操作系统原理实验四
操作系统原理 实验报告
操作系统原理实验报告操作系统原理实验报告一、引言操作系统是计算机系统中的核心软件,它负责管理和协调计算机硬件资源,提供用户与计算机硬件之间的接口,使得用户可以方便地使用计算机。
在本次实验中,我们通过实际操作和观察,深入理解了操作系统的原理和工作机制。
二、实验目的本次实验的主要目的是通过模拟操作系统的运行过程,加深对操作系统原理的理解。
具体目标包括:1. 掌握操作系统的启动过程和内存管理机制;2. 理解进程调度算法的原理和实现;3. 学习文件系统的组织和管理方式;4. 了解操作系统与硬件之间的交互方式。
三、实验过程1. 启动过程在计算机启动时,操作系统首先加载到内存中,并开始执行。
我们通过模拟实验,深入了解了操作系统的启动过程。
我们观察到操作系统通过读取硬盘中的引导扇区来进行启动,并且在启动过程中会进行一系列的初始化操作,如初始化内存管理、进程管理和设备驱动等。
2. 内存管理内存管理是操作系统中的重要组成部分,它负责分配和回收内存资源,以及管理进程的内存空间。
在实验中,我们学习了内存分页和内存分段两种常见的内存管理方式,并通过实际操作和观察,对其原理和实现有了更深入的了解。
3. 进程调度进程调度是操作系统中的核心功能之一,它决定了哪些进程能够获得CPU的使用权。
在实验中,我们学习了常见的进程调度算法,如先来先服务、短作业优先和时间片轮转等。
通过模拟实验,我们观察到不同的调度算法对进程执行的影响,加深了对进程调度原理的理解。
4. 文件系统文件系统是操作系统中负责管理和组织文件的机制。
在实验中,我们学习了文件系统的组织方式,如目录结构和文件存储方式等。
通过实际操作和观察,我们了解了文件系统的工作原理和实现机制。
5. 硬件交互操作系统与硬件之间的交互是实现计算机功能的关键。
在实验中,我们学习了操作系统与硬件之间的通信方式,如中断和设备驱动等。
通过模拟实验,我们观察到操作系统是如何与硬件进行交互,并掌握了操作系统与硬件之间的配合工作。
操作系统原理实验指导
3、实验题
(1)设计一个内存分配模拟程序。假定在计算机系统作业后备队列中有六个等待调度运行的作业,参与分配的内存大小为32KB,采用简单页式管理,每个页帧的大小为1KB。根据要求进行内存的分配和回收。要求打印内存分配表。有关作业的组织和作业有关参数的设置请自行设计,要大致符合实际情况。
main()
{
int i;
if (fork())
{
i=wait();
printf(“It is parent process.\n”);
printf(“The child process, ID number %d, is finished.\n”,i);
}
else{
print(“It is child process.\n”);
(2)自选设计一个进程调度算法,并加以实现。
实验三存储器管理
1、目的与要求
目的:存储器管理是操作系统重要的组成部分,提高存储器的效率始终是操作系统研究的重要课题之一。虚拟存储技术是用来扩大存储容量的一种重要方法。学生应独立地使用一种开发工具或高级语言编写几个常用的存储分配算法,并能设计一个存储管理的模拟程序,对各种算法进行分析比较,评测其性能优劣,从而加深对这些算法的理解,巩固所学的知识。
操作系统实验指导
操作系统是计算机的最重要的系统软件,它在计算机中具有核心地位,其作用是对计算机系统资源进行统一的调度和管理,提供各种强有力的系统服务,为用户创造灵活而又方便的使用环境。一个精心设计的操作系统能极大地扩充计算机系统的功能,充分地发挥系统中各种资源的使用效率,提高系统工作的可靠性。
操作系统原理是计算机科学与技术专业的一门主要专业课程,它涉及计算机系统中各种软、硬资源管理的实现原理与方法,内容非常丰富,综合性非常强,并且还具有很强的实践性。只有把理论与实践紧密地结合起来,才能取得较好地学习效果。
操作系统原理实验四
实验4 进程控制1、实验目的(1)通过对WindowsXP进行编程,来熟悉和了解系统。
(2)通过分析程序,来了解进程的创建、终止。
2、实验工具(1)一台WindowsXP操作系统的计算机。
(2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。
3、预备知识(3)·CreateProcess()调用:创建一个进程。
(4)·ExitProcess()调用:终止一个进程。
4、实验编程(1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。
阅读该程序,完成实验任务。
源程序如下:# include < stdio.h ># include < windows.h >int main(VOID)﹛STARTUPINFO si;PROCESS INFORMA TION pi;ZeroMemory(&si,sizeof(si));Si.cb=sizeof(si);ZeroMemory(&pi,sizeof(pi));if(!CreateProcess(NULL,“c: \ WINDOWS\system32\ mspaint.exe”,NULL,NULL,FALSE,0,NULL,NULL,&si,&pi))﹛fprintf(stderr,”Creat Process Failed”);return—1;﹜WaitForSingleObject(pi.hProcess,INFINITE);Printf(“child Complete”);CloseHandle(pi.hProcess);CloseHandle(pi hThread);﹜在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:C:\ >CL 4-1.cpp实验任务:写出程序的运行结果。
操作系统原理实验报告
操作系统原理实验报告操作系统原理实验报告一、课程设计的题目:根据“操作系统原理”课程的课堂教学内容,结合自己的知识积累情况,题目可从下述拟题中选择,亦可自定。
二、实验设计的内容:在Linux或Windows操作系统下,用C语言进行操作系统相关的设计开发,内容可关于“并发程序设计”、“处理机管理”、“用户接口”、“存储管理”、“文件系统管理”、“设备管理”等等。
三、参考资料:1、清华大学出版,张尧学《计算机操作系统教程》配套的《习题解答与实验指导书》中范例;2、清华大学出版,任爱华《操作系统实用教程》中的实例设计;3、《Linux下C语言编程入门教程》、《Linux软件工程师(C 语言)实用教程》等;4、网上与操作系统设计与开发相关的文献资料。
四、重要操作环节1、步骤:选题(2~3人一小组)--→提交小组名单--→分析、编写程序--→上机调试--→分析结果--→评价结果--→写出设计报告2、设计报告的主要内容:①、设计说明:设计主要完成的任务、解决的主要问题;②、工作原理:找出教材中的相关工作原理并简要说明;③、详细设计:包括调用的主要系统函数说明、程序流程图、程序代码、关键语句注释;④、运行结果:要求写出运行结果或抓图给出;⑤、分析结果:要求用操作系统原理有关理论解释说明;⑥、调试步骤以及调试过程中出现的问题及解决方法;⑦、参考文献:5篇以上;⑧、以学年论文格式提交文档资料,要有统一的封面和实验心得体会。
五、成绩评定1、各小组轮流演示小组作品,演示完毕,由其他小组的同学提2个以上问题,回答完毕打分;3、打分遵循原则如下:注意:①以下必做实验每小组都要做②以下选做实验,1个实验题目至多允许2个小组选,各小组也可以自拟题目必做实验(四个,都要做)实验一1. 实验名称:Linux登录、注销、关机和基本操作一。
2. 实验要求:掌握Linux系统的登录、注销、关机方法;掌握列出文件清单命令的使用方法:ls;掌握目录的切换命令的使用:cd;掌握目录的建立、删除命令的使用:mkdir、rmdir;掌握文件的拷贝、删除、移动命令的使用:cp、rm、mv 。
操作系统实验四
操作系统实验四实验过程及结果1、实验内容1、通过随机数产生一个指令序列,共320条指令。
指令的地址按下述原则生成:A:50%的指令是顺序执行的B:25%的指令是均匀分布在前地址部分C:25%的指令是均匀分布在后地址部分2、将指令序列变换为页地址流设:页面大小为1K;用户内存容量4页到32页;用户虚存容量为32K。
在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为:第0 条-第9 条指令为第0页(对应虚存地址为[0,9])第10条-第19条指令为第1页(对应虚存地址为[10,19])………………………………第310条-第319条指令为第31页(对应虚存地址为[310,319])3、计算并输出下述算法在不同内存容量下的命中率。
1)最佳淘汰算法(OPT)2)先进先出的算法(FIFO)3)最近最久未使用算法(LRU)命中率=(1-页面失效次数)/页地址流长度实验流程图核心代码/*先进先出算法total_pf:用户进程的内存页面数*/int FIFO(int total_pf){int i,j;pfc_type *p; /*中间变量*/initialize(total_pf); /*初始化相关页面控制用数据结构*/busypf_head=busypf_tail=NULL; /*忙页面队列头,队列尾链接*/for(i=0;i<total_instruction;i++){if(pl[page[i]].pfn==INV ALID) /*页面失效*/{diseffect+=1; /*失效次数*/if(freepf_head==NULL)/*无空闲页面*/{p=busypf_head->next;pl[busypf_head->pn].pfn=INV ALID;freepf_head=busypf_head;/*释放忙页面队列的第一个页面*/freepf_head->next=NULL;/*表明还是缺页*/busypf_head=p;}p=freepf_head->next;/*按照FIFO方式调新页面入内存页面*/ freepf_head->next=NULL;freepf_head->pn=page[i];pl[page[i]].pfn=freepf_head->pfn;if(busypf_tail==NULL)busypf_head=busypf_tail=freepf_head;else{busypf_tail->next=freepf_head; /*free页面减少一个*/busypf_tail=freepf_head;}freepf_head=p;}}printf("FIFO:%6.4f\n",1-(float)diseffect/ 320);return 0;OPT(最佳置换算法)设计原理:需要进行页面置换,把内存中以后一段时间都不使用或是使用时间离现在最远的页面换出。
操作系统原理实验报告
《操作系统原理》实验报告班级::学号:指导老师:目录:实验题目:实验一线程创建与撤销 (2)实验题目:实验二线程同步 (6)实验题目:实验三线程互斥 (11)实验题目:实验四进程通信 (17)实验题目:实验五读者-写者问题 (22)实验题目:实验六进程调度 (38)实验题目:实验七存储管理之动态库 (52)实验题目:实验八存储管理之存分配 (57)实验题目:实验九存储管理之页面置换算法 (70)实验题目:实验十设备管理 (85)实验题目:实验十一文件管理之文件读写 (99)实验题目:实验一线程创建与撤销完成人:XXX报告日期:2018年3月31日一、实验容简要描述(1)熟悉VC++、Visual Studio开发环境。
(2)使用相关函数创建和撤销线程。
(3)在一个进程中创建3个线程,名字分别为threada、threadb、threadc。
threada输出“hello world! ”。
threadb输出“My name is …”。
threadc输出“Please wait…”,然后sleep 5秒钟,接着输出“I wake up”。
二、程序设计1、设计思路该函数创建一个在调用进程的地址空间中执行的线程。
2、主要数据结构HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,DWORD dwStackSize,LPTHREAD_START_ROUTINE lpStartAddress,LPVOID lpParameter,DWORD dwCreationFlags,LPDWORD lpThreadId);VOID ExitThread(DWORD dwExitCode);VOID Sleep(DWORD dwMilliseconds);VOID Sleep(DWORD dwMilliseconds);三、实验结果1、基本数据lpThreadAttributes:指向一个SECURITY_ATTRIBUTES结构,该结构决定了返回的句柄是否可被子进程继承。
操作系统原理实验报告
[键入文字]操作系统原理实验报告学院:专业:班级:学号:姓名:2011-2012学年第2学期目录实验1 进程管理 (2)实验2 进程通信 (9)实验3 存储管理 (15)实验4 文件系统 (24)实验1 进程管理一、实验目的1. 弄清进程和程序的区别,加深对进程概念的理解。
2. 了解并发进程的执行过程,进一步认识并发执行的实质。
3. 掌握解决进程互斥使用资源的方法。
二、实验内容1. 管道通信使用系统调用pipe( )建立一个管道,然后使用系统调用fork( )创建2个子进程p1和p2。
这2个子进程分别向管道中写入字符串:“Child process p1 is sending message!”和“Child process p2 is sending message!”,而父进程则从管道中读出来自两个子进程的信息,并显示在屏幕上。
2. 软中断通信使用系统调用fork( )创建2个子进程p1和p2,在父进程中使用系统调用signal( )捕捉来自键盘上的软中断信号SIGINT(即按Ctrl-C),当捕捉到软中断信号SIGINT后,父进程使用系统调用kill( )分别向2个子进程发出软中断信号SIGUSR1和SIGUSR2,子进程捕捉到信号后分别输出信息“Child process p1 is killed by parent!”和“Child process p2 is killed by parent!”后终止。
而父进程等待2个子进程终止后,输出信息“Parent process is killed!”后终止。
三、实验要求1. 根据实验内容编写C程序。
2. 上机调试程序。
3. 记录并分析程序运行结果。
四、程序说明和程序流程图实验1管道通信——所涉及的流程图:实验2软中断信号——所涉及的流程图:五、程序代码/*expe1_1.c*/#include <stdio.h>void main( ){int i, r, p1, p2, fd[2];char buf[50], s[50];pipe(fd); /* 父进程建立管道*/while ((p1=fork())==-1); /* 创建子进程P1,失败时循环*/ if (p1==0) /* 由子进程P1返回,执行子进程P1 */{lockf(fd[1], 1, 0); /* 加锁锁定写入端*/sprintf(buf, "Child process P1 is sending messages! \n");printf("Child process P1! \n");write(fd[1], buf, 50); /* 把buf中的50个字符写入管道*/ sleep(5); /* 睡眠5秒,让父进程读*/lockf(fd[1], 0, 0); /* 释放管道写入端*/exit(0); /* 关闭P1*/}else /* 从父进程返回,执行父进程*/{while ((p2=fork())==-1); /* 创建子进程P2,失败时循环*/ if (p2==0) /* 从子进程P2返回,执行子进程P2 */ {lockf(fd[1], 1, 0); /* 锁定写入端*/sprintf(buf, "Child process P2 is sending messages! \n");printf("Child process P2! \n");write(fd[1], buf, 50); /* 把buf中的字符写入管道*/sleep(5); /* 睡眠5秒,让父进程读*/lockf(fd[1], 0, 0); /* 释放管道写入端*/exit(0); /* 关闭P2*/}wait(0);if ((r=read(fd[0], s, 50))== -1)printf("cannot read pipe! \n");else printf("%s", s);wait(0);if ((r=read(fd[0], s, 50))== -1)printf("cannot read pipe! \n");else printf("%s", s);exit(0);}}/*exp1-2.c*/#include<stdio.h>#include<stdlib.h>#include<signal.h>int p1,p2;void main(){void ppdo();void p1do();void p2do();signal(SIGINT,ppdo);p1=fork();if(p1==0){signal(SIGUSR1,p1do);for(;;);}else {p2=fork();if(p2==0) {signal(SIGUSR2,p2do);for(;;);}}wait(0);wait(0);printf("\nParent process is killed!\n");exit(0);}void ppdo(){kill(p1,SIGUSR1);kill(p2,SIGUSR2);}void p1do(){printf("\nChild process p1 is killed by parent!\n"); exit(0);}void p2do(){printf("\nChild process p2 is killed by parent!\n"); exit(0);}六、程序运行结果及分析实验1管道通信运行结果截图实验1管道通信结果分析父进程建立后,创建了子进程P1,P2,然后P1,P2分别向管道中写入字符串“Child process p1 is sending message!”和“Child process p2 is sending message!”,父进程从管道中读取字符串。
操作系统原理课内实验指导书
操作系统原理课内实验指导书实验一:用户接口实验准备知识为了使用户通过操作系统完成各项管理任务,操作系统必须为用户提供各种接口来实现人机交互。
经典的操作系统理论将操作系统的接口分为控制台命令和系统调用两种。
前者主要提供给计算机的操作人员对计算机进行各种控制;而后者则提供个程序员,使他们可以方便地使用计算机的各种资源。
1.控制台命令接口操作系统向用户提供一组控制台命令,用户可以通过终端输入命令的方式获得操作系统的服务,并由此来控制自己作业的运行。
一般来讲,控制台命令应该包含:一组命令、终端处理程序以及命令解释程序。
1)bash的由来当登录Linux或者打开一个xterm时,当前默认的shell就是bash。
Bash是GNU Project 的shell。
GNU Project是自由软件基金会(Free Software Foundation)的一部分。
它对Linux 下的许多编程工具负责。
Bash(Bourne Again Shell)是自由软件基金会发布的Bourne shell 的兼容程序。
它包含了其他有些shell的许多良好的特性,功能非常的全面。
很多Linux版本都供bash。
2)bash的大致原理bash处理自己的脚本时,先找到需要处理的命令名称,进而在当前用户的默认命令目录中找到对应的命令,这些默认目录一般是/usr/bin、/bin或/sbin。
在执行这些命令时,先使用进程创建系统调用fork(),在使用exex()来执行这些命令。
3)建立bash脚本➢编辑文件可以用最熟悉的编辑器来编辑这个文本文件,比如文件名为script,在shell下输入:$ vi script#! /bin/bashEcho Hello World!然后保存,退出。
➢测试脚本。
使用指令:$ source script➢更改脚本属性使用指令:$ chmod a+x script将脚本程序设置为可执行。
➢执行脚本使用指令:$ ./script4)关键字参考Echo 在终端上显示Bash 特殊变量1~9,保存当前进程或脚本的前9个参数。
操作系统原理实验4-进程控制
《操作系统原理》实验报告
实验序号:4 实验项目名称:进程控制
一、实验目的及要求
1. 加深对进程信号量的理解。
2. 理解进程同步与互斥机制。
3. 掌握Linux操作系统下的进程控制编程。
二、实验设备(环境)及要求
1.虚拟机VMware Workstation、Ubuntu操作系统和C语言编程。
2.编写一段程序,使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按Ctrl C键),当捕捉到中断信号后,父进程调用kill()向两个子进程发出信号,子进程捕捉到信号后,分别输出下面信息后终止:
child process 1 is killed by parent!
child process 2 is killed by parent!
父进程等待两个子进程终止后,输出以下信息后终止:
parent process is killed!
三、实验内容与步骤
代码:
在终端上进行测试
四、实验结果与数据处理
五、分析与讨论
了解了计算机进程的管理以及signal()函数的作用。
六、教师评语成绩。
操作系统原理_实验报告
一、实验目的1. 理解操作系统基本原理,包括进程管理、内存管理、文件系统等。
2. 掌握操作系统的基本命令和操作方法。
3. 通过实验加深对操作系统原理的理解和掌握。
二、实验环境1. 操作系统:Linux2. 编程语言:C语言3. 开发工具:Eclipse三、实验内容本次实验主要分为以下几个部分:1. 进程管理实验2. 内存管理实验3. 文件系统实验四、实验步骤及结果1. 进程管理实验实验步骤:- 使用C语言编写一个简单的进程管理程序,实现进程的创建、调度、同步和通信等功能。
- 编写代码实现进程的创建,通过调用系统调用创建新的进程。
- 实现进程的调度,采用轮转法进行进程调度。
- 实现进程同步,使用信号量实现进程的互斥和同步。
- 实现进程通信,使用管道实现进程间的通信。
实验结果:- 成功创建多个进程,并实现了进程的调度。
- 实现了进程的互斥和同步,保证了进程的正确执行。
- 实现了进程间的通信,提高了进程的效率。
2. 内存管理实验实验步骤:- 使用C语言编写一个简单的内存管理程序,实现内存的分配、释放和回收等功能。
- 实现内存的分配,采用分页存储管理方式。
- 实现内存的释放,通过调用系统调用释放已分配的内存。
- 实现内存的回收,回收未被使用的内存。
实验结果:- 成功实现了内存的分配、释放和回收。
- 内存分配效率较高,回收内存时能保证内存的连续性。
3. 文件系统实验实验步骤:- 使用C语言编写一个简单的文件系统程序,实现文件的创建、删除、读写等功能。
- 实现文件的创建,通过调用系统调用创建新的文件。
- 实现文件的删除,通过调用系统调用删除文件。
- 实现文件的读写,通过调用系统调用读取和写入文件。
实验结果:- 成功实现了文件的创建、删除、读写等功能。
- 文件读写效率较高,保证了数据的正确性。
五、实验总结通过本次实验,我对操作系统原理有了更深入的理解和掌握。
以下是我对实验的几点总结:1. 操作系统是计算机系统的核心,负责管理和控制计算机资源,提高计算机系统的效率。
操作系统实验四-说明文档
操作系统实验四——进程、系统调用、PV 操作本次实验将会采用我直接来仙林上机检查的方式。
会查看实验演示,询问思路,以及审阅代码,最后综合评分。
本次实验时间安排如下:●●6 月3 号我会来仙林进行实验操作讲解,答疑,发布一个可以简化本次难度的代码框架(基于第六章代码修改),最后是第一次检查。
第一次检查通过的同学可以得到满分的最高两倍的成绩。
对于大多数同学来说,你在此日期之前只需要认真阅读《Orange’S》的前六章的源代码,争取做到了解其中的所有细节。
这样才能在代码框架的基础上相对轻松的完成作业。
●●6 月18 号和6 月21 号我会来进行两次作业检查。
这两次检查通过的同学可以得到的成绩不会超过满分(这是当然的)。
根据老师的提示,由于本学期21 号之后进入复习考试周,所以21 号是最后一次检查的机会,希望大家抓紧时间。
本次实验需要完成如下功能,在第六章代码的基础上:1.添加一个系统调用,sys_process_sleep,其功能是接受一个int 型参数mill_seconds,然后当前进程会在mill_seconds 毫秒内不被进程调度函数分配时间片。
2.添加一个系统调用,sys_disp_str,其功能接受一个char* str 参数,打印出字符串。
3.添加两个系统调用,sys_sem_p 和sys_sem_v,即P/V 信号量,在此基础上模拟生产者和消费者问题。
4.总共有四个进程(比书上多了一个),A 进程普通进程,B 进程是生产者,C进程是消费者,D 进程是消费者。
缓冲区内产品数可以自己定义,简单起见允许只有一个。
生产者消费者除了p,v 的调用,还可能调用sleep 睡眠。
额外的说明如下:●●第六章代码已经有sys_get_ticks 系统调用和基于此的mills_delay 函数,似乎已经有了sleep 的功能可以把进程延迟,但它本质上还是给予分配了时间片的,只不过在分配的时间片里在mills_delay 函数中什么也没做。
操作系统原理实验
操作系统原理实验操作系统是计算机系统中最核心的部分之一,它负责管理和控制计算机的硬件和软件资源,为用户提供一个良好的工作环境。
操作系统原理实验是计算机相关专业的学生必修课程之一,通过实验学习,可以更深入地理解操作系统的原理和工作机制,提高对操作系统的理解和应用能力。
实验一,进程管理。
进程是操作系统中最基本的概念之一,它是程序执行的基本单位。
在进程管理实验中,我们可以学习到进程的创建、调度、同步和通信等内容。
通过编写程序模拟进程的创建和调度过程,可以更直观地理解操作系统是如何管理进程的。
实验二,内存管理。
内存管理是操作系统中的重要内容之一,它负责管理计算机的内存资源,包括内存的分配与回收、内存的保护和共享等。
在内存管理实验中,我们可以学习到内存分配算法、地址转换技术以及虚拟内存的实现原理。
通过编写程序模拟内存分配和回收的过程,可以更好地理解操作系统是如何管理内存的。
实验三,文件系统。
文件系统是操作系统中负责管理存储设备上的文件和目录的部分,它提供了对文件的读写和管理功能。
在文件系统实验中,我们可以学习到文件的组织结构、文件的存储管理和文件的访问控制等内容。
通过编写程序模拟文件的创建、读写和删除过程,可以更深入地理解操作系统是如何管理文件系统的。
实验四,设备管理。
设备管理是操作系统中负责管理计算机硬件设备的部分,它包括对设备的初始化、分配和释放等功能。
在设备管理实验中,我们可以学习到设备的管理方法、设备的中断处理和设备的驱动程序设计等内容。
通过编写程序模拟设备的初始化和中断处理过程,可以更好地理解操作系统是如何管理设备的。
总结。
通过操作系统原理实验的学习,我们可以更深入地理解操作系统的原理和工作机制,提高对操作系统的理解和应用能力。
同时,实验还可以培养我们的动手能力和解决问题的能力,为今后从事计算机相关工作打下坚实的基础。
希望大家能够认真对待操作系统原理实验,取得更好的学习成绩,为将来的发展打下坚实的基础。
操作系统实验4-4实验报告
操作系统实验4-4实验报告一、实验目的本次操作系统实验 4-4 的目的是深入了解和掌握操作系统中进程管理的相关知识和技术,通过实际操作和观察,加深对进程调度算法、进程同步与互斥等概念的理解,并提高解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程环境为 Visual Studio 2019。
三、实验内容1、进程调度算法的实现先来先服务(FCFS)算法短作业优先(SJF)算法时间片轮转(RR)算法优先级调度算法2、进程同步与互斥的实现使用信号量实现生产者消费者问题使用互斥锁实现哲学家进餐问题四、实验步骤1、进程调度算法的实现先来先服务(FCFS)算法设计数据结构来表示进程,包括进程ID、到达时间、服务时间等。
按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中选择第一个进程进行处理,计算其完成时间、周转时间和带权周转时间。
短作业优先(SJF)算法在设计的数据结构中增加作业长度的字段。
每次从就绪队列中选择服务时间最短的进程进行处理。
计算相关的时间指标。
时间片轮转(RR)算法设定时间片的大小。
将就绪进程按照到达时间的先后顺序放入队列。
每个进程每次获得一个时间片的执行时间,若未完成则重新放入队列末尾。
优先级调度算法为每个进程设置优先级。
按照优先级的高低从就绪队列中选择进程执行。
2、进程同步与互斥的实现生产者消费者问题创建一个共享缓冲区。
生产者进程负责向缓冲区中生产数据,消费者进程从缓冲区中消费数据。
使用信号量来控制缓冲区的满和空状态,实现进程的同步。
哲学家进餐问题模拟多个哲学家围绕一张圆桌进餐的场景。
每个哲学家需要同时获取左右两边的筷子才能进餐。
使用互斥锁来保证筷子的互斥访问,避免死锁的发生。
五、实验结果与分析1、进程调度算法的结果与分析先来先服务(FCFS)算法优点:实现简单,公平对待每个进程。
缺点:对短作业不利,平均周转时间可能较长。
短作业优先(SJF)算法优点:能有效降低平均周转时间,提高系统的吞吐量。
操作系统实验报告4
操作系统实验报告4一、实验目的本次操作系统实验的目的在于深入了解和掌握操作系统中进程管理、内存管理、文件系统等核心概念和相关操作,通过实际的实验操作,增强对操作系统原理的理解和应用能力,提高解决实际问题的能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验内容与步骤(一)进程管理实验1、进程创建与终止使用 C++语言编写程序,创建多个进程,并在进程中执行不同的任务。
通过进程的标识符(PID)来监控进程的创建和终止过程。
2、进程同步与互斥设计一个生产者消费者问题的程序,使用信号量来实现进程之间的同步与互斥。
观察生产者和消费者进程在不同情况下的执行顺序和结果。
(二)内存管理实验1、内存分配与释放编写程序,使用动态内存分配函数(如`malloc` 和`free`)来分配和释放内存。
观察内存的使用情况和内存泄漏的检测。
2、内存页面置换算法实现几种常见的内存页面置换算法,如先进先出(FIFO)算法、最近最少使用(LRU)算法和最佳置换(OPT)算法。
通过模拟不同的页面访问序列,比较不同算法的性能。
(三)文件系统实验1、文件创建与读写使用 C++语言的文件操作函数,创建一个新文件,并向文件中写入数据。
从文件中读取数据,并进行数据的处理和显示。
2、文件目录操作实现对文件目录的创建、删除、遍历等操作。
观察文件目录结构的变化和文件的组织方式。
四、实验结果与分析(一)进程管理实验结果与分析1、进程创建与终止在实验中,成功创建了多个进程,并通过控制台输出观察到了每个进程的 PID 和执行状态。
可以看到,进程的创建和终止是按照程序的逻辑顺序进行的,操作系统能够有效地管理进程的生命周期。
2、进程同步与互斥在生产者消费者问题的实验中,通过信号量的控制,生产者和消费者进程能够正确地实现同步与互斥。
当缓冲区为空时,消费者进程等待;当缓冲区已满时,生产者进程等待。
操作原理实验报告
一、实验目的1. 理解操作原理的基本概念和原理;2. 掌握操作原理实验的基本步骤和方法;3. 通过实验,加深对操作原理的理解和应用。
二、实验原理操作原理是研究操作过程和操作系统的基本理论,主要包括操作系统的功能、组成、调度、存储管理、设备管理、文件系统等方面。
本次实验主要涉及操作系统的存储管理和设备管理。
1. 存储管理:存储管理是操作系统对内存资源进行管理的一种机制,主要功能包括内存分配、内存回收、内存保护等。
内存分配是将内存空间分配给进程使用,内存回收是将不再使用的内存空间释放,内存保护是为了防止进程之间相互干扰。
2. 设备管理:设备管理是操作系统对硬件设备进行管理的一种机制,主要功能包括设备分配、设备回收、设备驱动等。
设备分配是将硬件设备分配给进程使用,设备回收是将不再使用的设备回收,设备驱动是为设备提供驱动程序,以便操作系统能够控制设备。
三、实验内容1. 实验一:内存分配实验(1)实验目的:了解内存分配的基本原理和方法。
(2)实验原理:采用固定分区分配策略,将内存划分为若干固定大小的分区,进程按照需要申请分区。
(3)实验步骤:① 初始化内存分区;② 进程申请内存分区;③ 分配内存分区;④ 进程释放内存分区;⑤ 统计内存分配和回收情况。
2. 实验二:内存回收实验(1)实验目的:了解内存回收的基本原理和方法。
(2)实验原理:当进程释放内存时,操作系统回收该内存空间,并将其标记为空闲状态。
(3)实验步骤:① 初始化内存分区;② 进程申请内存分区;③ 进程释放内存分区;④ 回收内存分区;⑤ 统计内存分配和回收情况。
3. 实验三:设备分配实验(1)实验目的:了解设备分配的基本原理和方法。
(2)实验原理:采用先来先服务(FCFS)策略,按照进程请求设备的顺序分配设备。
(3)实验步骤:① 初始化设备;② 进程请求设备;③ 分配设备;④ 释放设备;⑤ 统计设备分配和回收情况。
4. 实验四:设备回收实验(1)实验目的:了解设备回收的基本原理和方法。
操作系统原理实验报告
操作系统原理实验报告操作系统原理实验报告1. 实验背景操作系统是计算机系统中的核心软件之一,负责管理和控制计算机硬件资源,提供给应用程序一个良好的运行环境。
为了更好地理解和掌握操作系统的原理,我们进行了操作系统原理实验。
2. 实验目的通过实验,我们的目的是深入了解操作系统的各个组成部分,包括进程管理、内存管理、文件系统等,并学习如何使用相关工具进行操作系统的开发和调试。
3. 实验环境在实验中,我们使用了一台配置较高的计算机,安装了Linux操作系统,并安装了相关的开发工具和调试工具。
4. 实验过程4.1 进程管理实验在进程管理实验中,我们学习了进程的创建、调度和终止等操作。
通过编写简单的程序,我们可以创建多个进程,并观察它们的执行顺序和并发性。
4.2 内存管理实验在内存管理实验中,我们学习了内存的分配和释放。
通过编写程序,我们可以模拟内存的分配和释放过程,并观察内存的使用情况和碎片化程度。
4.3 文件系统实验在文件系统实验中,我们学习了文件的创建、读写和删除等操作。
通过编写程序,我们可以创建文件、写入数据,并读取和删除文件。
5. 实验结果与分析在实验过程中,我们成功地完成了进程管理、内存管理和文件系统的实验。
通过观察实验结果,我们发现操作系统能够很好地管理和控制计算机资源,提供给应用程序一个良好的运行环境。
6. 实验感想通过这次操作系统原理实验,我们深入了解了操作系统的原理和工作机制。
我们不仅学会了使用相关工具进行操作系统的开发和调试,还对操作系统的各个组成部分有了更深入的理解。
7. 实验总结操作系统原理实验是我们深入学习操作系统的重要环节。
通过实验,我们不仅巩固了理论知识,还提高了实际操作的能力。
希望今后能够继续深入学习操作系统的原理和应用,为计算机系统的设计和开发做出贡献。
8. 参考文献[1] Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts. Wiley.9. 致谢感谢指导老师在实验中的悉心指导和帮助,使我们能够顺利完成实验任务。
操作系统实验4-4实验报告范文
操作系统实验4-4实验报告范文实验4-4:Linu某共享存储通信1.实验目的(1)掌握Linu某提供的共享存储区通信方式的使用方法。
(2)了解共享存储区通信方法的特点。
(3)了解实现进程间通信的不同方法之间的区别、特点和适用情况。
2.实验内容(1)编写发送信息程序hmnd.c和接受信息程序hmrcv.c,其功能分别为://hmnd.c//①创建一个共享存储区间;②将它附接到自己的地址空间;③循环写入若干信息,以“end”结束(提示:信息以追加方式存放到共享区中,可以用trcat()函数实现追加);④断开共享区;⑤结束。
//hmrcv.c//①创建/获取同一个共享存储区;②将它附接到自己的地址空间;③输入其中已经由发送地方输入的内容;④断开共享区⑤删除共享区⑥结束。
采用先执行发送进程、后执行接受进程来实现同步。
(2)父进程创建一个共享存储区,然后创建子进程;采用终端实现父进程发送信息和子进程接受信息的同步;信息以“end”作为结束标志。
3.实验思考(1)共享存储区间通信有哪些优点?使用上有哪些限制?适用于哪种场合?答:优点:这种通讯方式允许多个进程共享同一块物理内存空间来实现进程之间的信息交换,取消了中间环节是同一个计算机系统中多个进程间实现通讯的最快捷的方法。
限制:共享内存必须共处同一个计算机系统,有物理内存可以共享才行。
适用:同一台电脑。
(2)总结共享存储区通信与消息缓冲通信、管理通信方式各有哪些特点?答:共享存储区通信:快捷、信息量大,但是不带同步工具,同步和互斥问题需要各进程利用其他同步工具解决,而且要求这些进程都在同一存储介质上运行,不方便网络通信。
消息缓冲通信:可以在任意进程之间通信,并且自带同步工具,使用方便,但是信息复制消耗CPU的时间,不适宜信息量大或操作频繁的场合。
管理通信:方便简单,但工作在单项通信方式,且只能在创建它的进程及其子孙进程之间共享。
4.实验代码4-4-1:①#include#include#include#include#include#include#includemain (){inthmid,running=1;char某viraddr;charbuffer[BUFSIZ];hmid=hmget(1234,BUFSIZ,0666|IPC_CREAT);viraddr=hmat(hmid,0,0 );while(running){put(\fget(buffer,BUFSIZ,tdin);trcat(viraddr,buffer);}if(trncmp(buffer,\running=0;hmdt(viraddr);e某it(0);}②#include#include#include#include#include#include#includemain (){inthmid;char某viraddr;hmid=hmget(1234,BUFSIZ,0666|IPC_CREAT);viraddr=hmat(hmid,0,0 );printf(\hmdt(viraddr);hmctl(hmid,IPC_RMID,0);e某it(0);}4-4-2:#include#include#include#include#include#include#include#inc ludevoidint_func(intig);intk;voidint_func(intig){k=0;}/某修改循环变量的值某//某定义中断后要执行的函数某/main(){intchld,hmid,running=1;char某viraddr1,某viraddr2;charbuffer[BUFSIZ];ignal(SIGUSR1,int_func);k=1;hmid=hmget(1234,BUFSIZ,0666|IPC_CREAT);/某创建共享存储区某/while((chld=fork())==-1);if(chld>0){viraddr1=hmat(hmid,0,0);/某将共享存储区附接到父进程的虚地址空间某/while(running)/某循环输入消息内容某/{}hmdt(viraddr1);/某断开附接某/kill(chld,SIGUSR1);/某父进程向子进程发软中断信号某/wait(0);e 某it(0);fget(buffer,BUFSIZ,tdin);trcat(viraddr1,buffer);/某采用追加方式输入信息某/if(trncmp(buffer,\/某输入为\结束某/running=0;/某预置信号对应的函数某/put(\hmctl(hmid,IPC_RMID,0);/某删除共享内存某/}ele{while(k==1);/某循环等待父进程发软中断信号某//某收到信号后接受消息某/viraddr2=hmat(hmid,0,0);/某将共享存储区附接到子进程的虚地址空间某/printf(\/某输出信息内容某/hmdt(viraddr2);/某断开附接某/} e某it(0);}5.程序运行结果4-4-1:①②4-4-2:6.实验心得经过这次试验我学会了如何在LINU某的环境下实现共享存储通信,这种通信方式快捷,而且容量信息量大,并且学会了进程之间同步的方法,但是在实验过程中还是发现了很多不足,在今后的学习中慢慢体会程序中的思想和方式,提高自己的水平。
操作系统4 实验报告
(2)打开一个以命令行为参数的管理文件,完成进程之间的通信进程
例子:以命令行为参数的管理文件的示例。
假设有一个的可执行程序chcase,从标准输出设备读字符,将小写字母转换成大写字母并进行输出。
主程序使用popen创建管道,实现将某文件中的字母转换成大写字母。其中的文本文件名作为参数传进来。源程序如下:
}
for(i=0;i<26;i++)
{
if(argc==2)
{
printf("\n Ihave wrote:%s",string);
write(fd,string,45);
string[0]+=1;
}
else
{
read(fd,buf,256);
printf("\n The context by I have read is :!%s",buf);
{
fprintf(stderr,"popen error\n");
exit(1);
}
while((fgets(line,MAXLINE,fpin))!=NULL)
{
if(fputs(line,fpout)==EOF)
{
fprintf(stderr,"fputs error to pipe. \n");
#include<sys/stat.h>
Int mkfifo(const char *pathname,mode-t mode);
(2)打开一个有名管道
由于有名管道创建时并没有打开,因此必须显示的使用如下的系统调用将文件打开。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4 进程控制
1、实验目的
(1)通过对WindowsXP进行编程,来熟悉和了解系统。
(2)通过分析程序,来了解进程的创建、终止。
2、实验工具
(1)一台WindowsXP操作系统的计算机。
(2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。
3、预备知识
(3)·CreateProcess()调用:创建一个进程。
(4)·ExitProcess()调用:终止一个进程。
4、实验编程
(1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。
阅读该程序,完成实验任务。
源程序如下:
# include < stdio.h >
# include < windows.h >
int main(VOID)
﹛STARTUPINFO si;
PROCESS INFORMA TION pi;
ZeroMemory(&si,sizeof(si));
Si.cb=sizeof(si);
ZeroMemory(&pi,sizeof(pi));
if(!CreateProcess(NULL,
“c: \ WINDOWS\system32\ mspaint.exe”,
NULL,
NULL,
FALSE,
0,
NULL,
NULL,
&si,&pi))
﹛fprintf(stderr,”Creat Process Failed”);
return—1;
﹜
WaitForSingleObject(pi.hProcess,INFINITE);
Printf(“child Complete”);
CloseHandle(pi.hProcess);
CloseHandle(pi hThread);
﹜
在“命令提示符”窗口运行CL命令产生可执行程序4-1.exe:
C:\ >CL 4-1.cpp
实验任务:写出程序的运行结果。
4.正在运行的进程
(2)、编程二下面给出了一个使用进程和操作系统版本信息应用程序(文件名为4-5.cpp)。
它利用进程信息查询的API函数GetProcessVersion()与GetVersionEx()的共同作用。
确定运行进程的操作系统版本号。
阅读该程序并完成实验任务。
#include<windows.h>
#include<iostream>
//利用进程和操作系统的版本信息的简单示例
Void main()
﹛
//提取这个进程的ID号
DWORD dwIdThis=::GetCurrentProcessId();
//获得这一进程和报告所需的版本,也可以发送0以便指明这一进程
DWORD dwVerReq=::GetProcessVersion(dwIdThis);
WORD wMajorReq=::(WORD)dwVerReq>16);
WORD wMinorReq=::(WORD)dwVerReq & oxffff);
std::cout< <”Process ID:”< <dwIdThis
< <”,requires OS:”< <wMajorReq< <wMinorReq< <std::endl;
//设置版本信息的数据结构,以便保存操作系统的版本信息
OSVERSIONINFOEX osvix;
::ZeroMemory(&osvix,sizeof(osvix));
Osvix.dwOSVersionInfoSize=sizeof(osvix);
//提取版本信息和报告
::GetVersionEx(reinterpret cast<LPOSVERSIONINFO>(&osvix));
Std::cout< <”Running on OS:”< <osvix.dwMajorVersion< <”.”
< <osvix.dwMinorVersion< <std::endl;
//如果是NTS(Windows2000)系统,则提高其优先权
If(osvix.dwPlatformld==VER PLATFORM WIN32 NT& &
Osvix.dwMajorVersion>=5
﹛
//改变优先级。