大学物理课件波动习题
大学物理波动练习题
大学物理波动练习题1、下列哪一种波属于机械波?A.电磁波B.声波C.地震波D.核辐射波2、在机械波的传播过程中,介质中的质点发生的是()A.随波逐流的相对运动B.周期性变化的相对运动C.振幅变化的相对运动D.垂直于波传播方向的相对运动3、下列哪一种说法正确地描述了波动现象的特征?A.波动现象是独立存在的,与振动源无关B.波动现象与振动源无关,只与传播介质有关C.波动现象是振动源和传播介质共同作用的结果D.波动现象只与传播介质有关,与振动源无关4、在波动现象中,下列说法正确的是()A.各质点的起振方向都与振源的起振方向相同B.各质点的振动周期都与振源的振动周期相同C.各质点的振动方向都与振源的振动方向相同D.各质点的振动步调都与振源的振动步调相同二、解答题5.什么是机械波的传播速度?它与介质有关吗?如果有关,是怎样的关系?6.在机械波的形成过程中,介质中的各质点是如何随波迁移的?为什么?1、在以下物理量中,哪个是矢量?A.路程B.速率C.速度D.时间答案:C.速度解释:矢量是具有大小和方向的物理量,而速度是既有大小又有方向的物理量,因此是矢量。
而路程、速率和时间都只有大小,没有方向,因此是标量。
2、下列哪个选项可以表示物体的惯性?A.速度B.质量C.加速度D.动量答案:B.质量解释:惯性是物体抵抗运动状态被改变的性质,是物体的固有属性。
质量是惯性的唯一量度,因此质量可以表示物体的惯性。
速度、加速度和动量都与物体的运动状态有关,但它们都不能直接表示物体的惯性。
3、在以下哪个条件下,物体的运动状态会发生改变?A.受到力的作用B.受到重力C.受到支持力D.受到摩擦力答案:A.受到力的作用解释:物体的运动状态会发生改变,即物体的速度会发生改变,这只有当物体受到力的作用时才会发生。
力是改变物体运动状态的原因。
重力、支持力和摩擦力都是具体的力,但它们并不能独自改变物体的运动状态。
二、填空题4、在物理学中,我们将物体相对于其他物体位置的变化称为______。
大学物理(第四版)课后习题及答案 波动
第十四章波动14-1 一横波再沿绳子传播时得波动方程为。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s时得波形,并指出波峰和波谷。
画出x=1.0m处质点得振动曲线并讨论其与波形图得不同。
14-1分析(1)已知波动方程(又称波函数)求波动的特征量(波速、频率、振幅A及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t值代人已知波动方程,便可以得到不同时刻的波形方程,从而作出波形图。
而将确定的x值代入波动方程,便可以得到该位置处质点的运动方程,从而作出振动图。
解(1)将已知波动方程表示为与一般表达式比较,可得则(2)绳上质点的振动速度则(3) t=1s和 t=2s时的波形方程分别为波形图如图14-1(a)所示。
x=1.0m处质点的运动方程为振动图线如图14-1(b)所示。
波形图与振动图虽在图形上相似,但却有着本质的区别前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的时间变化的情况。
14-2 波源作简谐运动,其运动方程为,它所形成得波形以30m/s的速度沿一直线传播。
(1)求波的周期及波长;(2)写出波的方程。
14-2分析 已知彼源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅地角频率及初相,而这三个物理量与波动方程的一般形式中相应的三个物理量是相同的。
大学物理波动篇机械波复习题及答案课件
种不同的媒质中传播, 在分界面上的 P 点
相遇, 频率n = 200Hz, 振幅A1=A2=2.00 10-
2m, S2 的位相比 S1 落后 /2。在媒质1中
波速 u1= 800 m s-1, 在媒质2中波速 u2=
1000 m s-1 , S1P=r1=4.00m,
静止的点。求两波的波长和两波源间最 小位相差。
o
S1
S2
x
d
29
解: 设S1 和 S2的振动初位相分别为 1 和 2在 x1点两波引起的振动位相差
2 2 d x1/ 1 2 x1 / 2k 1
2 1 2 d 2 x1/ 2k 1 (1)
在x2点两波引起的振动位相差
2 2 d x2/ 1 2 x2 / 2k 3
波分别通过图中的 o1和 o2 点,通过 o1 点 的简谐波在 M1M2 平面反射后,与通过 o2 点的简谐波在 P 点相遇,假定波在M1M2平 面反射时有半波损失,o1 和 o2 两点的振动
方程为,y10=Acos(2t) 和 y20=Acos(2t) , 且 o1m+mp=16,o2P = 6 (为波长) 求:
(A)波速为C/B; (B)周期为 1/B;
(C)波长为C/2 ; (D)圆频率为 B。
[]
5
5.一平面简谐波沿正方相传播, t=0 时刻的
波形如图所示, 则 P 处质点的振动在 t=0 时
刻的旋转矢量图是
y
u
A
x
o
P
( A)
o
x
A
(B)
o
x
A
(C ) A o
x
A
(D)
大学物理(第四版)课后习题及答案 波动(2020年7月整理).pdf
第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11−−−=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11−−−=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(−−⋅−=s m x t s m y π 与一般表达式()[]0cos ϕω+−=u x t A y 比较,可得0,5.2,20.001=⋅==−ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0−−−⋅−⋅−==s m x t s s m dt dy v ππ 则1max 57.1−⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(−−=ππ()[]x m m y 125cos )20.0(−−=ππ波形图如图14-1(a )所示。
大学物理热学振动和波动习题课.ppt.ppt
2 k 1 2 1 2k 2 1
A A 1A 2
A A A 1 2
简谐波的波函数
一.描述简谐波的物理量 1.波长—波线上相邻同相点的距离。
2.波速u—振动的相的传播速度。 决定于媒质的惯性和弹性。 3.周期T= /u
1 4.频率 v T 2
u
5.波数k = 2 /
二.平面简谐波的波动方程(波函数) Y 已知:波源O的振动方程
y A c o s t 0
则:ox上所有质点的
振动方程
相位比o 落后了 2x/ 振动时间 x/u 比o晚了
O
x
X
或
2 x y A cos t
x y 3 c o s2 ( t ) a 2 0
u
B2 a
b1
x
5 x y 3 cos 2 ( t ) b 1 20 20 5 x y 3 cos 2 ( t ) b 2 20 20
例4 如图所示,S1、S2为相同振动方向、相同频率v, 相同振幅A的相干波源,且S1的位相较S2超前/2,S1、 S2相距7/4。当两列波以相对速度相向而行时,在S1S2 连线上有哪些合成波为节点?
N n P RT RT VN N 0 0
PV
N RT N0
n1 P RT 1 N0
2 n 1 P RT 2 P 2 1 N 0
P P 3 3 1
P P P P 6 P 1 2 3 1
例2 试说明下列各式的物理意义
Nf vdv dN Nf v dv , v 1
合成后仍然是谐振动。式中A和为:
x A cos t
大学物理--波动习题页PPT文档
4O
2
0 * 1.0 * 2.0 * t / s
1 -1.0*1
*
x0.5m处质点的振动曲线
例 一平面简谐波以速度 u2m 0/s沿直线传播,波
线上点 A 的简谐运动方程 y A (3 1 2 m 0 )c4 o π s s 1 )t.(
u
8m 5m 9m
C
B oA
Dx
1)以 A 为坐标原点,写出波动方程
2.0
x/m
-1.0
t 1.0s时刻波形图
3) x0.5m处质点的振动规律并做图 . y (1 .0 m c)o 2 π (st[x) π ] 2 .0 s2 .0 m2
x0.5m处质点的振动方程
y (1 .0 m c)o π s s 1 )t[ π (]
y
y/m
3
1.0
3*
2
4
0 . 02 8
2
y/m
(2)画出 t T 时的波形曲线。 0.04
8
0.2
0.05
xutuT0.0m 5
88
u
t 0
t
0.4 0.6 0.8x / m
p240 18.6 已知波的波函数为 yA co(4 s t 2 x )
(1)写出t=4.2s时各波峰位置的坐标表达式,并计算此时离 原点最近一个波峰的位置,该波峰何时通过原点?
原点处的质点位于平衡位置并沿 O y 轴正方向运动 .
求 1)波动方程; 解 写出波动方程的标准式
yAco2π s([T t x)]
O
y
A
t0 x0
y0,vy0
t
π 2
y1.0co2π s([t x)]
大学物理课件16波动习题New解读
y =y1 + y2 + y3
结束 目录
解:
IL
=10log
I I0
I L1
I 1= I010 10
I L2
I 2= I010 10
I 10 I L1
I 10 1
10
= IL2
2
10
I L1
=10 10
I L2 10
80
=10 10
40 10
= 104
结束 目录
16-18 距一点声源10m的地方,声音 的声强级是20dB。若不计介质对声波的吸 收,求:
处测不到讯号。不考
虑大气的吸收。试求
h
此波源 S 发 出波的
2
2
波长。
11
H
S3 D
d
结束 目录
解:设 SB + BD = d1
SA + AD = d2
1、3两波在D处干涉加强
d1+
l 2
d =kl
S
2、3两波在D处干涉相消
d2+
l 2
d
=(2k
+1)
l 2
得到:
d2
d1=
l 2
A
B
h
2
2
11
H
3
(1)在30m处的声强为多大? (2)6.0m处的位移振幅为多大? (3)6.0m处的压强振幅为多大?
结束 目录
解:
(1)
I6 I30
=
r2 30
r62
=
30 6
2
=
25
I30=
1 25
I
6
=
1 25
大学物理第五版下册第十章波动习题.ppt
第十章 波动
波动方程为:
y Acos[(t x ) ]
u
0.10cos[500 ( t x ) ](m)
5000 3
(2)在距离原点为x=7.5m处质点的运动方程为:
y 0.10cos[500 ( t 7.5 ) ]
5000 3
0.10cos[500 t 15 ]
20 3
u
(B) y Acos[(t x ) ]
u2
(C) y Acos[(t x ) ]
u2
(D) y Acos[(t x ) ]
u
答案(D)
第十章 波 动
4
物理学
第五版
画出t=0时刻的波形图,图中 红线所表示的波形。 可见t=0时刻波源处质点在负的最 大位移处,且向y的正方向运动, 由旋转矢量图可得:
解:(1)两列波在点R处的波程差为: r PQ 3
2
两列波在点R处的相位差为:
2 r 2 3 3
2
第十章 波 动
14
物理学
第五版
第十章 波动
(2)两列波在点R处的合振幅为:
A A12 A22 2A1A2 cos3 A1 A2
第十章 波 动
15
物理学
第五版
第十章 波动
10-22 图示的是干涉型消声器的结构原理图,利用这
波速 u 20 250 5000m s
T
第十章 波 动
10
物理学
第五版
第十章 波动
由t=0时,P点向上运动,可画出下一时刻的波形,得出 此波沿x轴负方向传播。
可知t=0时,坐标原点出质点在A/2处,且向下运动,利 用旋转矢量法可得原点处质点的振动初相位为:
3
大学物理波动练习题
三、计算题
已知一平面简谐波的表达式为 (SI)
(1)分别求x1=10 m,x2=25 m两点处质点的振动方程;
(2)求x1,x2两点间的振动相位差;
在x= 0至x=10.0 m内波节的位置是_____________________________________
__________________________________;波腹的位置是______________________
__________________________________.
3、图为沿x轴负方向传播的平面简谐波在t= 0时刻的波形.若波的表达式以余弦函数表示,则O点处质点振动的初相为
(A)0.(B) .
(C).(D) .[]
4、频率为100 Hz,传播速度为300 m/s的平面简谐波,波线上距离小于波长的两点振动的相位差为 ,则此两点相距
(A)2.86 m.(B)2.19 m.
答案:
一、
CBDC
二、
(SI)
三、
解:(1) (SI)
(2)t1=T/4 = (1 /8) s,x1=/4 = (10 /4) m处质点的位移
(3)振速 .
s,在x1=/4 = (10 /4) m处质点的振速
m/s
解:(1)振动方程: A=10 cm,
= 2=s-1,=u/= 0.5 Hz
初始条件:y(0, 0) = 0
(1)此波的表达式;
(2)t1=T/4时刻,x1=/4处质点的位移;
(3)t2=T/2时刻,x1=/4处质点的振动速度.
大学物理课件第13章 波动光学(习题)
(1)先由条纹间距算出空气层劈角
x 2
2x
T
2
1
再由两块规的距离 算出高度差 h l l 29.47μm 2x
G1
G2
l
(2)轻压盖板T的中部,两处条纹变化相反,条纹变密的一端高
(3)说明G2的上下两表面不平行,使其上表面不严格平行于G1的上表面, 造成两边空气层劈角不等,劈角差为
2
1
图所示为杨氏干涉装置,其中S为单色自然光源,S1和S2为双孔。
P S
P1 S1
d
P3
F4 F3 F2 F1
F0
S2 P2
D
(1)如果在S后放置一偏振片P,干涉条纹是否发生变化?有何变化?
插入P后,干涉条纹的形状、间距、反衬度均不发生变化。 但由于自然光通过偏振片P时强度减半,导致屏幕上的平 均强度减半,干涉条纹的亮度下降。
正交偏振片之间。从第一块偏振片射出的线偏振光垂直入射在晶
片上,振动方向与晶片光轴方向成 45o 角。试问在透过第二块偏
振片的光在可见光谱中 (400~700nm) 中,缺少哪些波长?如果两
偏振片方向平行,则透射光中缺少哪些波长?假定双折射率 no-
nNe=0.A1A7o22o 可M看A1作AA常2eCe 量。N透晶过解片N: 的C第与两一相M种2干,N情光d透况(位光n:o相轴两差成n偏e为)4振5o(片角2Mk,(+和2如1k)Nπ图时正1。)相交消,
A1
透过 N的两相干光相消时,有
Ao
Ae
A2e ,A2o
C M, N
2 d
(no
ne )
(2k
1)
2d (no ne ) 4300
2k 1 k 1 2
大学物理课件16波动习题New
16-8 一平面波在介质中以速度u =20 m/s沿x 轴负方向传播,已知 a 点的振动 表式为: ya = 3 cos 4 t π (1)以a为坐标原点写出波动方程; (2)以距a点5m处的b点为坐标原点写出 波动方程。 b. u a . x
结束 目录
5m
解:(1)以a点为原点在x轴上任取一点P,坐 标为x y u ya = 3 cos 4 t π P a. . x o x y = 3 cos 4 t + π x 20 y u (2)以b点为坐标原点
= 15 + 2k ( k = 0, 1, … 7 ) 2 ×30 π 2 ×30 π 16 π π + = + = π Δj = 4 l 结束 目录 不可能产生干涉相消。
16-23 地面上波源S与高频率波探测器 D之间的距离为d,从S直接发出的波与从S 发出经高度为H的水平层反射后的波,在D 处加强,反射线及入射线与水平层所成的角 度相同。当水平层逐渐升高 h 距离时,在D 处测不到讯号。不考 h 虑大气的吸收。试求 2 此波源 S 发 出波的 2 H 波长。 1 1
S
3
D
结束 目录
d
SB + BD = d1 SA + AD = d2 1、3两波在D处干涉加强 l d 1+ d = kl 2 2、3两波在D处干涉相消 l l d 2+ d = ( 2k +1 ) 2 2 l 得到: d2 d1= 2
解:设
A B
2 1 1 3 2
h H
D
S
d
结束
目录
d2 由图得到:
结束
目录
解:
S1
.
3l 2
.
大学物理第十四章波动光学习题+答案省名师优质课赛课获奖课件市赛课一等奖课件
(C)
2
(D)
2n
2ne k k 1, 2, 3
2
要使e最小,令k =1
e
4n
4-3 若把由平凸玻璃和平玻璃(折射率1.50)制成旳 牛顿环装置由空气搬入水中(折射率1.33),则干涉 条纹
(A) 中心暗环变成明环
✓(C) 间距变密
(B) 间距变疏 (D) 间距不变
4-4 在单缝衍射试验中,缝宽a = 0.2mm,透镜焦距
(1)求透过每块偏振片后旳光束强度; (2)若将原入射光束换为强度相同旳自然光,求 透过每块偏振片后旳光束强度。
解:(1)根据马吕斯定律,线偏振光透过第一 个
偏振片后光强度为
I1
I0
cos2
30
3 4
I0
再透过第二个偏振片后光强度为
I2
I1
cos2
60
3 16
I0
(2)自然光透过第一种偏振片后光强度为
; 该光栅旳光栅常
数(a+b) =
。
(a b) sin k1
(k 1)2 k1
(a b) sin (k 1)2
k 2 2 1 2
(a b) sin 21
tan x 0.1 sin
f
(a b) 201 1.2103cm
4-8 一束自然光经过两个偏振片,若两偏振片旳偏
振化方向间夹角由1转到2,且不考虑吸收,则转动
d
3、薄膜等厚干涉 劈尖干涉
垂直入射: 2ne
2
相邻明纹(暗纹)间旳厚度差: e
2n
C
相邻明纹(暗纹)中心间距离: l 2n
R
牛顿环
r 2Re
明环和暗环旳半径分别为:
大学物理学(第五版)下册第十章 波动 补充例题
y/m 0.10
I
II
u
O -0.10
0.20
0.40
0.60 x / m
6 平面简谐波的波动方程为
y 0.08 cos( 4t 2x),式中y的单位为m, t的单位为s.求:(1)t 2.1s 时波源及距波 源0.10m两处的相位; (2)离波源0.80m及 0.30m说明两处的相位.
r1
11 如图所示, x 0 处有一运动方程为 y A cos t 的平面波波源,产生的波沿x轴正、 负方向传播MN为波密介质的反射面,距波源 3 λ / 4.求:(1)波源所发射的波沿波源O左右 传播的波动方程;(2)在MN处反射波的波动 方程;(3)在O~MN区域内形成的驻波方程, 以及波节和波腹的位置;(4)区域内合成波 M 的波动方程.
13 一警车以25m· s-1的速度在静止的空 气中行驶,假设车上警笛的频率为800Hz. 求: (1)静止站在路边的人听到警车驶近和离 去时的警笛声波频率; (2)如果警车追赶一辆速度为15m· s-1的客 车,则客车上人听到的警笛声波频率是多 少? (设空气中声速为u=330m· s-1 )
14 一次军事演习中,有两艘潜艇在水 中相向而行,甲的速度为50.0km· h-1,乙的 速度为70.0km· h-1,如图所示.甲潜艇发出一 个1.0×103Hz的声音信号,设声波在水中的 传播速度为5.47×103km· h-1,试求:(1) 乙潜艇接收到的信号频率;(2)甲潜艇接 收到的从乙潜艇反射回来的信号频率.
) 甲 50.0km· h-1 )
)
)
)
)
)
乙 70.0km· h-1
y/m
u 0.08m s 1
O -0.04
大学物理 第十章 波动部分习题
第十章 波动一、简答题1、什么是波动? 振动和波动有什么区别和联系?答:波动一般指振动在介质中的传播。
振动通常指一个质点在平衡位置附近往复地运动,波动是介质中的无数个质点振动的总体表现。
2、机械波的波长、频率、周期和波速四个量中,(1) 在同一介质中,哪些量是不变的? (2) 当波从一种介质进入另一种介质中,哪些量是不变的?答:(1) 频率、周期、波速、波长 (2)频率和周期3、波动方程⎪⎭⎫ ⎝⎛-=u x cos y t A ω中的u x 表示什么? 如果把它写成⎪⎭⎫ ⎝⎛-=u x cos y ωωt A ,u x ω又表示什么? 答:u x 表示原点处的振动状态传播到x 处所需的时间。
ux ω表示x 处的质点比原点处的质点所落后的相位。
4、波动的能量与哪些物理量有关? 比较波动的能量与简谐运动的能量.答:波的能量与振幅、角频率、介质密度以及所选择的波动区域的体积都有关系。
简谐运动中是振子的动能与势能相互转化,能量保持守恒的过程;而行波在传播过程中某一介质微元的总能量在随时间变化,从整体上看,介质中各个微元能量的变化体现了能量传播的过程。
5. 平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
6. 驻波是如何形成的?驻波的相位特点什么?答案:驻波是两列振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有的相位差。
7 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络面就是该时刻的波振面。
大学物理学练习题-波动光学(干涉、衍射与偏振)
专业班级____________ 学号 ____________姓名__________ 序号大学物理练习题波动光学一、选择题1. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃慢慢地向上平移,则干涉条纹[ ]。
(A)向棱边方向平移,条纹间隔发生变化;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔发生变化;(D)向远离棱的方向平移,条纹间隔不变。
2. 两块平玻璃构成空气劈尖,左边为棱边(劈尖尖端),用单色平行光垂直入射,若上面的平玻璃以棱边为轴缓慢向上旋转,则干涉条纹[ ] 。
(A)向棱边方向平移,条纹间隔变小;(B)向棱边方向平移,条纹间隔不变;(C)向远离棱的方向平移,条纹间隔变大;(D)向远离棱的方向平移,条纹间隔不变。
3. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则[ ]。
(A) 干涉条纹的宽度将发生改变;(B) 产生红光和蓝光的两套彩色干涉条纹;(C) 干涉条纹的亮度将发生改变;(D) 不产生干涉条。
4. 在双缝干涉实验中,两条缝的宽度原来是相等的.若其中一缝的宽度略变窄(缝中心位置不变),则[ ]。
(A) 干涉条纹的间距变宽;(B) 干涉条纹的间距变窄;(C) 干涉条纹的间距不变,但原极小处的强度不再为零;(D) 不再发生干涉现象。
5. 把双缝干涉实验装置放在折射率为n的水中,两缝间距离为d,双缝到屏的距离为D (D >>d),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是[ ](A) λD / (nd);(B) nλD/d;(C) λd / (nD);(D) λD / (2nd)。
6. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]。
(A) 中心暗斑变成亮斑;(B) 变疏;(C) 变密;(D) 间距不变。
大学物理波动练习题
(A)0.(B) .
(C).(D) .[]
4、频率为100 Hz,传播速度为300 m/s的平面简谐波,波线上距离小于波长的两点振动的相位差为 ,则此两点相距
(A)2.86 m.(B)2.19 m.
三、计算题
1、两列余弦波沿Ox轴传播,波动表达式分别为
(SI)
与 (SI),
试确定Ox轴上合振幅为0.06 m的那些点的位置.
2、图中A、B是两个相干的点波源,它们的振动相位差为(反相).A、B相距30 cm,观察点P和B点相距40 cm,且 .若发自A、B的两波在P点处最大限度地互相削弱,求波长最长能是多少.
(3)求x1点在t= 4 s时的振动位移.
答案:
一、
CCADBC
二、
3分
,k=0,1,2,…[只写 也可以]2分
3分
三、
解:(1)x1=10 m的振动方程为
(SI)
x2=25 m的振动方程为
(SI)
(2)x2与x1两点间相位差
=2-1=-5.55 rad
(3)x1点在t= 4 s时的振动位移
y = 0.25cos(125×4-3.7)m= 0.249m
(A) 0.(B) .(C).(D) .[]
3、在驻波中,两个相邻波节间各质点的振动
(A)振幅相同,相位相同.(B)振幅不同,相位相同.
(C)振幅相同,相位不同.(D)振幅不同,相位不同.[]
4、在波长为的驻波中,两个相邻波腹之间的距离为
(A)/4.(B)/2.
(C)3/4.(D).[]
5、沿着相反方向传播的两列相干波,其表达式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
位,它是原点处质点在哪一时刻的相位? (4)分别画出t = 1s,1.25s,1.50s各时刻
的波形。
结束 目录
解:
y = 0.05 cos(10π t 4πx ) 与 y = Acos(2πn t 2lπx ) 比较得
(1) A =0.05m n =5Hz l =0.5m
(2)人眼所能见到的光(可见光)的波长范围 为400nm(居于紫光)至760nm(展于红光)。 求可见光的频率范围(lnm=l0-9 m)。
结束 目录
解: (1)在空气中
n = 20Hz
n = 2000Hz
l
=
u
n
l
=
340 20
=17m
l=
340 2×104
= 17×10-3 m
(2)在水中
n = 20Hz
=50(s 1 )
ω = 2πn = 100π (rad.s 1 )
原点处质点的振动方程为:
y0= 5 cos 100π t +π2
波动方程为:
y = 5 cos 100π (t
x 600
)&在室温下空气中的声速为 340m/s。水中的声速为1450m/s,能使人 耳听到的声波频率在20至20000Hz之间, 求这两极限频率的声波在空气中和水中的波 长。
t 0.01
x 0.3
y
=
0.02
cos
2π
(
t T
两式比较得到:
x l
)+ j
(1) A =0.02m n =100Hz l =0.3m
u = ln =0.3×100=30 m/s
(2) 当 x =0.1m t =0
j=
2π
3
结束 目录
16-8 一平面波在介质中以速度u =20 m/s沿x 轴负方向传播,已知 a 点的振动 表式为:
y/m t =1.2s t =1s
0.05
t =1.25s
o
x/m
结束 目录
16-4 设有一平面简谐波
y = 0.02 cos 2π
t 0.01
x 0.3
x, y 以m计, t 以s计, (1)求振幅、波长、频率和波速; (2)求x = 0.1m处质点振动的初相位。
结束 目录
解:
y = 0.02 cos 2π
ya = 3 cos 4π t
(1)以a为坐标原点写出波动方程; (2)以距a点5m处的b点为坐标原点写出 波动方程。
b.
u .a
5m
x
结束 目录
解:(1)以a点为原点在x轴上任取一点P,坐
标为x
ya = 3 cos 4π t
y = 3 cos
4π
t+
x 20
yu
ao.
x
P.
x
(2)以b点为坐标原点
波动习题
16-10 一列沿x 正向传播的简谐波, 已知 t1= 0时和 t2= 0.25s时的波形如图所 示。试求:
(1)P点的振动表式; (2)此波的波动表式; (3)画出 o 点的振动曲线。
y/cm
0.2
t1= 0 u
t2= 0.25s
o P.
0.45
x/cm
结束 目录
解: A =0.2m
y/cm
yu
y
=3
cos4π
t
+
x5 20
bo.
a.
5m
P.
x
=3 cos 4π(t +
x 20
)
π
结束 目录
16-11 已知一沿 x 轴负方向传播的 平面余弦波,在t =1/3 s 时的波形如图所 示,且周期T =2s;
(1)写出o点的振动表式; (2)写出此波的波动表式; (3)写出Q点的振动表式; (4)Q点离o点的距离多大?
u = ln =0.5×5=2.5m/s
(2) um = Aω =0.05×10π =0.5π m/s am = Aω 2 = 0.05×(10π )2 =5 π2 m/s2
结束 目录
(3) x =0.2m t =1s
Φ =4π 4π×0.2 =9.2π
在原点处 x =0
10π t =9.2π
t =0.92s
结束 返回
解:
y(m)
u
o
由图可知, 在t = 0时刻
.
5
12
y =0
v
=
y t
<
0
x (m)
j =π2
l = 24m A =5m
n
=
u l
=
600 12
=50(s 1 )
ω = 2πn = 100π (rad.s 1 )
结束 返回
l = 24m A =5m j =π2
n
=
u l
=
600 12
l
=
1450 20
=72.5m
n = 2×104 Hz
l
=
1450 20
=72.5×10-3
目录
m
声音在水中的传播速度
• 1827年,在日内瓦湖上测定声音在水中 的传播速度,两只船相距14km,在一只船 上实验员向水里放一座钟,当钟响的时 刻,船上的火药同时发光,在另一只船 上的实验员在水里放一个听音器,他看 到火药发光后10s,听到了水下钟声,
y/cm
o P.
-5
20
.Q
u
x/cm
结束 目录
解:
y/cm
o P.
-5 20
u
.Q
x/cm
A =10cm T = 2s l =40cm
n = 0.5Hz
ω
=
2π
T
=π
u =l n =40×0.5 = 20cm/s
(1)对于O点
ω
t
+j
=π ×
1 3
+j
=
23π
O点的振动规律:
y 0= 10 cos(π t π )
(3)可见光
l = 400nm
n
=
u
l
=
3×108 4×10-7
=7.5×1014 Hz
l = 760nm
n
=
u
l
=
3×108 7.6×10-7
=3.95×1014 Hz
结束 目录
16-3 一横波沿绳子传播时的波动表式为
y = 0.05 cos(10π t 4πx )
x, y 的单位为 m, t 的单位为s。 (1)求此波的振幅、波速、频率和波长。 (2)求绳子上各质点振动的最大速度和最
j= π
结束 目录
(2)波动方程为
y = 10
cos π ( t
10π x
3
+
π
2
y O
= 0.2cos
2π
t
+
π
2
yP = 0.2cos 2π t
10π
3
×0.3
+
π
2
=0.2cos 2π t
π
2
结束 目录
例2. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,其波 速为u =600m/s。试写出波动方程。
y(m)
o
.
12
u 5
x (m)
0.2
o
.
P
t1=0
u
t2=0.25s
x/cm
0.45
l
=
4 3
×0.45
=0.6m
T = 4×0.25 =1s
n =1Hz u =ln =0.6m/s
y =0.2cos 2π t
2π x
0.6
+j
t =0 x =0
y =0 v<0
j =π2
y =0.2cos 2π t
10π
3
x
+
π
2
结束 目录
y =0.2cos 2π t