基本不等式应用题

合集下载

不等式练习题

不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。

2. 已知x > 3,求证:x^2 > 9。

3. 已知0 < x < 1,求证:x^3 < x。

4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。

5. 已知|x| > |y|,求证:x^2 > y^2。

二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。

2. 解不等式:5 2(x 3) ≤ 3x 1。

3. 解不等式:2(x 1) 3(x + 2) > 7。

4. 解不等式:4 3(x 2) ≥ 2x + 5。

5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。

三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。

2. 解不等式:2x^2 3x 2 < 0。

3. 解不等式:x^2 4x + 4 ≤ 0。

4. 解不等式:3x^2 + 4x 4 > 0。

5. 解不等式:x^2 + 5x 6 < 0。

四、分式不等式1. 解不等式:x / (x 1) > 2。

2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。

3. 解不等式:(x 1) / (x + 1) < 0。

4. 解不等式:(2x + 3) / (x 4) ≥ 1。

5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。

五、含绝对值的不等式1. 解不等式:|x 2| > 3。

2. 解不等式:|2x + 1| ≤ 5。

3. 解不等式:|3x 4| < 2。

4. 解不等式:|x + 3| |x 2| > 1。

5. 解不等式:|x 5| + |x + 1| < 6。

六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。

2021年高考数学二轮复习专题22与基本不等式有关的应用题含解析

2021年高考数学二轮复习专题22与基本不等式有关的应用题含解析

专题22 与基本不等式有关的应用题【自主热身,归纳总结】1、某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 . 【答案】 30【解析】 总费用≥240,当且仅当900x x=,即30x =时等号成立.即1=h 时取得.故当1=h 米时,V 有最大值,V 的最大值为61立方米. 2、用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为h 米,盖子边长为a 米.设容器的容积为V 立方米,则当h 为________时,V 最大.【解析】 设'h 为正四棱锥的斜高.由已知解得,进而得,因为h h 1+≥212=⋅h h ,所以V ≤61.等式当且仅当hh 1=,3、某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (m),三块种植植物的矩形区域的总面积...为S (m 2). (1) 求S 关于x 的函数关系式; (2) 求S 的最大值.【解析】 (1) 由题设得S =(x -8)⎝⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(6分)(2) 因为8<x <450,所以2x +7 200x ≥22x ·7 200x=240,(8分)当且仅当x =60时等号成立.(10分)从而S≤676.(12分)答:当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.(14分)4、如图,某小区拟在空地上建一个占地面积为2400m2的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为2m.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.易错警示在利用基本不等式求函数的最值时,一定要注意验证基本不等式成立的三个条件,即一正二定三相等.如果等号成立的条件不具备,就应该研究函数的单调性来求函数的最值.5、某兴趣小组要测量电视塔AE的高度H(单位:m).示意图如图所示,垂直放置的标杆BC的高度h=4 m,仰角∠ABE=α,∠ADE=β.(1) 该小组已测得一组α,β的值,tanα=1.24,tanβ=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m,试问d为多少时,α-β最大?【解析】 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=h d +H H -h d≤h2H H -h ,当且仅当d =H H -h =125×125-4=555时取等号.又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.6、如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. (1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【解析】 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根,所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标. 【问题探究,变式训练】例1、 如图,一个铝合金窗分为上、下两栏,四周框架和中间隔栏的材料为铝合金,宽均为6cm ,上栏和下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为288002cm ,设该铝合金窗的宽和高分别为()a cm ,()b cm ,铝合金的透光部分的面积为2()S cm .(1)试用,a b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少?【解析】(1)①又设上栏框内高度为h (cm ),下栏框内高度为2h (cm ).则3h +18=b ,∴透光部分的面积(2)当且仅当9a=8b 时等号成立,此时,89a b =代入①式得,a =160,从而b =180, 即当a =160,b =180时,S 取得最小值. 答:铝合金窗的宽度为160㎝,高为180㎝时,可使透光部分的面积最大。

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

基本不等式经典例题(学生用)

基本不等式经典例题(学生用)

根本不等式 【2 】 常识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”)3.若0x >,则12x x +≥ (当且仅当1x =时取“=”)若0x <,则12x x +≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+a bb a(当且仅当b a =时取“=”)若0ab ≠,则22-2abab a bb a b a b a +≥+≥+≤即或(当且仅当b a =时取“=”)5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”)留意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的前提“一正,二定,三取等”(3)均值定理在求最值.比较大小.求变量的取值规模.证实不等式.解决现实问题方面有普遍的运用 运用一:求最值例:求下列函数的值域(1)y =3x2+12x 2 (2)y =x +1x技能一:凑项例 已知54x <,求函数14245y x x =-+-的最大值.技能二:凑系数例: 当时,求(82)y x x =-的最大值.变式:设230<<x ,求函数)23(4x x y -=的最大值.技能三: 分别换元 例:求2710(1)1x x y x x ++=>-+的值域.技能五:在运用最值定理求最值时,若遇等号取不到的情形,. 例:求函数2y =的值域.技能六:整体代换(“1”的运用)多次连用最值定理求最值时,要留意取等号的前提的一致性,不然就会出错.. 例:已知0,0x y >>,且191x y+=,求x y +的最小值. 技能七例:已知x,y 为正实数,且x 2+y 22=1,求x 1+y2 的最大值. 技能八:已知a,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值. 技能九.取平方例: 求函数15()22y x <<的最大值. 运用二:运用均值不等式证实不等式例:已知a.b.c R +∈,且1a b c ++=.求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭ 运用三:均值不等式与恒成立问题例:已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值规模. 运用四:均值定理在比较大小中的运用:例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=⋅=>>,则R Q P ,,的大小关系是.。

应用题 基本不等式类型1

应用题  基本不等式类型1

应用题 基本不等式类型16、运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.7、某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为x 米,圆心角为θ(弧度).(1)求θ关于x 的函数关系式;(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值?4、小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年 起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车 运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其 销售价格为(25-x )万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)5、要制作一个如图的框架(单位:米),要求所围成的总面积为19.5(平方米),其中四边形ABCD 是一个矩形,四边形EFCD 是一个等腰梯形,梯形高h =12AB ,tan ∠FED =34,设AB =x 米,BC =y 米.(1)求y 关于x 的表达式;(2)如图设计x ,y 的长度,才能使所用材料最少?答案1、解 (1)设所用时间为t =130x(h), y =130x ×2×⎝⎛⎭⎫2+x 2360+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]). (2)y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810时,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.2、解 (1)设扇环的圆心角为θ,则30=θ(10+x )+2(10-x ),所以θ=10+2x 10+x. (2)花坛的面积为12θ(102-x 2)=(5+x )(10-x ) =-x 2+5x +50(0<x <10).装饰总费用为9θ(10+x )+8(10-x )=170+10x ,所以花坛的面积与装饰总费用的比y =-x 2+5x +50170+10x=-x 2-5x -5010(17+x ), 令t =17+x ,则y =3910-110⎝⎛⎭⎫t +324t ≤310, 当且仅当t =18时取等号,此时x =1,θ=1211. 答:当x =1时,花坛的面积与装饰总费用的比最大.4、解 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元,则y =25x -[6x +x (x -1)]-50(0<x ≤10,x ∈N ),即y =-x 2+20x -50(0<x ≤10,x ∈N ),由-x 2+20x -50>0,解得10-52<x <10+5 2.而2<10-52<3,故从第3年开始运输累计收入超过总支出.(2)因为利润=累计收入+销售收入-总支出,所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )]=1x (-x 2+19x -25)=19-⎝⎛⎭⎫x +25x ,而19-⎝⎛⎭⎫x +25x ≤19-2x ·25x=9,当且仅当x =5时等号成立,即小王应当在第5年将大货车出售,才能使年平均利润最大.5、解 (1)如图,等腰梯形CDEF 中,DH 是高. 依题意,DH =12AB =12x , EH =DH tan ∠FED =43×12x =23x , ∴392=xy +12⎝⎛⎭⎫x +x +43x 12x =xy +56x 2, ∴y =392x -56x . ∵x >0,y >0,∴392x -56x >0,解得0<x <3655, ∴所求表达式为y =392x -56x (0<x <3655). (2)Rt △DEH 中,∵tan ∠FED =34, ∴sin ∠FED =35, ∴DE =DH sin ∠FED =12x ×53=56x , ∴l =(2x +2y )+2×56x +⎝⎛⎭⎫2×23x +x =2y +6x =39x -53x +6x =39x +133x ≥2 39x ×13x 3=26. 当且仅当39x =133x ,即x 2=9,即x =3时取等号,此时y =392x -56x =4, ∴AB =3米,BC =4米时,能使整个框架用材料最少.1.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.(1)为控制预算,要求每批产品的总费用控制在1000元,求x的范围;(2)为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品多少件.2.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转多少年时,年平均利润最大,并求出最大值.3.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200 辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v(x)的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时) f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)1、解析 设每件产品的平均费用为y 元,由题意得y =800x +x 8≥2800x ·x 8=20,当且仅当800x =x 8(x >0),即x =80时“=”成立.答案 802、解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案 5 83、解 (1)由题意:当0≤x ≤20时,v (x )=60;当20<x ≤200时,设v (x )=ax +b再由已知得⎩⎨⎧ 200a +b =0,20a +b =60,解得⎩⎪⎨⎪⎧ a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧ 60,0≤x ≤20,13(200-x ),20<x ≤200. (2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧ 60x ,0≤x ≤20,13x (200-x ),20<x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1 200;当20<x ≤200时,f (x )=13x (200-x )≤13⎣⎢⎡⎦⎥⎤x +(200-x )22=10 0003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值10 0003.。

基本不等式应用题型

基本不等式应用题型

基本不等式应用题型1. 一个长方形的长是x+3,宽是x-2,求长方形的周长和面积。

解答:周长=2(x+3+x-2)=2(2x+1)=4x+2,面积=(x+3)(x-2)=x^2+x-6。

2. 一个三角形的两边长分别是x和x+2,第三边长是2x-1,求三角形的周长。

解答:周长=x+(x+2)+(2x-1)=4x+1。

3. 一个矩形的长是x+4,宽是x-1,求矩形的周长和面积。

解答:周长=2(x+4+x-1)=2(2x+3)=4x+6,面积=(x+4)(x-1)=x^2+3x-4。

4. 一个正方形的边长是2x-1,求正方形的周长和面积。

解答:周长=4(2x-1)=8x-4,面积=(2x-1)^2=4x^2-4x+1。

5. 一个圆的半径是x+2,求圆的周长和面积。

解答:周长=2π(x+2)=2πx+4π,面积=π(x+2)^2=π(x^2+4x+4)。

6. 一个等腰三角形的底边长是2x-1,两腿长分别是x和x+3,求三角形的周长。

解答:周长=(2x-1)+x+(x+3)=4x+2。

7. 一个梯形的上底长是x+2,下底长是2x-1,高是x,求梯形的面积。

解答:面积=((x+2)+(2x-1))×x/2=(3x+1)×x/2=3x^2+x/2。

8. 一个圆的直径是2x+1,求圆的周长和面积。

解答:周长=π(2x+1)=2πx+π,面积=π[(2x+1)/2]^2=π(x+1/2)^2。

9. 一个等边三角形的边长是2x-1,求三角形的周长和面积。

解答:周长=3(2x-1)=6x-3,面积=(2x-1)^2=4x^2-4x+1。

10. 一个平行四边形的边长分别是x和x+3,高是x-1,求平行四边形的周长和面积。

解答:周长=2(x+x+3)=4x+6,面积=(x+3)(x-1)=x^2+2x-3。

基本不等式经典题目

基本不等式经典题目

基本不等式经典题目基本不等式:经典题目1. 证明柯西不等式:若 \(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\) 是两个 n 维实数序列,则有$$\left(\sum_{k=1}^n x_ky_k\right)^2 \le\left(\sum_{k=1}^n x_k^2\right)\left(\sum_{k=1}^ny_k^2\right)$$2. 证明赫尔德不等式:若 \(p\) 和 \(q\) 是大于 \(1\) 的实数且满足\(\frac{1}{p} + \frac{1}{q} = 1\),则对于任意 n 维实数序列\(x_1, x_2, \dots, x_n\) 和 \(y_1, y_2, \dots, y_n\),都有$$\left|\sum_{k=1}^n x_ky_k\right| \le\left(\sum_{k=1}^n |x_k|^p\right)^{1/p}\left(\sum_{k=1}^n|y_k|^q\right)^{1/q}$$3. 证明明可夫斯基不等式:对于任意p ≥ 1 和 n 维实数序列 \(x_1, x_2, \dots,x_n\),都有$$\left(\sum_{k=1}^n |x_k|^p\right)^{1/p} \le\sum_{k=1}^n |x_k|$$4. 证明切比雪夫不等式:对于任意实数 \(a\) 和 n 维实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(|X - E(X)| \ge a) \le \frac{V(X)}{a^2}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量,\(E(X)\) 为期望,\(V(X)\) 为方差。

5. 证明马尔科夫不等式:对于任意实数 \(a > 0\) 和 n 维非负实数序列 \(x_1, x_2, \dots, x_n\),都有$$P(X \ge aE(X)) \le \frac{E(X)}{a}$$其中 \(X\) 为序列 \(x_1, x_2, \dots, x_n\) 的随机变量。

基本不等式实际应用题

基本不等式实际应用题
基本不等式实际应用
• 基本不等式的概念和性质 • 基本不等式的应用场景 • 基本不等式的解题技巧 • 基本不等式的实际应用案例 • 基本不等式的扩展和深化
01
基本不等式的概念和性质
基本不等式的定义
定义
基本不等式是数学中常用的一个不等 式,它表示两个正数的平均数总是大 于或等于它们的几何平均数。
总结词:代数变换技巧是基本不等式 解题中的重要技巧之一,通过代数运 算对项进行变换,可以简化计算过程, 提高解题效率。
放缩法技巧
放缩法技巧是指通过放缩不等式的两边,使不等式更易于解 决。例如,在利用基本不等式求最值时,可以通过放缩法技 巧将问题转化为更容易求解的形式。
总结词:放缩法技巧是基本不等式解题中的重要技巧之一, 通过放缩不等式的两边,可以将问题转化为更容易求解的形 式,提高解题效率。
构造函数技巧
构造函数技巧是指根据题目的特点,构造一个函数来解决问题。例如,在利用基本不等式求最值时,可以通过构造函数技巧 将问题转化为求函数的最值问题。
总结词:构造函数技巧是基本不等式解题中的重要技巧之一,通过构造函数可以将问题转化为求函数的最值问题,简化计算 过程,提高解题效率。
04
基本不等式的实际应用案例
VS
详细描述
在资源有限的条件下,如何合理分配资源 以达到最优效果是资源分配问题的核心。 基本不等式可以用来解决这类问题,例如 在农业生产、资金分配等方面,通过优化 资源配置,可以提高整体效益。
最短路径问题
总结词
在交通、通信和工程领域,最短路径问题至关重要,基本不等式为寻找最短路径提供了 理论支持。
极值问题
在极值问题中,基本不等式可以用来确定函数的极值点,以及极值的大小。
优化问题的求解

常考经典不等式应用题6道

常考经典不等式应用题6道

1、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表,设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润。

甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大2、某公司有甲种原料260kg,乙种原料270kg,计划用这两种原料生产A、B两种产品共40件.生产每件A种产品需甲种原料8kg,乙种原料5kg,可获利润900元;生产每件B种产品需甲种原料4kg,乙种原料9kg,可获利润1100元.设安排生产A种产品x件.(1)完成下表甲(kg)已(kg)件数(件)A5x xB4(40-x)40-x(3)设生产这批40件产品共可获利润y元,将y表示为x的函数,并求出最大利润.3、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:湘莲品种A B C每辆汽车运载量(吨)12108每吨湘莲获利(万元)342设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值。

4、为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少5、我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会.现有A型、B型、C型三种汽车可供选择.已知每种型号汽车可同时装运2种土特产,且每辆车必须装满.根据下表信息,解答问题.苦荞茶 青花椒 野生蘑菇每辆汽车运载量(吨)A 型2 2 B 型 4 2 C 型16(1)设A 型汽车安排x 辆,B 型汽车安排y 辆,求y 与x 之间的函数关系式.(2)如果三种型号的汽车都不少于4辆,车辆安排有几种方案并写出每种方案. (3)为节约运费,应采用(2)中哪种方案并求出最少运费.6、小明到一家批发兼零售的文具店给九年级学生购买考试用2B 铅笔,请根据下列情景解决问题。

基本不等式及其应用 习题及解析

基本不等式及其应用 习题及解析

基本不等式及其应用习题及解析基本不等式及其应用一、选择题(共15小题)1.已知$x,XXX{R}$,$x+y+xy=315$,则$x+y-xy$的最小值是()A。

35B。

105C。

140D。

2102.设正实数$x,y$满足$x>1,y>1$,不等式$\frac{x}{y-1}+\frac{y}{x-1}\geq 4$的最小值为()A。

2B。

4C。

8D。

163.已知$a>0,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$,当且仅当()A。

$a=b$B。

$a=b=1$XXX 1$D。

$a\neq b$4.已知$x,y$都是非负实数,且$x+y=2$,则$xy$的最大值为()A。

0B。

$\frac{1}{4}$C。

$\frac{1}{2}$D。

15.已知$x,y,z$为正实数,则$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$的最大值为()A。

3B。

4C。

5D。

66.若$a,b\in\mathbb{R},ab\neq 0$,且$a+b=1$,则下列不等式中,XXX成立的是()A。

$ab\leq \frac{1}{4}$XXX{1}{4}$XXX{1}{8}$D。

$ab\geq \frac{1}{8}$7.设向量$\vec{OA}=(1,-2),\vec{OB}=(a,-1),\vec{OC}=(-b,2)$,其中$O$为坐标原点,$a>0,b>0$,若$A,B,C$三点共线,则$\vec{AB}+\vec{BC}+\vec{CA}$的最小值为()A。

4B。

6C。

8D。

98.若$x>0,y>0,x+y=1$,则$\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{xy}}$的最小值为()A。

2B。

3C。

4D。

59.在下列函数中,最小值是2的是()A。

$y=x^2+1$B。

$y=2-x^2$C。

基本不等式的十五种类型-原卷版

基本不等式的十五种类型-原卷版

十五种类型解决基本不等式类型1:基本不等式的直接运用与取等条件 (2)类型2:换“1”法求最值 (2)类型3:代换法与解不等式法求最值 (3)类型4:恒成立问题 (4)类型5:齐次化处理后用基本不等式 (4)类型6:换元—较难 (5)类型7:万能k (5)类型8:两次均值不等式—较难 (6)类型9:配凑后用基本不等式求最值—难 (6)类型10:整理与代换—难 (7)类型11:多变量代换减少变量后运用基本不等式—较难 (7)类型12:凑系数问题使基本不等式满足取等条件—难 (8)类型13:双勾函数的应用—较难 (8)类型14:利用x2+y2≥−2xy求范围 (9)类型15:三元均值不等式 (9)类型1:基本不等式的直接运用与取等条件典型例题例1.设某同学从甲地到乙地往返的速度分别为a和b(a<b),其全程的平均速度为v,则( )A.v=aba+b B.v=√ab C.√ab<v<a+b2D.a<v<√ab例2.(多选)若a,b∈R,且ab>0,则下列不等式恒成立的是( )A.a+4a ≥4 B.a2+16a2≥8 C.1a+1b>√abD.ba+ab≥2例3.已知x,y∈R+,且满足3x+4y=1,则xy的最大值为_____.例4.若0<x<12,则x(1−2x)的最大值是_____.跟踪练习1.(多选)已知实数a,b,下列不等式一定成立的是( )A.a+b2≥√ab B.a+1a≥2 C.|ba+ab|≥2 D.2(a2+b2)≥(a+b)22.(多选)下列说法正确的有( )A.不等式a+b≥2√ab恒成立B.存在a,使得不等式a+1a≤−2成立C.若a>0,b>0,则ba +ab≥2 D.y=√x2+2√x2+2的最小值为23.设x>0,则x√1−4x2的最大值为_____.4.若x>0,y>0, x+2y=5,则√xy的最小值为_____. 5.若x>0,y>0,(x+3)(y+1)=12,则x+3y的最小值为_____.类型2:换“1”法求最值典型例题例1.已知正数x,y满足x+2y=1,求1x +1y的最小值.判断下述解法正确与否,若不正确,请给出正确的解法;若正确,则说明理由。

2.2 基本不等式(原卷版附答案).pdf

2.2 基本不等式(原卷版附答案).pdf

2.2 基本不等式考点1:利用基本不等式比较大小1.重要不等式如果a ,b ∈R,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).2.基本不等式:≤ab a +b 2(1)基本不等式成立的条件:a ,b 均为正实数;(2)等号成立的条件:当且仅当a =b 时取等号.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为,几何平均数为;a +b 2ab (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.【例1】 已知0<a <1,0<b <1,则a +b ,2,a 2+b 2,2ab 中哪一个最大?ab 【方法技巧】(1)在使用基本不等式≤(a ≥0,b ≥0)时,要注意不等式的双向性.ab a +b 2①从左到右:常使用基本不等式的变形公式ab ≤;22⎪⎭⎫ ⎝⎛+b a ②从右到左:常使用a +b ≥2.ab (2)运用基本不等式比较大小应注意等号成立的条件.(3)特殊值法是解决不等式的一个有效方法, 但要使特殊值具有一般性.【针对训练】1. 下列不等式中,正确的个数是( )①若a ,b ∈R,则≥;②若x ∈R,则x 2+2+≥2;a +b2ab 1x2+2③若x ∈R,则x 2+1+≥2;④若a ,b 为正实数,则≥.1x2+1a +b2ab A .0 B .1 C .2 D .32.已知m =a +(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________.1a -2考点2:利用基本不等式证明不等式【例2】 已知a ,b ,c 为不全相等的正实数.求证:a +b +c >++.ab bc ca 【方法技巧】1.所证不等式一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,可尝试用基本不等式证明.2.利用基本不等式证明不等式的注意点(1)多次使用基本不等式时,要注意等号能否成立;(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用;(3)对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【针对训练】3.已知a ,b ,c 为正实数,且a +b +c =1,求证:8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-c b a 考点3:基本不等式的实际应用【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?【变式练习】某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.考点4:利用基本不等式求最值1.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =时,积xy 有最大值为.s 2s24(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =时,和x +y 有最小值为2.p p 2.基本不等式求最值的条件(1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.【例4】 设x ,y ,z 均是正数,x -2y +3z =0,则的最小值为________.y2xz 【方法技巧】1.本题解题的关键是根据已知条件消掉目标函数中的y ,通过对目标函数的变形,转化为考生所熟悉的使用基本不等式求最值的问题.2.使用基本不等式求最值,必须同时满足三个条件:①各项均为正数;②其和或积为定值;③等号必须成立,即“一正、二定、三相等”.在具体问题中,“定值”条件决定着基本不等式应用的可行性,决定着成败的关键.【针对训练】4.已知x >0,y >0,且+=1,试求x +y 的最小值.1x 9y考点过关1.下列不等式中,正确的是( )A .a +≥4B .a 2+b 2≥4ab 4a C.≥ D .x 2+≥2ab a +b 23x232.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A .a 2+b 2≥2|ab |B .a 2+b 2=2|ab |C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |3.已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤ B .ab ≥1212C .a 2+b 2≥2 D .a 2+b 2≤34.若a >0,b >0,a +2b =5,则ab 的最大值为( )A .25 B.252C. D.2542585.已知x >0,函数的最小值是( )9y x x =+A .2B .4C .6D .87.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A.+<1B.+≥11a 1b 1a 1b C.+<2 D.+≥21a 1b 1a 1b 8.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A .+<1B .+≥11a 1b 1a 1b C .+<2D .+≥21a 1b 1a 1b 9.若x >0,y >0,且+=1,则xy 有( )2x 8y A .最大值64B .最小值164C .最小值D .最小值641210.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( )A .16B .25C .9D .36二、填空题11.若a >0,b >0,且+=,则a 3+b 3的最小值为________.1a 1b ab 12.已知0<x <1,则x (3-3x )取得最大值时x 的值为________.13.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________.14.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.三、解答题15.设a ,b ,c 都是正数,试证明不等式:++≥6.b +c a c +a b a +b c 16. 设 求证:0,0,1a b a b >>+=1118a b ab ++≥17.某厂家拟在2020年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)x (单位:万件)与年促销费用m (m ≥0)(单位:万元)满足x =3-km +1(k 为常数),如果不举行促销活动,该产品的年销售量是1万件.已知2020年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将2020年该产品的利润y (单位:万元)表示为年促销费用m 的函数;(2)该厂家2020年的促销费用为多少万元时,厂家的利润最大?2.2 基本不等式考点1:利用基本不等式比较大小1.重要不等式如果a ,b ∈R,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).2.基本不等式:≤ab a +b2(1)基本不等式成立的条件:a ,b 均为正实数;(2)等号成立的条件:当且仅当a =b 时取等号.3.算术平均数与几何平均数(1)设a >0,b >0,则a ,b 的算术平均数为,几何平均数为;a +b2ab (2)基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.【例1】 已知0<a <1,0<b <1,则a +b ,2,a 2+b 2,2ab 中哪一个最大?ab [解] 法一:因为a >0,b >0,所以a +b ≥2,a 2+b 2≥2ab ,ab 所以四个数中最大的数应为a +b 或a 2+b 2.又因为0<a <1,0<b <1,所以a 2+b 2-(a +b )=a 2-a +b 2-b =a (a -1)+b (b -1)<0,所以a 2+b 2<a +b ,所以a +b 最大.法二:令a =b =,12则a +b =1,2=1,a 2+b 2=,2ab =2××=,ab 12121212再令a =,b =,a +b =+=,12181218582=2=,ab 12×1812所以a +b 最大.【方法技巧】(1)在使用基本不等式≤(a ≥0,b ≥0)时,要注意不等式的双向性.ab a +b2①从左到右:常使用基本不等式的变形公式ab ≤;22⎪⎭⎫ ⎝⎛+b a ②从右到左:常使用a +b ≥2.ab (2)运用基本不等式比较大小应注意等号成立的条件.(3)特殊值法是解决不等式的一个有效方法, 但要使特殊值具有一般性.【针对训练】2. 下列不等式中,正确的个数是( )①若a ,b ∈R,则≥;②若x ∈R,则x 2+2+≥2;a +b2ab 1x2+2③若x ∈R,则x 2+1+≥2;④若a ,b 为正实数,则≥.1x2+1a +b2ab A .0 B .1 C .2 D .3C [显然①不正确;③正确;对于②,虽然x 2+2=无解,但x 2+2+>2成立,故②正确;1x2+21x2+2④不正确,如a =1,b =4.]2.已知m =a +(a >2),n =22-b 2(b ≠0),则m ,n 之间的大小关系是________.1a -2m >n [因为a >2,所以a -2>0,又因为m =a +=(a -2)++2,所以m ≥2+2=4,由b ≠0,得b 2≠0,1a -21a -2(a -2)·1a -2所以2-b 2<2,n =22-b 2<4,综上可知m >n .考点2:利用基本不等式证明不等式【例2】 已知a ,b ,c 为不全相等的正实数.求证:a +b +c >++.ab bc ca 思路探究:构造基本不等式的条件→运用基本不等式证明→判断等号成立的条件→得出结论[解] ∵a >0,b >0,c >0,∴a +b ≥2>0,ab b +c ≥2>0,bc c +a ≥2>0,ca∴2(a +b +c )≥2(++),ab bc ca 即a +b +c ≥++.ab bc ca 由于a ,b ,c 为不全相等的正实数,故等号不成立.∴a +b +c >++.ab bc ca 【方法技巧】1.所证不等式一端出现“和式”,而另一端出现“积式”,这便是应用基本不等式的“题眼”,可尝试用基本不等式证明.2.利用基本不等式证明不等式的注意点(1)多次使用基本不等式时,要注意等号能否成立;(2)累加法是不等式证明中的一种常用方法,证明不等式时注意使用;(3)对不能直接使用基本不等式的证明可重新组合,形成基本不等式模型,再使用.【针对训练】3.已知a ,b ,c 为正实数,且a +b +c =1,求证:8111111≥⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-c b a [证明] 因为a ,b ,c 为正实数,且a +b +c =1,所以-1==≥.1a 1-a a b +c a 2bca 同理,-1≥,-1≥.1b 2ac b 1c 2abc 上述三个不等式两边均为正,相乘得≥··=8,当且仅当a =b =c =时,取等号.⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-111111c b a 2bc a 2ac b 2ab c 13考点3:基本不等式的实际应用【例3】 如图,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)要使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小?思路探究:(1)已知a +b 为定值,如何求ab 的最大值?(2)已知ab 为定值,如何求a +b 的最小值?[解] 设每间虎笼长x m,宽y m,则由条件知:4x +6y =36,即2x +3y =18.设每间虎笼面积为S ,则S =xy .法一:由于2x +3y ≥2=2,2x·3y 6xy ∴2≤18,得xy ≤,6xy 272即S ≤,当且仅当2x =3y 时,等号成立.272由解得{2x +3y =182x =3y ){x =4.5y =3.)故每间虎笼长4.5 m,宽3 m 时,可使面积最大.法二:由2x +3y =18,得x =9-y .32∵x >0,∴9-y >0,∴0<y <6,32S =xy =y =(6-y )·y .⎪⎭⎫ ⎝⎛-y 23932∵0<y <6,∴6-y >0,∴S ≤·=.32()226⎥⎦⎤⎢⎣⎡+-y y 272当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .法一:∵2x +3y ≥2=2=24,2x·3y 6xy ∴l =4x +6y =2(2x +3y )≥48.当且仅当2x =3y 时,等号成立.由,解得{2x =3y xy =24){x =6y =4.)故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.法二:由xy =24,得x =.24y∴l =4x +6y =+6y =6≥6×2=48.96y ⎪⎪⎭⎫ ⎝⎛+y y 1616y·y 当且仅当=y ,即y =4时,等号成立,此时x =6.16y 故每间虎笼长6 m,宽4 m 时,可使钢筋网总长最小.【变式练习】某工厂拟建一座平面图为矩形且面积为400平方米的三级污水处理池,平面图如图所示.池外圈建造单价为每米200元,中间两条隔墙建造单价为每米250元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).试设计污水池的长和宽,使总造价最低,并求出最低造价.[解] 设污水池的长为x 米,则宽为米,总造价y =(2x +2·)·200+2×250·+80×400=400+32 000≥400×2+32 000=56 000(元),当且仅当x 400x 400x 400x ⎪⎭⎫ ⎝⎛+x x 900x·900x=,即x =30时取等号.900x 故污水池的长为30米、宽为米时,最低造价为56 000元.403考点4:利用基本不等式求最值1.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y =时,积xy 有最大值为.s 2s24(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y =时,和x +y 有最小值为2.p p 2.基本不等式求最值的条件(1)x ,y 必须是正数.(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值.(3)等号成立的条件是否满足.思考:利用基本不等式求最值时应注意哪几个条件?若求和(积)的最值时,一般要确定哪个量为定值?[提示] 三个条件是:一正,二定,三相等.求和的最小值,要确定积为定值;求积的最大值,要确定和为定值.【例4】 设x ,y ,z 均是正数,x -2y +3z =0,则的最小值为________.y2xz [点拨] 由条件表示y ,代入到中,变形为能运用基本不等式求最值的形式,求出最小值,但要注意等号取到的条件.y2xz[解] 由x -2y +3z =0,得y =,x +3z 2∴==≥=3.y2xz x2+9z2+6xz 4xz 14⎪⎭⎫ ⎝⎛++69x z z x ⎪⎪⎭⎫ ⎝⎛+⋅69241x z z x 当且仅当x =y =3z 时,取得最小值3.y2xz【方法技巧】1.本题解题的关键是根据已知条件消掉目标函数中的y ,通过对目标函数的变形,转化为考生所熟悉的使用基本不等式求最值的问题.2.使用基本不等式求最值,必须同时满足三个条件:①各项均为正数;②其和或积为定值;③等号必须成立,即“一正、二定、三相等”.在具体问题中,“定值”条件决定着基本不等式应用的可行性,决定着成败的关键.【针对训练】4.已知x >0,y >0,且+=1,试求x +y 的最小值.1x 9y[解] ∵x >0,y >0,且+=1,1x 9y∴x +y =(x +y )=++10≥2+10=16.(1x +9y )y x 9x y y x ·9x y 当且仅当=,即y =3x 时等号成立.y x 9x y又+=1,∴当x =4,y =12时,(x +y )min =16.1x 9y考点过1.下列不等式中,正确的是( )A .a +≥4B .a 2+b 2≥4ab4a C.≥ D .x 2+≥2ab a +b23x23解析:选D.a <0,则a +≥4不成立,故A 错;a =1,b =1,a 2+b 2<4ab ,故B 错,a =4,b =16,则<,故C 错;由基本不等式可知D 项正确.4a ab a +b22.a ,b ∈R ,则a 2+b 2与2|ab |的大小关系是( )A .a 2+b 2≥2|ab |B .a 2+b 2=2|ab |C .a 2+b 2≤2|ab |D .a 2+b 2>2|ab |解析:∵a 2+b 2-2|ab |=(|a |-|b |)2≥0,∴a 2+b 2≥2|ab |(当且仅当|a |=|b |时,等号成立).3.已知a ≥0,b ≥0,且a +b =2,则( )A .ab ≤B .ab ≥1212C .a 2+b 2≥2D .a 2+b 2≤3解析:∵a +b =2,∴a 2+b 2=a 2+(2-a )2=2a 2-4a +4=2(a -1)2+2,又由题意知0≤a ≤2,则2≤a 2+b 2≤4,故选C.4.若a >0,b >0,a +2b =5,则ab 的最大值为( )A .25 B.252C. D.254258解析:选D.a >0,b >0,a +2b =5,则ab =a ·2b ≤×=,当且仅当a =,b =时取等号,故选D.1212(a +2b 2)2 25852545.已知x >0,函数的最小值是( )9y x x =+A .2B .4C .6D .8解析:∵x >0,∴函数,当且仅当x=3时取等号,96y x x =+≥=∴y 的最小值是6.故选:C .7.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A.+<1B.+≥11a 1b 1a 1b C.+<2 D.+≥21a 1b 1a 1b 解析:因为ab ≤2≤2=4,所以+≥2≥2=1.(a +b 2)(42)1a 1b 1ab 148.设a ,b 为正数,且a +b ≤4,则下列各式中正确的一个是( )A .+<1B .+≥11a 1b 1a 1b C .+<2D .+≥21a 1b 1a 1b 解析: [因为ab ≤≤=4,所以+≥2≥2=1.] 故选B(a +b 2)2(42)2 1a 1b 1ab 149.若x >0,y >0,且+=1,则xy 有( )2x 8y A .最大值64B .最小值164C .最小值D .最小值6412解析:D [由题意xy =xy =2y +8x ≥2=8,∴≥8,即xy 有最小值64,等号成立的条件是x =4,y =16.](2x +8y )2y·8x xy xy 10.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( )A .16B .25C .9D .36解析:B [(1+x )(1+y )≤===25,因此当且仅当1+x =1+y ,即x =y =4时,(1+x )(1+y )取最大值25,故选B .][(1+x )+(1+y )2]2 [2+(x +y)2]2(2+82)2二、填空题11.若a >0,b >0,且+=,则a 3+b 3的最小值为________.1a 1b ab 4 [∵a >0,b >0,∴=+≥2,即ab ≥2,当且仅当a =b =时取等号,∴a 3+b 3≥2≥2=4,当且仅当a =b =时取等号,则a 3+b 3的最小值为4.]2ab 1a 1b 1ab 2(ab )32322212.已知0<x <1,则x (3-3x )取得最大值时x 的值为________. [由x (3-3x )=×3x (3-3x )≤×=,当且仅当3x =3-3x ,即x =时等号成立.]121313(3x +3-3x 2)2 341213.若实数x 、y 满足x 2+y 2+xy =1,则x +y 的最大值是________. [∵x 2+y 2+xy =1,∴(x +y )2=1+xy .233∵xy ≤,∴(x +y )2-1≤,(x +y )24(x +y )24整理求得-≤x +y ≤,233233∴x +y 的最大值是.]23314.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底和池壁的造价分别为120元/m 2,80元/m 2,那么水池的最低总造价为________元.1 760 [设池底一边长为x m,总造价为y 元.则y =4×120+2×80=320+480(x >0).(2x +2×4x )(x +4x )因为x +≥2=4,4x x·4x当且仅当x =即x =2时取等号,4x 所以y min =480+320×4=1 760(元).]三、解答题15.设a ,b ,c 都是正数,试证明不等式:++≥6.b +c a c +a b a +b c 证明:因为a >0,b >0,c >0,所以+≥2,+≥2,+≥2,b a a bc a a c b c c b 所以++=++≥6,当且仅当=,=,=,即a =b =c 时,等号成立.b +c a c +a b a +b c (b a +a b )(c a +a c )(b c +c b )b a a b c a a c c b b c 所以++≥6.b +c a c +a b a +b c 16. 设 求证: 0,0,1a b a b >>+=1118a b ab ++≥【解析】证明[法一]:0,0,1a b a b >>+=1111a b a b ab ab ab +∴++=+22112228122ab ab ab a b =+=≥==+⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭当且仅当,取“=”号。

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

(完整版)基本不等式及其应用知识梳理及典型练习题(含标准答案)

基本不等式及其应用1.基本不等式若a>0,,b>0,则a +b 2≥ab ,当且仅当时取“=”.这一定理叙述为:两个正数的算术平均数它们的几何平均数.注:运用均值不等式求最值时,必须注意以下三点:(1)各项或各因式均正;(一正)(2)和或积为定值;(二定)(3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等)2.常用不等式(1)a 2+b 2≥ab 2(a ,b ∈R ).2a b +()0,>b a 注:不等式a 2+b 2≥2ab 和2b a +≥ab 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2b a +)2. (3)ab ≤22⎪⎭⎫ ⎝⎛+b a (a ,b ∈R ). (4)b a +a b ≥2(a ,b 同号且不为0). (5)22⎪⎭⎫ ⎝⎛+b a ≤a 2+b 22(a ,b ∈R ). (6)ba ab b a b a 1122222+≥≥+≥+()0,>b a (7)abc ≤。

(),,0a b c >(8)≥;(),,0a b c>3.利用基本不等式求最大、最小值问题(1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a+b≥,a2+b2≥.(2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.设a,b∈R,且a+b=3,则2a+2b的最小值是()A.6B.42C.22D.26解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42,当且仅当a=b=32时取等号,故选B.若a>0,b>0,且a+2b-2=0,则ab的最大值为()A.12B.1 C.2 D.4解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.故选A.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则()A.a<v<abB.v=abC.ab<v<a+b2 D.v=a+b2解:设甲、乙两地之间的距离为s.∵a<b,∴v=2ssa+sb=2aba+b<2ab2ab=ab.又v -a =2ab a +b -a =ab -a 2a +b >a 2-a 2a +b=0,∴v >a.故选A. (2014·上海)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x 2≥22,当且仅当x =±42时等号成立.故填22.点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14, 当且仅当m =n =12时取等号,∴log 2m +log 2n =log 2mn ≤log 214=-2,故填-2.类型一 利用基本不等式求最值(1)求函数y =(x >-1)的值域.解:∵x >-1,∴x +1>0,令m =x +1,则m >0,且y ==m ++5≥2+5=9,当且仅当m =2时取等号,故y min =9.又当m →+∞或m →0时,y →+∞,故原函数的值域是[9,+∞).(2)下列不等式一定成立的是( )A.lg>lg x (x >0)B.sin x +≥2(x ≠k π,k ∈Z )C.x 2+1≥2||x (x ∈R )D.1x 2+1>1(x ∈R ) 解:A 中,x 2+14≥x (x >0),当x =12时,x 2+14=x.B 中,sin x +1sin x ≥2(sin x ∈(0,1]);sin x+1sin x≤-2(sin x∈[-1,0)).C中,x2-2|x|+1=(|x|-1)2≥0(x∈R).D中,1x2+1∈(0,1](x∈R).故C一定成立,故选C.点拨:这里(1)是形如f(x)=ax2+bx+cx+d的最值问题,只要分母x+d>0,都可以将f(x)转化为f(x)=a(x+d)+ex+d+h(这里ae>0;若ae<0,可以直接利用单调性等方法求最值),再利用基本不等式求其最值.(2)牢记基本不等式使用条件——一正、二定、三相等,特别注意等号成立条件要存在.(1)已知t>0,则函数f(t)=t2-4t+1t的最小值为.解:∵t>0,∴f(t)=t2-4t+1t=t+1t-4≥-2,当且仅当t=1时,f(t)min=-2,故填-2.(2)已知x>0,y>0,且2x+8y-xy=0,求:(Ⅰ)xy的最小值;(Ⅱ)x+y的最小值.解:(Ⅰ)由2x+8y-xy=0,得+=1,又x>0,y>0,则1=+≥2=,得xy≥64,当且仅当x=4y,即x=16,y=4时等号成立.(Ⅱ)解法一:由2x+8y-xy=0,得x=,∵x>0,∴y>2,则x+y=y+=(y-2)++10≥18,当且仅当y-2=,即y=6,x=12时等号成立.解法二:由2x+8y-xy=0,得+=1,则x+y=·(x+y)=10++≥10+2=18,当且仅当y=6,x=12时等号成立.类型二利用基本不等式求有关参数范围若关于x的不等式(1+k2)x≤k4+4的解集是M,则对任意实常数k,总有()A.2∈M,0∈MB.2∉M,0∉MC.2∈M,0∉MD.2∉M,0∈M解法一:求出不等式的解集:(1+k2)x≤k4+4⇒x≤=(k2+1)+-2⇒x≤=2-2(当且仅当k2=-1时取等号).解法二(代入法):将x=2,x=0分别代入不等式中,判断关于k的不等式解集是否为R.故选A.点拨:一般地,对含参的不等式求范围问题通常采用分离变量转化为恒成立问题,对于“恒成立”的不等式,一般的解题方法是先分离然后求函数的最值.另外,要记住几个常见的有关不等式恒成立的等价命题:(1)a>f(x)恒成立⇔a>f(x)max;(2)a<f(x)恒成立⇔a<f(x)min;(3)a>f(x)有解⇔a>f(x)min;(4)a<f(x)有解⇔a<f(x)max.已知函数f(x)=e x+e-x,其中e是自然对数的底数.若关于x的不等式mf(x)≤e-x+m-1在(0,+∞)上恒成立,求实数m的取值范围.解:由条件知m(e x+e-x-1)≤e-x-1在(0,+∞)上恒成立.令t=e x(x>0),则t>1,且m≤-t-1t2-t+1=-1t-1+1t-1+1对任意t>1成立.∵t-1+1t-1+1≥2(t-1)·1t-1+1=3,∴-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln2时等号成立.故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13. 类型三 利用基本不等式解决实际问题围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元),修建此矩形场地围墙的总费用为y (单位:元).(1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:(1)如图,设矩形的另一边长为a m ,则y =45x +180(x -2)+180·2a =225x +360a -360.由已知xa =360,得a =360x ,所以y =225x +3602x -360(x ≥2).(2)∵x ≥0,∴225x +3602x ≥2225×3602=10800,∴y =225x +3602x -360≥10440,当且仅当225x =3602x ,即x =24时等号成立.答:当x =24 m 时,修建围墙的总费用最小,最小总费用是10440元.如图,为处理含有某种杂质的污水,要制造一个底宽2 m 的无盖长方体的沉淀箱,污水从A孔流入,经沉淀后从B孔排出,设箱体的长度为am,高度为b m,已知排出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60 m2,问a,b各为多少m时,经沉淀后排出的水中该杂质的质量分数最小(A,B孔面积忽略不计).解法一:设y为排出的水中杂质的质量分数,根据题意可知:y=kab,其中k是比例系数且k>0.依题意要使y最小,只需ab最大.由题设得:4b+2ab+2a≤60(a>0,b>0),即a+2b≤30-ab(a>0,b>0).∵a+2b≥22ab,∴22·ab+ab≤30,得0<ab≤32.当且仅当a=2b时取“=”号,ab最大值为18,此时得a=6,b=3.故当a=6 m,b=3 m时经沉淀后排出的水中杂质最少.解法二:同解法一得b≤30-aa+2,代入y=kab求解.1.若a>1,则a+的最小值是()A.2B.aC.3D.解:∵a>1,∴a+=a-1++1≥2+1=2+1=3,当a=2时等号成立.故选C.2.设a,b∈R,a≠b,且a+b=2,则下列各式正确的是()A.ab<1<a2+b22 B.ab<1≤a2+b22 C.1<ab<a2+b22 D.ab≤a2+b22≤1解:运用不等式ab ≤⎝ ⎛⎭⎪⎫a +b 22⇒ab ≤1以及(a +b )2≤2(a 2+b 2)⇒2≤a 2+b 2(由于a ≠b ,所以不能取等号)得,ab <1<a 2+b 22,故选A.3.函数f (x )=在(-∞,2)上的最小值是( )A.0B.1C.2D.3解:当x <2时,2-x >0,因此f (x )==+(2-x )≥2·=2,当且仅当=2-x 时上式取等号.而此方程有解x =1∈(-∞,2),因此f (x )在(-∞,2)上的最小值为2,故选C.4.()要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方M20元,侧面造价是每平方M10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元解:假设底面的长、宽分别为x m , m ,由条件知该容器的最低总造价为y =80+20x +≥160,当且仅当底面边长x =2时,总造价最低,且为160元.故选C.5.下列不等式中正确的是( )A.若a ,b ∈R ,则b a +a b ≥2b a ·ab =2B.若x ,y 都是正数,则lg x +lg y ≥2lg x ·lg yC.若x <0,则x +4x ≥-2x ·4x =-4D.若x ≤0,则2x +2-x ≥22x ·2-x =2解:对于A ,a 与b 可能异号,A 错;对于B ,lg x 与lg y 可能是负数,B 错;对于C ,应是x +4x =-⎣⎢⎡⎦⎥⎤(-x )+4-x ≤-2(-x )·4-x=-4,C 错;对于D ,若x ≤0,则2x +2-x ≥22x ·2-x =2成立(x =0时取等号).故选D.6.()若log 4(3a +4b )=log 2,则a +b 的最小值是( )A.6+2B.7+2C.6+4D.7+4解:因为log4(3a+4b)=log2,所以log4(3a+4b)=log4(ab),即3a+4b=ab,且即a>0,b>0,所以+=1(a>0,b>0),a+b=(a+b)=7++≥7+2=7+4,当且仅当=时取等号.故选D.7.若对任意x>0,≤a恒成立,则a的取值范围是.解:因为x>0,所以x+≥2(当且仅当x=1时取等号),所以有=≤=,即的最大值为,故填a≥.8.()设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m +3=0交于点P(x,y),则|P A|·|PB|的最大值是________.解:易知定点A(0,0),B(1,3).且无论m取何值,两直线垂直.所以无论P与A,B重合与否,均有|P A|2+|PB|2=|AB|2=10(P在以AB为直径的圆上).所以|P A|·|PB|≤12(|P A|2+|PB|2)=5.当且仅当|P A|=|PB|=5时,等号成立.故填5.9.(1)已知0<x<,求x(4-3x)的最大值;(2)点(x,y)在直线x+2y=3上移动,求2x+4y的最小值.解:(1)已知0<x<,∴0<3x<4.∴x(4-3x)=(3x)(4-3x)≤=,当且仅当3x=4-3x,即x=时“=”成立.∴当x=时,x(4-3x)取最大值为.(2)已知点(x,y)在直线x+2y=3上移动,所以x+2y=3.∴2x+4y≥2=2=2=4.当且仅当即x=,y=时“=”成立.∴当x=,y=时,2x+4y取最小值为4.10.已知a>0,b>0,且2a+b=1,求S=2-4a2-b2的最大值.解:∵a>0,b>0,2a+b=1,∴4a2+b2=(2a+b)2-4ab=1-4ab.且1=2a+b≥2,即≤,ab≤,∴S=2-4a2-b2=2-(1-4ab)=2+4ab-1≤.当且仅当a=,b=时,等号成立.11.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m,宽为y m,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S,则S=xy.解法一:由于2x+3y≥2=2,∴2≤18,得xy≤,即S≤.当且仅当2x=3y时等号成立.由解得故每间虎笼长为4.5 m,宽为3 m时,可使每间虎笼面积最大.解法二:由2x+3y=18,得x=9-y.∵x>0,∴0<y<6.S=xy=y=(6-y)y.∵0<y<6,∴6-y>0.∴S≤=.当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m时,可使每间虎笼面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.解法一:∵2x+3y≥2=2=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y时,等号成立.由解得故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.解法二:由xy=24,得x=.∴l=4x+6y=+6y=6≥6×2=48,当且仅当=y,即y=4时,等号成立,此时x=6.故每间虎笼长6 m,宽4 m时,可使钢筋网总长度最小.11/ 11。

以基本不等式为背景的应用题

以基本不等式为背景的应用题

以基本不等式为背景的应用题1、【优质试题高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________.【答案】30【解析】总费用为600900464()4240x x x x+⨯=+≥⨯=,当且仅当900x x =,即30x =时等号成立.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.2、【优质试题高考江苏卷】某兴趣小组要测量电视塔AE 的高度H (单位:m).示意图如图所示,垂直放置的标杆BC 的高度h =4 m ,仰角∠ABE =α,∠ADE =β.(1) 该小组已测得一组α,β的值,tan α=1.24,tan β=1.20,请据此算出H 的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d (单位:m),使α与β之差较大,可以提高测量精确度.若电视塔的实际高度为125 m ,试问d 为多少时,α-β最大?规范解答 (1) 由AB =H tan α,BD =h tan β,AD =H tan β及AB +BD =AD ,得H tan α+h tan β=Htan β,解得H =h tan αtan α-tan β=4×1.241.24-1.20=124.因此算出的电视塔的高度H 是124 m. (2) (1) 由题知d =AB ,则tan α=H d.由AB =AD -BD =H tan β-h tan β,得tan β=H -hd,所以tan(α-β)=tan α-tan β1+tan αtan β=()h hH H d d-+,又0<α-β<π2,所以当d =555时,tan(α-β)的值最大.因为0<β<α<π2,所以当d =555时,α-β的值最大.3、【优质试题高考江苏卷】如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1 km.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1) 求炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km ,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力.满分14分.规范解答 (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10km.(2) 因为a >0,所以炮弹可击中目标等价于存在k >0,使3.2=ka -120(1+k 2)a 2成立,即关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以判别式Δ=(-20a )2-4a 2(a 2+64)≥0, 解得a ≤6,所以0<a ≤6.所以当a 不超过6km 时,炮弹可击中目标.一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义. 以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。

基本不等式的应用题

基本不等式的应用题

解:设流出的水中杂质的质量分数为y, k 得y (k 0), ab 当ab最大时,y最小.
由2 2b 2ab 2a 60(a 0, b 0), 得ab 2b a 30(a 0, b 0),
a 2b 2 2ab , ab 2 2ab 30, 得0 ab 18.
应用题是前几年的高考热点,关键是建立数学模型, 而应用题中最值问题,利用重要的不等式求最值较常见。
例1:
有一根长为4a的铁丝,想把它围成一个矩形, 怎样才能使所围矩形面积最大?
例2
某工厂建造一个无盖的长方体储水池,其容积为
3 2
4800m , 深度为3m, 如果池底每1m 的造价为150元, 池壁每1m 2的造价为120元,怎样设计水池能使造 价最低?最低造价多少元?
a 2b, a 6, 由 得 ab a 2b 30, b 3.
练习: 一份印刷品的排版面积(矩形)为A,它的 两边都留有宽a的空白,顶部和底部都留 有宽为b的空白如何选用纸的尺寸,才能 . 使纸的用量最小?
b
a a
a
b
例5.如图,教室的墙壁上挂着一块黑板,它的上、下
边缘分别在学生的水平视线上方a米和b米,问学 A 生距离墙壁多远时看黑板的视角最大?
解 : 设学生P距黑板x米, 黑板上, 下边缘与学生的 水平视线PH的夹角分别为APH , BPH , 其中 , 则学生看黑板的视角为 P
A. (1+a)· (1+b)· =(1+a+b+ab)· M M B. (1+b)· (1+a)· =(1+a+b+ab)· M M
ab 2 ab 2 ) ]· C. (1+ ) · =[1+a+b+ ( M M 2 2 ab 2 ) 的大小. 只需比较 ab 与 ( 2

基本不等式练习题(含答案)

基本不等式练习题(含答案)

基本不等式11 .函数y=x+ -(x>0)的值域为().XA. 2] U [2,+x)B. (0,+x)C. [2 ,+x) D . (2,+x)a +b i2. 下列不等式:①a2+ 1>2a;②- -<2;③/ +三 > 1,其中正确的个数是p ab x 十3().A. 0 B . 1 C. 2 D . 33. 若a>0, b>0,且a + 2b — 2 = 0,则ab的最大值为().1B. 1C. 2D. 414. (2011重庆)若函数f(x) = x+ (x>2)在x= a处取最小值,则a=( ).X —2A. 1+ 2B. 1+ 3C. 3D. 4t2—4t+ 15. 已知t>0,则函数y= t 的最小值为利用基本不等式求最值1 1【例1】?(1)已知x>0, y>0,且2x+y= 1,则x + y的最小值为X y2x2(2)已知0v x v 5,贝U y= 2x—5x2的最大值为________ .⑶若x, y€ (0,+x)且2x+ 8y—xy= 0,贝U x+ y的最小值为_________ .利用基本不等式证明不等式【例2] ?已知a>0, b>0, c>0,求证:bC+ 学+ ab>a+ b+ c.a b c3 1(2010四川)设a>b>0,贝U a2+ + 的最小值是().ab a a—bC. 3⑵当x>0时,贝U f(x)= x2+ 1的最大值为1【训练1】(1)已知x> 1,则f(x) = x+一的最小值为_____________x—I【训练2】已知a>0, b>0, c>0,且a+ b+ c= 1.1 1 1 求证:一+匚+ 9.a b c利用基本不等式解决恒成立问题x【例3】?(2010 山东)若对任意x>0, x2+3x+[三a恒成立,则a的取值范围是 3 1【训练3】(2011宿州模拟)已知x>0, y>0, xy= x+ 2y,若xy>m—2恒成立, 则实数m的最大值是________ .考向三利用基本不等式解实际问题【例3】?某单位建造一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为 5 800元,如果墙高为3m,且不计房屋背面的费用•当侧面的长度为多少时,总造价最低?双基自测1.答案 C1 12•解析 ①②不正确,③正确,/ +孑亍二(x 2+ 1) + 齐1 — 1>2—1二1.答案 B13. 解析 v a >0, b >0, a + 2b = 2,二 a + 2b = 2>2.2ab ,即 ab <㊁.答案 A4. 解析 当 x >2 时,x — 2>0, f(x)= (x — 2) + x-—2 + 2>2 寸 x — 2 X ^—^+ 21二4,当且仅当x — 2二严(x >2),即x = 3时取等号,即当f(x)取得最小值时,xx ——2 =3,即a = 3.答案 C t 2—4t + 1 15.解析 v t >0,二 y = t = t +1 — 4>2 — 4= — 2,当且仅当t = 1 时取等 号.答案 —2【例 1】解析(1) v x >0, y >0,且 2x +y = 1,••」+J4 + 4= 3 + y +生3+ 2頁.当且仅当匕空时,取等号.x y x y x y x y2x 2 2 12x十w 2= 1,当且仅当x = J 即x = 1时取等号.答 x +x案(1)3+ 2 2 (2)1 1【训练 1].解析(1) V x > 1,二 f(x)= (x — 1) + — + 1>2+ 1 = 3 当且仅当 xx — 12 1=2 时取等号.(2)y = 2x — 5X 2= x(2 - 5x) = 55x(2 — 5X),5x + 2 一 5x 1—5x >0,.°. 5x(2 — 5x) < 2= 1 ,• y <5 当且仅当 5x = 2— 5x ,2 511 2 8即 x =5时,y max = 5.(3)由 2x + 8y — xy = 0,得 2x + 8y =xy ,「.~ + ~ = 1, 8 2 8y 2x 4y x /4y x• x + y = (x + y) + = 10+ +—= 10 + 2 +_ > 10+ 2X 2X = 18,x y x y x y . x y , 当且仅当 4y = x,即 x = 2y 时取等号,又 2x + 8y — xy = 0,「. x = 12, y = 6, xy•••当 x = 12, y = 6 时,x + y 取最小值 18.答案 (1)3 (2# (3)18【例 2】证明■/a >0, b >0, c >0, • bc + 甲》2 bcca= 2c ; bc + ab >2a b \ a b a c:加2b ; -+瞥2 - Ob - 2a.以上三式相加得:2齐?+学>2(abc ca ab , + b + c),即 + , + 》a + b + c. ’ a b c111a + b + c 【训练2] 证明 ■/ a >0, b >0, c >0,且 a + b + c = 1,二一+乙+一= +a b c a a+七+a+± 二 3+b +c +b +?+a +」3+ ?+a +a +a + e +b b c a a b b c c a b a c b c⑵ v x >0,「. f(x) = x 2+ 2一••• 5x v 2,21> 3+ 2+ 2+ 2= 9,当且仅当a = b = c =3时,取等号. X X 解析 若对任意x > 0x 2+ 3x + [ w a 恒成立,只需求得 尸x 2 + 3x +〔的最大值即 1 ■ x x 1 5当且仅当 可,因为 x > 0,所以 y =x 2+ 3x + 1 = —口W x +—+3 2 x1 1 等号,所以a 的取值范围是5,+^答案 5,+^ 【训练3】解析 由x >0,y >0,xy = x + 2y >2 - 2xy,得 xy > 8,于是由 恒成立,得m — 2<8, m < 10,故m 的最大值为10.答案 10 一 12 【例3.解 由题意可得,造价y = 3(2x X 150+ — X400)+ 5 800= 900 x x = 1时取 m — 2< xy x +16 + 5 x 16 800(0< x < 5),贝U y = 900 x +丁 + 5 800>900X 2入x =号,即x =4时取等号.故当侧面的长度为4米时,总造价最低.正解 Ta >0,b >0, 且 a + b = 1, 1,2 b 2a b 2a a + b (a +b )=1+ 2 + a + 3 + 2 aF = 3 + 22・a +b =1, b = 2a a = b ,当且仅当 【示例】. 1 2 •••_+==a b当且仅当 x X16+ 5 800= 13 000(元),a = 2—1, 1 2即b =2—2时,a +b 的最小值为3+2 2.1 1 1 1 【试一试】 尝试解答]a2 +1 + ~ = a 2 — ab + ab +1 + ~ = a(a — b)+ aba a —b ab a a — b —+ ab+W >2 气 /a a — b •+ 2、/ab^= 2+ 2= 4.当且仅当 a(a — a a — b ab . a a — b ;ab ' 1 1b)=—且ab = ab ,即a = 2b 时,等号成立.答案 D a a — b ab。

专题复习:高中数学必修5基本不等式经典例题(学生用)

专题复习:高中数学必修5基本不等式经典例题(学生用)

基本不等式应用一:求最值例:求下列函数的值域(1)y =3x 2+12x 2(2)y =x +1x解题技巧技巧一:凑项例已知54x ,求函数14245y x x 的最大值。

技巧二:凑系数例:当时,求(82)y x x 的最大值。

变式:设230x ,求函数)23(4x x y 的最大值。

技巧三:分离换元例:求2710(1)1x x y x x 的值域。

技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()af x x x 的单调性。

例:求函数2254x y x 的值域。

技巧六:整体代换(“1”的应用)多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

例:已知0,0x y ,且191x y ,求x y 的最小值。

技巧七例:已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2的最大值.技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值.技巧九、取平方例: 求函数152152()22y x x x 的最大值。

应用二:利用均值不等式证明不等式例:已知a 、b 、c R ,且1a b c 。

求证:1111118a b c 应用三:均值不等式与恒成立问题例:已知0,0x y 且191x y ,求使不等式x y m 恒成立的实数m 的取值范围。

应用四:均值定理在比较大小中的应用:例:若)2lg(),lg (lg 21,lg lg ,1b aR b a Q b a P b a ,则R Q P ,,的大小关系是 .。

基本不等式练习题及答案

基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。

因为x>0,所以函数的值域为(0,+∞)。

2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。

3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。

因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。

房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。

求侧面的长度为多少时,总造价最低。

去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。

今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。

每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式应用题
最值问题
一.教学目标:1.进一步掌握用均值不等式求函数的最值问题;
2.能综合运用函数关系,不等式知识解决一些实际问题。

二.教学重点、难点:化实际问题为数学问题。

三.教学过程:
(一)复习:1.均值不等式:
2.极值定理:
(一)练习题
1、已知R y x ∈,,且2=+y x ,求xy 的取值范围。

2、已知R y x ∈,,且2=xy ,求y x +的取值范围。

3、已知R y x ∈,,且2=+y x ,求22y x +的取值范围。

4、已知0,>y x ,且211=+y
x ,求y x 2+的最小值。

5、已知0,,>z y x ,且4=++c b a ,求证:abc c b a 8)4)(4)(4(≥---。

6、(选做题)已知R y x ∈,,且222=+y x ,求y x +的取值范围。

7
3+1,a b R x y x y
∈+=+已知a,b,x,y ,且
求的最小值 (二)新课讲解: 例1(1)用篱笆围成一个面积为100m 2的矩形菜园,问这个矩形的长、宽各为多少时,1.4,2224,24x y x y x y x y +=++=+已知求的最小值。

变式题:已知求的最小值。

22222.,4,log log ,24,log log x y R x y x y x y R x y x y ++∈+=+∈+=+已知、求的最大值。

变式题:已知、求的最大值。

所用篱笆最短。

最短的篱笆是多少?
(2)段长为36 m 的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
例2 某工厂要建造一个长方体无盖贮水池,其容积为4800m 3,深为3m ,如果池底每1m 2的造价为150元,池壁每1m 2的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?
例3.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每21m
的造价为150元,池壁每21m 的造价为120元,问怎样设计水池能使总造价最低,最低总
造价是多少元?
例4.如图,设矩形()ABCD AB AD >的周长为24,把它关于AC 折起来,AB 折过去后,交DC 于P ,设AB x =,求ADP ∆的最大面积及相应的x 值。

例5.甲、乙两地相距S 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时,已知汽车每小..时的运输成本......
(以元为单位)由可变部分和固定部分组成:可变部分与速度x (千米/时)的平方成正比,比例系数为b ,固定部分为a 元,
(1)把全程运输成本......y (元)表示为速度x (千米/时)的函数,指出定义域;
(2)为了使全程运输成本......
最小,汽车应以多大速度行驶?
四.课后作业: 班级 学号 姓名
1.一段长为L 米的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时 菜园的面积最大,最大面积是多少?
2.在直径为d 的圆的内接矩形中,问这个矩形的长、宽各为多少时,它的面积最大,最大面积是多少?
3.已知直角三角形两条直角边的和等于10cm ,求面积最大时斜边的长,最大面积是多少?
4.(1)在面积为定值的扇形中,半径是多少时扇形周长最小?
(2)在周长为定值的扇形中,半径是多少时扇形面积最大?
5.某单位建造一间地面面积为122m 的背面靠墙的矩形小房,房屋正面的造价为1200元2
/m , 房屋侧面的造价为800元2/m ,屋顶的造价为5800元,如果墙高为3m ,且不计房屋。

背面的费用,问怎样设计房屋能使总造价最低,最低总造价是多少元
6.某工厂第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率
为x,求x的取值范围。

7.甲乙两人同时从A地出发,沿同一条路线到B地。

甲在前一半时间的行走速度为a,后一半时间的行走速度为b;乙用速度a走完前半段路程,用速度b走完后半段路程,问甲乙二人谁先到达?。

相关文档
最新文档