数列教学设计
数列的教案
数列的教案【篇一:数列的概念的教学设计】数列的概念教学设计一、教材与教学分析1.数列在教材中的地位根据新课程的标准,“数列”这一章首先通过大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边. 作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学三维目标分析知识目标:使学生理解数列概念、分类、表示方法以及数列通项公式能力目标:1)通过对数列概念的教学让学生了解数列和函数间的关系2)会用通项公式写出数列的任意一项3)对于简单的数列会根据其前几项写出它的一个通项公式情感目标:1)培养学生观察抽象的能力2)培养学生从特殊到一般的归纳能力3)创设师生共同研究的教学情境,培养学生乐于求索,勇于创新的精神教学重点:理解数列概念教学难点:根据数列的前几项抽象归纳出数列的通项公式二、教学方法与学习方法启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。
探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。
合作学习——通过组织小组讨论达到探究、归纳的目的。
三、教学过程设计1.创设情景,引入新课有人说,大自然是懂数学的.通过多媒体图片展示花瓣数:2,3,5,8,13,具有一定的规律性,学生发现,教师适时点拨规律.图片展示树的分支也呈现同样的规律性.从而介绍学习数列的意义:数列是反映自然规律的模型——引出课题;设计意图:为了让学生体会数学源于生活并激发学生的学习兴趣,采用生活中学生熟悉的问题引入,关注学生的最近发展区,学生思维产生“结点”;2.实例分析,理解概念内涵数学发展的过程中,类似于上述例子很多,例如:①庄子“一尺之棰,日取其半,万世不竭.” 11214181, 16②我国从84年奥运会到08年奥运会共获得了163枚金牌数:5,15, 16,16, 28, 32, 51.③电影院有30排座位,第一排有20个座位,从第二排起,后一排都比前一排多2个座位,那么各排的座位数依次为:20,22,24,26,?,78④堆放的钢管从上到下每层数目:4,5, 6, 7,8, 9, 10通过以上实例应到学生思考每组数字具有怎样的特征:都有一定的顺序点拨:本问题研究第几个位置上的数字是什么的问题?也就是研究按顺序排列的一列数的问题,这就是数列;设计意图:对教材中的引例进行深化,为帮助学生形成数列概念;一个数学概念的学习与形成需要大量的、有意义的实例才能帮助学生理解透彻;多给学生参与的机会才能将问题理解清楚,从而掌握概念、概括概念的本质;3.抽象概括,形成数列概念由学生通过对上述问题本质的理解,试概括出数列的定义,教师给予指导;按一定次序排列的一列数叫数列,数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项(首项)、第2项、?、第n 项?,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列;数列的一般形式可以写成:a1,a2,?,an,?简记为{an},其中an 是数列的第n项;引导学生对概念进行反思与巩固①说出生活中的一个数列实例.②数列“1,2,3,4,5”与数列“5 ,4, 3,2,1 ”是否为同一个数列?③数列“-5,-3,-1,1,3,5,?”中,a3,a6各是什么数?设计意图:结合数列的定义,让学生举出数列的例子,并让学生判断举出的例子是否是数列,生生互动;检测学生是否理解数列的概念;给出3个问题由学生讨论并回答,教师启发总结,进一步加深对数列概念的理解,师生互动;4.深入探究,理解概念外延①数列的函数观点数列研究的是第几个位置上的数是多少的问题,其中存在几个变量?是否符合函数的变量间的关系?用此观点分析数列上述一数列,对于数列中的每个序号n,都有唯一的一个项an与之对应:序号 1 2 3 4 ??64↓↓↓↓ ↓项1 22223 ??263*引导学生从函数的观点分析数列:数列可以看成以正整数集n或它的有限子集{1,2, ?k}为定义域的函数an=f(n),当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,即数列是一个特殊的函数;设计意图:抓住数列蕴含着两变量间关系的本质,以问题形式提出,学生对知识建构形成自然,然后用从特殊到一般的方法帮助学生理解;②数列的通项公式从函数角度看,通项公式就是an与n之间的函数关系式an=f(n);如数列1,2,3 ,n, 通项公式为an=f(n)=n即an=n 1111又如数列1,,, ,, 通项公式为an= n23n教学中,学生体会数列通项公式将数列所有项及性质表达很清楚,故求通项公式对研究数列是非常有帮助的;5.应用概念,解决问题例1.根据下面数列{an}的通项公式,写出它的前5项:(启发学生回答)⑴an=n (2)an=(-1)n?n n+1题后反思:方法,类似于求函数值,在通项公式中依次取n=1、2、3、4、5得到数列的前5项. 例2写出下面数列的一个通项公式.(启发学生回答)(1)1,2,4,8,...(2)3,5,7,9,... (3)9,99,999,9999,... (4)1,-1,1,-1,...题后反思:①题目条件中让写出“一个”通项公式,能否再写出一个符合题意的通项公式?注:给出数列的前几项,可以归纳出不止一个通项公式;②写通项公式的一般方法:由各项的特点,找出各项共同的构成规律.通过观察、归纳研究数列中的项与序号之间的关系,写出一个满足条件的最简捷的公式.6.课堂练习,检测与反馈练习1.写出下列数列的一个通项公式:(1)1,4,9,16,... (2)5,55,555,5555,...(3) 1--, 234练习2.如图是第七届国际数学教育大会的会徽图案,是由一串直角三角形演化而成的,其中 oa1,oa2,oa3, ,oa8的长度组成数列1=a1a2=a2a3= =a7a8=1,记oa111{an}(n∈n,1≤n≤8)若按上述方式,一直下去,你能计算出oa2012的长度吗?aa5a63a21a7a87.课堂小结引导学生思考:通过本节课的学习谈谈你有哪些收获?①本节学习的数学知识:数列的概念和简单表示;四、教学评价与反思1.通过概念课教学,力求使学生明确(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。
数列的概念教学设计案例
数列的概念教学设计案例教学设计案例:数列的概念教学一、教学目标:1.理解数列的概念,知道数列是一系列有规律的数字按照一定次序排列所组成的集合;2.能够辨别等差数列和等比数列的特征,运用概念解决简单的数列问题;3.能够找到数列的通项公式,并应用通项公式解决数列中的问题;4.发展学生的逻辑思维和推理能力,培养学生解决问题的能力。
二、教学重点和难点:1.教学重点:数列的概念以及等差数列和等比数列的特征;2.教学难点:数列的推理和解决问题的能力。
三、教学准备:1.教学素材:教科书、学生练习册、PPT课件等;2.教学工具:投影仪、电脑。
四、教学过程:Step 1: 引入与导入(10分钟)1.利用PPT呈现一个数字序列:2,4,6,8,...2.询问学生这些数字按照什么规律排列,引导学生提到这是一个等差数列,规则是每次增加23.引出数列的概念,在黑板上写下数列的定义:“数列是按照一定次序排列的一系列数字的集合。
”Step 2: 例子引入(10分钟)1.给出第二个例子:1,3,5,7,9,...2.询问学生这个数字序列的规律,引导学生发现这是一个奇数的等差数列。
3.引导学生总结等差数列的特征。
Step 3: 理解等差数列(20分钟)1.教师通过示意图展示等差数列的图像,解释等差数列的特点和性质;2.让学生根据等差数列的特征判断是否为等差数列,并找出这些数列的通项公式;3.通过练习来巩固学生的理解。
Step 4: 理解等比数列(20分钟)1.引入等比数列的概念,让学生观察数列2,6,18,54,...并分析规律;2.引导学生总结等比数列的特征和通项公式;3.通过实例练习巩固学生对等比数列的理解。
Step 5: 解决数列问题(20分钟)1.提供一些实际问题,让学生运用等差数列和等比数列的概念和通项公式来解答;2.引导学生思考问题并运用数列的概念进行推理;3.学生独立完成练习题。
Step 6: 拓展与归纳(10分钟)1.教师总结数列的概念、等差数列和等比数列的特点;2.引导学生思考数列在现实生活中的应用;3.鼓励学生提出问题和展示解法。
《数列的概念与简单表示法》 教学设计
《数列的概念与简单表示法》教学设计一、教学目标1、知识与技能目标理解数列的概念,能够区分数列、项、有穷数列、无穷数列。
掌握数列的通项公式,能根据通项公式写出数列的前几项。
了解数列的递推公式,能根据递推公式写出数列的前几项。
2、过程与方法目标通过实例引入,培养学生观察、分析和归纳的能力。
经历数列概念的形成过程,体会从特殊到一般的数学思维方法。
3、情感态度与价值观目标让学生感受数列在实际生活中的应用,激发学生学习数学的兴趣。
通过自主探究和合作交流,培养学生的创新意识和团队精神。
二、教学重难点1、教学重点数列的概念及通项公式。
利用通项公式求数列的特定项。
2、教学难点根据数列的前几项写出通项公式。
理解数列的递推公式。
三、教学方法讲授法、讨论法、练习法相结合四、教学过程1、导入新课通过展示一些生活中的数列实例,如银行存款利息的计算、树木的生长高度记录等,引导学生观察这些数据的排列规律,从而引出数列的概念。
2、讲授新课(1)数列的概念给出数列的定义:按照一定顺序排列的一列数称为数列。
强调数列中的数是有顺序的,并且同一个数在数列中可以重复出现。
让学生举例说明生活中的数列,如学生的身高排列、班级考试成绩排名等。
(2)数列的项介绍数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……排在第 n 位的数称为这个数列的第 n 项。
(3)有穷数列和无穷数列根据数列中项的个数,将数列分为有穷数列和无穷数列。
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
通过实例让学生判断给出的数列是有穷数列还是无穷数列,如自然数列1,2,3,…,n,…是无穷数列,而1,2,3,4,5 是有穷数列。
(4)数列的通项公式设数列{an}的第 n 项与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
以数列 2,4,6,8,…为例,引导学生尝试找出其通项公式为 an= 2n。
数列教学设计方案
一、教学目标1. 知识与技能目标:(1)理解数列的概念,掌握数列的通项公式、前n项和公式;(2)学会运用数列的知识解决实际问题。
2. 过程与方法目标:(1)通过观察、归纳、类比等方法,培养学生的观察能力和归纳能力;(2)通过小组合作、探究等活动,培养学生的合作意识和探究能力。
3. 情感态度与价值观目标:(1)激发学生对数学的兴趣,提高学生学习的积极性;(2)培养学生严谨、求实的科学态度。
二、教学重难点1. 教学重点:(1)数列的概念、通项公式、前n项和公式;(2)数列的实际应用。
2. 教学难点:(1)数列的通项公式的推导;(2)数列的实际应用。
三、教学过程1. 导入新课(1)通过展示生活中常见的数列,如电话号码、身份证号码等,引导学生思考数列的概念;(2)提问:如何用数学语言描述数列?2. 新课讲解(1)数列的概念:按一定顺序排列的一列数,称为数列;(2)数列的通项公式:数列的第n项可以表示为an;(3)数列的前n项和公式:数列的前n项和可以表示为Sn;(4)数列的实际应用:通过举例说明数列在实际生活中的应用,如人口增长、经济数据等。
3. 课堂练习(1)根据所学知识,完成以下题目:①求等差数列1,4,7,10,...的通项公式;②求等比数列2,4,8,16,...的前5项和;(2)小组合作探究,解决实际问题。
4. 课堂小结(1)回顾本节课所学内容,总结数列的概念、通项公式、前n项和公式;(2)强调数列在实际生活中的应用。
5. 课后作业(1)完成课后习题;(2)收集生活中常见的数列,并分析其通项公式和前n项和。
四、教学反思1. 本节课通过观察、归纳、类比等方法,引导学生掌握数列的概念、通项公式、前n项和公式;2. 通过小组合作、探究等活动,培养学生的合作意识和探究能力;3. 注重数列在实际生活中的应用,提高学生的实际操作能力;4. 教学过程中,关注学生的学习情况,及时调整教学策略,确保教学效果。
数列教案范文
数列教案范文一、教学目标1.知识目标:①了解等差数列和等比数列的概念以及它们的发展规律;②掌握求等差数列和等比数列的公式与方法;③了解数列在生活中的应用。
2.能力目标:①能够熟练地运用等差数列及等比数列求解问题;②能够将所学知识应用到实际生活中。
3.态度目标:①激发学生学习数学的兴趣;②培养学生积极探索、勇于创新的精神。
二、教学重点难点1.重点:等差数列和等比数列的概念、求和公式以及应用;2.难点:应用实例的解决。
三、教学内容及方法1.教学内容(1)等差数列及其求和公式;(2)等差数列在生活中的应用;(3)等比数列及其求和公式;(4)等比数列在生活中的应用。
2.教学方法(1)讲解法:讲解等差数列和等比数列的概念、求和公式及应用,通过例题演示方法,引领学生逐步了解并掌握。
(2)归纳法:在学生学习过程中,引导学生进行概念归纳、规律总结,使学生更深入地理解知识点。
(3)练习法:开展各类型的例题练习,让学生熟练掌握所学知识,提高能力。
(4)探究法:利用生活实际问题,让学生自主探索并解决问题,培养学生创新精神。
四、教学步骤1.导入:与学生讲述数学在生活和科技中的应用,引起学生对数学的兴趣。
2.讲解等差数列和等比数列的概念。
3.介绍等差数列及其求和公式,让学生对等差数列有一个深入的了解。
4.介绍等差数列在生活中的应用,例如:物流运输中的时间问题。
5.介绍等比数列及其求和公式,让学生对等比数列有一个深入的了解。
6.介绍等比数列在生活中的应用,例如:光传输中的问题。
7.练习,让学生能够熟练掌握所学的知识。
8.探究性学习,让学生认识数学应用实际中的作用。
五、教学评价1.能在学生生活中讲述数学的应用,并引起学生对数学的兴趣。
2.能在学生心中形成数学发展规律的认识,掌握等差数列及等比数列的求和方法。
3.能培养学生探究问题的能力,使学生在应用实例上更加熟练。
四、教学总结数列是数学中的重要概念,应用广泛,它既是数学教育的基石,也是日常生活中的基础知识,掌握好数列及其应用,能起到事半功倍的效果。
数列的概念教学设计案例
数列的概念教学设计案例一、教学目标:1.知识与技能目标:了解数列的概念及其基本性质;掌握常见数列的求前n项和、通项公式等基本方法与技巧。
2.过程与方法目标:培养学生的观察、推理和解决实际问题的能力;引导学生积极参与课堂讨论与合作,培养团队合作精神。
3.情感、态度与价值观目标:培养学生对数学的兴趣,增强数学学习的主动性和探究精神;培养学生的数学思维能力和创新意识。
二、教学重点与难点:1.教学重点:数列概念的引入、常见数列的特征和求和公式的掌握。
2.教学难点:通过实际问题引导学生掌握数列的概念,培养学生的逻辑思维和解决问题的能力。
三、教学内容与教学方法:1.教学内容:(1)数列的概念引入与解释。
(2)常见数列的特征和求和公式。
(3)实际问题引导学生理解和应用数列概念。
2.教学方法:(1)情境教学法:通过实际问题引导学生理解和应用数列概念。
(2)探究式教学法:通过讨论、合作等活动,培养学生的逻辑思维和解决问题的能力。
(3)巩固与拓展教学法:通过课堂练习和拓展练习,巩固和拓展学生对数列概念的理解。
四、教学过程:1.导入(10分钟)通过一个简单的问题引入数列的概念:小明每天早晨跑步,他第一天跑了1公里,第二天跑了2公里,第三天跑了3公里,以此类推。
请问小明连续7天一共跑了多少公里?引导学生思考这个问题,激发学生的兴趣。
2.概念引入(20分钟)介绍数列的概念:当数之间存在一定的规律,且按照这个规律依次排列时,我们称这一串数为数列。
通过多个例子引导学生感受数列的特点和规律。
3.特征和求和公式(30分钟)介绍常见数列的特征和求和公式:(1)等差数列:相邻两项的差相等。
(2)等比数列:相邻两项的比相等。
(3)求和公式的推导和应用。
通过多个例题,引导学生掌握不同数列的特征和求和公式。
4.实际问题的应用(30分钟)通过实际问题,引导学生应用所学的数列概念和求和公式。
例如:人每天存钱,第一天存1元,第二天存2元,第三天存3元,以此类推。
数学教资高中教案设计
数学教资高中教案设计
课题:数列的概念与性质
教学内容:数列的概念与性质
教学目标:通过本节课的学习,学生能够了解数列的概念,掌握数列的常见性质,并能够运用数列的概念和性质解决实际问题。
教学重点:数列的概念与性质
教学难点:数列性质的证明
教学过程:
一、导入(5分钟)
1. 教师介绍本节课的内容和目标,引导学生思考数列的概念。
2. 展示一些常见的数列,让学生描述数列的规律和特点。
二、概念讲解(15分钟)
1. 介绍数列的概念,给出数列的定义和符号表示。
2. 讲解数列的分类,如等差数列、等比数列等。
三、性质讲解(20分钟)
1. 讲解数列的性质,如有界性、递增性、递减性等。
2. 举例说明不同数列的性质。
四、练习与讨论(15分钟)
1. 布置练习题,让学生尝试解答。
2. 讲解练习题解答,让学生互相讨论交流。
五、作业布置(5分钟)
1. 布置课后作业,巩固本节课所学内容。
2. 提醒学生复习数列的概念和性质。
教学反思:本节课主要是对数列的概念和性质进行系统的讲解,帮助学生建立起对数列的理解和认知。
在教学过程中,要注重引导学生思考和灵活运用数列的知识解决问题,激发
学生学习的主动性和兴趣。
同时,要提供丰富的例题和练习题,帮助学生巩固所学内容。
在教学结束后,要及时总结反思,发现问题并做出改进,提高教学效果。
《数列的概念》示范公开课教学设计【高中数学必修5(北师大版)】精选全文完整版
可编辑修改精选全文完整版《数列的概念》教学设计 【知识与能力目标】 了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n 项和与n a 的关系【过程与方法目标】经历数列知识的感受及理解运用的过程。
【情感态度价值观目标】通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
【教学重点】 根据数列的递推公式写出数列的前几项【教学难点】理解递推公式与通项公式的关系Ⅰ.课题导入数列的概念 问题: 1.国际象棋的传说:每格棋盘上的麦粒数排成一列数;2. 古语:一尺之棰,日取其半,万世不竭.每日所取棰长排成一列数;3. 童谣:一只青蛙,一张嘴 ,两只眼睛,四条腿; 两只青蛙, 两张嘴 ,四只眼睛,八条腿; 三 只青蛙,三张嘴 ,六只眼睛, 十二条腿;◆教学目标◆教学重难点◆教学过程4.中国体育代表团参加六届奥运会获得的金牌数依次排成一列数。
教师:以上四个问题中的数蕴涵着四列数。
学生:1:1、2、22、23 (263)2一列数:3:4:15,5,16,16,28,32如上几列数的共同特点是什么?教师:引导学生思考这四列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等比数列概念。
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。
教师引导归纳出:⒈数列的定义:按一定次序排列的一列数叫做数列。
注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.3. 数列的一般形式:n a a a ,,,21 ,表示法{}n a4. 数列的表示方法(1)通项公式法如果数列{an}的第n 项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。
中职数列教学设计方案
一、教学目标1. 知识目标:(1)使学生掌握数列的概念、通项公式、前n项和公式等基本知识。
(2)使学生了解数列在自然科学、社会科学和实际生活中的应用。
2. 能力目标:(1)培养学生观察、分析、归纳、推理等数学思维能力。
(2)提高学生运用数列知识解决实际问题的能力。
3. 情感目标:(1)激发学生对数学学习的兴趣,培养良好的学习习惯。
(2)培养学生的合作精神、创新意识和团队协作能力。
二、教学内容1. 数列的概念及性质2. 数列的通项公式3. 数列的前n项和公式4. 数列的应用三、教学过程1. 导入新课(1)结合实际生活,引导学生思考数列在生活中的应用,激发学生学习兴趣。
(2)通过列举实例,让学生了解数列的基本概念。
2. 新课讲解(1)数列的概念及性质:讲解数列的定义、通项公式、递推公式等基本概念,并通过实例让学生理解数列的性质。
(2)数列的通项公式:讲解数列的通项公式、递推公式、求和公式等,通过实例让学生掌握通项公式的求解方法。
(3)数列的前n项和公式:讲解数列的前n项和公式,并通过实例让学生掌握前n项和的计算方法。
(4)数列的应用:结合实际生活,讲解数列在自然科学、社会科学和实际生活中的应用。
3. 练习巩固(1)布置课后作业,巩固所学知识。
(2)课堂上进行随堂练习,及时检验学生的学习效果。
4. 总结与反思(1)引导学生总结本节课所学内容,巩固知识点。
(2)鼓励学生提出问题,共同探讨解决方法。
四、教学评价1. 课堂表现:观察学生在课堂上的学习态度、合作精神、创新意识等方面。
2. 作业完成情况:检查学生课后作业的完成质量,了解学生对知识的掌握程度。
3. 课堂练习:通过课堂练习,检验学生对知识的运用能力。
4. 期末考试:全面评价学生对数列知识的掌握程度。
五、教学资源1. 教材:选用符合中职教学要求、内容丰富的数列教材。
2. 多媒体课件:制作与教学内容相关的多媒体课件,提高课堂教学效果。
3. 实际案例:收集与数列相关的实际案例,丰富教学内容。
数列教学设计精选5篇
数列教学设计精选5篇数列教案篇一关键词高中数学;案例式教学问题教学是数学学科知识内涵和要点的有效载体,是教学目标理念展现的重要途径,是能力素养培养的重要平台。
长期以来,问题教学活动方略的实施,一直以来成为广大高中数学教师进行探究和实践的重要课题。
但在传统问题教学活动中,部分教师片面的将问题教学看作是知识内容、解题方法传授的“工具”,在问题内容的设置和问题解答的传授中,不能精心准备,有的放矢,导致问题教学的效能达不到预期目标。
新实施的高中数学课程标准则指出:“要注重发挥数学问题承载知识内涵的重要载体以及学生能力培养的功能特性”,“设置‘少而精’的数学问题,实现学生知识内涵有效掌握和能力品质的有效提升。
”可见,传统“胡子眉毛一把抓”的“题海式”问题教学模式,已经不能适应新课改的要求。
“少而精”的“典型性”的案例式教学模式,以其在反映教学内涵要义上的精准性,培养学生学习能力上的功能性等特征,成为有效教学的重要组成部分。
近几年来,本人就如何做好案例式教学活动进行了尝试,现就如何选取典型案例,培养学生学习能力方面进行简要阐述。
一、问题案例应凸显“精”字,体现精辟性,使学生在感知问题内涵中领会设计意图案例1 已知A(-2,-3),B(4,1),延长AB至点P,使AP的绝对值等于PB绝对值的三倍,求点P的坐标。
上述问题是教师在教学“平面向量的坐标运算”知识内容,在讲解“向量定比分点的几何运用”考察点时所设置的一道问题案例。
教师在引导学生进行问题分析过程中,使学生了解到该问题是考查学生向量的定比分点坐标公式的应用。
然后,教师再次引导学生进行问题解答方法的探索,通过对问题条件关系的分析,发现该问题可以采用两种不同的解答方法,一种是利用向量定比分点坐标公式求,考虑P为分点,应用定比分点坐标公式求点P的坐标。
第二种是把向量的定比分点坐标公式看做是一个等量关系,通过解方程的思想处理问题。
学生在上述问题解答过程中,对向量定比分点坐标公式的运用有较为准确和深刻的掌握,并对如何运用该知识点内容做到“胸中有数”。
数列的概念第一课时教学设计
《数列的概念第一课时教学设计》一、教学目标1. 知识与技能目标-理解数列的概念,了解数列的分类。
-掌握数列的通项公式,能根据数列的前几项写出数列的通项公式。
2. 过程与方法目标-通过实例引入数列的概念,培养学生的观察、分析和归纳能力。
-通过对数列通项公式的探究,培养学生的逻辑思维能力和创新能力。
3. 情感态度与价值观目标-让学生体会数列在实际生活中的应用,感受数学的魅力。
-培养学生的合作精神和探究精神。
二、教学重难点1. 教学重点-数列的概念和通项公式。
-根据数列的前几项写出数列的通项公式。
2. 教学难点-从实际问题中抽象出数列的概念。
-归纳数列的通项公式。
三、教学方法讲授法、讨论法、探究法。
四、教学过程1. 导入新课-通过展示一些生活中的数列实例,如银行存款利息的计算、细胞分裂的数量等,引出数列的概念。
-提问学生:在生活中还能找到哪些数列的例子?2. 讲解新课-数列的概念-定义:按照一定顺序排列的一列数称为数列。
-举例说明数列的定义,如:1,2,3,4,5;2,4,6,8,10 等都是数列。
-强调数列中的数是有顺序的,改变顺序就变成了不同的数列。
-数列的项-数列中的每一个数都叫做这个数列的项。
-排在第一位的数称为数列的第1 项(或首项),排在第二位的数称为数列的第2 项,以此类推。
-数列的分类-按项数的多少可分为有穷数列和无穷数列。
-有穷数列:项数有限的数列。
例如:1,2,3,4,5 是有穷数列。
-无穷数列:项数无限的数列。
例如:1,2,3,4,…是无穷数列。
-按项的变化趋势可分为递增数列、递减数列、常数列和摆动数列。
-递增数列:从第2 项起,每一项都大于它的前一项的数列。
例如:1,2,3,4,5 是递增数列。
-递减数列:从第2 项起,每一项都小于它的前一项的数列。
例如:5,4,3,2,1 是递减数列。
-常数列:各项都相等的数列。
例如:2,2,2,2,2 是常数列。
-摆动数列:从第2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
高中数学41数列教案
高中数学41数列教案
教学内容:数列
教学对象:高中生
教学目标:
1. 理解数列的概念,并能够区分等差数列和等比数列;
2. 能够利用递推公式求解数列的任意项;
3. 能够利用数列的性质解决实际问题。
教学重点和难点:
重点:数列的概念和性质,利用递推公式求解数列的任意项。
难点:利用数列的性质解决实际问题。
教学方法:讲解结合练习和实例分析。
教具准备:
1. PowerPoint课件;
2. 数列相关的习题和问题。
教学过程:
一、导入(5分钟)
1. 利用实例引入数列的概念,让学生了解数列的基本特点。
二、讲解数列的概念和性质(15分钟)
1. 介绍数列的定义和表示方法;
2. 讲解等差数列和等比数列的区别和特点;
3. 分析数列的常见性质。
三、练习与讨论(20分钟)
1. 带领学生做一些数列相关的习题,加深对数列的理解;
2. 解决一些实际问题,让学生应用数列的性质和递推公式进行计算。
四、总结与拓展(10分钟)
1. 总结数列的相关知识和应用技巧;
2. 提出拓展问题,激发学生的思考和探究能力。
五、作业布置(5分钟)
布置相关习题和问题,巩固学生对数列的理解和应用能力。
教学反思:
通过此次数列教学,学生对数列的基本概念和性质有了更深入的了解,能够灵活运用递推公式解决数列问题。
希望在今后的教学中,能够进一步激发学生对数学的兴趣,提高他们的学习积极性和自主探究能力。
等差数列教学设计及教案
等差数列教学设计及教案第一章:等差数列的概念1.1 等差数列的定义引导学生回顾数列的概念,理解数列的顺序性和连续性。
引入等差数列的定义,解释公差的概念。
1.2 等差数列的性质探讨等差数列的性质,如相邻两项的差为常数,首项和末项的关系等。
引导学生通过观察和归纳总结等差数列的性质。
第二章:等差数列的通项公式2.1 等差数列的通项公式的推导引导学生回顾数列的通项公式的概念,理解通项公式与数列的关系。
通过示例和引导学生推导等差数列的通项公式。
2.2 等差数列的通项公式的应用探讨等差数列的通项公式在解决实际问题中的应用,如求指定项的值等。
引导学生通过练习题目的方式,加深对通项公式的理解和应用。
第三章:等差数列的前n项和3.1 等差数列的前n项和的定义引导学生回顾数列的前n项和的概念,理解前n项和的含义。
引入等差数列的前n项和的定义,解释首项和末项的关系。
3.2 等差数列的前n项和的公式探讨等差数列的前n项和的公式,引导学生理解和记忆公式。
通过示例和练习题目,引导学生应用前n项和公式解决问题。
第四章:等差数列的求和性质4.1 等差数列的求和性质引导学生回顾数列的求和性质,如等差数列的求和与项数的关系等。
引入等差数列的求和性质,如等差数列的求和与首项和末项的关系。
4.2 等差数列的求和性质的应用探讨等差数列的求和性质在解决实际问题中的应用,如求特定项的和等。
引导学生通过练习题目的方式,加深对求和性质的理解和应用。
第五章:等差数列的综合应用5.1 等差数列在实际问题中的应用通过实际问题引入等差数列的综合应用,如人口增长模型、投资收益等。
引导学生运用等差数列的知识解决实际问题。
5.2 等差数列在数学竞赛中的应用探讨等差数列在数学竞赛中的重要性,引导学生了解等差数列在竞赛中的应用。
提供一些数学竞赛题目,引导学生挑战自我,提高解题能力。
第六章:等差数列的图像与性质6.1 等差数列的图像引导学生回顾数列图像的基本知识,如数列的点表示等。
高中数学数列教案模板范文
高中数学数列教案模板范文
一、教学目标
1. 理解数列的概念和基本性质;
2. 掌握等差数列和等比数列的概念和计算方法;
3. 能够应用数列的知识解决实际问题。
二、教学内容
1. 数列的定义和基本性质;
2. 等差数列和等比数列的概念;
3. 等差数列和等比数列的通项公式及求和公式;
4. 数列的应用题。
三、教学重点难点
1. 理解并掌握数列的基本概念和性质;
2. 掌握等差数列和等比数列的通项公式和求和公式;
3. 能够应用数列的知识解决实际问题。
四、教学方法
1. 讲解引导法结合示范性问题的讲解;
2. 练习巩固法结合解题方法的展示;
3. 合作探究法促使学生主动思考;
4. 教师引导学生总结归纳,深化理解。
五、教学过程
1. 导入:通过引入实际问题,引起学生对数列的兴趣;
2. 讲解:逐步介绍数列的定义、基本性质和等差数列、等比数列的概念;
3. 练习:让学生进行相关练习,强化理解和记忆;
4. 总结:让学生总结所学知识,理清思路;
5. 拓展:引导学生应用所学知识解决实际问题;
6. 收尾:对所学内容进行总结复习,布置相关作业。
六、教学评价
1. 学生课堂表现;
2. 练习题答题情况;
3. 参与讨论的活跃度;
4. 作业完成情况。
七、教学反思
本节课设计得体,内容难易适中,学生参与度高。
但在练习环节,应该增加一些有难度的题目,引导学生深度理解,提高解题能力。
同时,教师在引导学生解题过程中,要注意启发学生思考,促进他们自主探究。
关于高中数学数列的教案
关于高中数学数列的教案
一、教学目标:
1. 了解数列的定义和性质;
2. 掌握常见数列的计算方法;
3. 能够应用数列解决实际问题。
二、教学重点:
1. 掌握数列的概念和性质;
2. 了解常见数列的计算方法;
3. 能够灵活运用数列解决实际问题。
三、教学内容:
1. 数列的基本概念和性质;
2. 常见数列的分类及计算方法;
3. 数列在实际问题中的应用。
四、教学过程:
1. 导入:通过一个实际问题引入数列的概念,引发学生的思考和兴趣。
2. 提出问题:让学生探讨数列的定义和性质,引导他们发现规律。
3. 讲解数列的基本概念和性质,并介绍常见数列的计算方法。
4. 练习:让学生进行数列的计算练习,巩固所学知识。
5. 应用:通过一些实际问题,让学生运用数列解决问题,培养他们的应用能力。
6. 总结:总结本节课的重点知识,梳理数列的学习内容。
7. 作业:布置相关练习,巩固学生所学的知识。
五、教学手段:
1. 课堂讲授;
2. 举例说明;
3. 练习探讨;
4. 讨论交流。
六、教学评价:
1. 课堂表现;
2. 练习成绩;
3. 实际应用能力。
七、教学资源:
1. 教材;
2. 幻灯片;
3. 实例分析。
八、教学反思:
1. 教学内容是否符合学生的实际需求;
2. 学生的学习情况,是否需要调整教学计划;
3. 如何进一步提升学生的数列解决问题能力。
以上教案为高中数学数列的教学范本,希望能对您有所帮助。
数列_教学设计方案
一、教学目标1. 知识与技能目标:- 理解数列的概念,掌握数列的通项公式和求和公式。
- 学会识别数列的类型,如等差数列、等比数列等。
- 能够运用数列知识解决实际问题。
2. 过程与方法目标:- 通过观察、分析、归纳等方法,培养学生的逻辑思维能力和数学抽象能力。
- 通过小组合作探究,提高学生的团队协作能力和沟通能力。
3. 情感态度与价值观目标:- 培养学生对数学的兴趣和热爱,激发学生的求知欲。
- 培养学生严谨的科学态度和良好的学习习惯。
二、教学内容1. 数列的概念与性质2. 等差数列与等比数列3. 数列的求和4. 数列的应用三、教学对象初二学生四、教学时间2课时五、教学过程第一课时:数列的概念与性质1. 导入新课- 通过生活中的实例(如等差数列的楼梯高度、等比数列的细菌繁殖等),引导学生进入数列的学习。
2. 新课讲授- 讲解数列的定义,通过实例展示数列的特点。
- 介绍数列的通项公式和求和公式,讲解其推导过程。
- 分析数列的性质,如单调性、有界性等。
3. 练习巩固- 学生独立完成课本上的例题,巩固所学知识。
- 教师巡视指导,解答学生疑问。
4. 小组讨论- 将学生分成小组,讨论数列在生活中的应用,如经济、科技、生物学等领域。
第二课时:等差数列与等比数列1. 复习导入- 回顾数列的概念与性质,引入等差数列与等比数列。
2. 新课讲授- 讲解等差数列与等比数列的定义、性质和通项公式。
- 通过实例分析等差数列与等比数列的求和公式。
- 比较等差数列与等比数列的异同。
3. 练习巩固- 学生独立完成课本上的例题,巩固所学知识。
- 教师巡视指导,解答学生疑问。
4. 应用拓展- 给出实际生活中的问题,让学生运用等差数列与等比数列的知识进行解决。
- 鼓励学生发挥想象力,提出自己的问题。
六、教学评价1. 课堂表现:观察学生在课堂上的参与度、回答问题的积极性等。
2. 作业完成情况:检查学生作业的完成质量,了解学生对知识的掌握程度。
数列单元教学设计范例
数列单元教学设计范例1. 了解数列的定义,掌握常见数列的概念与性质;2. 学会使用递推公式和通项公式求解数列问题;3. 培养学生的数学思维能力和解决问题的能力。
教学内容:1. 数列的概念和性质;2. 等差数列与等差数列的性质;3. 等比数列与等比数列的性质;4. 递推公式和通项公式的运用。
教学重点:1. 理解数列的概念和性质,掌握等差数列和等比数列的定义;2. 学会使用递推公式和通项公式求解数列问题。
教学难点:1. 掌握递推公式和通项公式的运用;2. 培养学生的数学思维能力和解决问题的能力。
教学方法:1. 前导知识导入法:通过提问的方式引导学生回忆数列的概念;2. 解题示范法:通过例题的解答过程,引导学生掌握数列的求解方法。
教学过程:Step 1:引入数列的概念(5分钟)教师可以通过提问的方式引导学生回忆数列的概念,例如:什么是数列?有什么特点?Step 2:引入等差数列和等比数列的概念和性质(20分钟)教师介绍等差数列和等比数列的概念,并和学生一起探讨它们的性质。
教师可以通过具体的数列实例,比如自然数数列、偶数数列等,引导学生发现等差数列和等比数列的特征。
Step 3:引入递推公式和通项公式的概念和运用(20分钟)教师介绍递推公式和通项公式的概念,并使用具体例子进行演示。
教师可以引导学生思考递推公式和通项公式的使用场景,并通过例题进行讲解,帮助学生掌握运用方法。
Step 4:练习与巩固(30分钟)教师布置一些练习题,引导学生运用所学的知识解决问题。
可以根据学生的能力分为不同难度的题目,既有基础题目也有拓展性的题目。
通过教师的指导和同学们互相讨论,学生们可以更好地巩固所学的知识。
Step 5:归纳总结(10分钟)教师引导学生归纳总结数列的特点、解题的方法和注意事项,巩固所学的知识。
Step 6:拓展与应用(15分钟)教师可以引入一些拓展性的问题,鼓励学生运用数列的知识解决实际问题。
教师也可以引导学生分析一些数列问题在实际生活中的应用场景。
数列单元教学设计
数列单元教学设计教学设计:数列一、教学目标:1.知识与技能目标:掌握数列的概念及基本性质;能正确运用递推公式和通项公式求解数列问题;能运用数列的相关知识解决实际问题。
2.过程与方法目标:培养学生的数学思维与分析问题的能力;重视培养学生的自主学习能力和团队合作能力;采用多种形式进行教学,激发学生的学习兴趣和积极性。
二、教学重点和难点:重点:数列的概念及基本性质,递推公式和通项公式的应用。
难点:将数列知识运用到实际问题中。
三、教学内容和教学步骤:1.引入(10分钟)通过提问、讲解数列的实例等方式,引导学生了解数列的概念,并区分数列与非数列。
2.概念与性质(30分钟)a.对数列的定义进行详细的讲解,包括数列的元素、项数、递推关系等。
b.带领学生进行思考和讨论,引出数列的有限性和无限性的概念,并对有限数列和无限数列进行分类讨论。
c.讲解数列的等差和等比性质,并运用实例进行说明。
3.数列的表示与求和(30分钟)a.讲解数列的一般表示形式,并通过具体的例子进行说明。
b.引入数列的通项公式和递推公式的概念,并结合实例进行讲解。
c.进行数列的求和运算,包括等差数列求和和等比数列求和。
通过实例讲解求和公式的推导过程。
4.实际问题解决(30分钟)a.通过实例引出运用数列的知识解决实际问题的思路。
b.探讨运用数列求解实际问题的方法和步骤。
c.设计一些实际问题,让学生运用数列知识进行计算和推理。
5.小结与反思(10分钟)总结本节课的重点内容,提醒学生注意学习的困难和需要继续加强的地方。
鼓励学生积极思考和合作,并鼓励他们在课后通过阅读课外书籍或互联网资料进一步拓展数列知识。
四、教学手段和学时安排:教学手段:讲授、讨论、实例分析、情境模拟等;学时安排:共计4个学时,每个学时45分钟。
五、教学评价方法:主要通过学生上课表现、课堂练习和作业完成情况来评价学生对数列概念的掌握程度以及数列应用能力的提高情况。
同时也通过课堂讨论和解答学生问题的方式来评价学生的思维能力和分析问题的能力。
数列教案优秀3篇
数列教案优秀3篇数列教案篇一在本节课教学设计中,以学生身边的一个事例为背景,创设一个数学情境,激发了学生的学习兴趣和探究热情,体现了“人人学有价值的数学”的教学理念。
教师引进著名数学家高斯十岁时所做的一道计算题,通过此题的解法让学生发现规律,从而探索出等差数列的前n项和公式的推导过程。
这个过程反映了数学思维方法的灵活性,从学生丰富多彩的解答中,我们看到了“不同的人在数学上得到不同的发展”。
【教学背景】所授班级为普通班,学生的数学认知水平高低不一,所以,教师在问题探究的设置上要体现出知识的层次,力求使所有学生都能参与各种问题的探究。
【教学设计】一、教材分析1.教学内容“等差数列的前n项和”为苏教版必修5第二章第二节的第一课时,主要内容是等差数列前n项和的推导过程和简单应用。
2.地位与作用本节对“等差数列的前n项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其实学生已掌握等差数列的性质以及高斯求和法等相关知识。
对本节的研究,为学习数列求和提供了一种重要的思想方法――倒序相加求和法,具有承上启下的重要作用。
二、目标分析1.教学目标(1)掌握等差数列的前n项和公式及推导过程。
(2)会简单运用等差数列的前n项和公式。
(3)结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
2.教学重点、难点(1)重点:等差数列前n项和公式的推导和应用。
(2)难点:等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。
三、教学模式与教法、学法本课采用“探究―发现”教学模式。
教师的教法:突出活动的组织设计与方法的引导。
学生的学法:突出探究、发现与交流。
四、教学活动设计1.新课引入创设情境:一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支。
这个V形架上共放着多少支铅笔?问题就是(板书)“1+2+3+4+…+100=?”设计意图:利用实际,生活引入新课,形象直观。
数列教学设计与反思
数列求和复习课一. 教学目标1. 知识与能力目标:熟练掌握等差、等比数列的求和公式及非等差、等比数列求和的几种常用方法2. 过程与方法目标:归纳数列求和的常用方法, 形成知识网络3. 情感态度价值观目标:体会转化思想, 提高观察能力, 分析问题、解决问题的能力以及计算能力二.学情分析我班学生基础比较薄弱, 故先从刚学过的等差等比数列求和的方法入手。
选题能适应学生的认知水平, 使学生在教学过程中能灵活应用, 思维得到提高。
三.教学重难点:教学重点: 数列求和方法及其思路获取.教学难点:在具体问题情境中, 恰当选择求和方法, 准确迅速求和四.教学过程(一).数列求和的常用方法:1.分组转化法:把数列中的每一项分成多个项或把数列中的项重新组合, 使其转化为等差或等比数列, 然后由等差、等比数列求和公式求解师: 说出等差数列的前n项和公式?生:Sn = , Sn=师: 说出等比数列的前n项和公式?生: Sn= Sn=师:条件q=1时, 前n项和怎样计算?生: Sn=na1师:下面请同学们先看例1。
例1(1)求和:设计意图:将已知数列的求和问题化为等差数列、等比数列求和问题;师: 上面各个括号内的式子均由两项组成, 其中各括号内的前一项与后一项分别组成等比数列, 分别求出这两个等比数列的和, 就能得到所求式子的和。
解: 当x≠0, x≠1, y≠1时原式==(以上化简过程, 实际上是繁分式的化简应强调结果的完整)师:题中附加条件去掉, 应该如何考虑?请同学们课后思考。
2.倒序相加法: 如果一个数列与首末两端等距离的两项的和相等或等于同一个常数, 那么求这个数列的前n项和即可用倒序相加法, 如等差数列的前n项和即是用此法推导的师:出示例2.求证:设计意图: 对某些前后具有对称性的数列,可运用倒序相加法求其前n项和.证明:把(1)式右边倒转过来, 得3.错位相减法: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的, 那么这个数列的前n项和即可用此法来求, 如等比数列的前n项和就是用此法推导的师: 出示例3.求生思考后师分析:由题可知, 的通项是等差数列的通项与等比数列的通项之积, 符合错位相减法的特征, 可通过错位相减转化为等比数列的求和来解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列教学设计Sequence teaching design
数列教学设计
前言:小泰温馨提醒,数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种,在人类历史发展和社会生活中,数学发挥着不可替代的作用,是学习和研究现代科学技术必不可少的基本工具。
本教案根据数学课程标准的要求和针对教学对象是高中生群体的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划、并以启迪发展学生智力为根本目的。
便于学习和使用,本文下载后内容可随意修改调整及打印。
§3.1.1、的通项公式目的:要求学生理解的概念及其几何表示,理解什么叫的通项公式,给出一些能够写出其通项公式,已知通项公式能够求的项。
重点:1的概念。
按一定次序排列的一列数叫做。
中的每一个数叫做的项,的第n项an叫做的通项(或一般项)。
由定义知:中的数是有序的,中的数可以重复出现,这与数集中的数的无序性、互异性是不同的。
2.的通项公式,如果{an}的通项an可以用一个关于n的公式来表示,这个公式就叫做的通项公式。
从映射、函数的观点看,可以看成是定义域为正整数集N*(或宽的有限子集)的函数。
当自变量顺次从小到大依次取值时对自学成才的一列函数值,而的通项公式则是相应的解析式。
由于的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点。
难点:根据前几项的特点,以现规律后写出的通项公式。
给出的前若干项求的通项公式,一般比较困难,且有的不一定有通项公式,如果有通项公式也不一定唯一。
给出的前若干项要确定其一个通项公式,解决这个问题的关键是找出已知的每一项与其序号之间的对应关系,然后抽象成一般形式。
过程:一、从实例引入(P110)
1.堆放的钢管4,5,6,7,8,9,10
2.正整数的倒数
3.4.-1的正整数次幂:-1,1,-1,1,…
5.无穷多个数排成一列数:1,1,1,1,…
二、提出课题:
1.的定义:按一定次序排列的一列数(的有序性)
2.名称:项,序号,一般公式,表示法
3.通项公式:与之间的函数关系式
如 1:2: 4:
4.分类:递增、递减;常;摆动;
有穷、无穷。
5.实质:从映射、函数的观点看,可以看作是一个定义域为正整数集
N*(或它的有限子集{1,2,…,n})的函数,当自变量从小到大依次取值时对应的一列函数值,通项公式即相应的函数解析式。
6.用图象表示:—是一群孤立的点
例一(P111 例一略)
三、关于的通项公式
1.不是每一个都能写出其通项公式(如3)
2.的通项公式不唯一如: 4可写成和
3.已知通项公式可写出的任一项,因此通项公式十分重要例二(P111 例
二)略
四、补充例题:写出下面的一个通项公式,使它的前项分别是下列各数:
1.1,0,1,0.2.,,,,
3.7,77,777,7777
4.-1,7,-13,19,-25,31
5.,,,
五、小结:
1.的有关概念
2.观察法求的通项公式
六、作业:练习 P112 习题 3.1(P114)1、2
七、练习:
1.观察下面的特点,用适当的数填空,关写出每个的一个通项公式;
(1),,,(),,…
(2),(),,,…
2.写出下面的一个通项公式,使它的前4项分别是下列各数:
(1)1、、、;
(2)、、、;
(3)、、、;
(4)、、、。
3.求1,2,2,4,3,8,4,16,5,…的一个通项公式
4.已知an的前4项为0,,0,,则下列各式
①an=
②an=
③an=
其中可作为{an}通项公式的是
A
① B ①② C
②③ D ①②③
5.已知1,,,,3,…,,…,则是这个的
()
A.第10项
B.第11项
C.第12项
D.第21项
6.在{an}中a1=2,a17=66,通项公式或序号n的一次函数,
求通项公式。
7.设函数(),{an}满足
(1)求{an}的通项公式;
(2)判断{an}的单调性。
8.在{an}中,an=
(1)求证:{an}先递增后递减;
(2)求{an}的最大项。
答案:1.(1),an= (2),an=
2.(1)an=
(2)an=
(3)an=
(4)an=
3.an= 或an=
这里借助了1,0,1,0,1,0…的通项公式an=。
4.D 5.B 6.an=4n-2
7.(1)an= (2) n
-------- Designed By JinTai College ---------。