2013-2014学年八年级下第一次月考数学试题
2013-2014学年江苏省兴化市常青藤学校联盟八年级下第一次月考数学试题
![2013-2014学年江苏省兴化市常青藤学校联盟八年级下第一次月考数学试题](https://img.taocdn.com/s3/m/daff195b3c1ec5da51e27007.png)
兴化市常青藤学校联盟2013~2014学年度第二学期第一次月度考八年级数学试题(考试时间:120分钟,满分:150分) 成绩一、选择题(每题3分,共18分)1.在1000个数据中,用适当的方法抽取50个为样本进行统计,频率分布表中54.5~57.5这一组的频率是0.12,那么估计总体数据在54.5~57.5之间的约有( ) A .120个 B .60个 C .12个 D .6个2.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .15B .13C .58D .383.一个密码锁有五位数字组成,每一位数字都是0、1、2、3、4、5、6、7、8、9之中的一个,小明只记得其中的三个数字,则他一次就能打开锁的概率为( ) A .51 B .21 C .201 D .10014.在Rt ⊿ABC 中,∠C=90°,BC=4cm ,AC=3cm 把⊿ABC 绕点A 顺时针旋转90°后,得到⊿AB 1C 1,如图所示,则点B 所走过的路径长为( ) A.52cm B.π45cm C.π25cm D.5πcm 5.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.3cm 2B.4cm 2C.3cm 2D.23cm 26.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上,同时滑动,如果Q 点从A 点出发,沿图中所示方向按A B C D A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B C D A B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为( )A.2B.4-πC. πD.π-1 二、填空题(每题3分,共30分)学校 班级 姓名 考场(考试)号 座位号密封线内不要答题………………………………装………………………………订………………………………………线………………………………………………7.某校八年级共有学生300人,为了了解这些学生的体重情况,抽查了50名学生的体重,对所得数据进行整理,在所得的频数分布表中,各小组的频数之和是________,若其中某一小组的频数为8,则这一小组的频率是_______,所有小组的频率之和是__________.8.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;910.如右图,EF过矩形对角线的交点O,且分别交ABCD于EF,那么阴影部分的面积是矩形ABCD面积的11.已知ABCD中,AB=7,BC=4,∠A=30°, ABCD面积是12.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是 .13.在四边形ABCD中,已知AB=CD,再添一个条件________,就可以判定四边形ABCD是平行四边形.14.如图,将矩形ABCD沿BE折叠,若∠CBA′=30°则∠BEA′=__________.15.已知菱形的一个内角为60°,一条对角线的长为23,则另一条对角线的长为。
2013-2014新人教版八年级下第一次月考数学试题
![2013-2014新人教版八年级下第一次月考数学试题](https://img.taocdn.com/s3/m/37d31b68783e0912a3162a03.png)
2013-2014八年级下第一次月考数学试题2014年4月11日考试范围:二次根式、勾股定理、平行四边形一、选择题(每小题3分,共30分)1.二次根式()23-的值是( )A .-3 B.3或-3 C.9 D.32.要使式子x -2有意义,则x 的取值范围是( )A. x >0B. x ≥-2C. x ≥2D. x ≤23.下列各组数中,不能构成直角三角形的是( )A.9,12,15B.15,32,39C.16,30,34D.9,40,414.下列是最简二次根式的是( )A. 21B. 8C. 12+aD. 315.如图,若∠A=60°,AC=20m ,,则BC 大约是(3≈1.732精确到0.1)A.34.64B.34.6C.28.3D.17.36.化简()122-÷的结果是( )A. 122-B. 22-C. 21-D. 22+7.若直角三角形的三边长分别是2,4,x ,则x 的值可能有( )A.1个B.2个C.3个D.4个8.如图,已知正方形B 的面积为144,正方形C 的面积为169那么正方形A 的面积() A.313 B.169 C.25 D.1449.直角三角形两直角边长是3、4,则这个直角三角形斜边上的高是( ) 60°C B A 5题图 CBA6题图A.3B. 27C. 56D. 512 10.若实数x 、y 满足84-+-y x =0,则以x 、y 的值为两边长的等腰三角形的周长是( ) A.20或16 B.20 C.16 D.以上都不对二、填空题(每小题3分,共24分)11.8的平方根是 . 12. n 20是整数,则正整数n 最小的值是 .13.已知两条线段的长分别是5、12,当第三条线段的长为 时,这三条线段可以组成一个直角三角形.14.如图,矩形ABCD 中点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM 、CN 、MN ,若AB=22,BC=23,则图中阴影部分的面积是 .15.已知101=+a a ,则221aa += . 16.如图,正方形ABCD 被分成两个正方形和两个长方形,如果两个正方形的面积分别是7和3,那么两个长方形的面积和是 .17.在Rt △ABC 中,∠C=90°,AB=15,BC ︰AC=3︰4,则BC= .18.计算:2327-= .三、解答题 19.计算:(1)241221348+⨯-÷ (3分)(2)()()23322332-+ (3分)F E C BA 14题图 16题图(3)a a 259+ (3分)20.先化简,再求值 ()()()633--+-a a a a ,其中215+=a .21.如图,一架2.6m 长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4m ,如果梯子顶端A 沿墙下滑0.5m ,那么梯子底端B 处移多少?(77.115.3≈) (6分)22.如图,折叠长方形(四个角都是直角,对边相等)的一边AD ,点D 落在BC 边的点F 处,已知:AB=8cm ,BC=10cm ,求EC 的长. (6分)O DB A 21题图D FE C B A22题图23.如图,甲、乙两船从港口A 同时出发,甲船以每小时16海里的速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C 岛乙船到达B 岛,若C 、B 相距60海里.问乙船的速度是多少?(5分)24.已知实数a 、b 、c 满足044112=+-+++-c c b a ,求3100100c b a ++的值.(5分)25.如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点的三角形叫格点三角形,画格点三角形,使三边长为3、10、5(在图中画一个即可). (5分)26.下列命题是否成立,写出它们的逆命题,这些逆命题成立吗?(4分)(1)两直线平行,同位角相等.逆命题 .(2)等边三角形是锐角三角形.逆命题 .CB A东西南北23题图25题图27.如图,已知Rt △ABC 的三边长分别为6,8,10,分别以它的三边为直径向上作三个半圆,求:图中阴影部分的面积.(6分)28.如图,圆柱的底面半径为π6 cm ,高为10 cm ,蚂蚁在圆柱表面爬行,从点A 爬到点B 的最短路程是多少㎝?(6分)29.在进行二次根式除法时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简(9分): 335333535=⨯⨯=(一) 36333232=⨯⨯=(二) ()()()()()1313132131313213222-=--=-+-⨯=+ (三) 1086C BA A 27题图28题图以上这种化简的步骤叫做分母有理化.132+还可以用以下方法化简: ()()()131313131313131313222-=+-+=+-=+-=+ (四) (1) 请用不同的方法化简352+ ①参照(三)式得352+= . ②参照(四)式得352+= . (2) 化简:12121571351131-+++++++++n n参考答案1.D ;2.D ;3.B ;4.C ;5.B ;6.D ;7.B ;8.C ;9.D ;10.B ; 11. 22±;12.5,13.13或119;14. 62;15.8;16. 212;17.9;18.325; 19. (1)64+;(2)-6;(3)a 8;20.原式36-a ,56;21.0.77;22.3;23.12;24. a =1,b =-1,c =2,103100100=++c b a25.26.(1)同位角相等两直线平行,成立,(2)锐角三角形是等边三角形,(不成立);27.24; 28. 342;29.(1)①()()()353535352-=-+-,②()()()()353535353535353522-=+-+=+-=+-,(2)2112-+n .3510。
2013-2014新人教版八年级下第一次月考数学试题
![2013-2014新人教版八年级下第一次月考数学试题](https://img.taocdn.com/s3/m/6afe2e0be87101f69e3195cd.png)
2013-2014新人教版八年级下第一次月考试题2014-4-5一、选择题(每小题2分,共12分) 1.下列式子中,属于二次根式的是( ) A.3 B.7 C. a D.332.化简12的结果是( )A. 32B. 23C. 24D.63.若式子342-x 在实数范围内有意义,则x 的取值范围是( ) A. x >2 B. x <2 C. x ≥2 D. x ≤2 4.计算382-+⨯的结果为( )A.-1B.1C.4D.7 5.一直角三角形的两边长分别为3和5,则第三边的长为( ) A.4 B.34 C.4或7 D.4或346.如图,在△ABC 中,AB=AC=13,CB=10,AD ⊥BC 于D ,则AD 的长为( ) A.5 B.10 C.12 D. 119二、填空题(每小题3分,共24分)7.计算:=⎪⎪⎭⎫⎝⎛231 . 8.15的整数部分是 .9.化简:520-= .10.使n 18是整数的最小正整数n = . 11.计算:()()3232+-= .12.等式()112-=-a a 成立,则实数a 的取值范围是 .13.如图,马路边一棵树高为4m ,被一辆卡车从离地面1.5m 处撞断,倒下的树顶部离它的底部m.14.如图是一张直角三角形的纸片,两边AC=6㎝,AB=10㎝,现将△ABC 折叠,使点B 与点A 重合,折痕为DE 。
则△ACD 的周长为 . 三、解答题(第小题5分,共20分)DCBA6题图B13题图EDCBA14题图15.计算:()2232⨯-.16.计算:⎪⎪⎭⎫ ⎝⎛+3137512. 17.计算:()235-.18.如图,正方形网格中的每个小正方形的边长都是1,每个小格点的顶点叫做格点.线段AB 的端点A 、B 均在格点上,在正方形网格图①和图②中分别画一个三角形. (1)图①的是以AB 为斜边的直角三角形; (2)图②的是以AB 为腰的等腰三角形.四、解答题(每小题7分,共28分) 19.计算:()()201320143232+-.20.已知a 、b 、c 满足()0735282=-+-+-c b a .(1)求a 、b 、c 的值. (2)求a +b +c 的值.B A B A 18题图 图① 图②21.如图,将一块面积为32㎡的正方形铁皮的四个角各截去一个面积为2㎡的小正方形,剩下的部分刚好能围成一个无盖的长方体运输箱,求此运输箱底面的边长.21题图22.已知直角三角形的两条直角边长分别是2和6,求这个直角三角形的周长和面积.五、解答题(每小题8分,共16分)23.学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度和绳子的长度.24.如图,以Rt △ABC 的直角边AC 和斜边AB 分别作Rt △ADC 和正方形ABEF ,再以AD 为边作正方形ADGH.已知∠ACB=90°,∠ADC=90°,正方形ABEF 和正方形ADGH 的面积分别是100和16,BC=8,求四边形ABCD 的面积.六、解答题(每小题10分,共20分) 25.对于题目“化简求值:21122-++a aa ,其中51=a ”,甲、乙两个学生的解答不同. 甲的解答是:549221111211222=-=-+=⎪⎭⎫ ⎝⎛-+=-++a a a a a a a a a a. 乙的答案是:511111211222==-+=⎪⎭⎫ ⎝⎛-+=-++a a a a a a a a a a. (1)请判断甲、乙两个学生解答谁是正确的,并说明理由.(2)模仿上面正确解答:化简并求值:216811a a a +-+-,其中a =2.26.如图,已知线段OA 1=1,过点A 1作A 1A 2⊥OA 1,且A 1A 2=1,连结OA 2,再过点A 2作A 2A 3⊥OA 2,且A 2A 3=1,连结OA 3,如此作出线段A 1A 2=A 2A 3=……=A n A n+1=1,也得到了n 条线段OA 1,OA 2,OA 3,……OA n . 猜想与证明:(1)计算OA 2= ;计算OA 3= ; 计算OA 4= .(2)根据以上计算,请你猜想OA n 的长度(用含n 的代数式表示)并证明你的猜想.H G F EDC B A24题图探究与证明:(1)利用上面的结论,可得,当OA 1=A 1A 2=A 2A 3=……=A n A n+1=3时,OA n 的长度(用含n 的代数式表示)为 .(2)若OA 1=A 1A 2=A 2A 3=……=A n A n+1= a 时,请猜想OA n 的长度(用含a ,n 的代数式表示),并证明你的猜想.参考答案 1.B ;2.A ;3.C ;4.D ;5.D ;6.C ;7.31;8.3;9. 5;10.2;11.-1;12. a ≥1;13.2;14.14;26题图8A 76A A15.6;16.36;17. 1528-; 18.19. 32- 20.(1)28=a ,5=b ,73=c(2)575+ 21. 22 22.323.解;设绳长为x 米,旗杆长为(x -1)米()22251x x =+-解得,x =13 13-1=12旗杆长为12米,绳长为13米.24. 5424+ 25.(1)甲正确 (2)826.猜想与证明:(1)2,3,2; (2)n探究与证明:(1)n 3 (2)n aCB A CBA。
八年级数学(下册)第一次月考数学试卷(含答案解析) (4)
![八年级数学(下册)第一次月考数学试卷(含答案解析) (4)](https://img.taocdn.com/s3/m/c918fe4202020740be1e9b7b.png)
八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)
![人教版2021-2022学年八年级数学下册第一次月考测试题(附答案)](https://img.taocdn.com/s3/m/46bf93f37e192279168884868762caaedd33ba9e.png)
2021-2022学年八年级数学下册第一次月考测试题(附答案)一、选择题(共30分)1.下列二次根式中是最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.4•=4B.5•5=5C.4•2=6D.4•=4 3.若代数式在实数范围内有意义,则x的取值范围是()A.x<3B.x≤3C.x>3D.x≥34.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.35.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.806.如图,在△ABC中,AB=AC,AD是BC边上的高.已知AB=5,BC=8,则AD的长为()A.6B.5C.4D.37.如图,四边形ABCD是矩形,BC=1,则点M表示的数是()A.2B.C.D.8.已知△ABC的三边分别长为a、b、c,且满足(a﹣17)2+|b﹣15|+c2﹣16c+64=0,则△ABC是()A.以a为斜边的直角三角形B.以b为斜边的直角三角形C.以c为斜边的直角三角形D.不是直角三角形9.若直角三角形的两条直角边各扩大一倍,则斜边()A.不变B.扩大一倍C.扩大两倍D.扩大四倍10.如图,已知1号,4号两个正方形的面积和为7,2号,3号两个正方形的面积和为4,则a,b,c三个方形的面积和为()A.10B.13C.15D.22二、填空题(共24分)11.在,,中与可以合并的二次根式是.12.已知直角三角形的两边长为3、2,则另一条边长是.13.如果=1﹣2a,则a的取值范围是.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是.15.如图,一只蚂蚁从长、宽都是6,高是16的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长为.16.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为.三、解答题(共66分)17.计算:(1);(2).18.分别在以下网格中画出图形.(1)在网格中画出一个腰长为,面积为3的等腰三角形.(2)在网格中画出一个腰长为的等腰直角三角形.19.先化简,后求值:÷(1﹣),其中x=2+1.20.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.21.已知x=2+,y=2﹣,求下列各式的值:(1)x2+xy+y2;(2).22.[阅读材料]我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,为三角形和多边形的面积计算提供了新的方法和思路,在知道三角形三边的长而不知道高的情况下使用秦九韶公式可以更简便地求出面积,比如说在测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地求出答案,即三角形的三边长分别为a、b、c,则其面积S=(秦九韶公式),此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a、b、c,记p=,则其面积S =(海伦公式),虽然这两个公式形式上有所不同,但它们本质是等价的,计算各有优劣,它填补了中国数学史中的一个空白,从中可以看出中国古代已经具有很高的数学水平.[解决问题](1)当三角形的三边a=7,b=8,c=9时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.(2)当三角形的三边a=,b=2,c=3时,请你从上面两个公式里,选择合适的公式计算出三角形的面积.23.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(门槛)一尺,不合四寸,问门广几何?其大意:如图,推开双门(大小相同),双门间隙CD=4寸,点C、点D与门槛AB的距离CE=DF=1尺(1尺=10寸),求AB的长.24.如图,在Rt△ABC中,∠C=90°,AC=BC,在Rt△ABD中,∠D=90°,AD与BC 交于点E,且∠DBE=∠DAB.求证:(1)∠CAE=∠DBC;(2)AC2+CE2=4BD2.25.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,在A处测得C港在北偏东45°方向上,在B处测得C港在北偏西60°方向上,且AB=(400+400)千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据≈1.41,≈1.73,≈2.24)参考答案一、选择题(共30分)1.解:A、被开方数含开得尽的因数或因式,故A不符合题意;B、被开方数含开得尽的因数或因式,故B不符合题意;C、被开方数不含分母,被开方数不含开得尽的因数或因式,故C符合题意;D、被开方数含开得尽的因数或因式,故D不符合题意;故选:C.2.解:A、4•=4×3=12,错误;B、5•5=5×5×=25,错误;C、4•2=4×2×=8,错误;D、正确.故选:D.3.解:由题意得,3﹣x≥0,解得,x≤3,故选:B.4.解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.5.解:∵∠AEB=90°,AE=6,BE=8,∴AB===10,∵四边形ABCD是正方形,∴S正方形ABCD=AB2=102=100,∵S△AEB=AE•BE=×6×8=24,∴S阴影=S正方形ABCD﹣S△AEB=100﹣24=76,∴阴影部分的面积是76,故选:C.6.解:在△ABC中,AB=AC,AD⊥BC,BC=8,则BD=CD=BC=4.在直角△ABD中,AB=5,BD=4,由勾股定理,得AD===3.故选:D.7.解:AC==,AM=AC=,点M表示的数是﹣1.故选:D.8.解:∵(a﹣17)2+|b﹣15|+c2﹣16c+64=0,∴(a﹣17)2+|b﹣15|+(c﹣8)2=0,∴a﹣17=0,b﹣15=0,c﹣8=0,∴a=17,b=15,c=8,∵82+152=172,∴△ABC是以a为斜边的直角三角形;故选:A.9.解:设一直角三角形直角边为a、b,斜边为c,则a2+b2=c2;扩大2倍后,直角三角形直角边为2a、2b,则根据勾股定理知斜边为:=2c.即直角三角形两直角边同时扩大到原来的2倍,则斜边扩大到原来的2倍.故选:C.10.解:利用勾股定理可得S a=S1+S2,S b=S2+S3,S c=S3+S4,∴S a+S b+S c=S a=S1+S2+S2+S3+S3+S4=7+4+4=15.故选:C.二、填空题(共24分)11.解:=2,=2,=3,则与可以合并的二次根式是,故答案为:12.解:①长为2的边是直角边,长为3的边是斜边时:第三边的长为:=;②长为2、3的边都是直角边时:第三边的长为:=,所以第三边的长为:或,故答案为:或.13.解:∵=|2a﹣1|,∴|2a﹣1|=1﹣2a,∴2a﹣1≤0,∴a≤.故答案为a≤.14.解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△ECD(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=15,故答案为:15.AB==2;如图(2)所示:AB==20.由于2>20,所以最短路径为20cm.故答案为:20cm.16.解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故答案为:3.三、解答题(共66分)17.解:(1)原式=10﹣6+4=20﹣9+4=15;(2)原式=+﹣2=4+﹣2=4﹣.(2)如图2所示:19.解:原式====,当时,原式==.20.解:(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB===10,∴△ADB的面积为S△ADB=AB•DE=×10×3=15.21.解:∵x=2+,y=2﹣,∴x+y=4,xy=1,∴(1)x2+xy+y2=(x+y)2﹣xy=42﹣1=15;(2)===4.22.解:(1)∵p==12,∴由海伦公式得:S===12;(2)由秦九韶公式得:S====.23.解:设AE=BF=x寸,则AC=(x+2)寸,∵AE2+CE2=AC2,∴x2+102=(x+2)2,解得:x=24,则AB=24+24+4=52(寸),答:AB的长为52寸.24.证明:(1)∵∠ACB=∠D=90°,∴∠CEA+∠CAE=∠BED+∠CBD=90°,∴∠CEA=∠BED,∴∠CAE=∠DBC;(2)延长BD交AC延长线于点F,∵∠DBE=∠DAB,∴∠DAB=∠CAE,在△ADB和△ADF中,,∴△ADB≌△ADF(ASA),∴BD=DF,∴BF=2BD,在△ACE和△BCF中,,∴△ACE≌△BCF(ASA),∴AE=BF,∴AE=2BD,在Rt△ACE中,AC2+CE2=AE2,∴AC2+CE2=(2BD)2=4BD2.25.解:(1)海港C受台风影响,理由:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠CAD=45°,∴∠ACD=45°,∴AD=CD,∵∠DBC=30°,∴BD=CD,∵AB=(400+400)千米,∴AB=AD+BD=CD+CD=400+400,∴CD=400千米,∵以台风中心为圆心,周围600千米以内为受影响区域,∴海港C受台风影响;(2)当EC=600km,FC=600km时,正好影响C港口,∵ED==200(km),∴EF=400km,∵台风的速度为20千米/小时,∴400÷20≈45(小时).答:台风影响该海港持续的时间大约为45小时.。
人教版八年级下学期第一次月考数学试卷含答案解析
![人教版八年级下学期第一次月考数学试卷含答案解析](https://img.taocdn.com/s3/m/6752b0f003d8ce2f016623cb.png)
八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。
八年级下学期第一次月考数学试题含答案
![八年级下学期第一次月考数学试题含答案](https://img.taocdn.com/s3/m/4dbe13114028915f814dc25d.png)
一、选择题1.如图,点A 的坐标是(2)2,,若点P 在x 轴上,且APO △是等腰三角形,则点P 的坐标不可能是( )A .(2,0)B .(4,0)C .(-22,0)D .(3,0)2.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个3.如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 4.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A.62B.22C.210D.6 5.在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是()A.34B.35C.45D.1256.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm7.长度分别为9cm、12cm、15cm、36cm、39cm五根木棍首尾连接,最多可搭成直角三角形的个数为()A.1个B.2个C.3个D.4个8.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()A.3.5 B.23C.13D.369.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.17B.5C.2D.710.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为()A.5 B.4 C7D.4或5二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.13.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.16.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.17.如图是由边长为1的小正方形组成的网格图,线段AB ,BC ,BD ,DE 的端点均在格点上,线段AB 和DE 交于点F ,则DF 的长度为_____.18.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图的实线部分是由Rt ABC ∆经过两次折叠得到的.首先将Rt ABC ∆沿高CH 折叠,使点B 落在斜边上的点B '处,再沿CM 折叠,使点A 落在CB '的延长线上的点A '处.若图中90ACB ∠=︒,15cm BC =,20cm AC =,则MB '的长为______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.24.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A、B、C三点的位置如图,请在网格图中标出所有的格点.......D.,使得以A、B、C、D为顶点的四边形为邻和四边形.(3)如图3,△ABC中,∠ABC=90°,AB=2,BC=23,若存在一点D,使四边形ABCD是邻和四边形,求邻和四边形ABCD的面积.25.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)26.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.27.如图1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=40cm2,如图2,动点M从点B出发以每秒2cm的速度沿线段BA向点A 运动,同时动点N从点A出发以每秒1cm速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止. 设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.图1 图2 备用图28.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.29.已知ABC是等边三角形,点D是BC边上一动点,连结AD()1如图1,若2DC=,求AD的长;BD=,4()2如图2,以AD为边作60∠=∠=,分别交AB,AC于点E,F.ADE ADF①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;(3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:(1)当点P 在x 轴正半轴上,①以OA 为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,∴P的坐标是(4,0)或(22,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA= 22∴OA=AP=2∴P的坐标是(-220).故选D.2.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF,交DE于点P,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.3.A解析:A【分析】由已知条件可证△CFE≌△AFD,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt△AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∴∠B=∠D=900,BC=AD,由翻折得AE=AB=8m ,∠E=∠B=900,CE=BC=AD又∵∠CFE=∠AFD∴△CFE≌△AFD∴EF=DF设AF=xcm ,则DF=(8-x )cm在Rt△AFD 中,AF 2=DF 2+AD 2,AD=6cm , 222(8)6x x =-+ 254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.4.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''=+=PA PB -的最大值为:210.故答案为:210.5.D解析:D【解析】在Rt △ABC 中 ∠C=90°,AC=3,BC=4,根据勾股定理求得AB=5,设点C 到AB 的距离为h ,即可得12h×AB=12AC×BC ,即12h×5=12×3×4,解得h=125,故选D. 6.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.【详解】解:如图:将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,延长BG ,过A'作A'D ⊥BG 于D ,∵AE=A'E=DG=4cm ,∴BD=16cm ,Rt △A'DB 中,由勾股定理得:22201612-=cm∴则该圆柱底面周长为24cm .故选:D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.7.B解析:B【解析】试题分析:解:∵92=81,122=144,152=225,362=1296,392=1521,∴81+144=225,225+1296=1521,即92+122=152,152+362=392,故选B .考点:勾股定理的逆定理点评:本题难度中等,主要考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.8.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.9.A解析:A【解析】试题解析:作AD ⊥l 3于D ,作CE ⊥l 3于E ,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,{BAD CBE AB BCADB BEC∠=∠=∠=∠,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得25+9=34,在Rt△ABC中,根据勾股定理,得342=217.故选A.考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.10.D解析:D【分析】根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾股定理求斜边即可.【详解】当3和4为两直角边时,由勾股定理,得:22345+=;当3和4为一直角边和一斜边时,可知4为斜边.∴斜边长为4或5.故选:D.【点睛】本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.二、填空题11.103.【解析】试题解析:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=103,所以S2=x+4y=103.考点:勾股定理的证明.12.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,13.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'2243(cm),如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'=22+=37(cm),61如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'=22+=29(cm)25∵5<29<37,∴蚂蚁爬行的最短路径长是5cm,故答案为:5cm.【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.14.7【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.【详解】连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,OC ∴=∴【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.15.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.16.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.17.2【分析】连接AD 、CD ,由勾股定理得:22435AB DE ==+=,224225BD =+=,22125CD AD ==+=,得出AB =DE =BC ,222BD AD AB +=,由此可得△ABD 为直角三角形,同理可得△BCD 为直角三角用形,继而得出A 、D 、C 三点共线.再证明△ABC ≌△DEB ,得出∠BAC =∠EDB ,得出DF ⊥AB ,BD 平分∠ABC ,再由角平分线的性得出DF =DG =2即可的解.【详解】连接AD 、CD ,如图所示:由勾股定理可得,22435AB DE ==+=,224225BD =+=22125CD AD ==+, ∵BE=BC=5,∴AB=DE =AB =BC ,222BD AD AB +=,∴△ABD 是直角三角形,∠ADB =90°,同理可得:△BCD 是直角三角形,∠BDC =90°,∴∠ADC =180°,∴点A 、D 、C 三点共线,∴225AC AD BD ===,在△ABC 和△DEB 中,AB DE BC EB AC BD =⎧⎪⎨⎪=⎩=,∴△ABC ≌△DEB(SSS),∴∠BAC =∠EDB ,∵∠EDB+∠ADF =90°,∴∠BAD+∠ADF =90°,∴∠BFD =90°,∴DF ⊥AB ,∵AB=BC ,BD ⊥AC ,∴BD 平分∠ABC ,∵DG ⊥BC ,∴DF =DG =2.【点睛】本题考查全等三角形的性质与判定以及勾股定理的相关知识,解题的关键是熟练掌握勾股定理和过股定理的逆定理.18.103. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质. 19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.3【分析】根据题意利用折叠后图形全等,并利用等量替换和等腰三角形的性质进行综合分析求解.【详解】解:由题意可知','ACM A CM BCH B CH ≅≅,∵15cm BC =,20cm AC =,∴'15,'20,BC B C cm AC A C cm ====''20155A B cm =-=,∵90ACB ∠=︒,∴'A M AB ⊥(等量替换),CH AB ⊥(三线合一),∴25,AB cm = 利用勾股定理假设MB '的长为m ,'257AM AM m ==-,则有222(257)5m m +-=,解得3m =,所以MB '的长为3.【点睛】本题考查几何的翻折问题,熟练掌握并综合利用等量替换和等腰三角形的性质以及勾股定理分析是解题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD ,进而得出△ACD ≌△ABE ,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论. (3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD 2+CE 2=2(AP 2+CP 2),再判断出CD 2+CE 2=2AC 2.即可得出结论.【详解】解:∵∠BAC =∠DAE ,∴∠BAC +∠CAE =∠DAE +∠CAE ,即∠BAE =∠CAD .又∵AB =AC ,AD =AE ,∴△ACD ≌△ABE (SAS ),∴CD =BE .(2)如图2,连结BE ,∵AD =AE ,∠DAE =60°,∴△ADE 是等边三角形,∴DE =AD =3,∠ADE =∠AED =60°,∵CD ⊥AE ,∴∠CDA =12∠ADE =12×60°=30°, ∵由(1)得△ACD ≌△ABE ,∴BE =CD =4,∠BEA =∠CDA =30°,∴∠BED =∠BEA +∠AED =30°+60°=90°,即BE ⊥DE ,∴BD 22BE DE +2234+5.(3)CD 2、CE 2、BC 2之间的数量关系为:CD 2+CE 2=BC 2,理由如下:解法一:如图3,连结BE .∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt△APC中,由勾股定理可知:AC2=AP2+CP2,∴CD2+CE2=2AC2.∵△ABC为等腰直角三角形,由勾股定理可知:∴AB2+AC2=BC2,即2AC2=BC2,∴CD2+CE2=BC2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.24.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.25.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE=2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH=3AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD=2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH 2AD , ∵AD =AE ,AH ⊥DE ,∴DH =HE ,∴CD =DE +EC =2DH +BD +BD ,故答案为:CD +BD .【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.26.(1)2516;(2)83t =或6;(3)当153,5,210t =或194时,△BCP 为等腰三角形. 【分析】(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,根据勾股定理列方程即可得到结论;(2)当点P 在CAB ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,根据勾股定理列方程即可得到结论; (3)在Rt ABC 中,根据勾股定理得到4AC cm =,根据题意得:2AP t =,当P 在AC上时,BCP 为等腰三角形,得到PC BC =,即423t -=,求得12t =,当P 在AB 上时,BCP 为等腰三角形,若CP PB =,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,求得194t =,若PB BC =,即2343t --=,解得5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,由射影定理得;2BC BF AB =⋅,列方程2234352t --=⨯,即可得到结论. 【详解】 解:在Rt ABC 中,5AB cm =,3BC cm =,4AC cm ∴=,(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-,在Rt PCB 中,222PC CB PB +=,即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,此时72BP t =-,24PE PC t ==-,541BE =-=,在Rt BEP 中,222PE BE BP +=,即:222(24)1(72)t t -+=-, 解得:83t =, 当6t =时,点P 与A 重合,也符合条件,∴当83t =或6时,P 在ABC ∆的角平分线上; (3)根据题意得:2AP t =,当P 在AC 上时,BCP 为等腰三角形,PC BC ∴=,即423t -=,12t ∴=, 当P 在AB 上时,BCP 为等腰三角形,CP PB =①,点P 在BC 的垂直平分线上,如图2,过P 作PE BC ⊥于E ,1322BE BC ∴==, 12PB AB ∴=,即52342t --=,解得:194t =, PB BC =②,即2343t --=,解得:5t =,PC BC =③,如图3,过C 作CF AB ⊥于F ,12BF BP ∴=, 90ACB ∠=︒,由射影定理得;2BC BF AB =⋅, 即2234352t --=⨯, 解得:5310t =, ∴当15319,5,2104t =或时,BCP 为等腰三角形. 【点睛】本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.27.(1)见详解;(2)①t 值为:103s 或6s ;②t 值为:4.5或5或4912. 【分析】(1)设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,由勾股定理求出AC ,即可得出结论;(2)由△ABC 的面积求出BD 、AD 、CD 、AC ;①当MN ∥BC 时,AM=AN ;当DN ∥BC 时,AD=AN ;得出方程,解方程即可;②根据题意得出当点M 在DA 上,即2<t ≤5时,△MDE 为等腰三角形,有3种可能:如果DE=DM ;如果ED=EM ;如果MD=ME=2t-4;分别得出方程,解方程即可.【详解】解:(1)证明:设BD=2x ,AD=3x ,CD=4x ,则AB=5x ,在Rt △ACD 中,AC=5x ,∴AB=AC ,∴△ABC 是等腰三角形;(2)解:由(1)知,AB=5x ,CD=4x ,∴S △ABC =12×5x×4x=40cm 2,而x >0, ∴x=2cm ,则BD=4cm ,AD=6cm ,CD=8cm ,AB=AC=10cm .由运动知,AM=10-2t ,AN=t ,①当MN ∥BC 时,AM=AN ,。
新疆博湖中学2013-2014学年八年级下学期第一次月考数学试题人教版
![新疆博湖中学2013-2014学年八年级下学期第一次月考数学试题人教版](https://img.taocdn.com/s3/m/73fae3b2c77da26925c5b04e.png)
绝密★启用前2013-2014学年度博湖中学3月第一次月考卷八年级数学一、选择题(每小题3分,共30分)1.下列二次根式中,最简二次根式是( ).. 2a 的取值范围是___________. 3.对于二次根式,以下说法不正确的是A .它是一个正数B .是一个无理数C .是最简二次根式D .它的最小值是3 4.下列二次根式中,属于最简二次根式的是( )A .21; B .8; C .y x 2; D .y x +2.5.分别以下列四组数为一个三角形的边长: (1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( ) A.4组 B.3组 C.2组 D.1组 6.下列计算正确的是7.如果梯子的底端离建筑物5m ,那么13m 长的梯子可以达到建筑物的高度是( ) A 、10m B 、11m C 、12m D 、13m8.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形中,边长为无理数的边数是 ( )A 、0B 、1C 、2D 、392+x9.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是 ( )A .2.5;B .C .D10.若一直角三角形两边长分别为12和5,则第三边长为 ( )(A )13. (B )13 (C )13或15. (D )15. 二、填空题(每题3分,共15分)11. a的值为________12.已知a<2,。
13.若,则 。
14.计算: ,。
15.已知P 是直角坐标系内一点,•若点P•的坐标为,则它到原点的距离是_______.三、计算题(20-24小题每题7分,25小题4分,共39分)16.计算:.17.计算:=-2)2(a 433+-+-=x x y =+y x =∙y xy 82=∙27122+18.计算:19.计算:四、解答题(题型注释)20.先化简,再求值:,其中.21.一架长5米的梯子AB ,斜立在一竖直的墙上,这时梯子底端距墙底3米.如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,论证你的结论.52213222330⨯⨯0(3)1-+()()212-++a a a 2=a22.如图,在△ABC 中,AD ⊥BC ,垂足为D ,∠B=60°,∠C=45°.(1)求∠BAC 的度数. (2)若AC=2,求AD 的长.23.有一块铁皮零件,AB=4cm ,BC=3cm ,CD=12cm ,AD=13cm.按照规定标准,这个零件中∠B=900,求这块铁皮零件的面积。
人教版新课程八年级下期第一次月考数学试题
![人教版新课程八年级下期第一次月考数学试题](https://img.taocdn.com/s3/m/2a4422217375a417866f8f7a.png)
2013--2014学年度下期八年级数学月考试题一、选择题(每个小题3分,共30分)1、 下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x2、如果)6(6-=-∙x x x x ,那么( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数3、化简6151+的结果为( ) A .3011 B .33030 C .30330 D .1130 4、已知直角三角形两边长为3和4,此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对5、在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ).A .16πB .12πC .10πD .8π6、如右图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m7、已知平行四边形周长为28cm ,相邻两边的差是4cm ,则两边的长分别为( )A .4cm 、10cmB .5cm 、9cmC .6cm 、8cmD .5cm 、7cm8、平行四边形ABCD 中,对角线AC 、BD 交于点O ,AC = 10,BD = 8,则AD 的取值范围是( )A .AD >1B . AD <9C .1<AD <9 D .AD >99、已知平行四边形的一条边长为14,下列各组数中能分别作它的两条对角线长的是( )A .10与6B .12与16C .20与22D .10与1810、四边形ABCD 中,AD ∥BC ,当满足条件( )时,四边形ABCD 是平行四边形 A .∠A +∠C =︒180 B .∠B +∠D =︒180 C .∠A +∠B =︒180 D .∠A +∠D =︒180二、填空(每个小题3分,共30分)11、二次根式31-x 有意义的条件是 。
八年级数学下第一次月考试卷
![八年级数学下第一次月考试卷](https://img.taocdn.com/s3/m/d3bbb2701fb91a37f111f18583d049649a660e44.png)
八年级数学下第一次月考试卷2017八年级数学下第一次月考试卷数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。
正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。
以下是店铺为大家提供的2017八年级数学下第一次月考试卷,欢迎大家学习参考。
一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣53.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<05.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣18.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣19.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=010.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.二、填空题11.一次函数y=4x﹣3的截距是.12.已知一次函数y=kx﹣2的图象经过点(﹣1,2),则k= .13.函数y=﹣2x+4与x轴的交点坐标为,与y轴的交点坐标为.14.直线y=3x+2是由直线y=3x﹣5向平移个单位得到的.15.如果一次函数y=(2m+3)x+1的函数值y随着x值增大而减小,那么m的取值范围是.16.函数y=﹣ x+1的图象经过第象限.17.已知点A(﹣1,a),B(2,b)在函数y=﹣3x+4的图象上,则a 与b的大小关系是.18.若直线y=kx+b经过第一、三、四象限,则k 0,b 0.19.在关于x的方程2ax﹣1=0(a≠0)中,把a叫做.20.已知关于x的方程2x2+mx﹣1=0是二项方程,那么m= .三、简答题21.在实数范围内解下列方程(1)x2﹣9=0(2)8(x﹣1)3﹣27=0.22.解下列关于x的方程.(1)a2x+x=1;(2)b(x+3)=4.23.已知等腰三角形的周长为12cm,若底边长为y cm,一腰长为x cm.(1)写出y与x的函数关系式;(2)求自变量x的取值范围.24.已知一次函数图象经过点A(1,3)和B(2,5).求:(1)这个一次函数的解析式.(2)当x=﹣3时,y的值.25.已知函数y=(2m+1)x+m﹣3,(1)若函数图象经过原点,求m的值;(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.26.已知一次函数y=kx+b的图象如图所示:(1)函数值y随x的增大而;(2)当x 时,y>0;(3)当x<0时,y的取值范围是;(4)根据图象写出一次函数的解析式为.27.某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?2015-2016学年上海市宝山区XX中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题1.下列函数y= x,y=2x﹣1,y= ,y=2﹣3x中,是一次函数的有( )A.4个B.3个C.2个D.1个【考点】一次函数的定义.【分析】根据一次函数的定义进行判断.【解答】解:y= x属于正比例函数,是特殊的一次函数,属于一次函数;y=2x﹣1,y=2﹣3x符合一次函数的定义,属于一次函数,y= 属于反比例函数.综上所述,一次函数的个数是3个.故选:B.【点评】本题考查了一次函数的定义.注意:正比例函数是特殊的一次函数.2.下列函数中,y随x的增大而减小的有( )A.y=﹣3x+1B.y=2x﹣1C.y=x﹣1D.y= x﹣5【考点】一次函数的性质.【分析】根据一次函数的增减性,当k<0时y随x的增大而减小可求得答案.【解答】解:在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,在四个选项中,只有A选项y=﹣3x+1中的k=﹣3<0,∴在y=﹣3x+1中,y随x的增大而减小,故选A.【点评】本题主要考查一次函数的性质,掌握一次函数的增减性是解题的关键,即在y=kx+b(k≠0)中,当k<0时,y随x的增大而减小,当k>0时,y随x的增大而增大.3.一次函数y=x+1不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系求出一次函数y=x+1经过的象限即可.【解答】解:∵一次函数y=x+1中,k=1>0,b=1>0,∴此函数的图象经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限是解答此题的关键.4.一次函数y=kx+b的图象如图所示,则k、b的符号( )A.k<0,b>0B.k>0,b>0C.k<0,b<0D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、二、四象限,又有k>0时,直线必经过一、三象限;故知k>0.再由图象过而、四象限,即直线与y轴正半轴相交,所以b>0.则k、b的符号k<0,b>0.故选A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b 的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.5.下面哪个点不在函数y=﹣2x+3的图象上( )A.(﹣5,13)B.(0.5,2)C.(3,0)D.(1,1)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.【解答】解:A、当x=﹣5时,y=﹣2x+3=13,点在函数图象上;B、当x=0.5时,y=﹣2x+3=2,点在函数图象上;C、当x=3时,y=﹣2x+3=﹣3,点不在函数图象上;D、当x=1时,y=﹣2x+3=1,点在函数图象上;故选C.【点评】本题考查了点的坐标与函数解析式的关系,当点的横纵坐标满足函数解析式时,点在函数图象上.6.一次函数y=﹣5x+3的图象经过的象限是( )A.一,二,三B.二,三,四C.一,二,四D.一,三,四【考点】一次函数的性质.【分析】根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选C.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.已知一次函数的图象与直线y=﹣x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=﹣x﹣2B.y=﹣x﹣6C.y=﹣x+10D.y=﹣x﹣1【考点】两条直线相交或平行问题;待定系数法求一次函数解析式.【专题】待定系数法.【分析】根据一次函数的图象与直线y=﹣x+1平行,且过点(8,2),用待定系数法可求出函数关系式.【解答】解:由题意可得出方程组,解得:,那么此一次函数的解析式为:y=﹣x+10.故选:C.【点评】本题考查了两条直线相交或平行问题,由一次函数的一般表达式,根据已知条件,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.8.已知关于x的方程mx+x=2无解,那么m的值是( )A.m=0B.m≠0C.m≠﹣1D.m=﹣1【考点】一元一次方程的解.【分析】根据方程无解可得出m的值.【解答】解:假设mx+x=2有解,则x= ,∵关于x的方程mx+x=2无解,∴m+1=0,∴m=﹣1时,方程无解.故选:D.【点评】本题考查了一元一次方程的解,掌握一元一次方程的解是解题的关键.9.下列方程中,是二项方程的是( )A.x3+2=0B.x3+2x=0C.x4+2x3+1=0D. +5=0【考点】高次方程.【分析】根据二项方程的定义对各选项进行判断.【解答】解:x2+2=0为二项方程;x3+2x=0为三次方程;x4+2x3+1=0为四次方程; +5=0为分式方程.故选A.【点评】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.10.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行驶时间t(时)的函数关系用图象表示应为( )A. B. C. D.【考点】函数的图象.【分析】由已知列出函数解析式,再画出函数图象,注意自变量的取值范围.【解答】解:由题意得函数解析式为:Q=40﹣5t,(0≤t≤8)结合解析式可得出图象.故选:B.【点评】此题主要考查了函数图象中由解析式画函数图象,特别注意自变量的取值范围决定图象的画法.。
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)
![2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷(含答案)](https://img.taocdn.com/s3/m/a5fb8a85185f312b3169a45177232f60dccce76a.png)
2023-2024学年浙江省绍兴市柯桥区八年级下学期第一次月考数学试卷1、选择题:(本题共10小题,每小题2分,共20分)1.下列二次根式是最简二次根式的是( )A. B. C. D.14128132.下列各式正确的是( )A. B.(−4)×(−9)=−4×−916+94=16×94C.D. 449=4×494×9=4×93.若,则( )y =x−2+4−2x−3x +y =A. B. C. D. 15−5−14.用配方法解一元二次方程时,下列变形结果正确的是 ( )x 2−4x−3=0A. B. C. D. (x−2)2=1(x−2)2=7(x−4)2=1(x−4)2=75.若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )x (k−1)x 2+4x +1=0k A. B. 且 C. 且 D. k <5k <5k ≠1k ≤5k ≠1k >56.如果一组数据2、3、4、5、x 的方差与另一组数据101,102,103,104,105的方差相等,那么x 的值( )A. 6 B. 1C. 6或1D. 无法确定7.若,,则( )x +1x=60<x <1x−1x=A. B. C. D. −2−2±2±28.如图,中,对角线、相交于点,交于点,连接,若的周长▱ABCD AC BD O OE ⊥BD AD E BE ▱ABCD 为,28则的周长为( )△ABE A. B. C. D. 282421149.已知a,b,c 满足( )4a 2+2b−4=0,b 2−4c +1=0,c 2−12a +17=0,则a 2+b 2+c 2的值为A. B. C.14 D.201621429410.新定义:关于的一元二次方程与称为“同族二次方程”如x a 1(x−m )2+k =0a 2(x−m )2+k =0.与是“同族二次方程”现有关于的一元二次方程2021(x−3)2+4=03(x−3)2+4=0.x 与是“同族二次方程”,那么代数式能取2(x−1)2+1=0(a +2)x 2+(b−4)x +8=0ax 2+bx +2024的最小值是( )A. B. C.2018D. 202320242019二、填空题:(本题共10小题,每小题3分,共30分)11.要使根式有意义,则的取值范围是__________.x +4x−2x 12.已知三角形的两边长分别为和,第三边长是方程的根,则这个三角形的周长36x 2−6x +8=0是 .13.计算: .(2−5)2023(2+5)2024=14.一个多边形的内角和比它的外角和的倍少,这个多边形的边数是 .3180∘15.若是完全平方式,则的值为__________.x 2+2(m−1)x +16m 16.已知一组数据,,,,的平均数是,方差是,那么另一组数据,,x 1x 2x 3x 4x 5213x 1−23x 2−2,,的平均数__________, 方差__________.3x 3−23x 4−23x 5−217.设,是方程的两个实数根,则________.a b x 2+x−2024=0a 2+2a +b =18.已知,则的值为 ________(x 2+y 2+2)(x 2+y 2+4)=15x 2+y 219.对于实数、,我们用符号表示,两数中较小的数,如,p q min{p,q}p q min {1,2}=1若,则 .min{(x +1)2,x 2}=4x =20.如图,在▱中,,是的中点,作,垂足在线段上,连接、ABCD AD =2AB F AD CE ⊥AB E AB EF ,CF 则下列结论中,; ;①2∠DCF =∠BCD ②EF =CF; .其中正确的是________.③S △BEC =2S △CEF ④∠DFE =3∠AEF 三、解答题:(本题共7小题,共50分)21.本小题分计算或选用适当的方法解下列方程(10)(1)(2)(2+3)(2−3)(−3)0−27+|1−2|.(3)(2x−1)2=1(4)(x−5)2=3(x−5)22.本小题6分已知的三条边长,,,在下面的方格图内()△ABC AB =2AC =412BC =251254×4画出,使它的顶点都在格点上每个小方格的边长均为.△ABC (1).(1)画出△ABC 求的面积.(2)△ABC 求点到边的距离.(3)A BC 23.本小题8分某校八(1)班甲、乙两名男生在5次引体向上测试中有效次数记录如下:()甲:8,8,7,8,9;乙:5,9,7,10,9.甲、乙两人引体向上的平均数、众数、中位数、方差如下表所示:平均数众数中位数方差甲8b 80.4乙a9C3.2(1)表中a= ,b= ,c=______ (2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是 班主任李老师根据去年比赛的成绩(至少9次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是__________________. (3)如果乙同学再做一次引体向上,有效次数为8,那么乙同学6次引体向上成绩的平均数 ,中位数 ,方差 (均填“变大”“变小”或“不变”).24.本小题4分如图,在平行四边形中,对角线,相交于点,过点的直线分别()ABCD AC BD O O 交,于点,AD BC E F.求证:。
2013-2014学年度山东省枣庄市市中区龙子心中学八年级下第一次月考数学试题【北师大版】
![2013-2014学年度山东省枣庄市市中区龙子心中学八年级下第一次月考数学试题【北师大版】](https://img.taocdn.com/s3/m/b478058a8762caaedd33d4f8.png)
龙子心中学2013-2014学年度第二学期第一次月考八年级数学试题一、选择题(每小题3分,共36分)1.若a >b ,则下列式子正确的是 ( ) A. —4a >—4bB.b a 2121< C. a -4>b -4 D. 4-a >4-b2.已知:在△ABC 中,∠A =60°,如要判定△ABC 是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC ”,那么△ABC 是等边三角形;②如果添加条件“∠B =∠C ”,那么△ABC 是等边三角形;③如果添加条件“边AB 、BC 上的高相等”,那么△ABC 是等边三角形.上述说法中,正确的说法有( )A .3个B .2个C .1个D .0个 3.把不等式x+24>的解表示在数轴上,正确的是( ) A .B .C .D .4.如图,若要用“HL”证明Rt △ABC ≌R t △ABD ,则还需补充条件( ) A .∠BAC =∠BAD B .AC=AD 或BC=BD C .AC=AD 且BC=BD D. .以上都不正确 5.已知关于x 的不等式2)1(>-x a 的解集为ax -<12,则a 的取值范围是 ( ) A .a >0 B .a >1 C .a <0 D .a <16.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ) A . △ABC 的三条中线的交点 B . △ABC 三边的中垂线的交点 C . △ABC 三条角平分线的交点 D . △ABC 三条高所在直线的交点 7.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为3≤x <5,则a b的值是 ( )A .―2 B.―21 C .-4 D .―418.已知下列命题:①等腰三角形两腰上的高相等;②若a ﹥b ,则ac 2﹥bc 2 ;③全等三角形对应角相等;④直角三角形两锐角互余.其中原命题与逆命题均为真命题的个数 A.1个 B.2个 C.3个 D.4个9.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )A .5B .6C .7D .810.观察函数y 1和y 2的图象, 当x=1,两个函数值的大小为( ) A. y 1> y 2 B. y 1< y 2 C.y 1=y 2 D.y 1≥ y 2 11. 如图∠BOP=∠AOP=15°,PC ∥OB ,PD ⊥PB 于D ,PC=2,则PD 的长度为( ) A .4 B .3 C .2 D .1 12.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A'B'C'的位置后,再沿CB 方向向左平移,使点B'落在原三角板ABC 的斜边AB 上,则三角板A'B'C'平移的距离为( )A.6cm B.4cm C.(6-23)cm D.(43-6)cm第10题图 第11题图 第12题图 二、填空题(每题4分,共24分)13.已知点A (2-a ,a +1)在第一象限,则a 的取值范围是 . 14.如图,△ABC 中,AB=AC=10,BC=8,AD平分∠BAC 交BC 于点D ,AD 的垂直平分线交AC 与点E ,连接DE ,则△CDE 的周长为 15. 若不等式2x<4的解集都能使关于x 的一次不等式(m-1)x<m+5成立,则m 的取值范围是_____ 。
四川省达州铁路中学2023-2024学年八年级下学期第一次月考数学试题
![四川省达州铁路中学2023-2024学年八年级下学期第一次月考数学试题](https://img.taocdn.com/s3/m/a636e359e97101f69e3143323968011ca300f780.png)
四川省达州铁路中学2023-2024学年八年级下学期第一次月考数学试题一、单选题1.下列式子:①30>;②450x +>;③3x <;④2x x +;⑤4x =-;⑥21x x +>+,其中不等式有( ) A .3个B .4个C .5个D .6个2.设等腰三角形的一边长为5,另一边长为10,则其周长为( ) A .15B .20C .25D .20或253.下列说法错误的是( ) A .若33a b +>+,则a b > B .若a b >,则32a b +>+ C .若2211a bc c >++,则a b > D .若a b >,则ac bc >4.下列命题的逆命题为假命题的是( )A .直角三角形两条直角边的平方和等于斜边的平方B .两直线平行,同位角相等C .若一个三角形的三边相等,则它的三个角也相等D .若c d =,则a c ad = 5.在平面直角坐标系中,若点P(x-3,x)在第二象限,则x 的取值范围为( ) A .03x <<B .3 x <C .0x >D .3x >6.如图,已知钝角ABC V ,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ; 步骤3:连接AD ,交BC 延长线于点H . 下列叙述错误的是( )A .BH 垂直平分线段ADB .AC 平分BAD ∠C .AH 是ABC V 的高D .A 点和D 点关于直线BC 对称7.如图,函数12y x =-和23y ax =+的图象相交于点(,2)A m ,则关于x 的不等式23x ax ->+的解集是( )A .2x >B .2x <C .1x >-D .1x <-8.不等式2402x x -<⎧⎨-≤⎩的解集在数轴上表示为( )A .B .C .D .9.如图,在Rt ABC △和Rt ABD △中,90ACB ADB ∠=∠=︒,10AB =,M 是AB 的中点,连接MC ,MD ,CD ,若6CD =,则MCD △的面积为( )A .12B .12.5C .15D .2410.如图,ABC V 中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作DE BC ∥交AB 于点.D ,交AC 于点E ,那么下列结论:①BDF V 和CEF △都是等腰三角形;②DE BD CE +=;③BC BD CE +=;④ADE V 的周长AB AC +=;⑤BF CF =.其中正确的有( )A .①②③B .①②④C .①②④⑤D .②④⑤二、填空题11.命题“若22ac bc >,则a b >”的逆命题是命题.(填“真”或“假”)12.如图,60BAC ∠=︒,AP 平分BAC ∠,PD AB ⊥,PE AC ⊥,若AD =PE =.13.如图,在等腰Rt ABC △中,90C ∠=︒,按以下步骤作图:①分别以点B 和点C 为圆心,以大于12BC 的长为半径作圆,相交于点M 和点N ;②作直线MN 交AB 于点D .若8AC =,则BD =.14.如果关于x 的不等式组2132x x x m +⎧≥-⎪⎨⎪<⎩恰有3个整数解,则m 的取值范围是.15.定义:在平面直角坐标系中,对于任意两点1122()A x y B x y ,,(,),如果点(,)M x y满足:12,2x x x -=122y y y -=,那么称点M 是点A ,B 的“双减点”. (i )若点(3,2)A -,(,)B a b 的“双减点”M 的坐标是(1,4)-,则点B 的坐标是;(ii )若点(2,4)D -,(3,27)E m m --的“双减点”是点F ,当点F 在直线1y x =-的上方时,则m 的取值范围是.16.如图,在ABC V 中,6AB AC ==,120A ∠=︒,点D 在边AC 上,且2AD =,长度为1的线段EF 在边AB 上运动,则线段DE 的最大值为,四边形DEFC 面积的最大值为.三、解答题17.解下列不等式(组). (1)221132x x +--<; (2)121135x x x x -⎧⎪+-⎨≥⎪⎩>.18.为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理,调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成如图所示的不完整的统计图.(1)本次调查的样本容量是多少? (2)请通过计算补全条形统计图;(3)已知该小区有居民1800人,请估计该小区对垃圾分类知识“较少了解”的居民人数.19.如图,在ABC V 中,ABC ∠的平分线交AC 于点D ,过点D 作DE BC ∥交AB 于点E .(1)求证:BE DE =;(2)若70A ∠=︒,30C ∠=︒,求BDE ∠的度数. 20.已知方程组3951x y a x y a +=+⎧⎨-=+⎩的解为正数,求(1)a 的取值范围; (2)化简454a a +--.21.如图是由小正方形组成的99⨯网格中,每个小正方形的顶点叫做格点,点A ,B ,C ,D 都是格点,直线AD 与BC 交于点E ,仅用无刻度直尺,在给定的网格中完成画图,画图过程用虚线表示.(1)在图(1)中,画出ABE V 的中线EF 和角平分线BG ; (2)如图(2),连接BD . ①直接写出ABD △的形状;②在图(2)中的线段BD 上画点H ,使DH DE =.22.为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a 个,利润为w 元,写出w 与a 的函数关系式,并求出第三月的最大利润.23.如图1,矩形OACB 的顶点A 、B 分别在x 轴与y 轴上,且点()610C ,,点()02D ,,点P 为矩形AC 、CB 两边上的一个点.(1)当点P 与C 重合时,求直线DP 的函数解析式;(2)如图②,当P 在BC 边上,将矩形沿着OP 折叠,点B 对应点B '恰落在AC 边上,求此时点P 的坐标.(3)是否存在P 使BDP △为等腰三角形?若存在,直接写出点P 的坐标;若不存在,请说明理由.24.【活动回顾】:八年级下册教材中,我们曾探究过“函数25y x =-的图象上点的坐标的特征”,了解了一元一次不等式的解集与相应的一次函数图象上点的坐标的关系.发现:一元一次不等式250x ->的解集是函数25y x =-图象在x 轴上方的点的横坐标的集合.结论:一元一次不等式:0kx b +>(或0kx b +<)的解集,是函数y kx b =+图象在x 轴上方(或x 轴下方)部分的点的横坐标的集合. 【解决问题】:(1)如图1,观察图象,一次函数()0y kx b k =+<的图象经过点()32P ,,则不等式2kx b +<的解集是______.(2)如图2,观察图象,两条直线的交点坐标为______,方程211x x -=+的解是______;不等式211x x ->+的解是______. 【拓展延伸】(3)如图3,一次函数11y x =-+和2122y x =-的图象相交于点A ,分别与x 轴相交于点B 和点C .①求点A ,C 的坐标;②结合图象,直接写出关于x 的不等式组12121202x x x ⎧->-+⎪⎪⎨⎪->⎪⎩的解集是______.③若x 轴上有一动点()0P a ,,是否存在点P ,使得ABP V 为等腰三角形,若存在,请直接写出P 点坐标;若不存在,请说明理由.25.角平分线性质定理描述了角平分线上的点到角两边距离的关系,小周发现将角平分线放在三角形中,还可以得出一些线段比例的关系.请完成下列探索过程: 【研究情景】如图1,在ABC V 中,ABC ∠的角平分线交AC 于点D .(1)【初步思考】若4,7AB BC ==,则ABDCBDS S =△△ ; (2)【深入探究】请判断AB BC和AD CD 之间的数量关系,并证明; (3)【应用迁移】如图2,ABC V 和ECD V 都是等边三角形,ABC V 的顶点A 在ECD V 的边ED 上,CD 交AB 于点F ,若4,2AE AD ==,求AC 的长和CFB V的面积.。
镇赉镇中学2013-2014八年级下第一次月考数学试题
![镇赉镇中学2013-2014八年级下第一次月考数学试题](https://img.taocdn.com/s3/m/bd889c503b3567ec102d8acb.png)
镇赉镇中学2013-2014八年级下第一次月考数学试题2014年3月16日时间:120分钟 满分120分一、选择题(每小题2分,共12分)1.若2-x 有意义,则x 满足的条件是( )A. x ≥2B. x >2C. x <2D. x ≤22..满足下列条件的三角形中,不是直角三角形的是( )A.三个内角比为1∶2∶1B.三边之比为1∶2∶5C.三边之比为3∶2∶5D. 三个内角比为1∶2∶33.下列二次根式中属于最简二次根式的是( ) A. 8 B. 14 C. 21 D. 44.在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A.3B.4C.5D.8 5.下列运算错误的是( ) A. 5353⨯=⨯ B. 20812=+ C. 1065322=⨯ D. 255105=6. 如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地面的距离为7m ,现将梯子的底端A 向外移动到A′,使梯子的底端A′到墙根O 的距离等于3m .同时梯子的顶端B 下降至B′,那么BB′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m二填空题(每小题3分,共24分)7.若n <m ,则222n mn m +-= .8. 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元.9.已知4344+-+-=x x y ,则xy = . 10.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 处,已知CE=3,AB=8,则BF= .11. 能使得()()1313+⋅-=+-a a a a 成立的整数a 的和是. 150o 20米30米E 6题图 8题图 10题图 12题图12. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是 .13.式子112-+x x 有意义,则x 的取值范围是 . 14. 如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.三、解答题(每小题5分,共20分)15.计算:()022312π-+-+16. 一个零件的形状如图按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?17.已知实数a 、b 、c 满足044112=+-+++-c c b a ,求2100100c b a ++的值.18.如图,已知四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积.14题图 18题图 16题图四、解答题(每小题7分,共28分)19. 已知△ABC 的三边分别为12-k ,k 2,12+k (k >1),求证:△ABC 是直角三角形.20.先化简再求值:⎪⎭⎫ ⎝⎛+-+÷+-1111222x x x x x ,其中12+=x21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?A B C D L 21题图22. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm ,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.五、解答题(每小题8分,共16分)23.已知41=+x x ,求xx 1-的值.24. 已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足c b a c b a 262410338222++=+++试判断△ABC 的形状.22题图六、解答题(每小题12分,共24分)25.如图,长方体ABCD —A′ B′ C′ D′中,AB=BB′=2,AD=3,一只蚂蚁从A 点出发,沿长方体表面爬到C′点,求蚂蚁怎样走路最短,最短路径是多少?26. 阅读下列解题过程: ()()()()()25454545454545145122-=-=--=-+-⋅=+; ()()()()()56565656565656156122-=-=--=-+-⋅=+;请回答下列问题:(1)观察上面解题过程,请直接写出11-+n n 的结果为 . (2)利用上面所提供的解法,求下式的值:()12013201220131341231121+⎪⎪⎭⎫ ⎝⎛+++++++++ .D /C /B /A /D C B A 25题图参考答案1.A ;2.C ;3.B ;4.C ;5.B ;6.A ;7. n m -;8.150a ;9.3;10.6;11.5;12. 7cm≤h ≤16cm ;13. x ≥21-且x ≠1;14.5; 15. 33+;16. 解:在△ABD 中,AB 2+AD 2=32+42=9+16=25=BD 2,所以△ABD 为直角三角形,∠A =90°.在△BDC 中,BD 2+DC 2=52+122=25+144=169=132=BC 2.17.10.18.解:连接AC ,在Rt △ABC 中,AC 2=AB 2+BC 2=32+42=25, ∴ AC =5.在△ACD 中,∵ AC 2+CD 2=25+122=169,而 AB 2=132=169,∴ AC 2+CD 2=AB 2,∴ ∠ACD =90°.故S 四边形ABCD =S △ABC +S △ACD =21AB ·BC +21AC ·CD =21×3×4+21×5×12=6+30=36.19. 证明:∵k 2+1>k 2-1,k 2+1-2k=(k -1)2>0,即k 2+1>2k ,∴k 2+1是最长边.∵(k 2-1)2+(2k )2=k 4-2k 2+1+4k 2=k 4+2k 2+1=(k 2+1)2,∴△ABC 是直角三角形. 20. 11-x ,22; 21. 作A 点关于CD 的对称点A′,连结B A′,与CD 交于点E ,则E 点即为所求.总费用150万元.22. 将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E.在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯, 由勾股定理,得CF=)(3416302222cm EF CE =+=+23. 32±;24. 解:由已知可得a 2-10a+25+b 2-24b+144+c 2-26c+169=0,配方并化简得,(a -5)2+(b -12)2+(c -13)2=0.∵(a -5)2≥0,(b -12)2≥0,(c -13)2≥0.∴a -5=0,b -12=0,c -13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.25.(1)AC ′= 29(2)AC ′=5最短距离为5 26. 26.(1)1--n n(2)2012. 223D /C /A /D C A 223C /B /A /DA。
安徽省宿州市灵璧中学八年级数学下学期第一次月考试题(实验班,含解析)新人教版
![安徽省宿州市灵璧中学八年级数学下学期第一次月考试题(实验班,含解析)新人教版](https://img.taocdn.com/s3/m/1e3477d80066f5335b8121e6.png)
安徽省宿州市灵璧中学八年级数学下学期第一次月考试题(实验班,含解析)新人教版一、填空题1.一个等腰三角形的一个角为50°,则它的顶角的度数是.2.x的3倍与15的差不小于8,用不等式表示为.3.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解是.4.分解因式:﹣2x+8= .5.已知,△ABC三条边的垂直平分线的交点在△ABC的一条边上,那么△ABC的形状是.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为.7.一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),若设小明至少答对了x道题,可列出不等式.8.已知y1=﹣x+3,y2=3x﹣4,当x 时,y1>y2.9.如图,已知函数y=2x﹣5,观察图象回答下列问题(1)x 时,y<0;(2)y 时,x<3.10.若x2﹣3x﹣28=(x+a)(x+b),则a+b= ,ab= .11.已知六边形ABCDEF是中心对称图形,AB=1,BC=2,CD=3,那么EF= .12.要使不等式﹣3x﹣a≤0的解集为x≥1,那么a= .二、选择题13.如果a<b,下列不等式正确的是()A.a﹣9>b﹣9B.3b<3aC.﹣2a>﹣2bD.>14.下列由左到右的变形,是因式分解的是()A.(a+6)(a﹣6)=a2﹣36B.x2﹣8x+16=(x﹣4)2C.a2﹣b2+1=(a+b)(a﹣b)+1D.(x﹣2)(x+3)=(x+3)(x﹣2)15.不等式组的解集是()A.x>3B. C. D.无解16.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C. D.17.下列各式中能因式分解的是()A. B.x2﹣xy+y2C. D.x6﹣10x3﹣2518.下列运算中,因式分解正确的是()A.﹣m2+mn﹣m=﹣m(m+n﹣1)B.9abc﹣6a2b2=3bc(3﹣2ab)C.3a2x﹣6bx+3x=3x(a2﹣2b)D. ab2+a2b=ab(a+b)19.(﹣2)2001+(﹣2)2002等于()A.﹣22001B.﹣22002C.22001D.﹣220.观察下列四个平面图形,其中中心对称图形有()A.2个B.1个C.4个D.3个21.7x+1是不小于﹣3的负数,表示为()A.﹣3≤7x+1≤0B.﹣3<7x+1<0C.﹣3≤7x+1<0D.﹣3<7x+1≤022.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解三、解答题(1~4每小题各4分,5~6每小题各6分,共38分)23.解不等式及不等式组:①②.24.分解因式:①25(m+n)2﹣(m﹣n)2②x2+y2+2xy﹣1.25.简便计算:①1.992+1.99×0.01②20132+2013﹣20142.26.求不等式x+1>0的解集和它的非负整数解,并把解集在数轴上表示出来.27.|2a﹣24|+(3a﹣b﹣k)2=0,那么k取什么值时,b为负数?四、应用题28.若a、b、c是△ABC的三边,且a2+b2+c2+50=6a+8b+10c,判断这个三角形的形状.29.如图,在△ABC中,AD⊥BC,∠BAC的平分线AD交边BC于点D,点O是线段AD上一点,线段BO的延长线交边AC于点F,线段CO的延长线交边AB于点E.(1)说明△ABC是等腰三角形的理由.(2)说明BF=CE的理由.30.“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息,回答以下问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.2015-2016学年安徽省宿州市灵璧中学八年级(下)第一次月考数学试卷(实验班)参考答案与试题解析一、填空题1.一个等腰三角形的一个角为50°,则它的顶角的度数是50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数即为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故填50°或80°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.2.x的3倍与15的差不小于8,用不等式表示为3x﹣15≥8.【考点】由实际问题抽象出一元一次不等式.【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x﹣15,最后再表示“不小于8”为3x﹣15≥8.【解答】解:由题意得:3x﹣15≥8,故答案为:3x﹣15≥8.【点评】此题主要考查了由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.3.如图,数轴上表示的是一个不等式组的解集,这个不等式组的整数解是1,2,3,.【考点】一元一次不等式组的整数解;在数轴上表示不等式的解集.【分析】首先确定不等式组的解集,找出不等式组解集内的整数就可以.【解答】解:因为是整数,且在0处和3处分别是空心和实心,所以整数有1,2,3,【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.分解因式:﹣2x+8= ﹣2(x﹣4).【考点】因式分解-提公因式法.【分析】直接找出公因式﹣2,再提取公因式得出答案.【解答】解:﹣2x+8=﹣2(x﹣4).故答案为:﹣2(x﹣4).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5.已知,△ABC三条边的垂直平分线的交点在△ABC的一条边上,那么△ABC的形状是直角三角形.【考点】线段垂直平分线的性质.【分析】由△ABC的三边的垂直平分线交点在△ABC的边上,可得△ABC的形状为直角三角形;若在内部,则为锐角三角形,若在外部,则为钝角三角形,即可求得答案.【解答】解:∵△ABC的三边的垂直平分线交点在△ABC的边上,∴△ABC的形状为直角三角形.故答案为:直角三角形.【点评】此题考查了线段垂直平分线的性质.此题难度不大,注意掌握△ABC的三边的垂直平分线交点在△ABC的边上,可得△ABC的形状为直角三角形;若在内部,则为锐角三角形,若在外部,则为钝角三角形.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为(﹣b,a).【考点】坐标与图形变化-旋转.【专题】压轴题.【分析】根据旋转的性质“旋转不改变图形的大小和形状”以及直角三角形的性质解题.【解答】解:由图易知A′B′=AB=b,OB′=OB=a,∠A′B′0=∠ABO=90°,∵点A'在第二象限,∴A'的坐标为(﹣b,a).【点评】需注意旋转前后对应角的度数不变,对应线段的长度不变.7.一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分.在这次竞赛中,小明被评为优秀(85分或85分以上),若设小明至少答对了x道题,可列出不等式4x﹣(25﹣x)×1≥85.【考点】由实际问题抽象出一元一次不等式.【分析】将答对题数所得的分数减去答错或不答所扣的分数,在由题意知小明答题所得的分数大于等于85分,列出不等式即可.【解答】解:设小明答对了x道题,则他答错或不答的共有(25﹣x)道题,由题意得:4x﹣(25﹣x)×1≥85,故答案为:4x﹣(25﹣x)×1≥85.【点评】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.本题尤其要注意所得的分数是答对题数所得的分数减去打错或不答所扣的分数.8.已知y1=﹣x+3,y2=3x﹣4,当x <\frac{7}{4} 时,y1>y2.【考点】解一元一次不等式.【分析】y1>y2即﹣x+3>3x﹣4,然后解不等式即可求解.【解答】解:根据题意得,﹣x+3>3x﹣4,移项,得:﹣x﹣3x>﹣4﹣3,合并同类项,得:﹣4x>﹣7,系数化成1得:x<.故答案是:.【点评】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.9.如图,已知函数y=2x﹣5,观察图象回答下列问题(1)x <2.5 时,y<0;(2)y <1 时,x<3.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】(1)写出函数图象在x轴下方所对应的自变量的取值范围即可;(2)先计算出自变量为3所对应的函数值,然后利用图象和判断x<3时所对应的函数值的范围.【解答】解:(1)当x<2.5时,y<0;(2)当x=3时,y=2x﹣5=1,所以y<1时,x<3.故答案为<2.5,<1.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.10.若x2﹣3x﹣28=(x+a)(x+b),则a+b= ﹣3 ,ab= ﹣28 .【考点】因式分解-十字相乘法等.【专题】计算题;因式分解.【分析】已知等式左边利用十字相乘法分解,即可确定出a与b的值.【解答】解:已知等式变形得:x2﹣3x﹣28=(x﹣7)(x+4)=(x+a)(x+b),可得a=﹣7,b=4或a=4,b=﹣7,则a+b=﹣3,ab=﹣28,故答案为:﹣3;﹣28【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.11.已知六边形ABCDEF是中心对称图形,AB=1,BC=2,CD=3,那么EF= 2 .【考点】中心对称图形.【专题】几何图形问题.【分析】根据中心对称图形的概念可知,在中心对称图形六边形ABCDEF中EF=BC=2.【解答】解:∵六边形ABCDEF是中心对称图形,∴EF=BC=2.故答案为:2.【点评】本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.12.要使不等式﹣3x﹣a≤0的解集为x≥1,那么a= ﹣3 .【考点】解一元一次不等式.【分析】解不等式﹣3x﹣a≤0得其解集,根据题意该不等式解集为x≥1,可得关于a的方程,解方程可得a的值.【解答】解:由不等式﹣3x﹣a≤0,得:x≥﹣,∵该不等式的解集为:x≥1,∴﹣=1,解得:a=﹣3,故答案为:﹣3.【点评】本题主要考查解一元一次不等式及一元一次方程,正确解不等式是根本,根据题意列出关于a的方程是关键.二、选择题13.如果a<b,下列不等式正确的是()A.a﹣9>b﹣9B.3b<3aC.﹣2a>﹣2bD.>【考点】不等式的性质.【分析】根据不等式的性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以A不正确,不等式两边乘(或除以)同一个正数,不等号的方向不变,所以B、D不正确,不等式两边乘(或除以)同一个负数,不等号的方向改变,所以C正确.【解答】解:∵a<b,∴a﹣9<b﹣9,故A错误;3b>3a,故B错误;﹣2a>﹣2b正确;<,故错误.故选:C.【点评】本题考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.14.下列由左到右的变形,是因式分解的是()A.(a+6)(a﹣6)=a2﹣36B.x2﹣8x+16=(x﹣4)2C.a2﹣b2+1=(a+b)(a﹣b)+1D.(x﹣2)(x+3)=(x+3)(x﹣2)【考点】因式分解的意义.【分析】根据因式分解的定义把多项式从和的形式变成积的形式叫做因式分解,即可解决.【解答】解:A、是整式的乘法,故错误;B、利用完全平方公式分解因式,故正确;C、结果是和的形式不是因式分解,故错误;D、不是和的形式变成积的形式,这是乘法交换律,故错误;故选B.【点评】本题考查因式分解的定义,因式分解的公式、记住因式分解的定义以及因式分解的公式是解决问题的关键,属于基础题.15.不等式组的解集是()A.x>3B. C. D.无解【考点】解一元一次不等式组.【专题】计算题.【分析】分别求出不等式组中的两个不等式的解集,求其公共部分即可.【解答】解:,由①得,x>,由②得,x>3,根据同大取较大原则,不等式组的解集为x>3.故选A.【点评】此题考查了解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.直线y=﹣x+3与x轴、y轴所围成的三角形的面积为()A.3B.6C. D.【考点】一次函数图象上点的坐标特征.【专题】应用题.【分析】根据一次函数图象上点的坐标特点,直线y=﹣x+3与x轴、y轴的交点坐标分别为(2,0),(0,3),故可求出三角形的面积.【解答】解:当x=0时,y=3,即与y轴交点是(0,3),当y=0时,x=2,即与x轴的交点是(2,0),所以与x轴、y轴所围成的三角形的面积为×2×3=3.故选A.【点评】此题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b与x轴的交点为(﹣,0),与y轴的交点为(0,b).17.下列各式中能因式分解的是()A. B.x2﹣xy+y2C. D.x6﹣10x3﹣25【考点】因式分解-运用公式法;因式分解-提公因式法.【分析】直接利用完全平方公式分解因式进而得出答案.【解答】解:A、x2﹣x+=(x﹣)2,故此选项正确;B、x2﹣xy+y2,无法分解因式;C、m2+9n2,无法分解因式;D、x6﹣10x3﹣25,无法分解因式;故选:A.【点评】此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.18.下列运算中,因式分解正确的是()A.﹣m2+mn﹣m=﹣m(m+n﹣1)B.9abc﹣6a2b2=3bc(3﹣2ab)C.3a2x﹣6bx+3x=3x(a2﹣2b)D. ab2+a2b=ab(a+b)【考点】因式分解-提公因式法.【分析】分别利用提取公因式法分解因式进而得出答案.【解答】解:A、﹣m2+mn﹣m=﹣m(m﹣n+1),故此选项错误;B、9abc﹣6a2b2=3ab(3c﹣2ab),故此选项错误;C、3a2x﹣6bx+3x=3x(a2﹣2b+1),故此选项错误;D、ab2+a2b=ab(a+b),正确.故选:D.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.19.(﹣2)2001+(﹣2)2002等于()A.﹣22001B.﹣22002C.22001D.﹣2【考点】因式分解-提公因式法.【分析】提取公因式(﹣2)2001,计算后即可选取答案.【解答】解:(﹣2)2001+(﹣2)2002,=(﹣2)2001(1﹣2),=(﹣2)2001×(﹣1),=22001.故选C.【点评】本题考查提公因式法分解因式,要注意符号的运算.20.观察下列四个平面图形,其中中心对称图形有()A.2个B.1个C.4个D.3个【考点】中心对称图形.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【解答】解:根据中心对称图形的定义可得:第二个、第三个、第四个均是中心对称图形,共三个.故选D.【点评】此题考查了中心对称的定义,属于基础题,关键是掌握中心对称图形的定义.21.7x+1是不小于﹣3的负数,表示为()A.﹣3≤7x+1≤0B.﹣3<7x+1<0C.﹣3≤7x+1<0D.﹣3<7x+1≤0【考点】由实际问题抽象出一元一次不等式组.【分析】首先表示“7x+1不小于﹣3”为7x+1≥﹣3,再表示“7x+1是负数”为7x+1<0,进而可得不等式组.【解答】解:由题意得:﹣3≤7x+1<0,故选:C.【点评】此题主要考查了由实际问题抽象出一元一次不等式组,关键是找准题干中体现不等关系的语句,根据语句列出不等关系.往往不等关系出现在“不足”,“不少于”,“不大于”,“不超过”“负数”“正数”等这些词语出现的地方.所以重点理解这些地方有利于自己解决此类题目.22.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.【点评】解答此题的关键是要会解不等式,明白不等式解集的意义.注意解不等式时,不等式两边同时除以同一个负数时,不等号的方向改变.三、解答题(1~4每小题各4分,5~6每小题各6分,共38分)23.解不等式及不等式组:①②.【考点】解一元一次不等式组;解一元一次不等式.【分析】①根据解不等式的基本步骤依次去分母、去括号、移项、合并同类项、系数化为1可得;②分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:①去分母,得:2x≥30+5(x﹣2),去括号,得:2x≥30+5x﹣10,移项,得:2x﹣5x≥30﹣10,合并同类项,得:﹣3x≥20,系数化为1,得:x≤﹣;②解不等式3x﹣2<x+1,得:x<,解不等式5x﹣2>3(x+1),得:x>,所以不等式组无解.【点评】本题考查的是解一元一次不等式和不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.分解因式:①25(m+n)2﹣(m﹣n)2②x2+y2+2xy﹣1.【考点】提公因式法与公式法的综合运用;因式分解-分组分解法.【专题】计算题;因式分解.【分析】①原式利用平方差公式分解即可;②原式前三项利用完全平方公式分解,再利用平方差公式分解即可.【解答】解:①原式=[5(m+n)+(m﹣n)][5(m+n)﹣(m﹣n)]=(6m+4n)(4m+6n)=4(3m+2n)(2m+3n);②原式=(x+y)2﹣1=(x+y+1)(x+y﹣1).【点评】此题考查了提公因式法与公式法的综合运用,以及因式分解﹣分组分解法,熟练掌握因式分解的方法是解本题的关键.25.简便计算:①1.992+1.99×0.01②20132+2013﹣20142.【考点】因式分解-提公因式法.【分析】①直接提取公因式1.99,进而求出答案;②将前两项提取公因式2013,进而分解因式得出答案.【解答】解:①1.992+1.99×0.01=1.99×(1.99+0.01)=3.98;②20132+2013﹣20142=2013[(2013+1)]﹣20142=2013×2014﹣20142=2014×(2013﹣2014)=﹣2014.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.26.求不等式x+1>0的解集和它的非负整数解,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集;一元一次不等式的整数解.【分析】首先解不等式求得不等式的解集,然后确定解集中的非负整数解即可.【解答】解:去分母得:﹣x+4>0,解得:x<4.则非负整数解为0,1,2,3.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.27.|2a﹣24|+(3a﹣b﹣k)2=0,那么k取什么值时,b为负数?【考点】解一元一次不等式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先根据非负数的性质求得a的值,得到3a﹣b﹣k=0,即可利用k表示出b的值,然后根据b是负数得到一个关于k的不等式,即可求解.【解答】解:根据题意得:2a﹣24=0,3a﹣b﹣k=0,解得:a=12,则b=3a﹣k=36﹣k,根据题意得:36﹣k<0,解得:k>36.故k>36时b为负数.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.四、应用题28.若a、b、c是△ABC的三边,且a2+b2+c2+50=6a+8b+10c,判断这个三角形的形状.【考点】配方法的应用;勾股定理的逆定理.【专题】计算题.【分析】已知等式变形后,利用非负数的性质求出a,b及c的值,即可对于三角形形状进行判断.【解答】解:由已知条件可把原式变形为(a﹣3)2+(b﹣4)2+(c﹣5)2=0,∴a=3,b=4,c=5,则三角形为直角三角形.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.29.如图,在△ABC中,AD⊥BC,∠BAC的平分线AD交边BC于点D,点O是线段AD上一点,线段BO的延长线交边AC于点F,线段CO的延长线交边AB于点E.(1)说明△ABC是等腰三角形的理由.(2)说明BF=CE的理由.【考点】等腰三角形的判定;全等三角形的判定与性质.【分析】(1)根据AD⊥BC,得出∠ADB=∠ADC,再根据角平分线的性质得出∠BAD=∠CAD,从而求出∠ABD=∠ACD,AB=AC,即可证出△ABC是等腰三角形.(2)根据△ABC是等腰三角形,AD⊥BC,得出BD=CD,证出△OBD≌△OCD,从而得出∠OBD=∠OCD,再根据角边角证出△BEC≌△CFB,得出BF=CE.【解答】解:(1)∵AD⊥BC,∴∠ADB=∠ADC,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠ABD=∠ACD,∴AB=AC,即△ABC是等腰三角形.(2)因为△ABC是等腰三角形,AD⊥BC,所以BD=CD,在△BDO与△CDO中,,所以△OBD≌△OCD,所以∠OBD=∠OCD,在△BEC与△CFB中,,所以△BEC≌△CFB,所以BF=CE.【点评】此题考查了等腰三角形的判定与性质,用到的知识点是等腰三角形及全等三角形的判定与性质,解题时要注意对等腰三角形和全等三角形的性质的综合应用.30.“六•一”儿童节那天,小强去商店买东西,看见每盒饼干的标价是整数,于是小强拿出10元钱递给商店的阿姨,下面是他俩的对话:如果每盒饼干和每袋牛奶的标价分别设为x元,y元,请你根据以上信息,回答以下问题:(1)找出x与y之间的关系式;(2)求出每盒饼干和每袋牛奶的标价.【考点】一元一次不等式组的应用;二元一次方程的应用.【分析】(1)本题的等量关系是:一盒饼干的钱×90%+一盒牛奶的钱=10元﹣8角;(2)根据阿姨说的话我们可知:一盒饼干的钱<10元,一盒饼干的钱+一盒牛奶的钱>10元,以此来列出不等式组,然后将(1)中得出的关系式代入其中,求出未知数的值.【解答】解:(1)由题意,得0.9x+y=10﹣0.8,化简得:y=9.2﹣0.9x;(2)根据题意,得不等式组,将y=9.2﹣0.9x代入②式,得,解这个不等式组,得:8<x<10,∵x为整数,∴x=9,∴y=9.2﹣0.9×9=1.1,答:每盒饼干的标价为9元,每袋牛奶的标价为1.1元.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,根据10元钱买一盒饼干有剩余,但再买一袋牛奶不够列出不等式是关键.根据条件进行消元,把问题转化为一个未知数的问题是基本的解决思路.。
2013-2014学年八年级数学上学期第一次月考试题 (新人教版 第25套)
![2013-2014学年八年级数学上学期第一次月考试题 (新人教版 第25套)](https://img.taocdn.com/s3/m/0a3e73db28ea81c758f578cc.png)
21A F E D C B浙江省慈溪育才中学2013-2014学年八年级上学期第一次月考数学试题 新人教版一、选择题(3′×10=30′)1、下列各组长度的线段能构成三角形的是( )A .1.5 cm ,3.9 cm ,2.3 cmB .3.5 cm ,7.1 cm ,3.6 cmC .6 cm ,1 cm ,6 cmD .4 cm ,10 cm ,4 cm2、有下列关于两个三角形全等的说法: (1)三个角对应相等的两个三角形全等;(2)三条边对应相等的两个三角形全等;(3)两角与一边对应相等的两个三角形全等; (4)两边和一角对应相等的两个三角形全等.其中正确的个数是:( ) A . 1 B. 2 C. 3 D. 4 3、三角形的高( ).A. 一定在三角形的内部B. 至少有两条在三角形的内部C. 或者都在三角形的内部,或者有两条在三角形的外部;D. 以上都不对4、如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D,已知AB=3,AC=7,BC=8,则ΔABD 的周长为( )A.10B.11C.15D.12 5、如图,∠1=∠2,∠C =∠B ,结论中不正确的是( )A. △DAB ≌△DACB. △DEA ≌△DFAC. CD =DED. ∠AED =∠AFD6、如图,PD ⊥AB , PE ⊥AC , 垂足分别为D , E ,且AP 平分∠全 等的理由是( )A 、SASB 、ASAC 、SSSD 、AAS 7、对于三角形的内角,下列判断中不正确的是( ); A.至少有两个锐角 B.最多有一个直角C.必有一个角大于600D.至少有一个角不小于6008、如图,A ,B ,C ,D ,E ,F 是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F 的度数是( )A. 180°B.360°C.540°D.720°9、如图,点D 、E 分别在AC 、AB 上,已知AB=AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A.∠B=∠CB.AD=AEC.∠BDC=∠CEBD.BD=CE第8题图 第9题图 第10题图 第5题图 A 第4题图C10、已知:如图在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④∠ACE =∠DBC 其中结论正确的个数有( )A . 1 B. 2 C. 3 D. 4 二.填空题(3′×10=30′)11、若ΔABC 的三个内角满足∠A=2∠B=3∠C ,则这个三角形是________三角形.12、命题:对顶角相等,改写成“如果......那么......”的形式为______________________.13、三角形的两条边长分别是4和9,且第三边长是奇数,则第三边长为____________. 14、如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=40°,∠2=70°,则∠3=__________度. 15、如图,在∆ABC 中,AD 是BC 边上的中线,已知AB =7 cm ,AC =5cm ,则∆ABD 和∆ACD 的周长差为 cm .如图,∠A =50°,∠ABO =28°,∠ACO =32°,则∠BDC = ,∠BOC =17、如图,已知BC =EC ,∠BCE =∠ACD ,要使△ABC ≌△DEC ,则应添加的一个条件为 ____ (答案不唯一,只需填一个)18、如图:在△ABC 中,AB=3㎝,AC=4㎝,则BC 边上的中线AD 的取值范围是_________ 19、如图,∠BAC=110°,若MP 、NQ 分别垂直平分AB 、AC ,则∠PAQ=_________ 20、如图,在△ABC 中,AD 平分∠BAC ,AB=AC-BD ,则∠B:∠C= _________三、解答题(60′) 21、(7分)如图,CD 是线段AB 的垂直平分线,则∠CAD =∠CBD .请说明理由: 解:∵ CD 是线段AB 的垂直平分线( ), ∴AC = , =BD ( ). 在 和 中, =BC , AD = ,CD = ( ),∴ ≌ ( ).∴ ∠CAD =∠CBD ( ). 22、(8分)如图,两个班的学生分别在M 、N 两处参加植树劳动,现要在道路AB 、AC 的交叉区域内设一个茶水供应点P, 使P 到两 条道路的距离相等,且使PM=PN,有一同学说:“只要作一个角平分线、一条线段的垂直平分线,这个茶水供应点的位置就确定了”, 你认为这位同学说得对吗?请说明理由,并通过作图找出这一点, 不写作法,保留作图痕迹.图4第16题图 第17题图A B DC 第14题 第18题 第15题图 A BD C A B C D 第15题第16题 第17题23、(9分)如图,已知在△ABC 中,∠B 与∠C 的平分线交于点P . (1)当∠A =70°时,求∠BPC 的度数; (2)当∠A =112°时,求∠BPC 的度数; (3)当∠A = 时,求∠BPC 的度数. 24、(10分)如图所示,已知D 是AB 上一点,E 是AC 上的一点,BE 、CD 相交于点F ,∠A =62°,∠ACD =15°,∠ABE =20°. (1)求∠BDC 的度数; (2)求∠BFD 的度数; (3)试说明∠BFC >∠A .25、(12分)某产品的商标如图所示,O 是线段AC 、DB 的交点,且AC=BD ,AB=DC ,小林认为图中的两个三角形全等,他的思考过程是: ∵ AC=DB ,∠AOB=∠DOC ,AB=AC , ∴ △ABO ≌△DCO.你认为小林的思考过程对吗?如果正确,指出他用的是判别三角形全等的哪个方法; 如果不正确,写出你的思考过程。
八年级下册第1次月考试题--数学(含答案) (18)
![八年级下册第1次月考试题--数学(含答案) (18)](https://img.taocdn.com/s3/m/7cbb6acac850ad02de80419f.png)
八年级数学(下册)第一次月考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为164.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.138.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.如果等腰三角形的一个角等于80°,则它的顶角等于度.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为.14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为cm.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=度.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积cm2.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为.18.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是(填序号);(2)证明:23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是;(2)若∠BAC=128°,则∠DAE的度数是.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,在某一时刻也能够使△BPD 与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?八年级(上)月考数学试卷(9月份)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.3.下列能判定△ABC为等腰三角形的是()A.∠A=40°、∠B=50°B.∠A=40°、∠B=70°C.AB=AC=3,BC=6 D.AB=3、BC=8,周长为16【考点】等腰三角形的判定.【分析】根据等腰三角形判定,利用三角形内角定理对4个选项逐一进行分析即可得到答案.【解答】解:解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=70°时,∠A=∠C=40°,当顶角为∠A=40°时,∠B=∠C=70°,所以B选项正确.当AB=AC=3,BC=63+3=6,不能构成三角形,所以C选项错误.当AB=3、BC=8,周长为16,AC=5,所以D选项错误.故选B.4.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF【考点】全等三角形的判定.【分析】根据题目所给的条件结合判定三角形全等的判定定理分别进行分析即可.【解答】解:A、AB=DE,∠B=∠E,∠C=∠F,可以利用AAS定理证明△ABC≌△DEF,故此选项不合题意;B、AC=DF,BC=EF,∠A=∠D不能证明△ABC≌△DEF,故此选项符合题意;C、AB=DE,∠A=∠D,∠B=∠E,可以利用ASA定理证明△ABC≌△DEF,故此选项不合题意;D、AB=DE,BC=EF,AC=DF可以利用SSS定理证明△ABC≌△DEF,故此选项不合题意;故选:B.5.到三角形三条边的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点【考点】角平分线的性质.【分析】根据角的平分线上的点到角的两边的距离相等解答即可.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形三条边的距离相等的点是三角形三条角平分线的交点,故选:A.6.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC 的长为()A.7cm B.10cm C.12cm D.22cm【考点】翻折变换(折叠问题).【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.7.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.13【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选:C.8.如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC 为等腰三角形,则点C的个数有()A.4个B.6个C.8个D.10个【考点】等腰三角形的判定.【分析】根据AB的长度确定C点的不同位置,由已知条件,利用勾股定理可知AB=,然后即可确定C点的位置.【解答】解:如图,AB==,∴当△ABC为等腰三角形,则点C的个数有8个,故选C.9.如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形B.直角三角形C.等边三角形D.非等腰三角形【考点】全等三角形的判定与性质;等边三角形的性质.【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.10.将一张菱形纸片,按下图中①,②的方式沿虚线依次对折后,再沿图③中的虚线裁剪,最后将图④中的纸片打开铺平,所得图案应该是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序,向右对折,向上对折,从斜边处剪去一个直角三角形,从直角顶点处剪去一个等腰直角三角形,展开后实际是从原菱形的四边处各剪去一个直角三角形,从菱形的中心剪去一个和菱形位置基本一致的正方形,得到结论.故选A.二、填空题(共8小题,每小题3分,满分24分)11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是10:51.【考点】镜面对称.【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际时间.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是10:51.故答案为:10:51.12.如果等腰三角形的一个角等于80°,则它的顶角等于80或20.度.【考点】等腰三角形的性质;三角形内角和定理.【分析】当等腰三角形的一个角等于80°时,分2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角与其相等,②当等腰三角形的顶角等于80°,时,利用三角形内角和定理即可求出答案.【解答】解;当等腰三角形的一个角等于80°时,则有2种情况;①当等腰三角形的一个角等于80°时,等腰三角形的顶角等于80°时,②当等腰三角形的顶角等于80°时则它的底角为:=20°故答案为:80或20.13.如图,△ABC与△A′B′C′关于直线对称,则∠B的度数为105°.【考点】轴对称的性质.【分析】根据轴对称的性质先求出∠C等于∠C′,再利用三角形内角和定理即可求出∠B.【解答】解:∵△ABC与△A′B′C′关于直线l对称,∴∠C=∠C′=40°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣35°=105°.故答案为:105°14.如图,在△ABC中,∠C=90°,BD平分∠ABC,若CD=3cm,则点D到AB的距离为3cm.【考点】角平分线的性质.【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,BD平分∠ABC,∴DE=CD,∵CD=3cm,∴DE=3cm,即点D到AB的距离为3cm.故答案为:3.15.如图在中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于D,则∠DBC=30度.【考点】线段垂直平分线的性质.【分析】由AB=AC,∠A=40°,即可推出∠C=∠ABC=70°,由垂直平分线的性质可推出AD=BD,即可推出∠A=∠ABD=40°,根据图形即可求出结果.【解答】解:∵AB=AC,∠A=40°,∴∠C=∠ABC=70°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=30°.故答案为30°.16.如图,△ABC中,∠B与∠C的平分线交于点O,过O作EF∥BC交AB、AC于E、F,若△ABC的周长比△AEF的周长大12cm,O到AB的距离为3cm,△OBC的面积18cm2.【考点】等腰三角形的判定与性质;平行线的性质.【分析】根据角平分线定义和平行线性质求出∠EOB=∠EBO,∠FCO=∠FOC,根据等腰三角形的判定得出OE=BE,OF=FC,求出BC长,根据三角形的面积公式求出即可.【解答】解:∵∠B与∠C的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EOB=∠EBO,∠FCO=∠FOC,∴OE=BE,OF=FC,∴EF=BE+CF,∴AE+EF+AF=AB+AC,∵△ABC的周长比△AEF的周长大12cm,∴(AC+BC+AC)﹣(AE+EF+AF)=12,∴BC=12cm,∵O到AB的距离为3cm,∴△OBC的面积是cm×3cm=18cm2.,故答案为:18.17.如图,∠AOB是一角度为15°的钢架,要使钢架更加牢固,需在其内部添加一些钢管:EF、FG、GH…,且OE=EF=FG=GH…,在OA、OB足够长的情况下,最多能添加这样的钢管的根数为5.【考点】等腰三角形的性质.【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【解答】解:∵添加的钢管长度都与OE相等,∠AOB=15°,∴∠GEF=∠FGE=30°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是15°,第二个是30°,第三个是45°,四个是60°,五个是75°,六个是90°就不存在了.所以一共有5个.故答案为518.如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为.【考点】轴对称-最短路线问题;等腰三角形的性质.【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,根据三线合一定理求出BD的长和AD⊥BC,根据勾股定理求出AD,根据三角形面积公式求出CN,根据对称性质求出CF+EF=CM,根据垂线段最短得出CF+EF≥,即可得出答案.【解答】解:作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的中线,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,由勾股定理得:AD==12,=×BC×AD=×AB×CN,∴S△ABC∴CN===,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥,即CF+EF的最小值是,故答案为:.三、解答题(共9大题,满分74分)19.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【考点】利用轴对称设计图案.【分析】直接利用轴对称图形的性质结合网格得出符合题意的图形即可.【解答】解:如图所示:.20.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为14.【考点】作图-轴对称变换.【分析】(1)先作出各点关于直线MN的对称点,再顺次连接即可;(2)利用矩形的面积减去三角形的面积即可.【解答】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.21.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).【考点】作图—应用与设计作图.【分析】到AB、BC距离相等的点在∠ABC的平分线上,到点A、D的距离相等的点在线段AD的垂直平分线上,AD的中垂线与∠B的平分线的交点即为点P的位置.【解答】解:如图所示:点P即为所求.22.如图,点B、F、C、E在一条直线上,FB=CE,AC=DF,请从下列三个条件:①AB=DE;②∠A=∠D;③∠ACB=∠DFE中选择一个合适的条件,使AB∥ED成立,并给出证明.(1)选择的条件是①(填序号);(2)证明:【考点】全等三角形的判定与性质.【分析】(1)利用全等三角形的判定定理选出合适的条件即可;(2)利用SSS进而判断出全等三角形,得出AB∥ED即可.【解答】解:(1)选择①AB=ED或③∠ACB=∠DFE即可.故答案为:①(答案不唯一);(2)证明:∵FB=CE,∴BC=EF,在△ABC和△EFD中,∴△ABC≌△EFD(SSS),∴∠B=∠E,∴AB∥ED.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20,BE=4,求AB的长.【考点】全等三角形的判定与性质;角平分线的性质.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,BE=CF,即可求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴在Rt△BED和Rt△CFD中∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)解:∵Rt△BED≌Rt△CFD,∴AE=AF,CF=BE=4,∵AC=20,∴AE=AF=20﹣4=16,∴AB=AE﹣BE=16﹣4=12.24.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是10;(2)若∠BAC=128°,则∠DAE的度数是76°.【考点】线段垂直平分线的性质.【分析】(1)由在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,易得AE=BE,AF=CF,即可得BC=△AEF周长;(2)由∠BAC=128°,可求得∠B+∠C的值,即可得∠BAE+∠CAF的值,继而求得答案.【解答】解:(1)∵在△ABC中,边AB、AC的垂直平分线分别交BC于E、F,∴AE=BE,AF=CF,∵△ADE周长是10,∴BC=BE+EF+CF=AE+EF+AF=10;故答案为:10;(2)∵AE=BE,AF=CF,∴∠B=∠BAE,∠C=∠CAF,∵∠BAC=128°,∴∠B+∠C=180°﹣∠BAC=52°,∴∠BAE+∠CAF=∠B+∠C=52°,∴∠FAE=∠BAC﹣(∠BAE+∠CAF)=76°,故答案为:76°.25.如图,点O是等边△ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△BOC≌△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)当α为多少度时,△AOD是直角三角形?(3)当α为多少度时,△AOD是等腰三角形?【考点】等边三角形的性质;全等三角形的性质;等腰三角形的判定.【分析】(1)根据全等三角形的性质得到CO=CD,∠BCO=∠ACD,由等边三角形的性质得到∠ACB=60°,求得∠OCD=∠ACB=60°;即可得到结论;(2)根据等边三角形的性质和周角的定义解答即可;(3)分三种情况::①要使AO=AD,需∠AOD=∠ADO,根据周角的定义得到∠ADO=α﹣60°,得到方程190°﹣α=α﹣60°求得α=125°;②要使OA=OD,需∠OAD=∠ADO.由于∠AOD=190°﹣α,∠ADO=α﹣60°,于是得到α﹣60°=50°求得α=110°;③要使OD=AD,需∠OAD=∠AOD.由于190°﹣α=50°于是得到α=140°.【解答】解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO=CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°﹣110°﹣90°﹣60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°﹣∠AOB﹣∠COD﹣α=360°﹣100°﹣60°﹣α=200°﹣α,∠ADO=α﹣60°,∴200°﹣α=α﹣60°∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°﹣α,∠ADO=α﹣60°,∴∠OAD=180°﹣(∠AOD+∠ADO)=40°,∴α﹣60°=40°∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°﹣α=40°∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,或100°,150°或160°时,△AOD是等腰三角形26.如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)△ABC中,若∠A:∠B:∠C=1:2:3,AB=a,则BC=;(2)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(3)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1.(4)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且∠CAD=∠ABE,AD、BE交于点P,作BQ⊥AD于Q,猜想PB与PQ的数量关系,并说明理由.【考点】含30度角的直角三角形;等腰三角形的性质;等边三角形的性质.【分析】(1)根据三角形内角和定理推知∠A=30,∠C=90°.(2)根据线段垂直平分线的性质知CD=BD,则△ACD的周长等于AC+AB;(3)如图3,连接AD.利用等腰三角形的性质、垂直的定义推知∠B=∠ADE=30°,然后由”30度角所对的直角边是斜边的一半“分别求得BE、AE的值;(4)如图4,根据全等三角形的判定定理SAS可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到∠PBQ=30°,根据直角三角形的性质即可得到.【解答】解:(1)∵∠A:∠B:∠C=1:2:3,且∠A+∠B+∠C=180°,∴∠A=30,∠C=90°,∴BC=AB=.故填:;(2)如图2,∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故填:15cm;(3)如图3,连接AD.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,AE=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故填:3:1.(4)BP=2PQ.理由如下:∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ.27.如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 1.5cm/s时,在某一时刻也能够使△BPD与△CPQ全等.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?【考点】全等三角形的判定;等腰三角形的性质.【分析】(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P 多走等腰三角形的两个边长.【解答】解:(1)①全等,理由如下:∵t=1秒,∴BP=CQ=1×1=1厘米,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CPQ;②假设△BPD≌△CPQ,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t==2秒,∴vQ===1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得1.5x=x+2×6,解得x=24,∴点P共运动了24×1cm/s=24cm.∵24=16+4+4,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.。
湖北省黄石市第九中学2013-2014学年八年级下学期第一次月考数学试题
![湖北省黄石市第九中学2013-2014学年八年级下学期第一次月考数学试题](https://img.taocdn.com/s3/m/fe12bcd7a58da0116c17494f.png)
一.选择题(每小题3分,共30分) 1.若分式21x -有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x=1 D .x <1 2.反比例函数y=2x的图象位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限 3.下列各式从左到右变形正确的是( ) A.M B M A B A ⋅⋅= B.MB M A B A ÷÷=C.1212++=a b a b D.63321+=+x x 4.若函数xk y 1-=(k ≠1)在每一象限内,y 随x 的增大而减小,则k 的取值范围是( ) .A.k >1 B.k <1 C.k >0 D.k <05.把分式yx x +22中的x 和y 都扩大为原来的3倍,那么分式的值( )A.不变 B.扩大为原来的3倍 C.扩大为原来的6倍 D.扩大为原来的9倍6.已知点(3,1)是双曲线y=kx上一点,则下列各点中在该图象上的点是( ) A .(13,-9) B .(-3,-1) C .(-1,3) D .(6,-12)7. 已知n n n-++=⋅)81(42124,则n 为( ) A .n =-3 B .n =-2 C.n =-1 D.n =0 8.已知关于x 的函数y=k (x+1)和y=-kx(k ≠0)它们在同一坐标系中的图象是( )9. 已知)1(11-≠+=mn n m x ,则x =( ) A.n m 1+ B.nm 1- C.1+mn m D.n mn 1+10.已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线xk y 12+-=上,则下列关系式正确的是( )(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2二.填空题(每小题3分,共18分)11. 用科学记数法将0.000043表示为12. 已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间成_____比例13. 若求221,2--+=+a a a a 则的值求221,2--+=+a a a a 为_____14.如图,A 点是y 轴正半轴上一点,过点A 作x 轴的平行线交反比例函数yx ==-`4x y =的图象于点B ,交反比例函数xky =的图象于点C ,若 AB : AC=3:2,则k 的值是______ 15.已知:点A (m ,m )在反比例函数1y x=的图象上,点B 与点A 关于坐标轴对称,以AB 为边作等边△ABC ,则满足条件的点C 有 个 16.若关于x 的方程311x a x x--=-无解, 可求出a =_________ 三.解答题(共72分)17.(7分) 计算:2)31()2008(41-+--+-18.(7分)化简)1()1112(2-⨯+--a a a ,并代入一个你喜欢的数值进行计算.19.(7分)解方程: 91232312-=--+x x x20.( 8分) 如图,一次函数b kx y +=的图象与反比例函数xmy =的图象 交于点A ﹙-2,-5﹚,C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D .(1) 求反比例函数xmy =和一次函数b kx y +=的表达式;(2) 连接OA ,OC .求△AOC 的面积.21.(8分) 阅读下列材料:方程3121111---=-+x x x x 的解为x =1, 方程4131111---=--x x x x 的解为x =2,方程51412111---=---x x x x 的解为x =3, 1)请你观察上述方程与解的特征,写出能反映上述方程的一般规律的方程,并猜出这个方程的解 2)根据1)中所得的结论,写出一个解为x =-5的方程第14题图22.(8分)如图,直线y=2x+2与y 轴交于A 点,与反比例函数xky =(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且AO=2OH . (1)求k 的值;(2)点N (a ,1)是反比例函数xky =(x >0)图象上的点,在x 轴上是否存在点P ,使得PM+PN 最小?若存在,求出点P 的坐标;若不存在,请说明理由.23. (8分) 如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y ℃,从加热开始计算的时间为x 分钟.据了解,该材料在加热过程中温度y 与时间x 成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系(要写出x 的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?24.(9分)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同. (1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来25.(10分) 已知:如图,正比例函数y=ax的图象与反比例函数y=kx的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(提示:有三个角是直角的四边形是长方形)第25题图八年级下册三月份月考数学试卷答案1.A2.B3.D4.A5.B6.B7.A8. A9.C 10.B11.4.3×10-512.反 13.2 14.8/3 15.8 16.-2或1 17.原式=2+1-3+2=2 18.原式=a +3 19.解得x=3检验:当x=3时,(x+3)(x-3)=0 ∴x=3是原方程的增根,原方程无解20. (1)反比例函数的表达式为xy 10=;一次函数的表达式为y =x -3. (2) S △AOC = S △AOB + S △BOC =()22152215212-21=+⋅⋅=⋅⋅+⋅⋅OB OB OB21. (1)此方程为1111(1)(3)(4)x n x n x n x n -=---+-+-+,方程的解为2x n =+;(2)结构相似,解为5x =-的方程是11113467x x x x -=-++++22. 解:(1)k=1×4=4 (2)存在∵点N (a ,1)在反比例函数(x >0)上∴a=4.即点N 的坐标为(4,1)过点N 作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于P (如图所示). 此时PM+PN 最小∵N 与N 1关于x 轴的对称,N 点坐标为(4,1), ∴N 1的坐标为(4,﹣1).设直线MN 1的解析式为y=kx+b .由解得k=﹣,b=∴直线MN 1的解析式为. 令y=0,得x=.∴P 点坐标为(,0)23. 解:(1)一次函数表达式为915(05)y x x =+≤≤反比例函数表达式为300(5)y x x=> (2)由题意得:91530y x y =+⎧⎨=⎩ 解得153x =; 30030y x y ⎧=⎪⎨⎪=⎩ 解得210x =则215251033x x -=-= 所以对该材料进行特殊处理所用的时间为253分钟 24. 解:(1)设每个乙种零件进价为元,则每个甲种零件进价为元.由题意得,解得.检验:当x=10时,x(x-10)≠0,x=10是原分式方程的解.10-2=8(元)∴每个甲种零件的进价为8元,每个乙种零件的进价为10元. (2)设购进乙种零件y 个,则购进甲种零件(3y-5)个由题意得 解得为整数,或.共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.25. 解:(1)将()32A ,分别代入ky y ax x==,中, 得2323k a ==,, ∴ 263k a ==,. ∴ 反比例函数的表达式为:6y x = 正比例函数的表达式为23y x =(2)观察图象得,在第一象限内,当03x <<时,反比例函数的值大于正比例函数的值. (3)BM DM =.理由:∵ 132OMB OAC S S k ==⨯=△△,∴ 63312OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形 即O C ·OB=12 ∵ 3OC =,∴ 4OB =.即 4n =.∴ 632m n ==. ∴ 3333222MB MD ==-=,.∴MB MD =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013--2014年度第二学期第一次教学质量检测
八年级数学试卷
说明:全卷共25小题, 满分为120分,考试时间100分钟. 一. 选择题(每小题3分,共30分)
1、下面各组数是三角形的三边的长,则能构成直角三角形的是( ) A 、2,2,3 B 、60,80,100 C 、4,5,6 D 、5,6,7
2、等腰三角形的一边为4,另一边为9,则这个三角形的周长为 ( ) A 17 B 22 C 13 D 17或22
3、如图,用不等式表示数轴上所示的解集,正确的是( )
A .31≥-<x x 或
B .31>-≤x x 或
C .31<≤-x
D .31≤<-x 4、一个直角三角形两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25
B.三角形的周长为25
C.斜边长上的高为
5
12
D.三角形的面积为20 5、在△ABC 中,AB=AC ,若∠A =60°,则△ABC 为( ) A .钝角三角形 B .直角三角形 C .等边三角形 D .等腰不等边三角形 6、已知一个等腰三角形有一个角为50o ,则顶角是 ( ) A.50o B .80o C .50o 或80o D. 不能确定 7、下列图形中,既是轴对称图形又是中心对称图形的有( )
A .4个
B .3个
C .2个
D .1个
8、已知b a >,下列式子中能成立的是 ( )
A 、33a b +<+
B 、33-<-b a
C 、b a 22<
D 、b a 22-<-
9、已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=25°, DE 垂直平分线段AB ,则∠BDC 等于( )
A. 30°
B.40°
C.50°
D.60°
B
A
D
C
E
1
0123
图(3)
O D
C
B
A
10、已知:如图,在△ABC 中,∠C=90°,∠CAB=60°,AD 平分∠BAC ,点D 到AB 的距离DE=2cm ,则BC 等于( ) A.2cm
B.4cm
C.6cm
D.8cm
二. 填空题(每小题3分, 共15分) 11、不等式340x -≤的解集为 。
12、已知⊿ABC 中,∠A = 090,角平分线BE 、CF 交于点O ,则∠BOC =
13、不等式组⎩⎨⎧+<+≥-7
140
3x x x 的解集是 。
14、如图,△OAB 绕点O 逆时针旋转0
80到△OCD 的位置, 已知∠AOB=0
45,则∠AOD 等于____________。
15、如图,在△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D , △ABC 的周长是12cm ,△ABD 的周长是7cm ,则AC 的长为 。
三. 解答题 (每小题6分,共30分)
16、如图,一工厂的房顶为等腰△ABC ,AB=AC ,AD=5米,AB=13米,求跨度BC 的长。
17、解不等式组⎪⎩
⎪
⎨⎧≥-->+0521372x x x ,并把它的解集表示在数轴上。
18、在下图中,将左图绕点O 按顺时针 的方向旋转90°,再将右图向左平移 5个格,作出旋转、平移后的图案。
D
C
B
A
D
B
E
C
A
O
19、如图,AC=3,BC=4,AD=13,求△ABD 的面积。
20、如图,圆柱的高为8㎝,底面直径4㎝,在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处的食物,它需要爬行的最短路程是多少厘米?(3≈π)
四.解答题(21~23题每小题8分,24题10分,25题11分,共45分) 21、已知MN 是线段AB 的垂直平分线,C,D 是MN 上的两点.求证:
(1)△ABC,△ABD 是等腰三角形 (2)∠CAD=∠CBD
N 22、作出函数y =-x +2的图象,观察图象并回答下列问题, (1)当x 时,-x +2>0; (2)当x 时,-x +2=0; (3)当x 时,-x +2<0.
D
C
B
A
M D
B
C
A
23、尺规作图:
(1)要在河边l 修建一个水泵站M ,使MA=MB 。
水泵站M 要建在什么位置? (2)要在河边l 修建一个水泵站N ,向A ,B 两个村子送水,使所用的水管最短即NA+NB 最小,水泵站N 要建在什么位置?
24.暑假期间,两名老师计划带领x 名学生去旅游,他们联系了报价均为每人
1000元的两家旅行社。
经协商,甲旅行社的优惠条件是:两名老师全额收费,学生都按5折收费;乙旅行社的优惠条件是:老师、学生都按6折收费。
(1)写出两家旅行社的收费y (元)与学生人数x (名)之间的函数关系式; (2)他们应该如何选择旅行社才划算?
25、先阅读,再解答。
在解不等式|1|2x +>时,我们可以采用以下解法: 解:(1)当1x +≥0时,|1|1x x +=+。
∴由原不等式可得12x +>
∴可得与原不等式等价的不等式组10
12
x x +≥⎧⎨+>⎩
∴原不等式组的解集为1x >
(2)当1x +﹤0时,|1|(1)x x +=-+。
∴由原不等式可得(1)2x -+>
∴可得与原不等式等价的不等式组10
(1)2
x x +<⎧⎨-+>⎩
∴原不等式组的解集为3x <-
综合上述(1),(2),原不等式的解集为1x >或3x <- 请你仿照上述方法,尝试解不等式|1|x -≤2.
A B l。