified in the ejb-jar.xml deployment descriptor. This is a powerful and convenient way of imple-menting SLSBs or MDBs that are facades for fine-grained POJOs: a best practice if you do choose to implement an EJB application. Using this Spring feature does not conflict with EJB in any way—it merely simplifies following good practice.Introducing the Spring FrameworkThe main aim of Spring is to make J2EE easier to use and promote good programming practice. It does not reinvent the wheel; thus you’ll find no logging packages in Spring, no connection pools, no distributed transaction coordinator. All these features are provided by other open source projects—such as Jakarta Commons Logging (which Spring uses for all its log output), Jakarta Commons DBCP (which can be used as local DataSource), and ObjectWeb JOTM (which can be used as transaction manager)—or by your J2EE application server. For the same reason, Spring doesn’t provide an O/R mapping layer: There are good solutions for this problem area, such as Hibernate and JDO.Spring does aim to make existing technologies easier to use. For example, although Spring is not in the business of low-level transactioncoordination, it does provide an abstraction layer over JTA or any other transaction strategy. Spring is also popular as middle tier infrastructure for Hibernate, because it provides solutions to many common issues like SessionFactory setup, ThreadLocal sessions, and exception handling. With the Spring HibernateTemplate class, implementation methods of Hibernate DAOs can be reduced to one-liners while properly participating in transactions.The Spring Framework does not aim to replace J2EE middle tier services as a whole. It is an application framework that makes accessing low-level J2EE container ser-vices easier. Furthermore, it offers lightweight alternatives for certain J2EE services in some scenarios, such as a JDBC-based transaction strategy instead of JTA when just working with a single database. Essentially, Spring enables you to write appli-cations that scale down as well as up.Spring for Web ApplicationsA typical usage of Spring in a J2EE environment is to serve as backbone for the logical middle tier of a J2EE web application. Spring provides a web application context concept, a powerful lightweight IoC container that seamlessly adapts to a web environment: It can be accessed from any kind of web tier, whether Struts, WebWork, Tapestry, JSF, Spring web MVC, or a custom solution.The following code shows a typical example of such a web application context. In a typical Spring web app, an applicationContext.xml file will reside in the WEB-INF directory, containing bean defini-tions according to the “spring-beans” DTD. In such a bean definition XML file, business objects and resources are defined, for example, a “myDataSource” bean, a “myInventoryManager” bean, and a “myProductManager” bean. Spring takes care of their configuration, their wiring up, and their lifecycle.<beans><bean id=”myDataSource” class=”org.springframework.jdbc. datasource.DriverManagerDataSource”><property name=”driverClassName”> <value>com.mysql.jdbc.Driver</value></property> <property name=”url”><value>jdbc:mysql:myds</value></property></bean><bean id=”myInventoryManager” class=”ebusiness.DefaultInventoryManager”> <property name=”dataSource”><ref bean=”myDataSource”/> </property></bean><bean id=”myProductManager” class=”ebusiness.DefaultProductManage r”><property name=”inventoryManager”><ref bean=”myInventoryManager”/> </property><property name=”retrieveCurrentStock”> <value>true</value></property></bean></beans>By default, all such beans have “singleton” scope: one instance per context. The “myInventoryManager” bean will automatically be wired up with the defined DataSource, while “myProductManager” will in turn receive a reference to the “myInventoryManager” bean. Those objects (traditionally called “beans” in Spring terminology) need to expos e only the corresponding bean properties or constructor arguments (as you’ll see later in this chapter); they do not have to perform any custom lookups.A root web application context will be loaded by a ContextLoaderListener that is defined in web.xml as follows:<web-app><listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class></listener>...</web-app>After initialization of the web app, the root web application context will be available as a ServletContext attribute to the whole web application, in the usual manner. It can be retrieved from there easily via fetching the corresponding attribute, or via a convenience method in org.springframework.web. context.support.WebApplicationContextUtils. This means that the application context will be available in any web resource with access to the ServletContext, like a Servlet, Filter, JSP, or Struts Action, as follows:WebApplicationContext wac = WebApplicationContextUtils.getWebApplicationContext(servletContext);The Spring web MVC framework allows web controllers to be defined as JavaBeans in child application contexts, one per dispatcher servlet. Such controllers can express dependencies on beans in the root application context via simple bean references. Therefore, typical Spring web MVC applications never need to perform a manual lookup of an application context or bean factory, or do any other form of lookup.Neither do other client objects that are managed by an application context themselves: They can receive collaborating objects as bean references.The Core Bean FactoryIn the previous section, we have seen a typical usage of the Spring IoC container in a web environment: The provided convenience classes allow for seamless integration without having to worry about low-level container details. Nevertheless, it does help to look at the inner workings to understand how Spring manages the container. Therefore, we will now look at the Spring bean container in more detail, starting at the lowest building block: the bean factory. Later, we’ll continue with resource setup and details on the application context concept.One of the main incentives for a lightweight container is to dispense with the multitude of custom facto-ries and singletons often found in J2EE applications. The Spring bean factory provides one consistent way to set up any number of application objects, whether coarse-grained components or fine-grained busi-ness objects. Applying reflection and Dependency Injection, the bean factory can host components that do not need to be aware of Spring at all. Hence we call Spring a non-invasive application framework.Fundamental InterfacesThe fundamental lightweight container interface is org.springframework.beans.factory.Bean Factory. This is a simple interface, which is easy to implement directly in the unlikely case that none of the implementations provided with Spring suffices. The BeanFactory interface offers two getBean() methods for looking up bean instances by String name, with the option to check for a required type (and throw an exception if there is a type mismatch).public interface BeanFactory {Object getBean(String name) throws BeansException;Object getBean(String name, Class requiredType) throws BeansException;boolean containsBean(String name);boolean isSingleton(String name) throws NoSuchBeanDefinitionException;String[] getAliases(String name) throws NoSuchBeanDefinitionException;}The isSingleton() method allows calling code to check whether the specified name represents a sin-gleton or prototype bean definition. In the case of a singleton bean, all calls to the getBean() method will return the same object instance. In the case of a prototype bean, each call to getBean() returns an inde-pendent object instance, configured identically.The getAliases() method will return alias names defined for the given bean name, if any. This mecha-nism is used to provide more descriptive alternative names for beans than are permitted in certain bean factory storage representations, such as XML id attributes.The methods in most BeanFactory implementations are aware of a hierarchy that the implementation may be part of. If a bean is not foundin the current factory, the parent factory will be asked, up until the root factory. From the point of view of a caller, all factories in such a hierarchy will appear to be merged into one. Bean definitions in ancestor contexts are visible to descendant contexts, but not the reverse.All exceptions thrown by the BeanFactory interface and sub-interfaces extend org.springframework. beans.BeansException, and are unchecked. This reflects the fact that low-level configuration prob-lems are not usually recoverable: Hence, application developers can choose to write code to recover from such failures if they wish to, but should not be forced to write code in the majority of cases where config-uration failure is fatal.Most implementations of the BeanFactory interface do not merely provide a registry of objects by name; they provide rich support for configuring those objects using IoC. For example, they manage dependen-cies between managed objects, as well as simple properties. In the next section, we’ll look at how such configuration can be expressed in a simple and intuitive XML structure.The sub-interface org.springframework.beans.factory.ListableBeanFactory supports listing beans in a factory. It provides methods to retrieve the number of beans defined, the names of all beans, and the names of beans that are instances of a given type:public interface ListableBeanFactory extends BeanFactory {int getBeanDefinitionCount();String[] getBeanDefinitionNames();String[] getBeanDefinitionNames(Class type);boolean containsBeanDefinition(String name);Map getBeansOfType(Class type, boolean includePrototypes,boolean includeFactoryBeans) throws BeansException}The ability to obtain such information about the objects managed by a ListableBeanFactory can be used to implement objects that work with a set of other objects known only at runtime.In contrast to the BeanFactory interface, the methods in ListableBeanFactory apply to the current factory instance and do not take account of a hierarchy that the factory may be part of. The org.spring framework.beans.factory.BeanFactoryUtils class provides analogous methods that traverse an entire factory hierarchy.There are various ways to leverage a Spring bean factory, ranging from simple bean configuration to J2EE resource integration and AOP proxy generation. The bean factory is the central, consistent way of setting up any kind of application objects in Spring, whether DAOs, business objects, or web controllers. Note that application objects seldom need to work with the BeanFactory interface directly, but are usu-ally configured and wired by a factory without the need for any Spring-specific code.For standalone usage, the Spring distribution provides a tiny spring-core.jar file that can be embed-ded in any kind of application. Its only third-party dependency beyond J2SE 1.3 (plus JAXP for XML parsing) is the Jakarta Commons Logging API.The bean factory is the core of Spring and the foundation for many other services that the framework offers. Nevertheless, the bean factory can easily be used stan-dalone if no other Spring services are required.Derivative:networkSpring 框架简介Spring框架:这是一个流行的开源应用框架,它可以解决很多问题。
外文翻译
附件一:外文资料翻译译文流体力学混合在单螺杆挤出机Ravlndran Chella 和Julio M. Ottlno*Massachusetts 州Amherst ,Massachusetts 大学,化学工程系 01003卷矩形空腔流图5为一个序列的一个接口,已进行二维矩形腔流拉伸步骤,在长度增长的界面,L(t )伴随着条纹厚度减少而减少,它被定义为相邻的接口之间的平均垂直距离,因此L(t)•s(t)≈常数,Biggs 和Middleman(1974b)使用一个简化的标记和细胞(MAC )技术(Harlow 和Amsden ,1970)来追踪该接口的位置。
然而,他们只考虑水平接口以及他们认为小拉伸比率的情况。
图5对两个相邻的垂直拉伸的流体层之间的接口在二维矩形腔流的步骤顺序示意图在一个典型的数值模拟中,变形及连续线拉伸(或表面)是使用有限数量的粒子模拟。
对于幅度的一个或两个数量级的相对伸展的线变形,包含所述线路分离的单个颗粒,定义并不清晰,对每一个粒子的初始浓度(每单位长度的粒子数量)会有一段时间在这几乎不可能重建。
(如果粒子流混乱,这个问题会急剧变得严重。
)当进行线路中的示踪粒子模拟时,相同的问题会出现在实验工作中,另一方面,该线路不能过于集中,因为它不是被动接口,如果线路是可溶性示踪剂模拟,问题将会扩散。
一般来说,这似乎很难遵循传统的跟踪方法或实验的210或相对较高的拉伸比拉伸,数值误差可能会使它不可能实现可逆性预期规则运动(Khakhar 等人,1984),界面的长度变化的关系可以用有限的材料进行拉伸计算1/2(0)ˆˆ(t)(:)|L L C MM dx =⎰ (11)该组包含该接口的差分线元件的初始取向的需要被指定,对于垂直界面(垂直于移动板块)ˆM =(0,l)和水平界面(平行移动板块)ˆM = (l,0),以及所有的行元素,由于它是在初始配置,所以用公式11计算是相对简单的。
这里使用的方法可以进行计算任意大的拉伸比,为了能够运用公式11,一种光腔流场的数学描述是有必要的,在这种情况下,参与关于瞬态问题利用稳态速度分布的误差比较小,例如稳态操作条件下迅速达到正常操作条件(Bigg 和 Middleman,1974b Erwin 和 Moktharian ,1981),由公式1可以得出这一流程最简单的说明。
本科毕业设计(论文)外文翻译译文
本科毕业设计(论文)外文翻译译文学生姓名:院(系):油气资源学院专业班级:物探0502指导教师:完成日期:年月日地震驱动评价与发展:以玻利维亚冲积盆地的研究为例起止页码:1099——1108出版日期:NOVEMBER 2005THE LEADING EDGE出版单位:PanYAmericanYEnergyvBuenosYAiresvYArgentinaJPYBLANGYvYBPYExplorationvYHoustonvYUSAJ.C.YCORDOVAandYE.YMARTINEZvYChacoYS.A.vYSantaYCruzvYBolivia 通过整合多种地球物理地质技术,在玻利维亚冲积盆地,我们可以减少许多与白垩纪储集层勘探有关的地质技术风险。
通过对这些远景区进行成功钻探我们可以验证我们的解释。
这些方法包括盆地模拟,联井及地震叠前同时反演,岩石性质及地震属性解释,A VO/A V A,水平地震同相轴,光谱分解。
联合解释能够得到构造和沉积模式的微笑校正。
迄今为止,在新区有七口井已经进行了成功钻探。
基质和区域地质。
Tarija/Chaco盆地的subandean 褶皱和冲断带山麓的中部和南部,部分扩展到玻利维亚的Boomerange地区经历了集中的成功的开采。
许多深大的泥盆纪气田已经被发现,目前正在生产。
另外在山麓发现的规模较小较浅的天然气和凝析气田和大的油田进行价格竞争,如果他们能产出较快的油流而且成本低。
最近发现气田就是这种情况。
接下来,我们赋予Aguja的虚假名字就是为了讲述这些油田的成功例子。
图1 Aguja油田位于玻利维亚中部Chaco盆地的西北角。
基底构造图显示了Isarzama背斜的相对位置。
地层柱状图显示了主要的储集层和源岩。
该油田在Trija和冲积盆地附近的益背斜基底上,该背斜将油田和Ben i盆地分开(图1),圈闭类型是上盘背斜,它存在于连续冲断层上,Aguja有两个主要结构:Aguja中部和Aguja Norte,通过重要的转换压缩断层将较早开发的“Sur”油田分开Yantata Centro结构是一个三路闭合对低角度逆冲断层并伴随有小的摆幅。
毕业设计外文文献翻译
毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。
毕业设计英文 翻译(原文)
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械工程系专业:机械工程及自动化姓名:徐华俊学号:100104348外文出处:WASTE FOOD DISPOSAL SYSTEM(3)(用外文写)附件:1.外文资料翻译译文;2.外文原文。
指导教师评语:该生翻译了一篇有关《废弃食物处理系统》的论文,论文内容跟课题的研究领域相关,在将来的课题设计中可以借鉴。
译文语句基本通顺,专业术语正确,标点符号运用无误。
说明该生具备一定的英语水平和翻译能力。
但文中仍有部分语句组织得不够完善,可以进一步修改。
签名:年月日注:请将该封面与附件装订成册。
附件1:外文资料翻译译文垃圾食物处理系统(3)打开功率继电器32的驱动,关闭与其相连的常闭开关118,从而消除了在此之前被施加到定时器单元40的控制终端146的触发信号,并且需要注意的是,功率继电器30的电源开关108供应了一个类似的功能,如本文所述的,启动系统10每天第一次激活功率继电器30的时候,这个功能中断了定时器单元40的控制终端146,即先前追踪的触发信号电路,如本文所述。
进一步,在与功率继电器32相连的开关被关闭的时候,它的驱动被触发的结果是非常明显的,断开常开继电器开关119,为高流量水阀22的电磁阀80建立了一个到地面的备用路径,也就是可以追踪到电源线200;通过导线202;电磁阀80;导线204;导线416和现在被断开的功率继电器32的闭合开关119到地面,如此一来就能明显并且很方便的注意到,与功率继电器30相连的开关109执行同样的功能,通过一个完全可追踪的功率继电器30,而不是功率继电器32,使功率继电器30处于启动状态,所以在任何时期,控制单元12的电动机46可在任意一个方向操作(这取决于功率继电器30或功率继电器32处于激活状态),电磁阀80也将保持通电,来保持高流量水阀22在该段时期内处于闭合状态,这样的话,水流将会在需要大幅率的时候流通,通过管道76和78流到控制单元12,这个控制单元12的机构52正积极粉碎积累废料,并且已经积累或正在采用,接着顺着水流冲到下水道或者通过类似单元12的出口58.你将会很方便的观察到电磁阀74保持通电,并且在控制单元12积极运作期间,低流量水阀20也保持闭合,并且应当在任何特定安装情况下,把阀22的流通能力考虑在内。
另外,主继电器28和通电导线400驱动使功能上效果显著,指标38将保持通电,让循环操作系统10继续工作,同时电磁阀74通电,来维持整个系统10的正常循环操作,这样做是为了把低流量水阀20打开,保持水持续的“涓流”来流到管道76,并通过管道78到控制单元12,有时候甚至是可行的,在一段定时的间隔时期内,自动激活的电动机46和52用于润滑和冷却机制,保证在这段时期至少存在水和持续引进的废料。
上面所述的驱动和“锁定”主继电器28,还有产生的影响几乎都发生在瞬间闭合开关组件16的常开开关70,并涉及后者的正常按压致动的时间。
接下来功能显著的就是启动开关组件16的手动压力释放,也就是导致最初开关70的重开和开关72的重关(早期的开关68仍然保持关闭)。
这种重开开关70还没有快速明显的影响,因为在电源线300和400之间的“保持电路路径”,使得他们的电源线200扩展的建立,并且重启开关70只中断一个冗余路径。
但是重关的开关72,有两个显著的后果。
首先,虽然在控制继电器36的线圈36还不能通电,因为缺乏相对的接地连接,直到定时器单元44的开关路径166闭合,部分从电源延伸线400的激励电路的通电线圈126已经完成,通过重新闭合开关72;电源线500;主继电器28的常闭继电器开关98和在线圈另一边连接的电源线502,这是准备用于通电的,只要其另一侧设置有与地的一侧连接。
其次,开关72的合闸规定,作为部分电路延伸的分支只是跟踪,通过引线504;控制继电器36的双掷继电器开关130的极点和常闭触点;导线506和导线(或内部连接)508给定时器单元42的控制终端162,来将一个触发信号传送给后者。
这样的触发信号,在定时器42的控制终端162的应用,使定时器单元42的交换路径148立即打开,通过定时和控制装置160的控制,标志这周期的开始,即定时器单元42将允许处理器单元12的电机46和高流量水阀22在通电的情况下工作。
注意,交换路径148的闭合阻止了控制继电器34的工作线圈122通电,它必须保持在非驱动状态,为了电机46和水阀22对当前操作期限的延续(凭借后者的依赖,在继续维护之前,通过控制继电器34的继电器开关124,关闭了追踪激励电路的功率继电器32,只有当控制继电器34未制动时才能执行。
)来自手动开关装置16手动操作压力的释放,使之前与其相连的开关68重新打开,它的主要作用是简要的关闭在此之前应用到导线302的通电,和去除在启动开关装置16制动期间的反向开关26的操作线圈92,从而准备好在系统10的正常自动操作期间,保证反向开关26和线圈92为下一次通电和操作,会在如下文中解释。
同时,手动开关装置16的制动,使得第一阶段的自动控制和系统10的循环操作,也就是电动机46和控制单元12的机构52在一个相对的方向操作,来制动电源继电器32,高流量水阀22在操作电磁阀80中持续打开,并且启动定时器42的定时周期。
与定时器单元42相连的电阻154的设置值在最后确定的时间段内(例如五分钟),定时和控制装置160会自动关闭定时器单元52的交换路径148,终止系统10在第一个有效运作阶段的自动循环操作,定时启动,不活动,这种资源节约型的循环方式将会在下段说明。
定时器单元42的交换路径148的重合闸完成一个电路,该电路用于控制继电器34的工作线圈122的通电,以便激活后者,可追踪到电源延长线400,通过启动开关装置16的闭合开关72;导线500;关闭着的主继电器28的继电器开关98,导线502;导线504;控制继电器36的继电器开关130的闭触点;导线506;定时器单元42的重合闸交换路径148;导线600到控制继电器34的相反操作接地线圈122。
控制继电器34的致动改变了与它相连的开关124和126的状态.从而改变了状态的控制继电器34的继电器开关124有两种影响。
首先,先前追踪的电路通过开关124的激励功率继电器32的操作线圈110被中断,(或电源继电器30的操作线圈100,视情况而定),导致断电和停止运作。
非制动,例如,电源继电器32让它主要的功率处理继电器开关112,114,116重新打开,从而解除了电动机46和控制单元12,并且重新打开继电器开关119,然后接着断开电磁阀80,关闭高流量水阀22。
这些行动将控制单元12处于非活动,资源节约状况,在电动机45下一个主动操作的周期,废物材料可积聚到容器45进行处理。
然后,改变控制继电器34的继电器开关124状态,来建立了一个路径,该路径使换向开关62的工作线圈92通电,来驱动后者移动至极点86与另一个接触点88(或者接触点90,视情况而定),该电路可从电源延长线400追踪到,通过该驱动继电器开关124和导线302到开关26的相对接地的操作线圈92.控制继电器34的继电器开关126的致动建立了一个电路,该电路被施加一个触发信号到定时器单元44的控制终端178,该电路可从电源延长线400追踪到,通过启动开关装置16的闭合开关72;导线500;主继电器28的闭合继电器开关98;导线502;控制继电器34的闭合继电器开关126;和导线700到定时器单元44的控制终端178。
这种应用到控制终端178的触发信号使得定时器单元44的时间控制装置176立马关闭开关路径166,时间间隔的长度(例如十分钟)由电阻164的设定值决定。
计时器单元44的交换路径166的重合闸完成一个到地面的电路路径,为了控制继电器36的工作线圈36反向的通过导线502使其通电,先前的电路在这方面被追踪,导致了控制继电器36的非制动,改变了与它相连的继电器开关128和130的反转状态。
附件2:外文原文(复印件)WASTE FOOD DISPOSAL SYSTEM(3)Actuation of the power relay32opens the associated,normally closed switch118,thereby removing the triggering signal that had earlier been applied to the control terminal146of the timer unit40,and it will be noted that the switch108of the power relay30serves a similar function of interrupting the previously traced triggering signal circuit to the control terminal146of the timer unit40when the power relay30is activated first upon daily start-up of the system10as herein described.A further,very significant result of the actuation of the power relay 32occurs from the closing of its associated,normally open relay switch 119.The closing of the switch119establishes an alternate path to ground for the solenoid80of the high flow rate water valve22,which is traceable from the power lead200,through lead202,the solenoid80,lead204,lead 416and the now closed switch119of the power relay32to ground.As will be apparent and may now conveniently also be noted,the switch109associated with the power relay30performs the same function through an otherwise identically traceable circuit when the power relay30,rather than the power relay32,is in actuated condition.Thus,during any periods that the motor 46of the disposer unit12is being operated in either direction(depending upon which of the power relays30or32is actuated at the time),the solenoid 80will also be and remain energized to maintain the high flow rate water valve22open during such period,so that water will be flowing at the needed substantial rate through the piping76and78to the disposer unit12whose mechanism52is then actively engaged in comminuting accumulated waste materials that have accumulated or are being introduced and which will then be flushed by such flow of water to a sewer or the like via the outlet58 of the unit12.It will be observed that it is convenient to permit thesolenoid74to remain energized and the low flow rate water valve20to also remain open during such periods of active operation of the disposer unit 12,and this should be taken into account in selecting the flow capacity for the valve22in any particular installation.Other,also functionally significant consequences of actuation of the master relay28and energization of lead400are that the indicator38will remain energized to advise that cycled operation of the system10has been initiated or is continuing,and that the solenoid74will be energized and so maintained throughout normal cycled operation of the system10to hold the low flow rate water valve20open to permit a continuing"trickle"flow of water from the supply piping76and through the piping78to the disposer unit12,which is desirable even during intervals between periods of timed automatic activation of the motor46and the mechanism52for lubricating and cooling purposes and to assure the presence of at least some water in connection with the continued introduction of waste materials during such intervals.The above-described actuation and"locking in"of the master relay28and the mentioned resulting effects occur almost instantaneously upon closing of the normally open switch70of the start switch assembly16and during the time involved in normal pressing actuation of the latter.The next functionally significant event will be the release of manual actuating pressure from the start switch assembly16,which initially results in the reopening of switch70and the reclosing of switch72(the early make switch 68momentarily still remaining closed).Such reopening of switch70has no immediately significant effect,since the"holding circuit"path between leads300and400rendering them extensions of the power lead200has already been established,and the reopening of the switch70merely interrupts what has become a redundant path there between.Reclosing of the switch72, however,has two significant consequences.First,although the coil126of the control relay36cannot yet be energized for lack of an opposite groundingconnection until the switched path166of the timer unit44is closed,a partial energizing circuit for the coil126is completed from the power extension lead400,through reclosed switch72,lead500,closed relay switch 98of the master relay28and lead502connected with one side of the coil 126,which is thereby readied for energization as soon as its other side is provided with a connection to ground.Secondly,reclosing of the switch 72establishes,as an extending branch of the partial circuit just traced, a connection via lead504,the pole and normally closed contact of the double throw relay switch130of the control relay36,lead506and lead(or internal connection)508to the control terminal162of the timer unit42,thereby applying a triggering signal to the latter.Application of such triggering signal to the control terminal162of the timer unit42results in immediate opening of the switched path148of the timer unit42by the timing and control means160thereof,and marks the commencement of the period during which the timer unit42will permit the motor46of the disposer unit12and the high flow rate water valve22to operate during the then current energization thereof.Note that opening of switched path148prevents energization of the operating coil122of the control relay34,which must remain in its unactuated condition for continuance of the desired period of current operation of the motor46and water valve22(by virtue of the dependence of the latter upon continued maintenance of the previously traced energizing circuit for the power relay32passing through contacts of the relay switch 124of the control relay34that are closed only when the control relay34 is unactuated).The final effect of release of manual operating pressure from the start switch assembly16will be the reopening of its associated early make switch 68,the primary effect of which will be to remove the energization theretofore briefly applied to lead302and the operating coil92of the reversing switch26during actuation of the start switch assembly16,thereby readying the reversing switch26and its coil92for the next energizationand operation thereof during a subsequent phase of the normal automatic operating cycle of the system10,as hereinafter explained.Meanwhile,actuation of the start switch assembly16has resulted in initiation of the first phase of automatically controlled and cycled operation of the system10in which the motor46and mechanism52of the disposer unit12are being operated in a direction corresponding to actuation of the power relay32,the high flow rate water valve22is being maintained open by its operating solenoid80,and the timing cycle of the timer unit 42has been started.At the end of the time period determined by the setting or value of the resistance154associated with the timer unit42(say,5 minutes),the timing and control means160of the latter will automatically reclose the switched path148of the timer unit52,which terminates the first active operation phase of the automatic operating cycle of the system 10and initiates a timed,inactive,resource conserving phase of such cycle in the manner next described.Reclosing of the switched path148of the timer unit42completes a circuit for energizing the operating coil122of the control relay34to actuate the latter,which is traceable from the power extension lead400,through the now reclosed switch72of the start switch assembly16,lead500,closed relay switch98of the master relay28,lead502,lead504,the still closed contacts of relay switch130of the control relay36,lead506,the now reclosed switched path148of the timer unit42,and lead600to the oppositely grounded operating coil122of the control relay34.Actuation of the control relay34changes the state of each of its associated relay switches124and126.Thus changing the state of the relay switch124of the control relay34 has two effects.First,the previously traced circuit through such switch 124for energizing the operating coil110of the power relay32(or the operating coil100of the power relay30,as the case may be)is interrupted, resulting in deenergization and deactuation thereof.Deactuation of,forinstance,the power relay32results in reopening of its main power handling relay switches112,114and116,thereby deenergizing the motor46of the disposer unit12,and in reopening of its relay switch119,thereby deenergizing the solenoid80and closing the high flow rate water valve22. These actions place the disposer unit12in its inactive,resource conserving condition,during which waste materials may accumulate in the receptacle 54for processing during the next period of active operation of the motor 45.Secondly,changing the state of the relay switch124of the control relay 34establishes a path for energizing the operating coil92of the reversing switch62to actuate the latter to move its pole86into contact with the other contact88(or90,as the case may be)thereof,which circuit is traceable from the power extension lead400through the actuated relay switch 124and the lead302to the oppositely grounded operating coil92of the switch26.Actuation of the relay switch126of the control relay34establishes a circuit for applying a triggering signal to the control terminal178of the timer unit44,which is traceable from the power extension lead400,through the closed switch72of the start switch assembly16,lead500,closed relay switch98of the master relay28,lead502,the now closed relay switch126 of the control relay34,and lead700to the control terminal178of the timer unit44.Such triggering signal applied to the controt terminal178 causes the timing and control means176of the timer unit44to immediately close the switched path166thereof and to commence the timing of an interval of length(say,10minutes)determined by the setting or value of the associated resistance164.The closing of the switched path166of the timer unit44completes a circuit path to ground for the operating coil126of the control relay36, which is being oppositely energized via lead502and the circuit previously traced in that regard,which results in deactuation of the control relay 36and a reversal of state of its associated relay switches128and130.。