2017年广东省韶关市南雄市中考数学模拟试卷(三)
九年级数学下学期模拟试题(三)(2021年整理)
广东省南雄市2017届九年级数学下学期模拟试题(三)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省南雄市2017届九年级数学下学期模拟试题(三))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省南雄市2017届九年级数学下学期模拟试题(三)的全部内容。
广东省南雄市2017届九年级数学下学期模拟试题(三)一、选择题(本大题10小题,每小题3分,共30分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.如图所示,由三个相同的小正方体组成的立体图形的主视图是()A.B.C.D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A.0。
1×10﹣8s B.0。
1×10﹣9s C.1×10﹣8s D.1×10﹣9s 4.如图,a∥b,则∠A的度数是()A.22°B.32°C.68°D.78°5.若一个多边形的每个内角都等于108°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形6.下列运算正确的是()A.3x2÷x=2x B.(x2)3=x5 C.x3•x4=x12D.2x2+3x2=5x27.三张完全相同的卡片上,分别画有圆、等边三角形、平行四边形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为()A.B.C.D.18.已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()A.4cm B.5cm C.6cm D.13cm9.如图,P是等边三角形△ABC内的一点,连接PB、PC.若将△PBC绕点B旋转到△P′BA,则∠PBP′的度数是()A.45°B.60°C.90°D.120°10.甲、乙两同学同时从400m环形跑道上的同一点出发,同向而行,甲的速度为6m/s,乙的速度为4m/s,设经过x(单位:s)后,跑道上两人的距离(较短部分)为y(单位:m),则y 与x(0≤x≤300)之间的函数关系可用图象表示为( )A. B.C. D.二、填空题(本大题6小题,每小题4分,共24分)11.因式分解:a2+3a=______.12.计算:2﹣1+50=______.13.解分式方程: =.解得X=14.如图,已知⊙O的直径AB=3cm,C为⊙O上的一点,sinA=,则BC=______ cm.15.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于______度.16.在矩形ABCD中,E、F分别是边AD、BC的中点,点G、H在DC边上,且GH=DC.若AB=10,BC=12,则图中阴影部分的面积为______.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组:18.化简求值:(1+)÷,其中x=2.19.如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.四、解答题(二)(本大题3小题,每小题7分,共21分)20.为了推动课堂教学改革,打造“高效课堂”,我市某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:(1)本次调查的八年级部分学生共有______名;请补全条形统计图;(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?21.如图,平行四边形ABCD中,E、F分别是边AB、CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若DE=AE,求证:四边形EBFD是菱形.22.如图,一个农户要建一个矩形猪舍ABCD,猪舍的一边AD利用长为12米的住房墙,另外三边用25米长的建筑材料围成.为了方便进出,在CD边留一个1米宽的小门.(1)若矩形猪舍的面积为80平方米,求与墙平行的一边BC的长;(2)若与墙平行的一边BC的长度不小于与墙垂直的一边AB的长度,问BC边至少应为多少米?五、解答题(三)(本大题3小题,每小题9分,共27分)23.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线AM,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)求点A的坐标;(3)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上确定一点P,使PA+PB最小.求点P的坐标.24.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)求证:△BED∽△BCA;(3)若AE=7,BC=6,求AC的长.25.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D.(1)b=______,c=______;(2)点E是Rt△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.2017年中考数学模拟试卷(三)参考答案一、选择题(本大题10小题,每小题3分,共30分)DBDAB DB C B C二、填空题(本大题6小题,每小题4分,共24分)11.a(a+3) .12.. 13.x=﹣3, 14.. 15.30 . 16.35 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组:原方程组的解是.18.化简求值:(1+)÷,其中x=2.原式=•=x+1,当x=2时,原式=3.19.(略)四、解答题(二)(本大题3小题,每小题7分,共21分)20.(1)54(人),(2)480(人),21.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵E、F分别是AB、CD的中点,∴AE=BE=AB,DF=CD,∴BE=DF.∴四边形EBFD是平行四边形;(2)证明:∵AE=BE,DE=AE,∴BE=DE,∴四边形EBFD是菱形.22.(1)设B C的长为xm,依题意得:(25+1﹣x)x=80,解得:x1=10,x2=16(舍去),答:矩形猪舍的面积为80平方米,求与墙平行的一边BC的长为10m;(2)依题意得:,解得≤x≤12,所以x最小=.五、解答题(三)(本大题3小题,每小题9分,共27分)23.解:(1)∵△OAM的面积为1,∴|k|=1,解得:k=±2∵第一象限内有反比例函数图象,∴反比例函数的解析式为y=(2)一次函数与反比例函数解析式:,解得:或(舍去).∴点A的坐标为(2,1).(3)令反比例函数y=中x=1,则y==2,∴点B的坐标为(1,2).作点A关于x轴的对称点A′,连接A′B交x轴于点P,连接AP,如图所示.则点P即是所要找的使PA+PB最小得点,∵点A、A′关于x轴对称,且点A的坐标为(2,1),∴点A′的坐标为(2,﹣1).设直线A′B的解析式为y=ax+b,将点A′(2,﹣1)、B(1,2)代入到y=ax+b中得:,解得:,∴直线A′B的解析式为y=﹣3x+5,令y=﹣3x+5中y=0,则0=﹣3x+5,解得:x=.∴点P的坐标为(,0).故在x轴上确定一点P,点P的坐标为(,0),此时PA+PB最小.24.(1)证明:如图,连接OD.∵AB=AC,∴∠B=∠C,∵OD=OC,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴OD⊥DF,∵点D在⊙O上,∴直线DF与⊙O相切;(2)证明:∵∠BED=∠C,∠B=∠B,∴△BED∽△BCA;(3)解:∵四边形ACDE是⊙O的内接四边形,∴∠AED+∠ACD=180°,∵∠AED+∠BED=180°,∴∠BED=∠ACD,∵∠B=∠B,∴△BED∽△BCA,∴,∵OD∥AB,AO=CO,∴BD=CD=BC=3,又∵AE=7,∴,∴BE=2,∴AC=AB=AE+BE=7+2=9.25.解:(1)b=﹣2,c=﹣3;(2)∵直线A B:y=px+q,经过点A(﹣1,0),B(4,5),∴,解得:,∴直线AB的解析式为:y=x+1,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),则F(t,t2﹣2t﹣3)广东省南雄市2017届九年级数学下学期模拟试题(三)∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t ﹣)2+,∴当t=时,EF的最大值=,∴点E 的坐标为(,);(3)存在,分两种情况考虑:(ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),则有:m2﹣2m﹣3=,解得:m1=,m2=,∴P1(,),P2(,);(ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),则有:n2﹣2n﹣3=﹣,解得:n1=,n2=(与点F重合,舍去),∴P3(,﹣),综上所述:所有点P的坐标:P1(,),P2(,),P3(,﹣),能使△EFP 组成以EF为直角边的直角三角形.故答案为:﹣2;﹣3;P1(,),P2(,),P3(,﹣)11。
11.2017年广东省中考数学仿真模拟(三)
21.在国务院办公厅发布《中国足球发展改革总 体方案》之后,某校为了调查本校学生对足球知识 的了解程度,随机抽取了部分学生进行一次问卷调 查,并根据调查结果绘制了如图的统计图,请根据 图中所给的信息,解答下列问题:
(1)本次接受问卷调查的学生总人数是 120 ; (2)扇形统计图中,“了解”所对应扇形的圆心 角的度数为 30° ,m的值为 25 ; (3)若该校共有学生1500名,请根据上述调查结 果估算该校学生对足球的了解程度为“基本了解” 的人数. (3)若该校共有学 生1500名,则该校 学生对足球的了解程 度为“基本了解”的 人数为1500×25%=375.
(3)设M(3﹣t,t), ∵点P在线段AC上移动 (不包括端点), ∴0<t<4, ∴PN∥x轴, ∴N的纵坐标为t,
把y=t代入y= , ∴x= , ∴N的坐标为( ,t), ∴MN= ﹣(3﹣t)= +t﹣3, 过点A作AE⊥PN于点E, ∴AE=t,
由二次函数性质可知,当0≤t≤ 时,S△AMN随t的 增大而减小,当 <t≤4时,S△AMN随t的增大而增 大, ∴当t= 时,S△AMN可取得最小值为 , 当t=4时,S△AMN可取得最大值为4, ∵0<t<4, ∴ ≤S△AMN<4.
解:(1)设乙队单独施工,需要x天才能完成该 项工程, ∵甲队单独施工30天完成该项工程的 , ∴甲队单独施工90天完成该项工程, 根据题意得 +15( + )=1,解得x=30, 检验:x=30是原方程的根, 答:乙队单独施工,需要30天才能完成该项工程; (2)设乙队参与施工y天才能完成该项工程,根 据题意得 ×36+y× ≥1,解得y≥18, 答:乙队至少施工18天才能完成该项工程.
5.在△ABC中,AB=3,BC=4,AC=2,D、E、 F分别为AB、BC、AC中点,连接DF、FE,则四 边形DBEF的周长是( B) A.5 B.7 C.9 D.11
初中数学17年广东省韶关市中考模拟数学模拟考试卷含答案
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:比0大的数是()A.﹣1 B. C.0 D.1试题2:下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.试题3:下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3 D.a6+a3=a9试题4:体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数 B.频数分布 C.中位数 D.方差试题5:如果分式有意义,则x的取值范围是()A.全体实数 B.x=1 C.x≠1 D.x=0试题6:用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A. B. C. D.试题7:在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A. B. C. D.试题8:已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a> C.﹣<a<3 D.﹣3<a<试题9:函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A. B.C. D.试题10:如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3试题11:广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.试题12:分解因式:x3﹣xy2= .试题13:如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2= 度.试题14:如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为.试题15:分式方程=1的解是x= .试题16:如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为.试题17:计算:﹣|﹣3|﹣()﹣1+2cos45°.试题18:如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.试题19:五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)试题20:“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?试题21:现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.试题22:如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)试题23:如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求经过点C的反比例函数的解析式.试题24:如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.试题25:在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB的垂线,交⊙O于点E,联结BE、AE(1)当AE∥BC(如图(1))时,求⊙O的半径长;(2)设BO=x,AE=y,求y关于x的函数关系式,并写出定义域;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当⊙A恰好也过点C时,求DE的长.试题1答案:D【考点】有理数大小比较.【分析】比0的大的数一定是正数,结合选项即可得出答案.【解答】解:4个选项中只有D选项大于0.故选D.试题2答案:A【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既是轴对称图形,又是中心对称图形,故本选项正确;B、不是轴对称图形,也是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、不是轴对称图形,又是中心对称图形,故本选项错误.故选A.试题3答案:B【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用合并同类项法则以及结合幂的乘方与积的乘方法则,分别化简求出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.试题4答案:D【考点】方差.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生了5次短跑训练成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选D.试题5答案:C【考点】分式有意义的条件.【分析】分式有意义,分母x﹣1≠0,据此可以求得x的取值范围.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故选C.试题6答案:D【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看左边一个正方形右边一个正方形,故D正确;故选:D.试题7答案:D【考点】概率公式.【分析】根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.【解答】解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.试题8答案:B【考点】解一元一次不等式组;点的坐标.【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.试题9答案:A【考点】反比例函数的图象;一次函数的图象.【分析】首先把一次函数化为y=ax﹣a,再分情况进行讨论,a>0时;a<0时,分别讨论出两函数所在象限,即可选出答案.【解答】解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第一、二、四象限,故选:A.试题10答案:C【考点】圆内接四边形的性质;坐标与图形性质;含30度角的直角三角形.【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【解答】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.试题11答案:5.25×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.试题12答案:x(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用平方差公式分解因式得出答案.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).试题13答案:42【考点】平行线的性质.【分析】先根据平行线的性质求出∠C的度数,再由直角三角形的性质即可得出∠2的度数.【解答】解:∵AB∥CD,∠1=48°,∴∠C=∠1=48°,∵AD⊥AC,∴∠CAD=90°,∴∠2=90°﹣∠C=90°﹣48°=42°.故答案为;42.试题14答案:8 .【考点】旋转的性质.【分析】根据旋转的性质得到A′B′=AB=16,然后根据直角三角形斜边上的中线性质求解即可.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=8.故答案为:8.试题15答案:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x+1,解得:x=,经检验x=是分式方程的解,故答案为:试题16答案:()2n﹣2.【考点】三角形中位线定理;菱形的性质;矩形的性质.【分析】易得第二个矩形的面积为()2,第三个矩形的面积为()4,依此类推,第n个矩形的面积为()2n ﹣2.【解答】解:已知第一个矩形的面积为1;第二个矩形的面积为原来的()2×2﹣2=;第三个矩形的面积是()2×3﹣2=;…故第n个矩形的面积为:()2n﹣2.故答案为:;()2n﹣2.试题17答案:【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】直接利用算术平方根的定义以及结合特殊角的三角函数值、绝对值的性质、负整数指数幂的性质分别化简求出答案.【解答】解:原式=2﹣3﹣2+2×=﹣﹣2+=﹣2.试题18答案:【考点】作图—基本作图;等腰三角形的性质.【分析】(1)利用尺规作∠ABC的平分线BF交AC于D.(2)根据∠BDC=∠ABD+∠A,求出∠ABD以及∠A即可解决问题.【解答】解:(1)如图,∠ABC的平分线如图所示.(2)∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,∵BD平分∠ABC,∴∠ABD=∠ABC=35°,∴∠BDC=∠ABD+∠A=35°+40°=75°.试题19答案:【考点】解直角三角形的应用﹣方向角问题.【分析】由已知作PC⊥AB于C,可得△ABP中∠A=60°∠B=45°且PA=100m,要求AB的长,可以先求出AC和BC的长.【解答】解:由题意可知:作PC⊥AB于C,∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=50+50≈50+50×1.732≈136.6(米).答:景点A与B之间的距离大约为136.6米.试题20答案:【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据乙的瓶数40,所占比为20%,即可求出这四个品牌的总瓶数;(2)根据丁品牌饮料的瓶数70,总瓶数是200,即可求出丁所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以总瓶数,即可得出丙的瓶数,从而补全统计图;(3)根据甲所占的百分比,再乘以360°,即可得出答案;(4)用月销售量×(1﹣平均合格率)即可得到四个品牌的不合格饮料的瓶数.【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.试题21答案:【考点】分式方程的应用.【分析】设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,根据乙队比甲队多用时间一天为等量关系建立方程求出其解即可.【解答】解:设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,由题意,得,解得:x1=22,x2=﹣6.经检验,x1=22,x2=﹣6都是原方程的根,x=﹣6不符合题意,舍去.∴x=22,∴乙安装队每天安装22﹣2=20台.答:甲安装队每天安装22台空调,则乙安装队每天安装20台空调.试题22答案:【考点】切线的判定;弧长的计算.【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可;(2)求出∠BOD=∠GOB,求出∠BOD的度数,根据弧长公式求出即可.【解答】(1)证明:如图1,连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴OD是△ABC的中位线,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)解:如图2所示,连接OG,OD∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.五、解答题(三)(每题9分,共27分)试题23答案:【考点】反比例函数与一次函数的交点问题.【分析】(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣2)分别代入解析式即可组成方程组,从而得到AB的解析式;(2)根据三角形的面积公式和直线解析式求出点C的坐标,即可求解.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)设点C的坐标为(m,n),经过点C的反比例函数的解析式为y=,∵点C在第一象限,∴S△BOC=×2×m=2,解得:m=2,∴n=2×2﹣2=2,∴点C的坐标为(2,2),则a=2×2=4,∴经过点C的反比例函数的解析式为y=.试题24答案:【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)要证明CF=CH,可先证明△BCF≌△ECH,由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,得出CF=CH;(2)根据△EDC绕点C旋转到∠BCE=45°,推出四边形ACDM是平行四边形,由AC=CD判断出四边形ACDM是菱形.【解答】(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.试题25答案:【考点】圆的综合题;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质;勾股定理;平行四边形的判定与性质;锐角三角函数的定义.【分析】(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),易证△AEF≌△BDF及四边形AEDC是平行四边形,从而可得BD=DC=5,根据垂径定理可得BG=DG=BD=,然后在Rt△BGO中运用三角函数和勾股定理即可求出⊙O 的半径长;(2)过点A作AH⊥BC于H,如图(2),运用三角函数、勾股定理及面积法可求出AC、AB、AH、BH、CH,根据垂径定理可得DF=EF,再根据线段垂直平分线的性质可得AE=AD.然后在Rt△BGO中运用三角函数和勾股定理可求出BG(用x的代数式表示),进而可用x的代数式依次表示出BD、DH,AD、AE,问题得以解决;(3)①若点D在H的左边,如图(2),根据等腰三角形的性质可得DH=CH,从而依次求出BD、DF、DE的长;②若点D 在H的右边,则点D与点C重合,从而可依次求出BD、DF、DE的长.【解答】解:(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),根据垂径定理可得BG=DG.∵AE∥BC,∴∠AEF=∠BDF.在△AEF和△BDF中,,∴△AEF≌△BDF,∴AE=BD.∵∠BFD=∠BAC=90°,∴DE∥AC.∵AE∥BC,∴四边形AEDC是平行四边形,∴AE=DC,∴BD=DC=BC=5,∴BG=DG=BD=.在Rt△BGO中,tan∠OBG==,∴OG=BG=×=,∴OB===,∴⊙O的半径长为;(2)过点A作AH⊥BC于H,如图(2),在Rt△BAC中,tan∠ABC==,设AC=3k,则AB=4k,∴BC=5k=10,∴k=2,∴AC=6,AB=8,∴AH===,∴BH===,∴HC=BC﹣BH=10﹣=.∵AB⊥DE,∴根据垂径定理可得DF=EF,∴AB垂直平分DE,∴AE=AD.在Rt△BGO中,tan∠OBG==,∴OG=BG,∴OB===BG=x,∴BG=x,∴DH=BH﹣BD=﹣x,∴y=AE=AD====(0<x≤);(3)①若点D在H的左边,如图(2),∵AD=AC,AH⊥DC,∴DH=CH=,∴BD=BH﹣DH=﹣=.在Rt△BFD中,tan∠FBD==,∴BF=DF,∴BD===DF=,∴DF=,②若点D在H的右边,则点D与点C重合,∴BD=BC=10,∴DF=10,∴DF=6,∴DE=2DF=12.综上所述:当⊙A恰好也过点C时,DE的长为或12.。
2017年广东省韶关市南雄二中中考数学模拟试卷(5)
2017年广东省韶关市南雄二中中考数学模拟试卷(5)一、选择题(每题3分,共30分)1.(3分)比0大的数是()A.﹣1 B.C.0 D.12.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a94.(3分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差5.(3分)如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=06.(3分)用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B.C.D.7.(3分)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.8.(3分)已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<9.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.10.(3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二、填空题(每题4分,共24分)11.(4分)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.12.(4分)分解因式:x3﹣xy2=.13.(4分)如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=度.14.(4分)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A'B'C',则Rt△A'B'C'的斜边A'B'上的中线C'D的长度为.15.(4分)分式方程=1的解是x=.16.(4分)如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第2个矩形的面积为,第n个矩形的面积为.三、解答题(一)(每题6分,共18分)17.(6分)计算:﹣|﹣3|﹣()﹣1+2cos45°.18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.。
广东省中考数学专项复习押题卷(三)课件
7.不等式组
的பைடு நூலகம்集在数轴上表示为(C)
8.如图,已知a∥b,直角三角板 的直角顶点在直线b上,若∠1=60°, 则下列结论错误的是(D)
A.∠2=60° B.∠3=60° C.∠4=120° D.∠5=40°
三 解答题(一)(本大题3小题,每小题6分,共18分) 17.计算:
解:原式=1﹣1+2=2.
18.先化简,再求值:
19.随着国家“惠民政策”的陆续出台,为了切 实让老百姓得到实惠,国家卫计委通过严打药品销 售环节中的不正当行为,某种药品原价200元/瓶, 经过连续两次降价后,现在仅卖98元/瓶,现假定 两次降价的百分率相同,求该种药品平均每次降价 的百分率.
解:设该种药品平均每场降价的百分率是x, 由题意得:200(1﹣x)2=98 解得:x1=1.7(不合题意舍去),x2=0.3=30%. 答:该种药品平均每场降价的百分率是30%.
四 解答题(二)(本大题3小题,每小题7分,共21分) 20.某校开展了“互助、平等、感恩、和谐、进 取”主题班会活动,活动后,就活动的5个主题进 行了抽样调查(每位同学只选最关注的一个),根 据调查结果绘制了两幅不完整的统计图.根据图中 提供的信息,解答下列问题:
A
B
C
D
E
A
(A,B) (A,C) (A,D) (A,E)
B (B,A)
(B,C) (B,D) (B,E)
C (C,A) (C,B)
(C,D) (C,E)
D (D,A) (D,B) (D,C)
2017年广东省韶关市南雄市中考数学模拟试卷及解析答案word版(四)
2017年广东省韶关市南雄市中考数学模拟试卷(四)一、选择题(每题3分,共30分)1.(3分)=()A.﹣2 B.2 C.1 D.﹣12.(3分)下列运算正确的是()A.a+a=a2B.a6÷a3=a2C.(a3)2=a5D.2﹣=3.(3分)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对4.(3分)下列图形中不是中心对称图形的是()A.矩形B.菱形C.平行四边形D.正五边形5.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.76.(3分)点M(2,﹣1)向上平移2个单位长度得到的点的坐标是()A.(2,0) B.(2,1) C.(2,2) D.(2,﹣3)7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°8.(3分)在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形9.(3分)将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)210.(3分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A.B.C.D.二、填空题(每题4分,共24分)11.(4分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为米.12.(4分)计算:|1﹣|﹣cos30°+=.13.(4分)分解因式:3x2﹣9x=.14.(4分)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是.15.(4分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF ⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.16.(4分)已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2;再以OA2为边按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,△OA n B n,(如图),则△OA6B6的周长是.三、解答题(本大题共3小题,每题6分,共18分)17.(6分)解不等式组:,并把解集在数轴上表示出来.18.(6分)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若△ABC中AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.19.(6分)某校为“中华经典诵读工程”购买了甲、乙、丙、丁四种图书若干本,如图是关于图书种类和相应数量的不完整的条形统计图.(1)若丁种图书占全部图书的10%,请求出丁种图书有多少本,并补全统计图;(2)若有一本书,小王和小张都先想睹为快,两人决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3的三个球中的一球(球除数字不同外其他完全相同),并放回让另一个人摸,若两人摸得的数字之积小于4,小王先阅读;否则小张先阅读.”试用列表法或画树状图的方法分析这个规则对方是否公平?四、解答题(本大题共3小题,每题7分,共21分)20.(7分)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.21.(7分)某商店需要购进甲、乙两种商品共160件,其进价和售价如表:(注:获利=售价﹣进价)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?22.(7分)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.五、解答题(本大题共3小题,每题9分,共27分)23.(9分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=10,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.24.(9分)如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小.25.(9分)综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x 轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.2017年广东省韶关市南雄市中考数学模拟试卷(四)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)=()A.﹣2 B.2 C.1 D.﹣1【解答】解:﹣(﹣)0=﹣1.故选D.2.(3分)下列运算正确的是()A.a+a=a2B.a6÷a3=a2C.(a3)2=a5D.2﹣=【解答】解:A、a+a=2a,故此选项错误;B、a6÷a3=a3,故此选项错误;C、(a3)2=a6,故此选项错误;D、2﹣=,正确.故选:D.3.(3分)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的()A.总体B.个体C.样本D.以上都不对【解答】解:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体.故选B.4.(3分)下列图形中不是中心对称图形的是()A.矩形B.菱形C.平行四边形D.正五边形【解答】解:A、矩形既是轴对称图形,又是中心对称图形,故此选项错误;B、菱形既是轴对称图形,又是中心对称图形,故此选项错误;C、平行四边形不是轴对称图形,是中心对称图形,故此选项错误;D、正五边形是轴对称图形,不是中心对称图形,故此选项正确.故选:D.5.(3分)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选C.6.(3分)点M(2,﹣1)向上平移2个单位长度得到的点的坐标是()A.(2,0) B.(2,1) C.(2,2) D.(2,﹣3)【解答】解:∵点M(2,﹣1)向上平移2个单位长度,∴﹣1+2=1,∴平移后的点坐标是(2,1).故选:B.7.(3分)如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30°B.45°C.60°D.90°【解答】解:设圆心角是n度,根据题意得=,解得:n=60.故选:C.8.(3分)在平面中,下列命题为真命题的是()A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形【解答】解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;C、四个角相等的四边形是矩形,故此选项正确;D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.故选:C.9.(3分)将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A.y=x2﹣1 B.y=x2+1 C.y=(x﹣1)2 D.y=(x+1)2【解答】解:将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为:y=x2﹣1.故选:A.10.(3分)已知长方形的面积为20cm2,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A.B.C.D.【解答】解:∵xy=20,∴y=(x>0,y>0).故选:B.二、填空题(每题4分,共24分)11.(4分)石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.00000000034米,将这个数用科学记数法表示为3.4×10﹣10米.【解答】解:0.00000000034=3.4×10﹣10,故答案为:3.4×10﹣10.12.(4分)计算:|1﹣|﹣cos30°+=﹣5.【解答】解:|1﹣|﹣cos30°+=﹣1﹣×﹣3=﹣5故答案为:﹣5.13.(4分)分解因式:3x2﹣9x=3x(x﹣3).【解答】解:3x2﹣9x=3x(x﹣3).故答案为:3x(x﹣3).14.(4分)如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是c>9.【解答】解:∵关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,∴△=(﹣6)2﹣4c<0,即36﹣4c<0,解得:c>9.故答案为:c>9.15.(4分)如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=4,AB∥CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=,∵AB∥CD,∴△BFE∽△CHE,∴====1,∴EF=EH=,CH=BF=1,=DH•FH=×(1+3)×2=4,∵S△DHF=S△DHF=2,∴S△DEF故答案为:2.16.(4分)已知等边△OAB的边长为a,以AB边上的高OA1为边,按逆时针方向作等边△OA1B1,A1B1与OB相交于点A2;再以OA2为边按逆时针方向作等边△OA2B2,A2B2与OB1相交于点A3,按此作法进行下去,得到△OA3B3,△OA4B4,…,△OA n B n,(如图),则△OA6B6的周长是a..【解答】解:依题意,OA1=OA、OA2=OA1=()2OAOA3=OA2=()3OA以此类推,OA6=()6OA=OA=a即△OA6B6的周长=3OA6=a.故答案为:a.三、解答题(本大题共3小题,每题6分,共18分)17.(6分)解不等式组:,并把解集在数轴上表示出来.【解答】解:解不等式3﹣(2x﹣1)≥5x+4,得:x≤0,解不等式﹣3<2x,得:x>﹣2,则不等式组的解集为﹣2<x≤0,将解集表示在数轴上如下:18.(6分)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹);(2)若△ABC中AB=8米,AC=6米,∠BAC=90°,试求小明家圆形花坛的面积.【解答】解:(1)如图,⊙O即为所求作的花园的位置.(2)∵∠BAC=90°,∴BC是直径.∵AB=8米,AC=6米,∴BC=10米,∴△ABC外接圆的半径为5米,∴小明家圆形花坛的面积为25π平方米.19.(6分)某校为“中华经典诵读工程”购买了甲、乙、丙、丁四种图书若干本,如图是关于图书种类和相应数量的不完整的条形统计图.(1)若丁种图书占全部图书的10%,请求出丁种图书有多少本,并补全统计图;(2)若有一本书,小王和小张都先想睹为快,两人决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3的三个球中的一球(球除数字不同外其他完全相同),并放回让另一个人摸,若两人摸得的数字之积小于4,小王先阅读;否则小张先阅读.”试用列表法或画树状图的方法分析这个规则对方是否公平?【解答】解:(1)根据题意得:(20+40+30)÷(1﹣10%)=100(张),则丁种图书数为100﹣(20+40+30)=10(张),补全图形,如图所示:(2)如树状图所示,所有等可能的情况数有9种,其中两人摸得的数字之积小于4的有5种,∴P(两人摸得的数字之积小于4)=,则P(两人摸得的数字之积不小于4)=.则这个规则不公平.四、解答题(本大题共3小题,每题7分,共21分)20.(7分)如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4.(1)证明:△ABE≌△DAF;(2)若∠AGB=30°,求EF的长.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵∠1=∠2,∠3=∠4,∴△ABE≌△DAF.(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,∴∠1=∠AGB=30°,∵∠1+∠4=∠DAB=90°,∵∠3=∠4,∴∠1+∠3=90°,∴∠AFD=180°﹣(∠1+∠3)=90°,∴DF⊥AG,∴DF=AD=1,∴AF=,∵△ABE≌△DAF,∴AE=DF=1,∴EF=﹣1.故所求EF的长为﹣1.21.(7分)某商店需要购进甲、乙两种商品共160件,其进价和售价如表:(注:获利=售价﹣进价)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?【解答】解:设甲商品购进x件,乙商品购进y件,根据题意,得:,解得:,答:甲商品购进100件,乙商品购进60件.22.(7分)已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC=.(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.【解答】解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD中,tan∠BOC=,即=,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得.则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,=S△BCO,∵S△BCE∴CE=OC=3,∴OE=6,即E(﹣6,0).五、解答题(本大题共3小题,每题9分,共27分)23.(9分)如图,已知⊙O的直径AB与弦CD互相垂直,垂足为点E.⊙O的切线BF与弦AC的延长线相交于点F,且AC=10,tan∠BDC=.(1)求⊙O的半径长;(2)求线段CF长.【解答】解:(1)如图,连接BC,∵AB为直径,∴∠ACB=90°,∵∠A=∠BDC,∴tanA=,在Rt△ACB中,tanA==,设BC=3x,AC=4x,∴AB=5x,而4x=10,∴x=,∴AB=5x=,∴⊙O的半径长为;(2)∵BF为切线,∴AB⊥BF,在Rt△ABF中,∵tanA==,∴BF=×=,∴AF==,∴CF=AF﹣AC=﹣10=.24.(9分)如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F,同时将△CEG沿EG对折,使CE边落在EF所在直线上,点C的对应点为H.(1)证明:AF∥HG(图(1));(2)证明:△AEF∽△EGH(图(1));(3)如果点C的对应点H恰好落在边AD上(图(2)).求此时∠BAC的大小.【解答】解:(1)∵四边形ABCD是矩形,∴∠B=∠BCD=90°,由折叠的性质可得:∠AFE=∠B=90°,∠H=∠BCD=90°,∴AF⊥EH,HG⊥EH,∴AF∥HG;(2)由折叠的性质可得:∠AEF=∠AEB,∠CEG=∠HEG,∴∠AEF+∠HEG=∠BEF+∠CEH=(∠BEF+∠CEH)=×180°=90°,∵∠AFE=∠H=90°,∴∠GEH+∠EGH=90°,∴∠AEF=∠EGH,∴△AEF∽△EGH;(3)连接BF,CH,由折叠的性质可得:AB=AF,∠CEG=∠HEG,∵B对应F,C对应H,∴BF⊥AE,EG⊥CH,∵∠ABE=90°,∴∠BAE+∠BEA=90°,∵∠HEG+∠AEF=90°,∴AE⊥EG,∴AE∥CH,∵AD∥BC,∴四边形AECH为平行四边形,∴AF=FC,∵AB=AF,∴AC=2AB,∴∠ACB=30°,∴∠BAC=60°.25.(9分)综合与实践:如图,在平面直角坐标系中,抛物线y=﹣x2+2x+3与x 轴交于A、B两点,与y轴交于点C,点D是该抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上一个动点,过P作直线l∥AC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由.(3)请在直线AC上找一点M,使△BDM的周长最小,求出M点的坐标.【解答】方法一:解:(1)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3.∵点A在点B的左侧,∴A、B的坐标分别为(﹣1,0),(3,0).当x=0时,y=3.∴C点的坐标为(0,3)设直线AC的解析式为y=k1x+b1(k1≠0),则,解得,∴直线AC的解析式为y=3x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4).(2)抛物线上有三个这样的点Q,①当点Q在Q1位置时,Q1的纵坐标为3,代入抛物线可得点Q1的坐标为(2,3);②当点Q在点Q2位置时,点Q2的纵坐标为﹣3,代入抛物线可得点Q2坐标为(1+,﹣3);③当点Q在Q3位置时,点Q3的纵坐标为﹣3,代入抛物线解析式可得,点Q3的坐标为(1﹣,﹣3);综上可得满足题意的点Q有三个,分别为:Q1(2,3),Q2(1+,﹣3),Q3(1﹣,﹣3).(3)过点B作BB′⊥AC于点F,使B′F=BF,则B′为点B关于直线AC 的对称点.连接B′D交直线AC于点M,则点M为所求,过点B′作B′E⊥x轴于点E.∵∠1和∠2都是∠3的余角,∴∠1=∠2.∴Rt△AOC∽Rt△AFB,∴,由A(﹣1,0),B(3,0),C(0,3)得OA=1,OB=3,OC=3,∴AC=,AB=4.∴,∴BF=,∴BB′=2BF=,由∠1=∠2可得Rt△AOC∽Rt△B′EB,∴,∴,即.∴B′E=,BE=,∴OE=BE﹣OB=﹣3=.∴B′点的坐标为(﹣,).设直线B′D的解析式为y=k2x+b2(k2≠0).∴,解得,∴直线B′D的解析式为:y=x+,联立B′D与AC的直线解析式可得:,解得,∴M点的坐标为(,).方法二:(1)略.(2)略.(3)设B点关于直线AC的对称点为B′,显然BB′被直线AC垂直平分,交点为F.由BB′⊥AC,∴K BB′×K AC=﹣1,∵K AC=3,∴K BB′=﹣,设BB′直线方程为y=﹣x+b,∵B(3,0),∴⇒F(﹣,),∵点F为BB′的中点,∴F X=,F Y=,∴B′(﹣,),∵D(1,4),∴⇒M(,),∴△BDM的周长最小时,点M的坐标为(,).赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
2017年广东省韶关市南雄市中考数学一模试卷带答案解析
2017年广东省韶关市南雄市中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的相反数是()A.B.C.﹣D.﹣2.(3分)下列各式计算正确的是()A.B.(﹣3)﹣2=﹣C.a0=1 D.3.(3分)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.4.(3分)若分式的值为零,则x的值为()A.0 B.2 C.﹣2 D.±25.(3分)今年我市有近5000多名考生参加中考,为了解这些考生的数学成绩,从中抽取300名考生的数学成绩进行统计分析,以下说法正确的是()A.这300名考生是总体的一个样本B.近5000多名考生是总体C.每位考生的数学成绩是个体D.300名考生是样本容量6.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D7.(3分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤18.(3分)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°9.(3分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)10.(3分)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是km.12.(4分)分解因式:m(x﹣y)+n(y﹣x)=.13.(4分)如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于点D,∠BEC=100°,则∠D=.14.(4分)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象不过第象限.15.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB 上,PM=PN,若MN=2,则OM=.16.(4分)已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解一元一次不等式组:,并写出所有的整数解.18.(6分)先化简,再求值:﹣÷,其中x=﹣1.19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.21.(7分)如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).22.(7分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标.24.(9分)如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.(1)求证:△AOM∽△DMN;(2)求∠MBN的度数.25.(9分)如图,抛物线y=x2﹣mx+n与x轴交于A、B两点,与y轴交于点C (0,﹣1).且对称轴x=1.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).2017年广东省韶关市南雄市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的相反数是()A.B.C.﹣D.﹣【解答】解:的相反数为:﹣.故选:C.2.(3分)下列各式计算正确的是()A.B.(﹣3)﹣2=﹣C.a0=1 D.【解答】解:A、﹣=3﹣4=﹣,运算正确,故本选项正确;B、(﹣3)﹣2=,原式运算错误,故本选项错误;C、a0=1,当a≠0时成立,没有限制a的取值范围,故本选项错误;D、=2,原式运算错误,故本选项错误;故选A.3.(3分)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A.B.C.D.【解答】解:A、主视图为长方形;B、主视图为长方形;C、主视图为三角形;D、主视图为长方形.则主视图与其它三个不相同的是选项C.故选C.4.(3分)若分式的值为零,则x的值为()A.0 B.2 C.﹣2 D.±2【解答】解:由题意得,x2﹣4=0,x=±2,x+2≠0,x≠﹣2,∴x=2,故选:B.5.(3分)今年我市有近5000多名考生参加中考,为了解这些考生的数学成绩,从中抽取300名考生的数学成绩进行统计分析,以下说法正确的是()A.这300名考生是总体的一个样本B.近5000多名考生是总体C.每位考生的数学成绩是个体D.300名考生是样本容量【解答】解:A、错误.应该是这300名考生的数学成绩是总体的一个样本;B、错误.应该是近5000多名考生的数学成绩是总体;C、正确.D、错误.样本容量,没有单位.故选C.6.(3分)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.7.(3分)一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是()A.m>1 B.m=1 C.m<1 D.m≤1【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.8.(3分)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC的度数是()A.44°B.54°C.72°D.53°【解答】解:∵BE是直径,∴∠BAE=90°,∵四边形ABCD是平行四边形,∠E=36°,∴∠BEA=∠DAE=36°,∴∠BAD=126°,∴∠ADC=54°,故选:B.9.(3分)若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为﹣4D.抛物线与x轴的交点为(﹣1,0),(3,0)【解答】解:∵抛物线过点(0,﹣3),∴抛物线的解析式为:y=x2﹣2x﹣3.A、抛物线的二次项系数为1>0,抛物线的开口向上,正确.B、根据抛物线的对称轴x=﹣=﹣=1,正确.C、由A知抛物线的开口向上,二次函数有最小值,当x=1时,y的最小值为﹣4,而不是最大值.故本选项错误.D、当y=0时,有x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,抛物线与x轴的交点坐标为(﹣1,0),(3,0).正确.故选C.10.(3分)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=()A.B.C.D.【解答】解:连接EG,∵点E是边CD的中点,∴DE=CE,∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°,∴CE=EF,在Rt△ECG和Rt△EFG中,,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵=,∴GB=4a,∴BC=CG+BG=a+4a=5a,在矩形ABCD中,AD=BC=5a,∴AF=5a,AG=AF+FG=5a+a=6a,在Rt△ABG中,AB===2a,∴==.故选:B.二、填空题(共6小题,每小题4分,满分24分)11.(4分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是1.4960×108km.【解答】解:1.4960亿=1.4960×108.故答案为:1.4960×108.12.(4分)分解因式:m(x﹣y)+n(y﹣x)=(x﹣y)(m﹣n).【解答】解:m(x﹣y)+n(y﹣x)=m(x﹣y)﹣n(x﹣y)=(x﹣y)(m﹣n).故答案为:(x﹣y)(m﹣n).13.(4分)如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于点D,∠BEC=100°,则∠D=50°.【解答】解:∵DE平分∠BEC交CD于点D,∠BEC=100°,∴∠BED=∠BEC=50°,∵AB∥CD,∴∠D=∠BED=50°.故答案为:50°.14.(4分)若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象不过第三象限.【解答】解:把(﹣2,1)代入y=得k=﹣2×1=﹣2,所以一次函数为y=﹣2x+2,所以一次函数经过第一、二、四象限,不经过第三象限.故答案为三.15.(4分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB 上,PM=PN,若MN=2,则OM=5.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.16.(4分)已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为3﹣.【解答】解:∵∠F=45°,BC=3,∴CF=3,又EF=4,则EC=1,∵BC=3,∠A=30°,∴AC=3,则AE=3﹣1,∠A=30°,∴EG=3﹣,阴影部分的面积为:×3×3﹣×(3﹣1)×(3﹣)=3﹣.故答案为:3﹣.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.(6分)解一元一次不等式组:,并写出所有的整数解.【解答】解:∵由①得:x由②得:x≤3,∴原不等式组的解集为:﹣<x≤3,∴不等式组的所有的整数解为0,1,2,3.18.(6分)先化简,再求值:﹣÷,其中x=﹣1.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.19.(6分)如图,在△ABC中,∠C=90°.(1)用尺规作图法作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连结BD,若BD平分∠CBA,求∠A的度数.【解答】解:(1)如图所示,DE为所求作的垂直平分线;(2)∵DE是AB边上的垂直平分线,∴AD=BD,∴∠ABD=∠A,∵BD平分∠CBA,∴∠CBD=∠ABD=∠A,∵∠C=90°,∴∠CBD+∠ABD+∠A=90°,∴∠A=30°.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(7分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【解答】解:(1)表中a的值是:a=50﹣6﹣8﹣16﹣10=10;(2)根据题意画图如下:(3)用A表示小宇B表示小强,C、D表示其他两名同学,根据题意画树状图如下:从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是P==.21.(7分)如图,在东西方向的海岸线MN上有相距10海里的A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东60°方向上,船P在船B的北偏西45°方向上.求船P到海岸线MN的距离(结果保留根号).【解答】解:如图,过P作PG⊥AB于点G,设PG=x,在Rt△PGB中,∵∠PBG=90°﹣45°=45°,∴∠BPG=45°=∠PBG,∴GB=PG=x,在Rt△PGA中,∠PAG=90°﹣60°=30°,∴AG==PG=x,∵AB=10,∴x+x=10,解得x=5(﹣1),答:船P到海岸线MN的距离为5(﹣1)海里.22.(7分)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.【解答】解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是(x﹣1)档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.(9分)已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标.【解答】(1)证明:∵矩形OABC和矩形ODEF全等,∴BC=OD,∠BCQ=∠ODQ=90°,在△BCQ和△ODQ中,,∵∠BQC=∠OQD(AAS),∴△BCQ≌△ODQ;(2)∵△BCQ≌△ODQ,∴CQ=DQ,BQ=OQ,设CQ=x,则OQ=6﹣x,BQ=6﹣x,在Rt△BCQ中,根据勾股定理得:(6﹣x)2﹣x2=9,解得:x=,∴OQ=6﹣=,∴Q(0,),设BQ:y=kx+b,把B(﹣3,6)与Q(0,)代入得:,解得:,∴y=﹣x+,令y=0,得﹣x+=0,解得:x=5,则P(5,0).24.(9分)如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.(1)求证:△AOM∽△DMN;(2)求∠MBN的度数.【解答】(1)证明:∵MN是⊙O的切线,∴OM⊥MN,∴∠AMO+∠DMN=90°,又∵四边形ABCD为正方形,∴∠A=∠D=∠ABC=∠C=90°,∴∠AMO+∠AOM=90°,∴∠AOM=∠DMN,∴△AMO∽△DMN;(2)解:如图所示:作BP⊥MN于点P,∵MN是⊙O的切线,∴∠PMB+∠BMO=90°,∵∠ABC=90°,∴∠CBM+∠MBO=90°,∵OB=OM,∴∠BMO=∠MBO,∴∠PMB=∠CBM,∵AD∥BC,∴∠CBM=∠AMB,∴∠AMB=∠PMB,在△MPB和△MAB中,,∴△MPB≌△MAB(AAS),∴∠ABM=∠MBP,BP=AB=BC,在Rt△BPN和Rt△BCN中,,∴Rt△BPN≌Rt△BCN(HL),∴∠PBN=∠CBN,∴∠MBN=∠MBP+∠PBN=∠ABC=45°.25.(9分)如图,抛物线y=x2﹣mx+n与x轴交于A、B两点,与y轴交于点C (0,﹣1).且对称轴x=1.(1)求出抛物线的解析式及A、B两点的坐标;(2)在x轴下方的抛物线上是否存在点D,使四边形ABDC的面积为3?若存在,求出点D的坐标;若不存在.说明理由(使用图1);(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标(使用图2).【解答】解:(1)∵抛物线与y轴交于点C(0,﹣1).且对称轴x=l.∴,解得:,∴抛物线解析式为y=x2﹣x﹣1,令x2﹣x﹣1=0,得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),(2)设在x轴下方的抛物线上存在D(a,)(0<a<3)使四边形ABCD的面积为3.=S△AOC+S梯形OCDM+S△BMD,作DM⊥x轴于M,则S四边形ABDC=|x A y C|+(|y D|+|y C|)x M+(x B﹣x M)|y D|∴S四边形ABDC=×1×1+[﹣(a2﹣a﹣1)+1]×a+(3﹣a)[﹣(a2﹣a﹣1)]=﹣a2++2,∴由﹣a2++2=3,解得:a1=1,a2=2,∴D的纵坐标为:a2﹣a﹣1=﹣或﹣1,∴点D的坐标为(1,﹣),(2,﹣1);(3)①当AB为边时,只要PQ∥AB,且PQ=AB=4即可,又知点Q在y轴上,所以点P的横坐标为﹣4或4,所以此时点P 1的坐标为(﹣4,7),P 2的坐标为(4,);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可,线段AB 中点为G ,PQ 必过G 点且与y 轴交于Q 点, 过点P 3作x 轴的垂线交于点H , 可证得△P 3HG ≌△Q 3OG , ∴GO=GH ,∵线段AB 的中点G 的横坐标为1, ∴此时点P 横坐标为2, 由此当x=2时,y=﹣1,∴这是有符合条件的点P 3(2,﹣1),∴所以符合条件的点为:P 1的坐标为(﹣4,7),P 2的坐标为(4,);P 3(2,﹣1).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
广东省韶关市中考数学模拟考试试卷
广东省韶关市中考数学模拟考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)关于x的二次方程的一个根是0,则a的值为().A . 1B . -1C . 1或-1D .2. (2分)如图(甲)所示的四张牌,若只将其中一张牌旋转180°后得到图(乙),则旋转的牌是()A . 第一张B . 第二张C . 第三张D . 第四张3. (2分)二次函数y=x2﹣4x﹣5的图象的对称轴为()A . 直线x=4B . 直线x=﹣4C . 直线x=2D . 直线x=﹣24. (2分) (2017九上·西城期中) 已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A . 相交B . 相切C . 相离D . 不能确定5. (2分)(2019·宜宾) 已知抛物线与y轴交于点A ,与直线(k为任意实数)相交于B , C两点,则下列结论错误的是()A . 存在实数k ,使得为等腰三角形B . 存在实数k ,使得的内角中有两角分别为30°和60°C . 任意实数k ,使得都为直角三角形D . 存在实数k ,使得为等边三角形6. (2分)关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0有一个根为0,则m的值应为()A . 2B . ﹣2C . 2或﹣2D . 17. (2分)(2011·义乌) 下列图形中,中心对称图形有()A . 4个B . 3个C . 2个D . 1个8. (2分)如图,甲,乙两只小虫从A点同时出发,甲虫沿着大的半圆爬行,乙虫沿着内部的三个半圆爬行,如果两虫爬行的速度相同,则先到达B点的虫子是()A . 甲B . 同时到达C . 乙D . 不能确定9. (2分) (2018九上·宜兴月考) 已知(的值为()A . -2B . 6C . 6或-2D . -6或210. (2分) 100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是()A . 红球一定刚好4个B . 红球不可能少于4个C . 红球可能多于4个D . 抽到的白球一定比红球多11. (2分)如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A .B .C .D .12. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A . ac>0;B . bc<0C . 0<-<1D . a-b+c<0二、填空题 (共7题;共7分)13. (1分)当m________时,函数y=(m﹣2)x2+3x﹣5(m为常数)是关于x的二次函数.14. (1分)(2017·宁津模拟) 如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O 顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为________.15. (1分)如图,抛物线过点 A(2,0)、B(6,0)、C(1, ),平行于x轴的直线CD交抛物线于C、D,以AB为直径的圆交直线CD于点E、F,则CE+FD的值是________.16. (1分) (2019七上·扬中期末) 如图是正方体的表面展开图,则与“建”字相对的字是________.17. (1分)(2017·咸宁) 如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是________.18. (1分) (2017九上·铁岭期末) 关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,那么抛物线y=x2+bx+c的顶点坐标为________.19. (1分)(2017·营口模拟) 如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为________.三、计算题 (共2题;共20分)20. (10分) (2019九上·海州期中) 解下列方程:(1)(2)(配方法)(3)(4)21. (10分)(2017·梁子湖模拟) 已知二次函数y=a(x﹣m)2﹣a(x﹣m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.四、综合题 (共7题;共62分)22. (2分) (2016九上·市中区期末) 在一个不透明的盒子里,装有四个分别标有数字﹣2,﹣1,1,4的小球,它们的形状、大小、质地等完全相同,小强先从盒子里随机取出一个小球,记下数字为a;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为b.(1)用列表法或画树状图表示出(a,b)的所有可能出现的结果;(2)求小强、小华各取一次小球所确定的点(a,b)落在二次函数y=x2的图象上的概率;(3)求小强、小华各取一次小球所确定的数a,b满足直线y=ax+b经过一、二、三象限的概率.23. (15分)如图,将△ABC绕点O旋转,使顶点A与点A′重合,画出旋转后的图形.24. (5分) (2016九上·宝丰期末) 如图,水平放置的圆柱形排水管的截面为⊙O,有水部分弓形的高为2,弦AB=4 ,求⊙O的半径.25. (5分)(2017·靖远模拟) 如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2 ,求小路的宽.26. (10分)某体育用品商店为了解5月份的销售情况,对本月各类商品的销售情况进行调查,并将调查的结果绘制成如下两幅不完整的统计图(1)请根据图中提供的信息,将条形图补充完整;(2)该商店准备按5月份球类商品销量的数量购进球类商品,含篮球、足球、排球三种球,预计恰好用完进货款共3600元,设购进篮球x个,足球y个,三种球的进价和售价如表:类别篮球足球排球进价(单位:元/个)503020预售价(单位:元/个)704525求出y与x之间的函数关系式;(3)在(2)中的进价和售价的条件下,据实际情况,预计足球销售超过60个后,这种球就会产生滞销.①假设所购进篮球、足球、排球能全部售出,求出预估利润P(元)与x(个)的函数关系式;②求出预估利润的最大值,并写出此时购进三种球各多少个.27. (5分) (2016九上·滨海期中) 如图所示,BC是圆O的直径,点A,F在圆O上,连接AB,BF.(1)如图1,若点A、F把半圆三等分,连接OA,OA与BF交于点E.求证:E为OA的中点;(2)如图2,若点A为弧的中点,过点A作AD⊥BC,垂足为点D,AD与BF交于点G.求证:AG=BG.28. (20分) (2018八上·郓城期中) 如图,在平面直角坐标系内,梯形OABC的顶点坐标分别是:A(3,4),B(8,4),C(11,0),点P(t,0)是线段OC上一点,设四边形ABCP的面积为S.(1)过点B作BE⊥x轴于点E,则BE=________,用含t的代数式表示PC=________.(2)求S与t的函数关系.(3)当S=20时,直接写出线段AB与CP的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、计算题 (共2题;共20分)20-1、20-2、20-3、20-4、21-1、21-2、21-3、四、综合题 (共7题;共62分)22-1、22-2、22-3、23-1、24-1、25-1、26-1、26-2、26-3、27-1、27-2、28-1、28-2、28-3、。
广东省韶关市中考数学三模考试试卷
广东省韶关市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2016八上·九台期中) 小明认为下列括号内都可以填a4 ,你认为使等式成立的只能是()A . a12=()3B . a12=()4C . a12=()2D . a12=()62. (2分)(2018·海南) 2018的相反数是()A . ﹣2018B . 2018C . ﹣D .3. (2分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A . 23°B . 16°C . 20°D . 26°4. (2分)(2017·黔南) 二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A . 3个B . 4个D . 6个5. (2分)如图所示,AB∥CD,∠E=26°,∠C=58°,则∠EAB的度数为()A . 84°B . 82°C . 79°D . 96°6. (2分)(2020·莘县模拟) 如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A . 1B . 3C . 3(m-1)D . (m-2)7. (2分)如图是一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角,窗户的高在教室地面上的影长米,窗户的下檐到教室地面的距离米(点、、在同一直线上),则窗户的高为()A . 米B . 3米C . 2米8. (2分)如图所示,E.F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE,BF相交于点O,下列结论①AE=BF;②AE⊥BF;③AO=OE;④S△AOB=S四边形DEOF中,错误的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共8分)9. (1分) (2020八下·江阴期中) 二次根式中x的取值范围是________.10. (1分) (2020八下·淮安期末) 如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为________.11. (1分)(2019·南山模拟) 若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是,﹣1的差倒数为,现已知,x2是x1的倒差数,x3是x2的倒差数,x4是x3的倒差数,…,依此类推,则x2019=________12. (1分) (2019八下·洛川期末) 已知菱形有一个锐角为60°,一条对角线长为4cm,则其面积为________ cm2.13. (2分) (2020八下·偃师期中) 如图,已知反比例函数y= (k为常数,k≠0)的图象经过点A,过A 点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________.14. (2分) (2019七下·栾城期末) 长方形中,已知,,为的中点,动点从点出发,以每秒的速度沿运动,最终到达点.若点运动的时间为秒,则当 ________时,的面积等于.三、计算题 (共2题;共10分)15. (5分) (2020七下·西安月考)16. (5分) (2019九下·临洮期中) 解不等式组.四、综合题 (共8题;共62分)17. (5分) (2019八上·大渡口期末) 如图,AB∥DC,AB=DC,AC与BD相交于点O.求证:AO=CO18. (5分)(2018·青浦模拟) 如图,小明的家在某住宅楼AB的最顶层(AB⊥BC),他家的后面有一建筑物CD(CD∥AB),他很想知道这座建筑物的高度,于是在自家阳台的A处测得建筑物CD的底部C的俯角是43°,顶部D的仰角是25°,他又测得两建筑物之间的距离BC是28米,请你帮助小明求出建筑物CD的高度(精确到1米).(参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47;sin43°≈0.68,cos43°≈0.73,tan43°≈0.93.)19. (5分) (2018九上·楚雄期末) 数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?20. (10分)(2017·安顺模拟) 如图,抛物线y= x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△D CM的周长最小时,求点M的坐标.21. (2分) (2019八下·柯桥期末) 随着我国经济社会的发展,人民对于美好生活的追求越来越高,外出旅游已成为时尚.某社区为了了解家庭旅游消费情况,随机抽取部分家庭,对每户家庭的年旅游消费金额进行问卷调査,根据调查结果绘制成两幅不完整的统计图表.请你根据统计图表提供的信息,解答下列问题:组别家庭年旅游消费金额x(元)户数A x≤400027B4000< x≤8000aC8000< x≤1200024D12000< x≤1600014E x>160006(1)本次被调査的家庭有________户,表中 a=________;(2)本次调查数据的中位数出现在________组.扇形统计图中,E组所在扇形的圆心角是________度;(3)若这个社区有2700户家庭,请你估计家庭年旅游消费8000元以上的家庭有多少户?(1)求证:△ABC≌△ADC;(2)延长AB、DC交于点E,若EC=5cm,BC=3cm,求四边形ABCD的面积.23. (10分)(2020·云梦模拟) 如图,▱ABCD的对角线AC,BD相交于点O,EF经过点O,分别交AB,CD于点E,F,FE的延长线交CB的延长线于点M.(1)求证:OE=OF;(2)若AD=4,AB=6,BM=1,求BE的长.24. (15分) (2018九上·镇海期末) 如图,抛物线与轴交于点,与轴交于点 .在线段上有一动点(不与重合),过点作轴的垂线交于点,交抛物线于点,过点作于点 .(1)求直线的函数解析式;(2)求证:;并求出当为何值时,和的相似比为 .参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、三、计算题 (共2题;共10分)15-1、16-1、四、综合题 (共8题;共62分)17-1、18-1、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、。
2017年广东省中考数学模拟试卷
2017年广东省中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分)1.﹣2016的相反数是()A.2016 B.±2016 C.12016D.﹣120162.下列运算正确的是()A.=±3 B.a8÷a4=a2C.3=3 D.a2•a3=a53.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=50°,则∠2=()A.40°B.50°C.60°D.130°4.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)5.在下面的四个几何体中,它们各自的左视图与主视图不一样的是()A.正方体B.长方体C.圆柱 D.圆锥6.下列图形中,是轴对称图形的是()A.B.C.D.7.一元二次方程x2﹣3x﹣5=0的根的情况是()A.有两个相等的实数根B.没有实数根C.无法确定是否有实数根D.有两个不相等的实数根8.某班“环保小组”的5位同学在一次活动中,捡废弃塑料袋的个数分别为:4,6,10,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,10 C.10,16 D.8,169.“五一”节老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是()A.7B.8C.9D.1010.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.我国西部地区幅员辽阔、资源丰富,面积约6720000平方公里,占中国国土面积70%,用科学记数法表示6720000=.12.一个多边形的每个外角都等于60°,这个多边形的内角和为.13.在平面直角坐标系中,点P(m,m﹣3)在第四象限内,则m的取值范围是.14.已知a+b=4,a﹣b=3,则a2﹣b2= .15.如果一个扇形的圆心角为120°,半径为6,那么该扇形的弧长是.16.如图,菱形ABCD和菱形ECGF的边长分别为2和4,∠A=120°.则阴影部分面积是.(结果保留根号)三、解答题(本大题3小题,每小题6分,共18分)17.计算:﹣(3﹣π)0﹣3tan30°+()﹣1.18.解不等式3x﹣1<7,将解集在数轴上表示出来,并写出它的非负整数解.19.如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.四、解答题(本大题3小题,每小题7分,共21分)20.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?21.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动.如图,一艘海监船位于钓鱼岛D的北偏东60°方向,与钓鱼岛的距离为16海里的A处,它沿正南方向航行,航行1小时后,发现此时海监船位于钓鱼岛的南偏东45°方向上的B处.(1)求此时这艘海监船所在的B处与钓鱼岛的距离(结果保留根号)(2)求这艘海监船的速度.(结果精确到0.1)(参考数据:≈1.41,≈1.73,≈2.44)22.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.五、解答题(本大题3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.(1)求过点D的反比例函数的解析式;(2)求△DBE的面积;(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.24.如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于点D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.(1)求证:BD=CD;(2)若AE=6,BF=4,求⊙O的半径;(3)在(2)条件下判断△ABC的形状,并说明理由.25.如图,在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点A的坐标为(0,2),点B在抛物线y=ax2+ax ﹣2上.(1)点B的坐标为,抛物线的关系式为;(2)若点D是(1)中所求抛物线在第三象限内的一个动点,连接BD、CD,当△BCD的面积最大时,求点D的坐标;(3)若将三角板ABC沿射线BC平移得到△A′B′C′,当C′在抛物线上时,问此时四边形ACC′A′是什么特殊四边形?请证明之,并判断点A′是否在抛物线上,请说明理由.2017年广东省中考数学模拟试卷答案一、选择题1~5:A D A C B 6~10: C D C B D一、填空题11. 6.72×10612. 720°13. 0<m<3 14. 1215. 4π16. 2三、解答题17. 解:原式=2﹣1﹣3×+3=+218.解:移项得,3x<7+1,合并同类项得,3x<8,把x的系数化为1得,x<.在数轴上表示为:,故其非负整数解为:0,1,2.19.(1)解:如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD=∠CAD,∵∠ABC=∠ACB,∴AB=AC,∵在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).20.解:设每台甲种空气净化器为x元,乙种净化器为(x+300)元,由题意得,=,解得:x=1200,经检验得:x=1200是原方程的解,则x+300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元.21.解:(1)作DC⊥AB于C点,∴∠ADC=30°,∠BDC=45° AD=16(海里).在Rt△ADC中,cos∠ADC=,∴DC=AD•cos∠ADC=8(海里).在Rt△DCB中,cos∠BDC=,∴DB===8(海里).答:此时海监船所在的B处与钓鱼岛的距离是8海里.(2)∵DA=16海里,∠ADC=30°,∠AC D=90°,∴AC=8海里,∵∠CDB=45°,∠ACD=90°,∴∠CBD=45°,∴DC=BC=8海里,∴AB=AC+BC=16+8(海里),∴这艘海监船的速度是:(16+8)÷1=16+8≈30(海里/时)答:这艘海监船的速度约为30海里/时.22.解:列表得:(1)点P3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.23.解:(1)∵四边形OABC是矩形,∴BC=OA,AB=OC,∵tan∠COD=,∴设OC=3x,CD=4x,∴OD=5x=5,∴x=1,∴OC=3,CD=4,∴D(4,3),设过点D的反比例函数的解析式为:y=,∴k=12,∴反比例函数的解析式为:y=;(2)∵点D是BC的中点,∴B(8,3),∴BC=8,AB=3,∵E点在过点D的反比例函数图象上,∴E(8,),∴S△DBE=BD•BE==3;(3)存在,∵△OPD为直角三角形,∴当∠OPD=90°时,PD⊥x轴于P,∴OP=4,∴P(4,0),当∠ODP=90°时,如图,过D作DH⊥x轴于H,∴OD2=OH•OP,∴OP==.∴P(,O),∴存在点P使△OPD为直角三角形,∴P(4,O),(,O).24.(1)证明:连接AD,如图所示:∵AB为直径,∴∠ADB=90°,∵AB=AC,∴BD=CD;(2)解:设⊙O的半径是R,则FO=4+R,FA=4+2R,OD=R,连接OD,如图所示:∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴△FOD∽△FAE,∴,∴,即R2﹣R﹣12=0,∵R为半径,∴R=4,R=﹣3(舍去),即⊙O的半径是4.(3)△ABC是等边三角形;理由:∵EF是⊙O的切线,∴OD⊥EF,∴∠ODF=90°,∵FO=4+4=8,OD=4,∴∠F=30°,∴∠FOD=60°,∵OB=OD,∴△OBD是等边三角形,∴∠ABC=60°,∵AC=AB,∴△ABC是等边三角形.25. 解:(1)作BM⊥x轴于M,如图1所示:则∠BMC=90°,∴∠CBM+∠BCM=90°,∵C的坐标为(﹣1,0),点A的坐标为(0,2),∴CO=1,OA=2,∵△ABC是等腰直角三角形,∴BC=CA,∠ACB=90°,∴∠BCM+∠ACO=90°,∴∠CBM=∠ACO,在△BCM和△CAO中,,∴△BCM≌△CAO(AAS),∴BM=CO=1,MC=OA=2,∴OM=2+1=3,∴点B的坐标为:(﹣3,1);故答案为:(﹣3,1);把B(﹣3,1)代入抛物线y=ax2+ax﹣2得:9a﹣3a﹣2=1,解得:a=,∴抛物线的解析式为:y=x2+x﹣2;故答案为:y=x2+x﹣2;(2)设直线BC的解析式为:y=kx+b,根据题意得:,解得:k=﹣,b=﹣,∴直线BC的解析式为:y=﹣x﹣,作直线l∥BC,交抛物线于D,如图2所示:设直线l的解析式为:y=﹣x+c,解方程组,即x2+x﹣2=﹣x+c,整理得:x2+2x﹣4﹣2c=0,当△=0时,S△BCD最大,此时x1=x2=﹣1,y=﹣2,∴点D的坐标为:(﹣1,﹣2);(3)四边形ACC′A′是正方形;点A′在抛物线上;理由如下:根据题意得:点C′为直线BC与抛物线的交点,解方程组得:,或(舍去),∴点C′的坐标为:(1,﹣1),设直线AC的解析式为:y=kx+b,根据题意得:,解得:k=2,b=2,∴直线AC的解析式为:y=2x+2,∵A′C′∥AC,设直线A′C′的解析式为:y=2x+c,把点C′(1,﹣1)代入得:c=﹣3,∴直线A′C′的解析式为:y=2x﹣3,设直线A′C′与抛物线y=x2+x﹣2交于另一点G,解方程组得:,或(舍去),∴点G的坐标为:(2,1),∴C′G==,∵AC==,∴A′与G重合,∴A′在抛物线上;作C′F⊥x轴于F,如图3所示:根据勾股定理得:CC′==,∴CC′=A′C′,∵AC∥A′C′,AC=A′C′,∴四边形ACC′A′是平行四边形,又∵∠ACC′=90°,∴四边形ACC′A′是正方形;。
2017年广东省中考模拟数学试题(三)有答案
2017广东中考模拟试题(三)一、选择题(本题共10题,每小题3分,共30分) 1.函数y =x -2中自变量x 的取值范围是( )A .x≥0 B.x≥-2 C .x≥2 D.x≤-22.在平面直角坐标系中,点P (-20,a )与点Q (b ,13)关于原点对称,则b a +的值为( )A .33B .-33C .-7D .7 3.一次函数23y x =+的图象交y 轴于点A ,则点A 的坐标为( )A .(0,3)B .(3,0)C .(1,5)D .(-1.5,0) 4.抛物线2(1)2y x =-+的顶点坐标是( ).A .(-1,2)B .(1,-2)C .(1,2)D .(-1,-2)5.把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A . ()231y x =+- B .()233y x =++C .()231y x =--D .()233y x =-+ 6.下列函数中,图象经过原点的是( )A .y =3xB .y =1-2xC .y =4xD .y =x 2-17.如图,直线y =-x +m 与y =nx +4n(n≠0)的交点的横坐标为-2, 则关于x 的不等式-x +m >nx +4n >0的整数解为( ) A .-1 B .-5 C .-4 D .-38.如图,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( ) A .1 B .2 C .32 D .529.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )10.二次函数2(0)y ax bx c a =++≠的图像如下图所示,下列说法①0a >;②0b >;③0c <;④240b ac ->,正确的个数是( ) A . 1 B . 2 C .3 D . 4二、填空题(本题共6题,每小题4分,共24分)11.函数1y =的自变量x 的取值范围是 .12.已知函数()x x m y m 3112+-=+,当m= 时,它是二次函数.13.设有反比例函数y =k -2x,(x 1,y 1),(x 2,y 2)为其图象上两点,若x 1<0<x 2,y 1>y 2,则k 的取值范围 .14.一次函数y= -4x+12的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .15.如图,用20 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积 m 2.16.若关于x 的函数y =kx 2+2x -1与x 轴仅有一个公共点,则实数k 的值为 . 三、解答题(一)(本题共3题,每小题6分,共18分)17.反比例函数y =kx的图象经过点A(2,3).(1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.18.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门。
2017年广东省中考数学模拟试卷(三)
2017年广东省中考数学模拟试卷(三)一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%2.(3分)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x43.(3分)下列图案属于轴对称图形的是()A.B.C.D.4.(3分)一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm5.(3分)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=1216.(3分)为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查7.(3分)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD 的度数是()A.25°B.60°C.65°D.75°8.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5)D.(5,﹣2)9.(3分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3 B.2 C.2 D.210.(3分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.12.(4分)一个n边形的内角和为1080°,则n=.13.(4分)若m﹣n=2,m+n=5,则m2﹣n2的值为.14.(4分)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是.15.(4分)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=.16.(4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为.三、解答题17.(6分)化简:.18.(6分)定义新运算为:对于任意实数都有a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.19.(6分)如图,四边形ABCD是平行四边形.(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.20.(7分)如图,为了固定一棵珍贵的古树AD,在树干A处向地面引钢管AB,与地面夹角为60°,向高CE1.5米的建筑物引钢管AC,与水平面夹角为30°,建筑物CE离古树的距离ED为6米,求钢管AB的长(结果保留整数,参考数据:=1.41,=1.73)21.(7分)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.22.(7分)如图,直线l1:y=x与双曲线y=相交于点A(a,2),将直线l1向上平移3个单位得到l2,直线l2与双曲线相交于B、C两点(点B在第一象限),交y轴于D点.(1)求双曲线y=的解析式;(2)求tan∠DOB的值.23.(9分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.(1)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根.(2)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE 的周长是6,求△ABC面积.24.(9分)如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4.(1)求OE的长;(2)求证:PD+PC=2DE;(3)若PC=3,求DP的长和sin∠CPB的值.25.(9分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发沿线段AB向终点B运动.作∠DEF=45°,与边BC相交于点F.(1)找出图中的一对相似三角形,并说明理由;(2)当△BEF为等腰三角形时,求AE的长;(3)求动点E从点A出发沿线段AB向终点B运动的过程中点F的运动路线长.2017年广东省中考数学模拟试卷(三)参考答案与试题解析一、单项选择题(本题共10个小题,每小题3分,共30分)1.(3分)(2016•宜昌)如果“盈利5%”记作+5%,那么﹣3%表示()A.亏损3% B.亏损8% C.盈利2% D.少赚3%【解答】解:∵“盈利5%”记作+5%,∴﹣3%表示表示亏损3%.故选:A.2.(3分)(2011•徐州)下列运算正确的是()A.x•x2=x2B.(xy)2=xy2C.(x2)3=x6D.x2+x2=x4【解答】解:A、x•x2=x3同底数幂的乘法,底数不变指数相加,故本选项错误;B、(xy)2=x2y2,幂的乘方,底数不变指数相乘,故本选项错误;C、(x2)3=x6,幂的乘方,底数不变指数相乘,故本选项正确;D、x2+x2=2x2,故本选项错误.故选C.3.(3分)(2016•漳州)下列图案属于轴对称图形的是()A.B.C.D.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选A.4.(3分)(2012•海南)一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故答案为:C.5.(3分)(2012•成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1﹣x)=121 C.100(1+x)2=121 D.100(1﹣x)2=121【解答】解:设平均每次提价的百分率为x,根据题意得:100(1+x)2=121,故选C.6.(3分)(2009•呼和浩特)为了解我市参加中考的15 000名学生的视力情况,抽查了1 000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查【解答】解:本题中的总体是参加中考的15 000名学生的视力情况,故A不正确;每名学生的视力情况是总体的一个样本,因此C错;上述调查应该是抽查,因此D错.故选B.7.(3分)(2017•广东模拟)如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=25°,则∠CAD的度数是()A.25°B.60°C.65°D.75°【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.8.(3分)(2016•贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5) B.(5,2) C.(2,﹣5)D.(5,﹣2)【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.9.(3分)(2012•遵义)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE 折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A.3 B.2 C.2 D.2【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.故选B.补充方法:连接EF.易证△EFD≌△EFG,可得FG=DF=2,BG=AB=DC=3,可得BF=5,再利用勾股定理求BC比较简单.10.(3分)(2009•荆门)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)(2017•广东模拟)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.12.(4分)(2015•遂宁)一个n边形的内角和为1080°,则n=8.【解答】解:(n﹣2)•180°=1080°,解得n=8.13.(4分)(2011•衡阳)若m﹣n=2,m+n=5,则m2﹣n2的值为10.【解答】解:∵m2﹣n2=(m+n)(m﹣n),而m+n=5,m﹣n=2,∴m2﹣n2=5×2=10.故答案为10.14.(4分)(2017•广东模拟)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是.【解答】解:∵打电话的顺序是任意的,打电话给甲、乙、丙三人的概率都相等,∴第一个打电话给甲的概率为.故答案为:.15.(4分)(2012•梅州)如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=1,则EF=2.【解答】解:作EG⊥OA于G,∵EF∥OB,∴∠OEF=∠COE=15°,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∵EG=CE=1,∴EF=2×1=2.故答案为2.16.(4分)(2017•广东模拟)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为2a2.【解答】解:△ABC是等腰直角三角形,且AB=a,则AC=BC=a,则S=AC•BC=ו=,△ABC中间的正方形的面积是:a2,则阴影部分的面积是:4×+a2=2a2.故答案是:2a2.三、解答题17.(6分)(2012•成都)化简:.【解答】解:原式=•=•=a﹣b.18.(6分)(2017•广东模拟)定义新运算为:对于任意实数都有a、b都有a⊕b=(a﹣b)b﹣1,等式右边都是通常的加法、减法、乘法运算,比如1⊕2=(1﹣2)×2﹣1=﹣3.(1)求(﹣3)⊕4的值;(2)若x⊕2的值小于5,求x的取值范围,并在如图所示的数轴上表示出来.【解答】解:(1)根据题意:(﹣3)⊕4=(﹣3﹣4)×4﹣1=﹣7×4﹣1=﹣29;(2)∵a⊕b=(a﹣b)b﹣1,∴x⊕2=(x﹣2)×2﹣1=2x﹣4﹣1=2x﹣5,∴2x﹣5<5,解得:x<5,用数轴表示为:19.(6分)(2017•广东模拟)如图,四边形ABCD是平行四边形.(1)用尺规作图作∠ABC的平分线交AD于E(保留作图痕迹,不要求写作法,不要求证明)(2)求证:AB=AE.【解答】(1)解:如图所示:(2)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AB=AE.20.(7分)(2017•广东模拟)如图,为了固定一棵珍贵的古树AD,在树干A处向地面引钢管AB,与地面夹角为60°,向高CE1.5米的建筑物引钢管AC,与水平面夹角为30°,建筑物CE离古树的距离ED为6米,求钢管AB的长(结果保留整数,参考数据:=1.41,=1.73)【解答】解:过点C作CF⊥AD于点F,则CF=DE=6,AF=CFtan30°=6×=3.∴AD=AF+DF=2+1.5,在Rt△ABD中,AB==(2+1.5)÷=4+≈6米.答:钢管AB的长约为6米.21.(7分)(2012•成都)某校将举办“心怀感恩•孝敬父母”的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为50,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为320;(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.【解答】解:(1)8+10+16+12+4=50人,1000×=320人;(2)列表如下:共有12种情况,恰好抽到甲、乙两名同学的是2种,所以P(恰好抽到甲、乙两名同学)==.22.(7分)(2012•赤峰)如图,直线l1:y=x与双曲线y=相交于点A(a,2),将直线l1向上平移3个单位得到l2,直线l2与双曲线相交于B、C两点(点B在第一象限),交y轴于D点.(1)求双曲线y=的解析式;(2)求tan∠DOB的值.【解答】解:(1)∵A(a,2)是y=x与y=的交点,∴A(2,2),把A(2,2)代入y=,得k=4,∴双曲线的解析式为y=;(2)∵将l1向上平移了3个单位得到l2,∴l2的解析式为y=x+3,∴解方程组,得,,∴B (1,4),∴tan∠DOB=.23.(9分)(2017•广东模拟)如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE=c,这时我们把关于x 的形如ax2+cx+b=0的一元二次方程称为“勾系一元二次方程”.(1)求证:关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根.(2)若x=﹣1是“勾系一元二次方程”ax2+cx+b=0的一个根,且四边形ACDE 的周长是6,求△ABC面积.【解答】(1)证明:由题意,得△=(c)2﹣4ab=2c2﹣4ab,∵a2+b2=c2,∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0,即△≥0,∴关于x的“勾系一元二次方程”ax2+cx+b=0必有实数根(2)解:当x=﹣1时,有a﹣c+b=0,即a+b=c,∵2a+2b+c=6,即2(a+b)+c=6,∴3c=6,∴c=2,∴a2+b2=c2=4,a+b=2,∵(a+b)2=a2+2ab+b2,∴ab=2,∴S=ab=1.△ABC24.(9分)(2017•广东模拟)如图,AB是⊙O的直径,点P在AB上,C,D是圆上的两点,OE⊥PD,垂足为E,若∠DPA=∠CPB,AB=12,DE=4.(1)求OE的长;(2)求证:PD+PC=2DE;(3)若PC=3,求DP的长和sin∠CPB的值.【解答】(1)解:连接OD,∵AB=12,∴OD=6,∵OE⊥PD,DE=4,∴OE==2;(2)证明:延长CP交⊙O于点F,过点O作OG⊥PF于点G,连接OF,∴FG=CG,∵∠DPA=∠CPB=∠FPA,∴OE=OG,在Rt△OEP和Rt△OGP中,,∴Rt△OEP≌Rt△OGP(HL),同理:Rt△OED≌Rt△OGD,∴PE=PG,DE=FG,∴PD=PF,∴PD+PC=PF+PC=FC=2FG=2DE;(3)∵PC=3,PD+PC=3DE,∴PD+3=8,∴PD=5,∴PE=PD﹣DE=5﹣4=,∴OP==,∴sin∠CPB=sin∠EPD===.25.(9分)(2017•广东模拟)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,点D为AC边上一点,且AD=3cm,动点E从点A出发沿线段AB向终点B运动.作∠DEF=45°,与边BC相交于点F.(1)找出图中的一对相似三角形,并说明理由;(2)当△BEF为等腰三角形时,求AE的长;(3)求动点E从点A出发沿线段AB向终点B运动的过程中点F的运动路线长.【解答】解:(1)△ADE∽△BEF,理由如下:∵在Rt△ABC中,∠C=90°,AC=BC=4cm,∴∠A=∠B=45°,∵∠DEB=∠A+∠ADE=∠DEF+∠BEF,∠DEF=45°,∴∠ADE=∠BEF,∴△ADE∽△BEF;(2)分三种情况①如图1,若EF=BF,则∠B=∠BEF,又∵△ADE∽△BEF,∴∠A=∠ADE=45°,∴∠AED=90°,∴AE=DE=;②如图2,若EF=BE,则∠B=∠EFB又∵△ADE∽△BEF,∴∠A=∠AED=45°,∴∠ADE=90°,∴AE=3;③如图3,若BF=BE,则∠FEB=∠EFB又∵△ADE∽△BEF,∴∠ADE=∠AED,∴AE=AD=3.综上所述,当△BEF为等腰三角形时,AE的长为或3或3.(3)设AE=xcm,BF长为ycm.∵在△ABC中,∠C=90°,AC=BC=4.∴∠A=∠B=45°,AB=4,由(1)得:△ADE∽△BEF,∴=,∴=,∴y=﹣x2+x,∴y=﹣x2+x=﹣(x﹣2)2+,∴当x=2时,y有最大值=,∴点F运动路程为cm.参与本试卷答题和审题的老师有:HJJ;冯延鹏;曹先生;sjzx;zhjh;wdxwzk;家有儿女;zcx;zhangCF;lf2﹣9;gbl210;Linaliu;蓝月梦;CJX;gsls;sd2011;王学峰;星期八;弯弯的小河(排名不分先后)菁优网2017年5月6日。
广东省韶关市中考数学三模试卷
广东省韶关市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)实数5的相反数是()A .B .C . -5D . 52. (2分)(2017·信阳模拟) 如图所示的几何体的主视图是()A .B .C .D .3. (2分) 2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()A . 12.8×1010美元B . 1.28×1011美元C . 1.28×1012美元D . 0.128×1013美元4. (2分)已知:如图,l∥m,等边△ABC的顶点B在直线m上,边BC与直线m所夹锐角为20°,则∠α的度数为()A . 60°B . 45°C . 40°D . 30°5. (2分) (2020八上·常德期末) 下列计算或化简正确的是()A .B .C .D .6. (2分) (2012·北海) 下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A . 1个B . 2个C . 3个D . 4个7. (2分)为了从甲、乙、丙、丁四位同学中选派两位选手参加数学竞赛,老师对他们的五次数学测验成绩进行统计,得出他们的平均分均为85分,且S甲2=100、S乙2=110、S丙2=120、S丁2=90. 根据统计结果,派去参加竞赛的两位同学是()A . 甲、乙B . 甲、丙C . 甲、丁D . 乙、丙8. (2分)如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=8,则S△A′B′C′=()A . 18B . 12C . 32D . 169. (2分)化简的结果是()A .B . aC .D .10. (2分)下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线互相垂直且相等的四边形是菱形④任何三角形都有外接圆,但不是所有的四边形都有外接圆A . ①②B . ②③C . ③④D . ①④11. (2分)已知等腰三角形一边长等于4,一边长等于9,它的周长是()A . 17B . 22C . 17或22D . 1312. (2分) (2017八下·郾城期中) 如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当点P在BC上从B向C移动而R不动时,那么下列结论成立的是()A . 线段EF的长不能确定B . 线段EF的长逐渐增大C . 线段EF的长逐渐减小D . 线段EF的长不改变13. (2分)(2018·湘西) 如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A . 10B . 8C . 4D . 414. (2分)(2017·平南模拟) 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A . 修车时间为15分钟B . 学校离家的距离为2000米C . 到达学校时共用时间20分钟D . 自行车发生故障时离家距离为1000米15. (2分)二次函数y=3(x﹣1)2+2的最小值是()A . 2B . 1C . ﹣1D . ﹣2二、填空题 (共6题;共6分)16. (1分)分解因式:4a﹣a3=________17. (1分) (2018九上·来宾期末) 如图,等边三角形OAB的一边OA在x轴上,双曲线y= 在第一象限内的图象经过OB边的中点C,则点B的坐标是________.18. (1分) (2017八下·卢龙期末) 对于数据:2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别是________19. (1分) (2019七下·陆川期末) 一元一次不等式组有5个整数解,则a的取值范围是________。
2017年广东省韶关市中考数学模拟试卷1--附答案解析
2017年广东省韶关市中考数学模拟试卷(1)一、选择题(共10小题,每小题3分,满分30分)1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.32.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.计算﹣a2+3a2的结果为()A.﹣2a2B.2a2C.4a2D.﹣4a24.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.86.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.3 B.5 C.8 D.107.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个 B.1个 C.2个 D.3个8.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠29.若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm10.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题4分,满分24分)11.我国是世界四大文明古国之一,拥有五千多年的悠久文化与文明史.她位于亚洲东部,太平洋西岸,陆地面积约960万平方千米,这个数据用科学记数法可表示为平方千米.12.不等式2x<4x﹣6的最小整数解为.13.若m+n=10,mn=24,则m2+n2=.14.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于.15.观察下列等式12=1=×1×2×(2+1)12+22=×2×3×(4+1)12+22+32=×3×4×(6+1)12+22+32+42=×4×5×(8+1)…可以推测12+22+32+…+n2=.16.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为.(结果保留π)三、解答题(共3小题,满分18分)17.计算:2tan60°﹣+(2﹣π)0﹣()﹣1.18.先化简,再求值(﹣)÷.其中x是﹣2、﹣1、0、2中的一个.19.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.四、解答题(共3小题,满分21分)20.为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度.21.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:,)22.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?五、解答题(共3小题,满分27分)23.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,交x轴于点D,y=与直线y=x交于点C,若OB2﹣AB2=4(1)求k的值;(2)点B的横坐标为4时,求△ABC的面积;(3)双曲线上是否存在点B,使△ABC∽△AOD?若存在,求出点B的坐标;若不存在,请说明理由.24.已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.25.在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN沿直线MN折叠得到△MNP,若△MNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?2017年广东省韶关市中考数学模拟试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.在﹣4,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣4 B.2 C.﹣1 D.3【考点】有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵正数和0大于负数,∴排除2和3.∵|﹣2|=2,|﹣1|=1,|﹣4|=4,∴4>2>1,即|﹣4|>|﹣2|>|﹣1|,∴﹣4<﹣2<﹣1.故选:A.2.下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选D.3.计算﹣a2+3a2的结果为()A.﹣2a2B.2a2C.4a2D.﹣4a2【考点】合并同类项.【分析】根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(﹣1+3)a2=2a2,故选B.4.分解因式:y3﹣4y2+4y=()A.y(y2﹣4y+4)B.y(y﹣2)2C.y(y+2)2D.y(y+2)(y﹣2)【考点】提公因式法与公式法的综合运用.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(y2﹣4y+4)=y(y﹣2)2,故选B5.一个多边形的内角和是外角和的2倍,这个多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:B.6.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.3 B.5 C.8 D.10【考点】概率公式.【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可.【解答】解:∵摸到红球的概率为,∴P(摸到黄球)=1﹣=,∴=,解得n=8.故选:C.7.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF.其中不能判定四边形DEBF是平行四边形的有()A.0个 B.1个 C.2个 D.3个【考点】平行四边形的判定与性质.【分析】若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以.【解答】解:由平行四边形的判定方法可知:若是四边形的对角线互相平分,可证明这个四边形是平行四边形,②不能证明对角线互相平分,只有①③④可以,故选B.8.关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义得到m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,然后解不等式组即可得到m的取值范围.【解答】解:∵关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,∴m﹣2≠0且△≥0,即22﹣4×(m﹣2)×1≥0,解得m≤3,∴m的取值范围是m≤3且m≠2.故选:D.9.若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为()A.5cm B.8cm C.10cm D.17cm【考点】三角形三边关系.【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【解答】解:∵三角形的两条边长分别为6cm和10cm,∴第三边长的取值范围是:4<x<16,∴它的第三边长不可能为:17cm.故选:D.10.对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1 B.2 C.3 D.4【考点】二次函数的性质.【分析】根据二次函数的性质对各小题分析判断即可得解.【解答】解:①∵a=﹣<0,∴抛物线的开口向下,正确;②对称轴为直线x=﹣1,故本小题错误;③顶点坐标为(﹣1,3),正确;④∵x>﹣1时,y随x的增大而减小,∴x>1时,y随x的增大而减小一定正确;综上所述,结论正确的个数是①③④共3个.故选:C.二、填空题(共6小题,每小题4分,满分24分)11.我国是世界四大文明古国之一,拥有五千多年的悠久文化与文明史.她位于亚洲东部,太平洋西岸,陆地面积约960万平方千米,这个数据用科学记数法可表示为9.6×106平方千米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将960万平方千米用科学记数法表示为:9.6×106平方千米.故答案为:9.6×106.12.不等式2x<4x﹣6的最小整数解为4.【考点】一元一次不等式的整数解.【分析】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.【解答】解:∵2x<4x﹣6,∴2x﹣4x<﹣6,∴﹣2x<﹣6,∴x>3,∴不等式2x<4x﹣6的最小整数解为4,故答案为:4.13.若m+n=10,mn=24,则m2+n2=52.【考点】整式的混合运算;完全平方公式.【分析】利用完全平方公式把条件整体代入整理即可求解.【解答】解:∵m+n=10,mn=24,∴m2+n2=(m+n)2﹣2mn=100﹣48=52.故本题答案为:52.14.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【考点】直角三角形斜边上的中线;等边三角形的判定与性质.【分析】根据直角三角形斜边上的中线等于斜边的一半求出CD=AD,得到△ADC是等边三角形,求出∠A的度数,根据直角三角形两锐角互余求出∠B的度数.【解答】解:∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.15.观察下列等式12=1=×1×2×(2+1)12+22=×2×3×(4+1)12+22+32=×3×4×(6+1)12+22+32+42=×4×5×(8+1)…可以推测12+22+32+…+n2=n(n+1)(2n+1).【考点】规律型:数字的变化类.【分析】根据已知4个等式发现连续自然数的平方和等于×最后一数×(最后一数+1)×(2×最后一数+1),据此可写出第n个等式.【解答】解:∵第1个等式:12=1=×1×2×(2×1+1);第2个等式:12+22=×2×3×(2×2+1);第3个等式:12+22+32=×3×4×(2×3+1)第4个等式:12+22+32+42=×4×5×(2×4+1)…∴第n个等式:12+22+32+…+n2=n(n+1)(2n+1),故答案为:n(n+1)(2n+1).16.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过图形(阴影部分)的面积为.(结果保留π)【考点】扇形面积的计算;旋转的性质.【分析】由于将△ABC绕点C旋转60°得到△A′B′C′,可见,阴影部分面积为扇形ACA′减扇形BCB′,分别计算两扇形面积,在计算其差即可.===6π;【解答】解:如图:S扇形ACA′S扇形BCB′===π;则S阴影=6π﹣=.三、解答题(共3小题,满分18分)17.计算:2tan60°﹣+(2﹣π)0﹣()﹣1.【考点】分母有理化;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】根据60°角的正切值、分母有理化、零指数幂以及负整数指数幂的概念进行计算.【解答】解:2tan60°﹣+(2﹣π)0﹣()﹣1=2×﹣+1﹣=2﹣+1+1﹣3=﹣118.先化简,再求值(﹣)÷.其中x是﹣2、﹣1、0、2中的一个.【考点】分式的化简求值.【分析】先化简分式,再由分式有意义可得x=﹣1,代入求解即可.【解答】解:(﹣)÷=[﹣]×,=2x+8,由分式有意义可得x≠﹣2、0或2,当x=﹣1时,原式=2×(﹣1)+8=6.19.如图,△ABC中,AB=AC,∠A=40°(1)作边AB的垂直平分线MN(保留作图痕迹,不写作法)(2)在已知的图中,若MN交AC于点D,连结BD,求∠DBC的度数.【考点】作图—基本作图;线段垂直平分线的性质;等腰三角形的性质.【分析】(1)分别以A、B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;作直线MN,即MN为线段AB的垂直平分线;(2)由AB的垂直平分线MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由∠A=40°,根据等边对等角的性质,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC的度数,继而求得∠DBC的度数.【解答】解:(1)如图:(2)解:∵AB的垂直平分线MN交AC于D,∴AD=BD,∵∠A=40°,∴∠ABD=∠A=40°, ∵AB=AC ,∴∠ABC=∠C==70°,∴∠DBC=∠ABC ﹣∠ABD=70°﹣40°=30°.四、解答题(共3小题,满分21分)20.为了减少雾霾,美化环境,小王上班的交通方式由驾车改为骑自行车,小王家距单位的路程是15千米,在相同的路线上,小王驾车的速度是骑自行车速度的4倍,小王每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小王骑自行车的速度. 【考点】分式方程的应用.【分析】设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答.【解答】解:设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.根据题意,得=.解得x=15.经检验,x=15是原方程的解,且符合题意. 答:骑自行车的速度为15千米/时.21.目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN 内限速60千米/小时,为了检测车辆是否超速,在公路MN 旁设立了观测点C ,从观测点C 测得一小车从点A 到达点B 行驶了5秒钟,已知∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.(参考数据:,)【考点】解直角三角形的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC•sin60°=200×=100(米),BH=BC•cos60°=100(米),∵∠CAN=45°,∴AH=CH=100米,∴AB=100﹣100≈73(m),∴车速为m/s.∵60千米/小时=m/s,又∵14.6<,∴此车没有超速.22.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用喜欢跳绳的人数除以其所占的百分比即可求得被调查的总人数;(2)用总人数乘以足球所占的百分比即可求得喜欢足球的人数,用总数减去其他各小组的人数即可求得喜欢跑步的人数,从而补全条形统计图;(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.【解答】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×=90人.五、解答题(共3小题,满分27分)23.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,交x轴于点D,y=与直线y=x交于点C,若OB2﹣AB2=4(1)求k的值;(2)点B的横坐标为4时,求△ABC的面积;(3)双曲线上是否存在点B,使△ABC∽△AOD?若存在,求出点B的坐标;若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)设D点坐标为(a,0),根据分别直线上点的坐标特征和反比例函数图象上点的坐标特征得到A点坐标为(a,a),B点坐标为(a,),则AB=a﹣,BD=,在Rt△OBD中,利用勾股定理得OB2=BD2+OD2=()2+a2,由于OB2﹣AB2=4,所以()2+a2﹣(a﹣)2=4,然后解方程可得到k=2;(2)作CM⊥AB于M,解方程组可得到C点坐标为(,),由于点B的横坐标为4,所以A点坐标为(4,4),B点坐标为(4,),则AB=4﹣=,然后根据三角形面积公式计算S△ABC;(3)由于△ABC∽△AOD,根据相似的判定得到△ACB为等腰直角三角形,且∠ACB=90°,根据等腰直角三角形斜边上的中线性质得CM=AB,设B点坐标为(a,),则A点坐标为(a,a),则AB=|a﹣|,而C点坐标为(,),所以CM=|a﹣|,于是得到|a﹣|=|a﹣解得a=或a=﹣(舍去),则B点坐标为(,),此时C与B重合,所以不构成三角形,故不存在.【解答】解:(1)设D点坐标为(a,0),∵AB∥y轴,点A在直线y=x上,B为双曲线y=(x>0)上一点,∴A点坐标为(a,a),B点坐标为(a,),∴AB=a﹣,BD=,在Rt△OBD中,OB2=BD2+OD2=()2+a2,∵OB2﹣AB2=4,∴()2+a2﹣(a﹣)2=4,∴k=2;(2)作CM⊥AB于M,如图,解方程组得或,∴C点坐标为(,)∵点B的横坐标为4,∴A点坐标为(4,4),B点坐标为(4,),∴AB=4﹣=,=CM•AB∴S△ABC=•(4﹣)•=7﹣;(3)不存在.理由如下:∵△ABC∽△AOD,而△OAD为等腰直角三角形,∴△ACB为等腰直角三角形,∠ACB=90°,∴CM=AB,设B点坐标为(a,),则A点坐标为(a,a),∴AB=|a﹣|,∵C点坐标为(,)∴CM=|a﹣|,∴|a﹣|=|a﹣|,∴(a﹣)2=•,即(a﹣)2=•,∴(a﹣)2•[4a2﹣(a+)2]=0,解得a=或a=﹣(舍去),∴B点坐标为(,),则此时C与B重合,所以不构成三角形,故不存在.24.已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.【考点】圆的综合题.【分析】(1)如图①,连接OQ.利用切线的性质和勾股定理来求PQ的长度.(2)如图②,连接BC.利用三角形中位线的判定与性质得到BC∥OQ.根据圆周角定理推知BC⊥AC,所以,OQ⊥AC.(3)利用割线定理来求PQ的长度即可.【解答】解:(1)如图①,连接OQ.∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,∴OQ⊥OP.又∵BP=OB=OQ=2,∴PQ===2,即PQ=2;(2)OQ⊥AC.理由如下:如图②,连接BC.∵BP=OB,∴点B是OP的中点,又∵PC=CQ,∴点C是PQ的中点,∴BC是△PQO的中位线,∴BC∥OQ.又∵AB是直径,∴∠ACB=90°,即BC⊥AC,∴OQ⊥AC.(3)如图②,PC•PQ=PB•PA,即PQ2=2×6,解得PQ=2.25.在△ABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s的速度向点C运动,(点M不与A,B重合,点N不与A,C重合),设运动时间为xs.(1)求证:△AMN∽△ABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把△AMN 沿直线MN 折叠得到△MNP ,若△MNP 与梯形BCNM 重叠部分的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?【考点】二次函数综合题;切线的判定;相似三角形的判定.【分析】(1)欲证△AMN ∽△ABC ,可以通过应用两组对应边的比相等且相应的夹角相等的两个三角形相似,(AM :AN=AB :AC=4:3,∠A=∠A )得出;(2)MN 为直径的⊙O 与直线BC 相切,则圆心O 到直线BC 的距离等于半径,列出函数关系式,求出x 的值;(3)因为∠A=90°,△MNP 与梯形BCNM 重叠部分的面积分为两种情况:等于S △PMN ,或等于S△MNP ﹣S △PEF ,列出y 关于x 的函数表达式,求出当时,y 值最大,最大值是8.【解答】(1)证明:∵,∠A=∠A , ∴△AMN ∽△ABC .(2)解:在Rt △ABC 中,BC==10.由(1)知△AMN ∽△ABC .∴∴MN=5x ,∴⊙O 的半径r=可求得圆心O 到直线BC 的距离d=∵⊙O 与直线BC 相切∴=.解得x=当x=时,⊙O 与直线BC 相切.(3)解:当P 点落在直线BC 上时,则点M 为AB 的中点.故以下分两种情况讨论:①当0<x ≤1时,y=S △PMN =6x 2,12=6.∴当x=1时,y最大=6×②当1<x<2时,设MP交BC于E,NP交BC于F MB=8﹣4x,MP=MA=4x∴PE=4x﹣(8﹣4x)=8x﹣8y=S△MNP﹣S△PEF==∴当时,y最大=8.综上所述,当时,y值最大,最大值是8.2017年3月18日。
2017年广东省韶关市南雄市数学中考模拟试卷【答案】(五)
2017年广东省韶关市南雄市中考数学模拟试卷(五)一、选择题:(每题3分,共30分)1.(3分)的倒数是()A.B.2 C.﹣2 D.﹣2.(3分)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×1063.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.4.(3分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣35.(3分)下列四个选项中,正确的是()A.B.2﹣3=﹣6 C.D.(﹣5)4÷(﹣5)2=﹣526.(3分)如图,在△ABC,DE∥BC,若,DE=4,则BC=()A.8 B.10 C.D.127.(3分)将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120° D.115°8.(3分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.B.C.D.9.(3分)对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象的开口向下B.当x=﹣1时,取得最小值为y=﹣8C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣110.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A.B.C.D.二、填空题:(每题4分,共24分)11.(4分)函数y=中,自变量x的取值范围是.12.(4分)甲,乙两人比赛射击,两人所得平均数相同,其中甲所得环数的方差为12,乙所得环数的方差为8,那么成绩较为稳定的是.(填“甲”或“乙”).13.(4分)已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为cm2.14.(4分)关于x的一元二次方程x2﹣3x+1=0的两个解是x1和x2,则+的值.15.(4分)一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1.3,1.6,1.3,1.5,1.3.则这100条鱼的总质量约为kg.16.(4分)如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是.三、解答题:(每题6分,共18分)17.(6分)计算:4cos45°+(π+3)0﹣+.18.(6分)解方程:=.19.(6分)如图,已知△ABC.(1)把△ABC绕点B顺时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(2)尺规作图作出△ABC的角∠ABC,∠BAC的平分线,并标出两条角平分线的交点P(要求保留作图痕迹,不写作法);并指出点P是△ABC的内心还是外心?四.解答题:(每题7分,共21分)20.(7分)在一个不透明的盒子里,装有三个分别标有数字﹣1,2,3,的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;不放回,再由小华随机取出一个小球,记下数字为y.(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求满足x<y的(x,y)出现的概率.21.(7分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB 是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).22.(7分)如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:BD2=AB•BE.五、解答题:(每题9分,共27分)23.(9分)阅读理解:对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣8a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有:x2+2ax﹣8a2=x2+2ax﹣8a2+a2﹣a2=(x2+2ax+a2)﹣8a2﹣a2=(x+a)2﹣9a2=[(x+a)+3a][(x+a)﹣3a]=((x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x2+2ax﹣3a2分解因式(2)直接填空:请用上述的添项法将方程的x2﹣4xy+3y2=0化为(x)•(x)=0并直接写出y与x的关系式.(满足xy≠0,且x≠y)(3)先化简,再利用(2)中y与x的关系式求值.24.(9分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.25.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2017年广东省韶关市南雄市中考数学模拟试卷(五)参考答案与试题解析一、选择题:(每题3分,共30分)1.(3分)的倒数是()A.B.2 C.﹣2 D.﹣【解答】解:∵2×=1,∴的倒数是:2.故选:B.2.(3分)随着交通网络的不断完善.旅游业持续升温,据统计,在今年“五一”期间,某风景区接待游客403000人,这个数据用科学记数法表示为()A.403×103B.40.3×104C.4.03×105D.0.403×106【解答】解:将403000用科学记数法表示为4.03×105.故选:C.3.(3分)下面的几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.4.(3分)已知a>b,则下列不等式中正确的是()A.﹣3a>﹣3b B.﹣>﹣C.3﹣a>3﹣b D.a﹣3>b﹣3【解答】解:A、不等式两边都乘以﹣3,不等号的方向改变,﹣3a<﹣3b,故A 错误;B、不等式两边都除以﹣3,不等号的方向改变,﹣<﹣,故B错误;C、同一个数减去一个大数小于减去一个小数,3﹣a<3﹣b,故C错误;D、不等式两边都减3,不等号的方向不变,故D正确.故选:D.5.(3分)下列四个选项中,正确的是()A.B.2﹣3=﹣6 C.D.(﹣5)4÷(﹣5)2=﹣52【解答】解:A、=4,故A错误;B、2﹣3==,故B错误;C、(2﹣)(2+)=22﹣()2=﹣1,故C正确;D、(﹣5)4÷(﹣5)2=52=25,故D错误;故选C.6.(3分)如图,在△ABC,DE∥BC,若,DE=4,则BC=()A.8 B.10 C.D.12【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==,∴BC=2DE=2×4=8.故选A.7.(3分)将一块直尺与一块三角板如图2放置,若∠1=45°,则∠2的度数为()A.145°B.135°C.120° D.115°【解答】解:如图,由三角形的外角性质得,∠3=90°+∠1=90°+45°=135°,∵直尺的两边互相平行,∴∠2=∠3=135°.故选B.8.(3分)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.B.C.D.【解答】解:乙队用的天数为:,甲队用的天数为:.则所列方程为:.故选:D.9.(3分)对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象的开口向下B.当x=﹣1时,取得最小值为y=﹣8C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【解答】解:A、y=2(x﹣1)2﹣8,∵a=2>0,∴图象的开口向上,故本选项错误;B、∵y=2(x﹣1)2﹣8,∴当x=1时,取得最小值为y=﹣8,故本选项错误;C、∵对称轴是直线x=1,开口向上,∴当x<1时,y随x的增大而减小,故本选项正确;D、图象的对称轴是直线x=1,故本选项错误;故选C.10.(3分)二次函数y=ax2+bx+c的图象如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图象是()A.B.C.D.【解答】解:∵二次函数的图象开口向下,∴反比例函数y=的图象必在二、四象限,故A、C错误;∵二次函数的图象经过原点,∴c=0,∴一次函数y=bx+c的图象必经过原点,故B错误.故选D.二、填空题:(每题4分,共24分)11.(4分)函数y=中,自变量x的取值范围是x≤2.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.12.(4分)甲,乙两人比赛射击,两人所得平均数相同,其中甲所得环数的方差为12,乙所得环数的方差为8,那么成绩较为稳定的是乙.(填“甲”或“乙”).【解答】解:∵s甲2>s乙2,∴成绩较为稳定的是乙.故填乙.13.(4分)已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为20πcm2.【解答】解:∵圆锥的底面半径为4cm,高为3cm,∴母线长为5cm,∴圆锥的侧面积为2π×4×5÷2=20πcm2.14.(4分)关于x的一元二次方程x2﹣3x+1=0的两个解是x1和x2,则+的值3.【解答】解:∵一元二次方程x2﹣3x+1=0的两个解是x1和x2,∴,,∴,故答案为:3.15.(4分)一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):1.3,1.6,1.3,1.5,1.3.则这100条鱼的总质量约为140kg.【解答】解:从中任选5条平均质量为=1.4kg,则这100条鱼的总质量约为140kg.故答案为140.16.(4分)如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=7cm,CD=3cm,则△ABD的面积是cm2.【解答】解:过点D作DE⊥AB,∵AD平分∠BAC,∴DE=CD=3,S△ABD=AB×DE=×7×3=cm2.故答案为:cm2.三、解答题:(每题6分,共18分)17.(6分)计算:4cos45°+(π+3)0﹣+.【解答】解原式==418.(6分)解方程:=.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解.19.(6分)如图,已知△ABC.(1)把△ABC绕点B顺时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(2)尺规作图作出△ABC的角∠ABC,∠BAC的平分线,并标出两条角平分线的交点P(要求保留作图痕迹,不写作法);并指出点P是△ABC的内心还是外心?【解答】解:(1)如图,△A1BC1即为所求;(2)如图,AD,BE即为△ABC的∠ABC,∠BAC的平分线,点P为△ABC的内心.四.解答题:(每题7分,共21分)20.(7分)在一个不透明的盒子里,装有三个分别标有数字﹣1,2,3,的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;不放回,再由小华随机取出一个小球,记下数字为y.(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求满足x<y的(x,y)出现的概率.【解答】解:(1)列表如下:所有等可能的情况有6种,分别为(﹣1,2),(﹣1,3),(2,﹣1),(2,3),(3,﹣1),(3,2);(2)6种结果出现的机会均等,满足x<y的有(﹣1,2)(﹣1,3),(2,3)三种结果,则P(A)==.21.(7分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路.现新修一条路AC到公路l.小明测量出∠ACD=31°,∠ABD=45°,BC=50m.请你帮小明计算他家到公路l的距离AD的长度?(精确到0.1m;参考数据tan31°≈0.60,sin31°≈0.51,cos31°≈0.86).【解答】解:∵∠2=45°∠3=90°∴∠4=45°∴∠2=∠4 即BD=AD设BD=AD=xm,∵AC=50m∴CD=x+50,在Pt△ACD中tanC=,10x=6x+3004x=300x≈75.0.答:AD=75.0m.22.(7分)如图,在△ABC中,BA=BC,以AB为直径作半圆⊙O,交AC于点D,过点D作DE⊥BC,垂足为点E.(1)求证:DE为⊙O的切线;(2)求证:BD2=AB•BE.【解答】证明:(1)连接OD、BD,则∠ADB=90°(圆周角定理),∵BA=BC,∴CD=AD(三线合一),又∵AO=OB,∴OD是△ABC的中位线,∴OD∥BC,∵∠DEB=90°,∴∠ODE=90°,即OD⊥DE,故可得DE为⊙O的切线;(2)∵∠EBD=∠DBC,∠DEB=∠CDB,∴△BED∽△BDC,∴=,又∵AB=BC,∴=,故BD2=AB•BE.五、解答题:(每题9分,共27分)23.(9分)阅读理解:对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣8a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣8a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有:x2+2ax﹣8a2=x2+2ax﹣8a2+a2﹣a2=(x2+2ax+a2)﹣8a2﹣a2=(x+a)2﹣9a2=[(x+a)+3a][(x+a)﹣3a]=((x+4a)(x﹣2a)像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x2+2ax﹣3a2分解因式(2)直接填空:请用上述的添(拆)项法将方程的x2﹣4xy+3y2=0化为(x ﹣y)•(x﹣3y)=0并直接写出y与x的关系式.(满足xy≠0,且x≠y)(3)先化简,再利用(2)中y与x的关系式求值.【解答】解:(1)x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+a+2a)(x+a﹣2a)=(x+3a)(x﹣a);(2)x2﹣4xy+3y2=0可化为(x﹣y)(x﹣3y)=0,可得x﹣y=0或x﹣3y=0x=y或x=3y∵x≠y或xy≠0∴x=3y;(3)原式===﹣把x=3y代入①式中原式=﹣=﹣.24.(9分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.【解答】(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△CBD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.25.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∵C(0,﹣3),∴CO=3,又∵OE=EC,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去),∴P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x ﹣3),设直线BC的解析式为:y=kx+d,则,解得:∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);当0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC+S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.。
2017年广东省初中毕业生学业考试数学模拟试卷(三)(含答案)
2017年广东省初中毕业生学业考试数学模拟试卷(三)一、选择题(本大题共10小题,每小题3分,共30分)1.下列各式不成立的是( )A .|-2|=2B .|+2|=|-2|C .-|+2|=±|-2|D .-|-3|=+(-3) 2.下列各实数中,最小的是( )A .-πB .(-1)0 C.3-1 D .|-2| 3.如图M1-1,AB ∥CD ,∠C =32°,∠E =48°,则∠B 的度数为( )A .120°B .128°C .110°D .100°图M1-1 图M1-24.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )A. B. C. D. 5.下列计算正确的是( )A .2a +3b =5abB .(a 2)4=a 8C .a 3·a 2=a 6D .(a -b )2=a 2-b 26.据报道,中国内地首次采用“全无人驾驶”的燕房线地铁有望年底完工,列车通车后将极大改善房山和燕山居民的出行条件,预计年输送乘客可达7300万人次,将7300用科学记数法表示应为( )A .73×102B .7.3×103C .0.73×104D .7.3×102 7.如图M1-2是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的众数与中位数分别为( )A .9,8B .8,9C .8,8.5D .19,178.已知关于x 的一元二次方程mx 2+2x -1=0有两个不相等的实数根,则m 的取值范围是( )A .m <-1B .m >1C .m <1,且m ≠0D .m >-1,且m ≠0 9.如图M1-3,在矩形ABCD 中,AB =1,AD =2,将AD 边绕点A 顺时针旋转,使点D 恰好落在BC 边上的点D ′处,则阴影部分的扇形面积为( )A .π B.π2 C.π3 D.π4图M1-3 图M1-410.如图M1-4,已知在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是边AC 上一动点,过点E 作EF ∥BC ,交AB 边于点F ,点D 为BC 上任一点,连接DE ,DF .设EC 的长为x ,则△DEF 的面积y 关于x 的函数关系大致为( )A. B. C. D. 二、填空题(本大题共6小题,每小题4分,共24分) 11.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为________.12.分式方程1x =32x +3的解为________.13.如图M1-5,自行车的链条每节长为2.5 cm ,每两节链条相连接部分重叠的圆的直径为0.8 cm ,如果某种型号的自行车链条共有60节,则这根链条没有安装时的总长度为________cm.图M1-514.如图M1-6,菱形ABCD 的边长为15,sin ∠BAC =35,则对角线AC 的长为________.图M1-6 图M1-7 图M1-815.如图M1-7,△ABC 与△DEF 是位似图形,位似比为2∶3,若AB =6,那么DE =________.16.如图M1-8,已知S △ABC =8 m 2,AD 平分∠BAC ,且AD ⊥BD 于点D ,则S △ADC =________ m 2.三、解答题(一)(本大题共3小题,每小题6分,共18分) 17.解方程:x 2-2x -4=0.18.先化简,再求值:2x x +1-2x +6x 2-1÷x +3x 2-2x +1.其中x = 3.19.如图M1-9,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD,BC于点E,F,垂足为点O;(要求用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)中,连接BE和DF,求证:四边形DEBF是菱形.图M1-9四、解答题(二)(本大题共3小题,每小题7分,共21分)20.将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?用树状图(或列表法)表示所有可能出现的结果.这个两位数恰好是4的倍数的概率是多少?21.如图M1-10,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.(1)求证:①△ABG≌△AFG; ②BG=GC;(2)求△FGC的面积.图M1-1022.“关注校车,关爱儿童”成为今年全社会热议的焦点话题之一.某幼儿园计划购进一批校车.若单独购买35座校车若干辆,现有的需接送儿童刚好坐满;若单独购买55座校车,则可以少买一辆,且余45个空座位.(1)求该幼儿园现有的需接送儿童人数;(2)已知35座校车的单价为每辆32万元,55座校车的单价为每辆40万元.根据购车资金不超过150万元的预算,学校决定同时购进这两种校车共4辆(可以坐不满),请你计算本次购进小车的费用.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-11,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象交于P (n,2),与x 轴交于A (-4,0),与y 轴交于点C ,PB ⊥x 轴于点B ,且AC =BC .(1)求一次函数、反比例函数的解析式;(2)反比例函数图象有一点D ,使得以B ,C ,P ,D 为顶点的四边形是菱形,求出点D 的坐标.图M1-1124.⊙O 的半径为5,AB 是⊙O 的直径,点C 在⊙O 上,点D 在直线AB 上. (1)如图M1-12(1),已知∠BCD =∠BAC ,求证:CD 是⊙O 的切线;(2)如图M1-12(2),CD 与⊙O 交于另一点E .BD ∶DE ∶EC =2∶3∶5,求圆心O 到直线CD 的距离;(3)若图M1-12(2)中的点D 是直线AB 上的动点,点D 在运动过程中,会出现C ,D ,E在三点中,其中一点是另外两点连线的中点的情形,问这样的情况出现几次?(1) (2)图M1-1225.如图M1-13(1),矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B 落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图M1-13(2),若P为线段EC上一动点,过点P作△AEC的内接矩形,使其顶点Q落在线段AE上,定点M,N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.(1)(2)图M1-132017年广东省初中毕业生学业考试数学模拟试卷(三) 1.C 2.A 3.D 4.C 5.B 6.B 7.B 8.D 9.C 10.D 11.8 12.x =3 13.102.8 14.24 15.9 16.4 17.解:由原方程移项,得x 2-2x =4.等式两边同时加上一次项系数一半的平方,得 x 2-2x +1=5.配方,得(x -1)2=5.∴x =1±5.∴x 1=1+5,x 2=1- 5.18.解:原式=2x x +1-2()x +3()x +1()x -1·()x -12x +3=2x x +1-2()x -1x +1=2x +1.当x =3时,原式=23+1=3-1.19.(1)解:如图D160,EF 即为所求.图D160(2)证明:如图,∵四边形ABCD 为矩形, ∴AD ∥BC .∴∠ADB =∠CBD .∵EF 垂直平分线段BD ,∴BO =DO . 在△DEO 和△BFO 中, ∵⎩⎪⎨⎪⎧∠ADB =∠CBD ,BO =DO ,∠DOE =∠BOF , ∴△DEO ≌△BFO (ASA).∴EO =FO . ∴四边形DEBF 是平行四边形.又∵EF ⊥BD ,∴四边形DEBF 是菱形.20.解:(1)∵将分别标有数字1,2,3的三张卡片洗匀后,背面朝上放在桌上,∴P (抽到奇数)=23.(2)画树状图(如图D161)得图D161∴能组成的两位数是12,13,21,23,31,32.∵共有6种等可能的结果,这个两位数恰好是4的倍数的有2种情况,∴这个两位数恰好是4的倍数的概率为26=13.21.(1)证明:①在正方形ABCD 中,AD =AB ,∠D =∠B =∠DCB =90°,又∵△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,∴∠AFG =∠AFE =∠D =90°,AF =AD .即有∠B =∠AFG =90°,AB =AF ,AG =AG . 在Rt △ABG 和Rt △AFG 中, ⎩⎪⎨⎪⎧AB =AF ,AG =AG , ∴△ABG ≌△AFG .②∵AB =6,点E 在边CD 上,且CD =3DE ,∴DE =FE =2,CE =4.不妨设BG =FG =x ,(x >0),则CG =6-x ,EG =2+x , 在Rt △CEG 中,(2+x )2=42+(6-x )2 , 解得x =3,于是BG =GC =3.(2)解:∵GF FE =32,∴GF GE =35.∴S △FGC =35S △EGC =35×12×4×3=185.22.解:(1)设单独租用35座客车需x 辆. 由题意,得35x =55(x -1)-45. 解得x =5.∴35x =35×5=175.答:该幼儿园现有的需接送儿童人数为175人. (2)设租35座客车y 辆,则租55座客车(4-y )辆.由题意,得⎩⎨⎧35y +55()4-y ≥175,32y +40()4-y ≤150.解这个不等式组,得114≤y ≤214.∵y 取正整数,∴y =2.∴4-y =4-2=2.∴购进小车的费用为32×2+40×2=144(万元). 答:本次购进小车的费用是144万元.23.解:(1)∵AC =BC ,CO ⊥AB ,A (-4,0),∴O 为AB 的中点,即OA =OB =4.∴P (4,2),B (4,0). 将A (-4,0)与P (4,2)代入y =kx +b ,得⎩⎪⎨⎪⎧-4k +b =0,4k +b =2.解得⎩⎪⎨⎪⎧k =14,b =1.∴一次函数解析式为y =14x +1.将P (4,2)代入反比例函数解析式得m =8,即反比例函数解析式为y =8x.(2)如图D162,图D162当PB 为菱形的对角线时, ∵四边形BCPD 为菱形, ∴PB 垂直且平分CD .∵PB ⊥x 轴,P (4,2),∴点D (8,1). 当PC 为菱形的对角线时,PB ∥CD ,此时点D 在y 轴上,不可能在反比例函数的图象上,故此种情形不存在. 综上所述,点D (8,1).24.(1)证明:如图D163,连接OC .∵OA =OC , ∴∠OAC =∠OCA .又∵AB 是⊙O 的直径,∴∠ACB =90°. 又∵∠BCD =∠BAC =∠OCA , ∴∠BCD +∠OCB =90°,即OC ⊥CD . ∴CD 是⊙O 的切线.图D163 图D164(2)解:∵∠ADE =∠CDB ,∠BCD =∠EAD , ∴△BCD ∽△EAD .∴CD AD =BD ED .∴CE +ED AB +BD =BD ED. 又∵BD ∶DE ∶EC =2∶3∶5,⊙O 的半径为5, ∴BD =2,DE =3,EC =5.如图D164,连接OC ,OE ,则△OEC 是等边三角形,作OF ⊥CE 于F ,则EF =12CE =52,∴OF =5 32.∴圆心O 到直线CD 的距离是5 32.(3)解:这样的情形共有出现三次,当点D 在⊙O 外时,点E 是CD 中点,有以下两种情形,如图D165、图D166; 当点D 在⊙O 内时,点D 是CE 中点,有以下一种情形,如图D167.图D165 图D166 图D167 25.(1)证明:由矩形和翻折的性质可知AD =CE ,DC =EA . 在△ADE 与△CED 中, ⎩⎪⎨⎪⎧AD =CE ,DE =ED ,DC =EA ,∴△DEC ≌△EDA (SSS).(2)解:∵∠ACD =∠BAC ,∠BAC =∠CAE , ∴∠ACD =∠CAE .∴AF =CF . 设DF =x ,则AF =CF =4-x .在Rt △ADF 中,AD 2+DF 2=AF 2,即32+x 2=(4-x )2.解得x =78,即DF =78.(3)解:如图D168,由矩形PQMN 的性质得PQ ∥CA ,图D168∴PE CE =PQ CA. 又∵CE =3,AC =AB 2+BC 2=5.设PE =x (0<x <3),则x 3=PQ 5,即PQ =53x .过点E 作EG ⊥AC 于G ,则PN ∥EG , ∴CP CE =PN EG. 又∵在Rt △AEC 中,EG ·AC =AE ·CE ,解得EG =125,∴3-x 3=PN 125,即PN =45(3-x ). 设矩形PQMN 的面积为S ,则S =PQ ·PN =-43x 2+4x =-43⎝⎛⎭⎫x -322+3(0<x <3). 所以当x =32,即PE =32时,矩形PQMN 的面积最大,最大面积为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省韶关市南雄市中考数学模拟试卷(三)一、选择题(每题3分,共30分)1.(3分)比0大的数是()A.﹣1 B.C.0 D.12.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a94.(3分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差5.(3分)如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=06.(3分)用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B.C.D.7.(3分)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.8.(3分)已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<9.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.10.(3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二、填空题(每题4分,共24分)11.(4分)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.12.(4分)分解因式:x3﹣xy2=.13.(4分)如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=度.14.(4分)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为.15.(4分)分式方程=1的解是x=.16.(4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为s,则第n个矩形的面积为.三、解答题(一)(每题6分,共18分)17.(6分)计算:﹣|﹣3|﹣()﹣1+2cos45°.18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.19.(6分)五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果保留根号)四、解答题(二)(每题7分,共21分)20.(7分)“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?21.(7分)现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.22.(7分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE ⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)五、解答题(三)(每题9分,共27分)23.(9分)在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB 的垂线,交于点E,连结BE、AE.(1)当AE∥BC(如图(1))时,求⊙O的半径;(2)设BO=x,AE=y,求y关于x的函数关系式;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.24.(9分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.25.(9分)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.2017年广东省韶关市南雄市中考数学模拟试卷(三)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)比0大的数是()A.﹣1 B.C.0 D.1【解答】解:4个选项中只有D选项大于0.故选D.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,也是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.3.(3分)下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a9【解答】解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.4.(3分)体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的()A.平均数B.频数分布C.中位数D.方差【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生了5次短跑训练成绩的方差.故选D.5.(3分)如果分式有意义,则x的取值范围是()A.全体实数B.x=1 C.x≠1 D.x=0【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故选C.6.(3分)用3个相同的立方块搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【解答】解:从上面看左边一个正方形右边一个正方形,故D正确;故选:D.7.(3分)在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.【解答】解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.8.(3分)已知点P(1﹣2a,a+3)在第二象限,则a的取值范围是()A.a<﹣3 B.a>C.﹣<a<3 D.﹣3<a<【解答】解:由点P(1﹣2a,a+3)在第二象限,得.解得a>,故选B.9.(3分)函数(a≠0)与y=a(x﹣1)(a≠0)在同一坐标系中的大致图象是()A.B.C.D.【解答】解:y=a(x﹣1)=ax﹣a,当a>0时,反比例函数在第一、三象限,一次函数在第一、三、四象限,当a<0时,反比例函数在第二、四象限,一次函数在第一、二、四象限,故选:A.10.(3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3【解答】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵AB是⊙C的直径,∴∠AOB=90°,∴∠ABO=90°﹣∠BAO=90°﹣60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长==3.故选:C.二、填空题(每题4分,共24分)11.(4分)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为 5.25×106.【解答】解:将5250000用科学记数法表示为:5.25×106.故答案为:5.25×106.12.(4分)分解因式:x3﹣xy2=x(x+y)(x﹣y).【解答】解:x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).13.(4分)如图AB∥CD,CE交AB于点A,AD⊥AC于点A,若∠1=48°,则∠2=42度.【解答】解:∵AB∥CD,∠1=48°,∴∠C=∠1=48°,∵AD⊥AC,∴∠CAD=90°,∴∠2=90°﹣∠C=90°﹣48°=42°.故答案为;42.14.(4分)如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为8.【解答】解:∵Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,∴A′B′=AB=16,∵C′D为Rt△A′B′C′的斜边A′B′上的中线,∴C′D=A′B′=8.故答案为:8.15.(4分)分式方程=1的解是x=.【解答】解:去分母得:3x=x+1,解得:x=,经检验x=是分式方程的解,故答案为:16.(4分)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为s,则第n个矩形的面积为(s)2n﹣2.【解答】解:已知第一个矩形的面积为s;第二个矩形的面积为原来的()2×2﹣2s=s;第三个矩形的面积是(s)2×3﹣2=s;…故第n个矩形的面积为:()2n﹣2s.故答案为:()2n﹣2s.三、解答题(一)(每题6分,共18分)17.(6分)计算:﹣|﹣3|﹣()﹣1+2cos45°.【解答】解:原式=2﹣3﹣2+2×=﹣﹣2+=﹣2.18.(6分)如图,在△ABC中,AB=AC,∠ABC=70°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D;(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.【解答】解:(1)如图,∠ABC的平分线如图所示.(2)∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,∵BD平分∠ABC,∴∠ABD=∠ABC=35°,∴∠BDC=∠ABD+∠A=35°+40°=75°.19.(6分)五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45°方向;然后沿北偏东60°方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果保留根号)【解答】解:过点P作PC⊥AB于C,则∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.在Rt△ACP中,∵∠ACP=90°,∠APC=30°,AP=100,∴AC=AP=50,PC=AC=50.在Rt△BPC中,∵∠BCP=90°,∠BPC=45°,∴BC=PC=50.∴AB=AC+BC=(50+50)(米).答:景点A与B之间的距离为(50+50)米.四、解答题(二)(每题7分,共21分)20.(7分)“3•15”前夕,为了解食品安全状况,质监部门抽查了甲、乙、丙、丁四个品牌饮料的质量,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共200瓶;(2)请你在答题卡上补全两幅统计图;(3)求图1中“甲”品牌所对应的扇形圆心角的度数;(4)若四个品牌饮料的平均合格率是95%,四个品牌饮料月销售量约20万瓶,请你估计这四个品牌的不合格饮料有多少瓶?【解答】解:(1)四个品牌的总瓶数是:40÷20%=200(瓶);(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙的瓶数是:200×15%=30(瓶);如图:(3)甲所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:200000×(1﹣95%)=10000(瓶).答:这四个品牌的不合格饮料有10000瓶.故答案为:200.21.(7分)现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A公司安装66台空调,乙安装队为B公司安装80台空调,乙安装队提前一天开工,最后与甲安装队恰好同时完成安装任务.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装多少台空调.【解答】解:设甲安装队每天安装x台空调,则乙安装队每天安装(x﹣2)台空调,由题意,得,解得:x1=22,x2=﹣6.经检验,x1=22,x2=﹣6都是原方程的根,x=﹣6不符合题意,舍去.∴x=22,∴乙安装队每天安装22﹣2=20台.答:甲安装队每天安装22台空调,则乙安装队每天安装20台空调.22.(7分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE ⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)【解答】(1)证明:如图1,连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°,∴BD⊥AC,∵AB=BC,∴AD=DC,∵AO=OB,∴OD是△ABC的中位线,∴DO∥BC,∵DE⊥BC,∴DE⊥OD,∵OD为半径,∴DE是⊙O切线;(2)解:如图2所示,连接OG,OD ∵DG⊥AB,OB过圆心O,∴弧BG=弧BD,∵∠A=35°,∴∠BOD=2∠A=70°,∴∠BOG=∠BOD=70°,∴∠GOD=140°,∴劣弧DG的长是=π.五、解答题(三)(每题9分,共27分)23.(9分)在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,点O是AB边上的动点,以O为圆心,OB为半径的⊙O与边BC的另一交点为D,过点D作AB 的垂线,交于点E,连结BE、AE.(1)当AE∥BC(如图(1))时,求⊙O的半径;(2)设BO=x,AE=y,求y关于x的函数关系式;(3)若以A为圆心的⊙A与⊙O有公共点D、E,当恰好也过点C时,求DE的长.【解答】解:(1)过点O作OG⊥BD于G,设AB与DE的交点为F,如图(1),∵OG⊥BD于G,∴BG=DG.∵DE⊥AB,∴EF=DF,∵AE∥BC,∴∠AEF=∠BDF.在△AEF和△BDF中,,∴△AEF≌△BDF,∴AE=BD.∵∠BFD=∠BAC=90°,∴DE∥AC.∵AE∥BC,∴四边形AEDC是平行四边形,∴AE=DC,∴BD=DC=BC=5,∴BG=DG=BD=.在Rt△BGO中,tan∠OBG==,∴OG=BG=×=,∴OB===,∴⊙O的半径长为;(2)过点A作AH⊥BC于H,如图(2),在Rt△BAC中,tan∠ABC==,设AC=3k,则AB=4k,∴BC=5k=10,∴k=2,∴AC=6,AB=8,∴AH===,∴BH==,∴HC=BC﹣BH=10﹣=.∵AB⊥DE,∴根据垂径定理可得DF=EF,∴AB垂直平分DE,∴AE=AD.在Rt△BGO中,tan∠OBG==,∴OG=BG,∴OB===BG=x,∴BG=x,∴BD=2BG=x,∴DH=BH﹣BD=﹣x,∴y=AE=AD===(0<x≤);(3)①若点D在H的左边,如图(2),∵AD=AC,AH⊥DC,∴DH=CH=,∴BD=BH﹣DH=﹣=.在Rt△BFD中,tan∠FBD==,∴BF=DF,∴BD===DF=,∴DF=,∴DE=2DF=;②若点D在H的右边,则点D与点C重合,∴BD=BC=10,∴DF=10,∴DF=6,∴DE=2DF=12.综上所述:当⊙A恰好也过点C时,DE的长为或12.24.(9分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;=2,求经过点C的反比例函数的(2)若直线AB上的点C在第一象限,且S△BOC解析式.【解答】解:(1)设直线AB的解析式为y=kx+b(k≠0),∵直线AB过点A(1,0)、点B(0,﹣2),∴,解得,∴直线AB的解析式为y=2x﹣2;(2)设点C的坐标为(m,n),经过点C的反比例函数的解析式为y=,∵点C在第一象限,∴S=×2×m=2,△BOC解得:m=2,∴n=2×2﹣2=2,∴点C的坐标为(2,2),则a=2×2=4,∴经过点C的反比例函数的解析式为y=.25.(9分)如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.【解答】(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.。