平面向量的线性运算教学设计

合集下载

平面向量的线性运算教学设计

平面向量的线性运算教学设计

平面向量的线性运算教学设计设计思路:本文基于平面向量的线性运算教学设计,主要内容包括向量的加法、减法、数乘以及线性组合等方面。

通过理论知识的介绍、示例的演示和互动练习等方式,让学生能够深入理解线性运算的概念与性质,提高解决实际问题的能力。

【引言】平面向量的线性运算是数学中重要的内容之一,它在几何、物理、工程等学科中都有广泛的应用。

正确理解和掌握平面向量的线性运算,对于学生培养逻辑思维、解决实际问题具有重要意义。

本文将通过教学设计,帮助学生深入理解平面向量的线性运算,并能够灵活运用于实际问题中。

【教学设计】一、理论知识的引入1. 引入向量的概念与性质:向量的定义、向量的模、向量的方向等。

2. 平面向量的表示方法:坐标表示法、位置矢量表示法等。

二、向量的加法与减法1. 向量的加法:向量相加的几何意义,向量相加的运算法则。

2. 向量的减法:向量相减的几何意义,向量相减的运算法则。

三、向量的数乘与线性组合1. 向量的数乘:向量与实数相乘的几何意义,向量数乘的运算法则。

2. 向量的线性组合:向量线性组合的概念与性质。

四、实例演示与解析1. 实例1:平面向量的相加减计算。

通过具体的示例,引导学生学会进行向量的相加、相减运算。

2. 实例2:向量的数乘与线性组合应用。

结合实际问题,让学生理解向量的数乘与线性组合在几何、力学等方面的应用,如力的合成与分解等。

五、互动练习与巩固1. 设计小组练习题目:编写一些向量加减或数乘题目,供学生进行小组讨论与解答。

2. 出示练习题目进行课堂检测:出示一些题目,要求学生即时回答,并解析答案,加深学生对知识点的理解与掌握。

【教学反思】通过本教学设计,学生在学习过程中通过理论知识的介绍、实例演示以及互动练习等方式,有助于培养学生的逻辑思维能力和解决实际问题的能力,使学生对平面向量的线性运算有更深入的理解和应用。

同时,教学过程中注重互动,培养学生的合作意识和团队精神,增加学习的趣味性。

平面向量的线性运算教学设计

平面向量的线性运算教学设计

《平面向量的线性运算》复习教学设计高中数学北师大版西安交通大学第二附属中学刘正伟§5.1平面向量的线性运算【教学目标】知识与能力;过程与方法;情感、态度、价值观;1.掌握向量加法,减法的运算,并理解其几何意义;2.掌握向量数乘向量的运算及其几何意义,理解向量共线的充要条件;了解向量共线的含义,理解向量共线判定和性质定理。

【教学重点、难点】重点:理解并掌握向量的线性运算及向量共线的充要条件;难点:向量的线性运算及向量共线的充要条件的应用。

【教具准备】多媒体课件【教学方法】启发引导式;讲练结合【教学设计】(一).复习导入问题:前面我们已经复习了的向量的有关概念,知道了向量是既有大小又有方向的量,物理中既有大小又有方向的量?学生:速度,加速度,位移,力力可以合成也可以分解,那么向量怎么运算那么我们今天一起回顾向量的线性运算——板书课题(二)知识要点1.向量的线性运算向量运算定义法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求两个向量差的运算a-b=a+(-b) 数乘求实数λ与向量a的(1)|λa|=|λ||a|;(1)λ(μa)=(λμ)a;积的运算 (2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0(2)(λ+μ)a =λa +μa ; (3)λ(a +b )=λa +λb2.向量共线的判定定理a 是一个非零向量,若存在一个实数λ.,使得b =λa ,则向量b 与非零向量a 共线. 3.【知识拓展】1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n ——→=A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),点A ,B ,C 共线 λ+μ=1.题型一 平面向量的线性运算 命题点1 向量的线性运算例2 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c (2)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,若BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 (1)A (2)A解析 (1)∵BD →=2DC →,∴AD →-AB →=BD →=2DC →=2(AC →-AD →), ∴3AD →=2AC →+A B →, ∴AD →=23AC →+13AB →=23b +13c .(2)∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.题型二根据向量线性运算求参数例2 (1)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB→+λ2AC →(λ1、λ2为实数),则λ1+λ2的值为________.(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( ) A.⎝⎛⎭⎫0,12 B.⎝⎛⎭⎫0,13 C.⎝⎛⎭⎫-12,0 D.⎝⎛⎭⎫-13,0 答案 (1)12(2)D解析 (1)DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.(2)设CO →=yBC →, ∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合), ∴y ∈⎝⎛⎭⎫0,13, ∵AO →=xAB →+(1-x )AC →, ∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.如图,一直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为( )A.29B.27C.25D.23 答案 A解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知, AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →) =λ⎝⎛⎭⎫52AE →+2AF → =52λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=29,故选A.思想方法 感悟提高1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素是“起点重合”.2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →∥BC →,则A 、B 、C 三点共线作业布置 练出高分1.步步高P241-2422.预习平面向量基本定理及坐标表示课后反思本节课按课前预设完成了教学任务,但教学理念陈旧,课堂上没有充分发挥学生的主动性和积极性,教师不能大胆放手让学生去探索,造成了课堂上教师讲的多。

平面向量的线性运算教案

平面向量的线性运算教案

平面向量的线性运算教案一、引言平面向量是数学中重要的概念之一,具有广泛的应用领域。

本教案旨在通过线性运算的教学来帮助学生深入理解平面向量的概念和运算法则。

二、知识点梳理1. 平面向量的定义和表示方法2. 平面向量的加法和减法运算3. 数乘运算及其性质4. 平面向量的数量积及其性质5. 平面向量的分解与合成三、教学步骤1. 概念讲解(1) 平面向量的定义和表示方法平面向量是具有大小和方向的量,用箭头来表示。

常用的表示方法有坐标表示和向量符号表示。

2. 加法和减法运算(1) 加法运算- 向量的加法满足交换律和结合律。

- 加法运算可以通过平行四边形法则进行计算。

(2) 减法运算- 向量的减法可以转化为加法运算,即a - b = a + (-b)。

- 通过平行四边形法则可以将减法运算转化为加法运算。

3. 数乘运算及其性质(1) 数乘运算- 数乘运算指的是将一个向量与一个实数相乘,结果是一个新的向量。

- 数乘运算可以改变向量的大小和方向。

(2) 数乘运算的性质- 数乘的加法法则:(k1 + k2)a = k1a + k2a- 数乘的数乘法则:(k1k2)a = k1(k2a)4. 数量积及其性质(1) 数量积的定义- 数量积,也称点积或内积,是两个向量的乘积,结果是一个实数。

- 数量积的计算方法为两个向量模的乘积乘以它们夹角的余弦值。

(2) 数量积的性质- 交换律:a·b = b·a- 结合律:(ka)·b = k(a·b) = a·(kb)- 分配律:(a + b)·c = a·c + b·c5. 分解与合成(1) 向量的分解- 分解是将一个向量表示为多个已知向量的线性组合。

- 可以使用平行四边形法则或三角函数来进行向量的分解。

(2) 向量的合成- 合成是根据给定向量和它们的系数,通过线性组合得到一个新的向量。

四、案例演练1. 解决实际问题(1) 给定向量A(-3, 4)和向量B(2, 5),求A + B和2A - B的结果。

6.3平面向量线性运算的应用教学设计2021-2022学年高一上学期数学人教B版(2019)必修二

6.3平面向量线性运算的应用教学设计2021-2022学年高一上学期数学人教B版(2019)必修二

6.3《平面向量线性运算的应用》教学设计教学分析:学生在已经学习了向量的线性运算及坐标运算的基础上,初步具备了使用向量工具解决问题的能力,本节课的主要目的是进一步让学生加深对向量的认识,更好的体会向量这个工具的优越性,对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用“向量和向量运算”来代替“数和数的运算”,这就是把点、线、面等几何要素直接归结为向量,对这些向量借助于他们之间的运算进行分析解决,然后把这些计算结果再次转化成关于点、线、面的相应结果,从而得到相应的几何关系.教学目标:知识与技能方面:通过平行四边形这个几何模型,力这个物理量,归纳总结出用向量方法解决平面几何问题及物理问题的思路步骤.情感与价值方面:通过本节学习,让学生深刻理解向量在处理有关平面几何问题及物理问题中的优越性,发散学生的思维,发展学生的创新意识,激发学生的学习兴趣.教学重难点:平面向量在平面几何及物理问题中的应用.要点一:向量在平面几何中的应用向量在平面几何中的应用主要有以下几个方面:(1)证明线段相等、平行,常运用向量加法的三角形法则、平行四边形法则,有时用到向量的多边形法则.(2)证明线段平行、三角形相似,判断两直线(或线段)是否平行,常常转化为向量平行(共线),转化方式主要有:数乘向量及坐标运算,.要点二:向量在物理中的应用(1)利用向量知识来解决物理问题,应注意两方面:一方面是如何把物理问题转化成数学问题即数学建模思想;另一方面是如何利用建立起来的数学模型解决有关物理问题.(2)明确两个常见物理问题的向量转化方式:力、速度、位移的合成与分解就是向量的加减法;(3)用向量方法解决物理问题的步骤:一是把物理问题中的相关量用向量表示;二是转化为向量问题的模型,通过向量线性运算来解决向量问题;三是把向量问题结果转化为物理问题结论.教学过程:新课讲授:师:问题1:尝试与发现:在四边形ABCD中,若,且,则该四边形的形状是什么?生:独立思考,学生自行解决。

高二数学必修四《平面向量的线性运算》教学设计

高二数学必修四《平面向量的线性运算》教学设计

高二数学必修四《平面向量的线性运算》教学设计高二数学必修四《平面向量的线性运算》教学设计高中数学必修四《平面向量的线性运算》教案教学目标一、知识与技能1.掌握向量的加减法运算,并理解其几何意义.2.会用三角形法则和平行四边形法则作两个向量的和向量和差向量,培养数形结合解决问题的能力.3.通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加减法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;二、过程与方法1.位移、速度和力这些物理量都是向量,可以合成,而且知道这些矢量的合成都遵循平行四边形法则,由此引入本课题.2.运用向量的定义和向量相等的定义得出向量加减法的三角形法则、平行四边形法则,并对向量加法的交换律、结合律进行证明,同时运用他们进行相关计算,这可让同学们进一步加强对向量几何意义的理解.三、情感、态度与价值观1.通过本节内容的学习,让学生认识事物之间的相互转化,培养学生的数学应用意识.2.体会数学在生活中的作用.培养学生类比、迁移、分类、归纳等能力.教学重点、难点教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量和差向量.教学难点:理解向量加减法的定义.教学关键:向量加法的三角形法则和平行四边形法则的探究引导.教学突破方法:由物理中力的合成与分解拓展延伸,引导学生探讨得到结论.教法与学法导航教学方法;启发诱导,讲练结合.学习方法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学准备教师准备:多媒体或实物投影仪、尺规.教师备课系统──多媒体教案学生准备:练习本、尺规.教学过程一、创设情境,导入新课上一节,我们一起学习了向量的有关概念,明确了向量的表示方法,了解了零向量、单位向量、平行向量、相等向量等概念,并接触了这些概念的辨析判断.数能进行运算,向量是否也能进行运算呢?这一节,我们将借助于物理中位移的合成、力的合成来学习向量的加法和减法.二、主题探究,合作交流提出问题:1.类比数的加法,猜想向量的加法,应怎样定义向量的加法?2.向量加法的法则是什么?3.与数的运算法则有什么不同?师生互动:向量是既有大小、又有方向的量,教师引导学生回顾物理中位移的概念,位移可以合成,如图.某对象从A点经B点到C点,两次位移AB、BC的结果,与A点直接到C点的位移AC结果相同.力也可以合成,老师引导,让学生共同探究如下的问题.图(1)表示橡皮条在两个力的作用下,沿着GC的方向伸长了EO;图(2)表示撤去F1和F2,用一个力F作用在橡皮条上,使橡皮条沿着相同的方向伸长相同的长度.改变力F1与F2的大小和方向,重复以上的实验,你能发现F与F1、F2之间的关系吗?力F对橡皮条产生的效果与力F1与F2共同作用产生的效果相同,物理学中把力F叫做F1与F2的合力.2新课标普通高中◎数学④必修合力F与力F1、F2有怎样的关系呢?由图(3)发现,力F在以F1、F2为邻边的平行四边形的对角线上,并且大小等于平行四边形对角线的长.数的加法启发我们,从运算的角度看,F可以认为是F1与F2的和,即位移、力的合成看作向量的加法.讨论结果:1.向量加法的定义:如下图,已知非零向量a、b,在平面内任取一点A,作AB=a,则向量AC叫做a与b的和,记作a+b,即a+b=AB+BC=AC.求BC=b,两个向量和的运算,叫做向量的加法.2.向量加法的法则:(1)向量加法的三角形法则在定义中所给出的求向量和的方法就是向量加法的三角形法则.运用这一法则时要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量的终点的向量即为和向量.位移的合成可以看作向量加法三角形法则的物理模型.(2)向量加法的平行四边形法则如图,以同一点O为起点的两个已知向量a、b为邻边作平行四边形,则以O为起点的对角线OC就是a与b的和.我们把这种作两个向量和的方法叫做向量加法的平行四边形法则.力的合成可以看作向量加法平行四边形法则的物理模型.对于零向量与任一向量a,我们规定a+0=0+a=a.提出问题1.两共线向量求和时,用三角形法则较为合适.当在数轴上表示两个向量时,它们的加法与数的加法有什么关系?2.思考|a+b|,|a|,|b|存在着怎样的关系?3.数的运算和运算律紧密联系,运算律可以有效地简化运算.类似地,向量的加法是否也有运算律呢?师生互动:观察实际例子,教师启发学生思考,并适时点拨,诱导,探究向量的加法在特殊情况下的运算,共线向量加法与数的加法之间的关系.数的加法满足交换律与结合律,即对任意a,b∈R,有a+b=b+a,(a+b)+c=a+(b+c).任意向量a,b的加法是否也满足交换律和结合律?引导学生画图进行探索.讨论结果:1.两个数相加其结果是一个数,对应于数轴上的一个点;在数轴上的两个向量相加,它们的和仍是一个向量,对应于数轴上的一条有向线段.2.当a,b不共线时,|a+b||a|+|b|(即三角形两边之和大于第三边);当a,b共线且方向相同时,|a+b|=|a|+|b|;当a,b共线且方向相反时,|a+b|=|a|-|b|(或|b|-|a|).其中当向量a的长度大于向量b的长度时,|a+b|=|a|-|b|;当向量a的长度小于向量b的长度时,|a+b|=|b|-|a|.一般地,我们有|a+b|≤|a|+|b|.3.如下左图,作AB=a,AD=b,以AB、AD为邻边作ABCD,则BC=b,DC=a.因为AC=AB+AD=a+b,AC=AD+DC=b+a,所以a+b=b+a.如上右图,因为AD=AC+CD=(AB+BC)+CD=(a+b)+c,,所以(a+b)+c=a+(b+c).AD=AB+BD=AB+(BC+CD)=a+(b+c)综上所述,向量的加法满足交换律和结合律.提出问题①如何理解向量的减法?②向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?师生互动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义?引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a和-a互为相反向量.于是-(-a)=a.我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a+(-a)=(-a)+a=0.所以,如果a、b是互为相反的向量,那么4新课标普通高中◎数学④必修a=-b,b=-a,a+b=0.A.平行四边形法则如上图,设向量AB=b,AC=a,则AD=-b,由向量减法的定义,知AE=a+(-b)=a-b.又b+BC=a,所以BC=a-b.由此,我们得到a-b的作图方法.B.三角形法则如上图,已知a、b,在平面内任取一点O,作OA=a,OB=b,则BA=a-b,即a-b可以表示为从b的终点指向a的终点的向量,这是向量减法的几何意义.讨论结果:①向量减法的定义.我们定义a-b=a+(-b),即减去一个向量相当于加上这个向量的相反向量.规定:零向量的相反向量是零向量.②向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.三、拓展创新,应用提高例1如下左图,已知向量a、b,求作向量a+b.活动:教师引导学生,让学生探究分别用向量加法的三角形法则和平行四边形法则作两个向量的和向量.在向量加法的作图中,学生体会作法中在平面内任取一点O 的依据——它体现了向量起点的任意性.在向量作图时,一般都需要进行向量的平移,用平行四边形法则作图时应强调向量的起点放在一起,而用三角形法则作图则要求首尾相连.解:作法一:在平面内任取一点O(上中图),作OA=a,AB=b,则OB=a+b.作法二:在平面内任取一点O(上右图),作OA=a,以OA、OB为邻边作OB=b.连接OC,则OC=a+b.例2长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如下图所示,一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h.(1)试用向量表示江水速度、船速以及船实际航行的速度(保留两个有效数字);(2)求船实际航行的速度的大小与方向(用与江水速度间的夹角表示,精确到度).OACB,活动:本例结合一个实际问题说明向量加法在实际生活中的应用.这样的问题在物理中已有涉及,这里是要学生能把它抽象为向量的加法运算,体会其中应解决的问题是向量模的大小及向量的方向(与某一方向所成角的大小).引导点拨学生正确理解题意,将实际问题反映在向量作图上,从而与初中学过的解直角三角形建立联系.解:如上右图所示,AD表示船速,AB表示水速,以AD、AB为邻边作则AC表示船实际航行的速度.(2)在Rt△ABC中,|AB|=2,|BC|=5,所以|AC|=|AB|?|BC|?因为tan∠CAB= 22ABCD,22?52?29≈5.4.29,由计算器得∠CAB=68°.2答:船实际航行速度的大小约为5.4km/h,方向与水的流速间的夹角为68°.点评:用向量法解决物理问题的步骤为:先用向量表示物理量,再进行向量运算,最后回扣物理问题,解决问题.例3如图(1)已知向量a、b、c、d,求作向量a-b,c-d.活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量.作法:如图(2),在平面内任取一点O,作OA=a,OB=b,OC=c,OD=d.则BA=a-b,DC=c-d.例4如图,ABCD中,AB=a,AD=b,你能用a、b表示向量AC、DB吗?活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.解:由向量加法的平行四边形法则,我们知道AC=a+b,同样,由向量的减法,知DB=AB-AD=a-b.四、小结1.先由学生回顾本节学习的数学知识:向量的加法定义,向量加法的三角形法则和平行四边形法则,向量加法满足交换律和结合律,几何作图,向量加法的实际应用.2.教师与学生一起总结本节学习的数学方法:特殊与一般,归纳与类比,数形结合,分类讨论,特别是通过知识迁移类比获得新知识的过程与方法.课堂作业1.下列等式中,正确的个数是()①a+b=b+a②a-b=b③0-a=-a④-(-a)=a⑤a+(-a)=0A.5B.4C.3D.2 2.如图,D、E、F分别是△ABC的边AB、BC、CA的中点,则AF-DB等于()A.FDB.FCC.FED.BE3.下列式子中不能化简为AD的是()A.(AB+CD)+BCB.(AD+MB)+(BC+CM)C.MB?AD?BMD.OC-OA+CD。

平面向量的线性运算教学设计

平面向量的线性运算教学设计

平面向量的线性运算【教学目标】1.理解平面向量的概念,理解两个向量相等的含义;2.掌握向量加法、减法的运算,并理解其几何意义;3.掌握向量数乘的运算及其几何意义,理解两向量共线的含义.【教学重点】1.了解向量的实际背景;2.掌握向量加法、减法的运算,并理解其几何意义;3.理解向量的几何表示.【教学难点】1.掌握向量加法、减法的运算,并理解其几何意义;2.掌握向量数乘的运算及其几何意义,理解两向量共线的含义.3.了解向量线性运算的性质及其几何意义.【高考动向】1.本节课是高考考查的重点和热点;2.考查的题型多为选择题、填空题;向量与三角函数、解析几何交汇命题时,则出现在解答题中,难度一般不大,属中低档题.【教学过程】一、近三年平面向量真题展示(5.3复习资料P82,略)二、知识讲解1. 平面向量的两种表示:①向量的几何表示:常用表示;②向量的字母表示:(1)印刷体;(2)手写体.2. 平面向量的概念:⃗⃗⃗⃗⃗ 的也就是向量的长度(或模).①向量的长度(模):向量AB⃗⃗⃗⃗⃗ |或|a⃗|.记作:|AB②两个特殊向量:(1)零向量:长度(模)为的向量,记作:0⃗;(2)单位向量:长度(模)为个单位的向量;(3)平行向量(又叫共线向量):方向或的非零向量,记作:a⃗//b⃗ //c⃗;(4)相等向量:长度且方向的向量,记作:a⃗=b⃗ =c⃗.规定:0⃗与任一向量平行.3. 【露他一小手儿】 例1. 下列说法中:① 相等向量一定是平行向量; ② 若AB ⃗⃗⃗⃗⃗ 是单位向量,则BA ⃗⃗⃗⃗⃗ 也是单位向量; ③ 向量的模是一个非负实数; ④ 共线向量一定在同一直线上. 其中正确的个数为( )A .0B .1C .2D .3 变1. 下列结论中,正确的是( ) A . 若a ⃗ =b ⃗ ,则a ⃗ ,b ⃗ 的长度相等,且方向相同或相反B . 若向量AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 满足|AB ⃗⃗⃗⃗⃗ |>|CD ⃗⃗⃗⃗⃗ |,且AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 同向,则AB ⃗⃗⃗⃗⃗ >CD ⃗⃗⃗⃗⃗C . 若a ⃗ =b ⃗ ,则a ⃗ //b ⃗D . 由于零向量的方向不定,故零向量不能与任一向量平行 变2. 下列说法正确的是( )A .若a ⃗ //b ⃗ ,b ⃗ //c ⃗ ,则a ⃗ //c ⃗B .向量a⃗ 与b ⃗ 平行,则a ⃗ 与b ⃗ 的方向相同或相反 C .向量AB⃗⃗⃗⃗⃗ 的长度与向量BA ⃗⃗⃗⃗⃗ 的长度相等 D .若四边形ABCD 是平行四边形,则AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 变3. 下列说法正确的是( ) A .平行向量不一定是共线向量B .两个有共同终点的向量,一定是共线向量C .共线向量都相等D .模为0的向量与任意一个向量平行 4.向量的两个法则 ①向量加法三角形法则口诀:尾首相连,由起点指向终点.AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =②向量加法平行四边形法则 口诀:起点相同,对角为和.OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗⃗ = ③向量减法三角形法则口诀:共起点,连终点,方向指向被减向量.OA⃗⃗⃗⃗⃗ -OB ⃗⃗⃗⃗⃗⃗ =A5.重要结论在∆ABC 中,若D 为BC 边的终点,则AD⃗⃗⃗⃗⃗⃗ = 6. 【露他一小手儿】例2.(2018全国卷Ⅰ)在∆ABC 中,AD 为中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( )A .34AB ⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗ B .34AB ⃗⃗⃗⃗ +14AC⃗⃗⃗⃗ C .14AB ⃗⃗⃗⃗ −34AC ⃗⃗⃗⃗ D .14AB ⃗⃗⃗⃗ +34AC⃗⃗⃗⃗ 变1. 在∆ABC 中,AB ⃗⃗⃗⃗⃗ =c ⃗ ,AC ⃗⃗⃗⃗⃗ =b ⃗ ,若点D 满足BD ⃗⃗⃗⃗⃗⃗ =2BC ⃗⃗⃗⃗⃗ ,则AD⃗⃗⃗⃗⃗⃗ =( ) A .23b ⃗ +13c B .53b ⃗ −23c C .23b ⃗ −13c D .13b ⃗ +23c 7.向量共线定理向量a ⃗ (a ⃗ ≠0⃗ )与b ⃗ 共线,当且仅当有唯一实数λ,使 .即a ⃗ 与b ⃗ 共线⇔ (a ⃗ ≠0⃗ ).8. 【露他一小手儿】例3.设a ⃗ 与b ⃗ 是两个不共线,且a ⃗ +λb ⃗ 与2a ⃗ −b ⃗ 共线,则λ= . 变1. 设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线向量,且3e 1⃗⃗⃗ +2e 2⃗⃗⃗ 与m e 1⃗⃗⃗ −e 2⃗⃗⃗ 共线,则m = . 9. 平面向量基本定理如果e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是同一平面内两个不共线的向量,那么对于这一平面内任一向量a⃗ ,有且只有一对实数λ1,λ2使 .其中,不共线的两个向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做一组 .10. 【露他一小手儿】例4.已知向量e 1⃗⃗⃗ ≠0⃗ ,e 2⃗⃗⃗ ≠0⃗ ,λ∈R ,a ⃗ =e 1⃗⃗⃗ +λe 2⃗⃗⃗ ,b ⃗ =2e 1⃗⃗⃗ ,若a ⃗ 与b ⃗ 共线,则下列关系一定成立的是( )A .e 1⃗⃗⃗ ∥e 2⃗⃗⃗B .e 2⃗⃗⃗ =0⃗C .λ=0D .e 1⃗⃗⃗ ∥e 2⃗⃗⃗ 或λ=0变1.已知向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 不共线,实数x ,y 满足(2x −3 y )e 1⃗⃗⃗ +(3x −4y )e 2⃗⃗⃗ =6e 1⃗⃗⃗ +3e 2⃗⃗⃗ ,则x = ,y= .ABCDABCD。

平面向量的线性运算教案

平面向量的线性运算教案

平面向量的线性运算教案教案标题:平面向量的线性运算教学目标:1. 理解平面向量的基本概念和性质。

2. 掌握平面向量的线性运算,包括向量的加法、减法、数乘和点乘。

3. 能够应用线性运算解决平面向量相关的问题。

教学重点:1. 平面向量的线性运算的定义和性质。

2. 向量的加法、减法、数乘和点乘的运算规则。

3. 运用线性运算解决平面向量的问题。

教学难点:1. 点乘的概念和应用。

2. 运用线性运算解决复杂的平面向量问题。

教学准备:1. 教师准备:教学课件、平面向量的示意图、习题集。

2. 学生准备:纸笔、计算器。

教学过程:一、导入(5分钟)1. 引入平面向量的概念和基本性质,与学生进行互动讨论,激发学生的学习兴趣。

2. 回顾向量的表示方法和坐标表示,确保学生对向量的基本概念有清晰的理解。

二、讲解平面向量的线性运算(15分钟)1. 向量的加法和减法:介绍向量的加法和减法的定义和运算规则,并通过示意图进行解释和演示。

2. 向量的数乘:介绍向量的数乘的定义和运算规则,并通过示意图进行解释和演示。

3. 向量的点乘:介绍向量的点乘的定义和运算规则,并通过示意图进行解释和演示。

三、练习与讨论(20分钟)1. 给出一些简单的练习题,让学生进行个别或小组练习。

2. 针对学生的问题和困惑进行解答和讲解,引导学生理解和掌握平面向量的线性运算。

四、拓展应用(15分钟)1. 给出一些实际问题,引导学生运用平面向量的线性运算解决问题。

2. 分组讨论和展示解题过程和结果,促进学生的思维发散和创新。

五、归纳总结(5分钟)1. 对平面向量的线性运算进行总结和归纳,强化学生对知识点的理解和记忆。

2. 指导学生将所学知识进行整理和梳理,形成学习笔记或思维导图。

六、作业布置(5分钟)1. 布置适量的练习题,巩固学生对平面向量的线性运算的掌握。

2. 鼓励学生自主学习,拓展相关知识,提高问题解决能力。

教学反思:在教学过程中,要注重理论与实践的结合,通过示意图和实际问题的引导,帮助学生理解和应用平面向量的线性运算。

平面向量的线性运算教案

平面向量的线性运算教案

平面向量的线性运算教案本教案将介绍平面向量的线性运算,内容包括平面向量的加法、减法、数量乘法等运算规则和性质。

通过本教案的学习,学生将能够正确运用线性运算来解决与平面向量相关的问题。

一、引入平面向量是向量的一种特殊形式,具有大小和方向。

平面向量可以用一个有序数对表示,也可以用箭头表示。

我们用向量的加法、减法和数量乘法来进行平面向量的线性运算。

二、平面向量的加法平面向量的加法满足以下运算规则:1. 两个向量的加法满足交换律,即A + A = A + A。

2. 三个向量的加法满足结合律,即(A + A) + A = A + (A + A)。

3. 对于任意向量A,存在一个零向量A,使得A + A = A。

三、平面向量的减法平面向量的减法可以看作是加法的逆运算。

如果要计算A - A,可以先将A取负,即-A,然后进行加法运算。

即A - A = A + (-A)。

四、平面向量的数量乘法平面向量的数量乘法是指将一个向量与一个实数相乘,结果仍然是一个向量。

数量乘法满足以下运算规则:1. 数量乘法满足分配律,即A(A + A) = AA + AA,(A + A)A = AA+ AA,其中A、A为实数。

2. 数量乘法满足结合律,即(AA)A = A(AA),其中A、A为实数。

3. 数量乘法与向量加法满足交换律,即A(A + A) = AA + AA,(A +A)A = AA + AA。

五、平面向量的应用平面向量的线性运算在几何、物理等学科中有着广泛的应用。

例如,在几何中,可以通过平面向量的减法来计算两点之间的距离和方向;在物理中,可以利用平面向量的数量乘法来计算力的合成和分解等。

六、实例演练为了帮助学生更好地理解平面向量的线性运算,以下是一些实例演练:1. 已知向量A = (2, 3)、A = (-1, 4),求向量A = 2A - 3A。

2. 已知向量A = (6, -2)、A = (1, -3),求向量A,使得3A + A = 2A。

人教A版高中数学 《平面向量的线性运算》教案

人教A版高中数学 《平面向量的线性运算》教案

课题: 2.2.1向量加法及其几何意义教学目的:⑴掌握向量加法的定义⑵会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量⑶掌握向量加法的交换律和结合律,并会用它们进行向量计算教学重点:用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.教学难点:向量的加法和减法的定义的理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.向量的概念:我们把既有大小又有方向的量叫向量2.向量的表示方法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:AB;④向量AB的大小――长度称为向量的模,记作|AB|.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作的方向是任意的②长度为1个单位长度的向量,叫单位向量.零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a、b、c平行,记作a∥b∥c.5.相等向量定义:长度相等且方向相同的向量叫相等向量.(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起.......点无关....6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.7.对向量概念的理解AB的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度;既有大小又有方向的量,我们叫做向量,有二个要素:大小、方向.向量不能比较大小;实数与向量不能相加减,但实数与向量可以相乘.向量与有向线段的区别:向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段 二、讲解新课:1. 向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的如图,已知向量a 、b 在平面内任取一点A ,作AB a =,BC b =,则向量AC 叫做a 与b 的和,记作a b +,即 a b AB BC AC +=+=(1)BB特殊情况:abba +ba +AABC C)2()3(对于零向量与任一向量a ,有 00a a a +=+= 探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加.2.向量加法的交换律:a +b =b +a3.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使AB a =, BC b =, CD c = 则(a +b ) +c =AC CD AD +=a + (b +c ) =AB BD AD +=∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行三、讲解范例:例 长江两岸之间没有大桥的地方,常常通过轮渡进行运输,如图,一艘船从长江南岸A 点出发,以5km/h 的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h 。

高中数学2.2平面向量的线性运算教案2人教版必修4.doc

高中数学2.2平面向量的线性运算教案2人教版必修4.doc

平面向量的基本概念与线性运算(一)【教学目标】1.了解平面向量的实际背景。

2. 理解平面向量的概念及向量相等的含义。

3.理解向量的几何表示。

4. 掌握向量加法,加法的运算,并理解其几何意义。

【教学重难点】1.理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。

2.掌握平行向量、相等向量和共线向量的区别和联系。

3.掌握向量加法的三角形法则和平行四边形法则。

4.掌握向量减法的三角形法则。

【课前预习】基本知识点:(1) 既有又有的量叫做向量,向量可以用来表示.(2) 向量 AB 的大小,也就是向量AB的(或称) ,记作 AB(3) 长度向量叫做零向量,记作0 ;长度为_ 的向量叫做单位向量.(4) 方向或的两个向量叫做平行向量,也叫做.规定: 0 与平行.(5) 长度且方向的向量叫做相等向量;与 a 长度且方向的向量叫做相反向量.规定: 0 的相反向量是.(6)向量的加法和减法:如图所示,已知在中设 AB a, AD b , 则a b , a b(7) 向量的分解:已知向量 AB ,O为平面内任意一点,则AB AO OB;AB OB OA。

基本练习:1. (必修 4 课本 57 页)下列结论中正确的是________( 1)若两个向量相等,则它们的起点和终点分别重合;( 2)模相等的两个平行向量是相等的向量;( 3)若a和b都是单位向量,则 a = b ;(4)两个相等向量的模相等。

2.(必修 4 课本 57 页)设 O是正三角形 ABC的中心,则向量AO BO CO是 _________向量(相等,共线,模相等,共起点)3. (必修 4 课本 57 页)判断题:1)长度相等的向量是相等向量。

() 2 3)平行于同一个非零向量的两个向量是共线向量。

)相等向量是共线向量。

()( )建邺高中高三数学讲学稿(一轮复习)平面向量4. 在ABCD 中,BC CD BA5. 在△ABC中,AB c,AC b .若点D满足BD 2DC ,则 AD ________【典型例题】 B A例 1.如图,设 O是正六边形的中心,分别写出图中与DAC O F的模相等的向量以及方向相同的向量。

高三数学《平面向量的概念及线性运算》教案

高三数学《平面向量的概念及线性运算》教案

课题第1讲平面向量的概念及线性运算(一)教学目标知识与技能1.了解向量的实际背景.理解平面向量的概念,理解两个向量相等的含义.2. 理解向量的几何表示.3.掌握向量加法、减法的运算,并理解其几何意义.4.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.5.了解向量线性运算的性质及其几何意义.过程与方法情感态度价值观教学重点与难点教学过程集体备课个性设计(手写补充)一、考纲要求:1.了解向量的实际背景.理解平面向量的概念,理解两个向量相等的含义.2.理解向量的几何表示.3.掌握向量加法、减法的运算,并理解其几何意义.4.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.5.了解向量线性运算的性质及其几何意义.二、知识梳理:1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a 的积的运算|λ a |=|λ||a |,当λ>0时,λa 与a 的方向相同; 当λ<0时,λa 与 a 的方向相反;当λ=0时,λ a =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μ_a ; λ(a +b )=λa +λb3.向量共线定理向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa . 三、双基练习:1.教材习题改编 下列结论正确的是( )A .若|a |=0,则a =0B .若a ,b 是两个单位向量,则a =bC .若a =b ,b =c ,则a =cD .若AB =AC ,则AB →=AC →2.如图所示,D 是△ABC 的边AB 的中点,则向量CD →=( )A .-BC →+12BA →B .-BC →+12AB →C .BC →-12BA →D ..BC →+12BA →3.(2017·东北三省四市联考)在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形4.已知平面内四点A ,B ,C ,D ,若AD →=2DB →,CD →=13CA →+λCB →,则λ的值为________.5. 已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________(用a ,b 表示). 四、[典例]考点一 平面向量的有关概念 例1给出下列命题:①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反;③向量AB →与向量CD →共线,则A 、B 、C 、D 四点共线; ④如果a ∥b ,b ∥c ,那么a ∥c . 其中正确命题的个数为( ) A .1 B .2 C .3 D .0 变式训练1给出下列命题:①两个具有公共终点的向量一定是共线向量;②两个向量不能比较大小,但它们的模能比较大小; ③若λa =0(λ为实数),则λ必为零;④若λa =μb (λ,μ为实数),则a 与b 共线. 其中错误命题的个数为( )A .1B .2C .3D .4 考点二 平面向量的线性运算例1.(1)(2015·高考全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →。

人教版高中必修42.2平面向量的线性运算教学设计

人教版高中必修42.2平面向量的线性运算教学设计

人教版高中必修42.2平面向量的线性运算教学设计
一、教学目标
1.知识目标
•熟悉平面向量的概念和性质
•掌握平面向量的线性运算方法,了解向量的数量积和向量积的概念和性质
2.能力目标
•能够应用平面向量的线性运算方法解决几何问题
•能够通过向量的数量积和数量积的计算对平面上的向量进行分类
3.情感态度目标
•培养学生的独立思考和解决问题的能力
•激发学生对数学的兴趣和热爱,培养优秀的数学思维和学习方法
二、教学重点和难点
1.教学重点
•平面向量的线性运算方法和相关概念的掌握
•根据向量的线性运算方法解决几何问题
2.教学难点
•向量的数量积和向量积的概念和性质的理解
•向量的数量积和向量积的应用
1。

北师大版高中必修44.2平面向量线性运算的坐标表示课程设计

北师大版高中必修44.2平面向量线性运算的坐标表示课程设计

北师大版高中必修44.2平面向量线性运算的坐标表示课程设计一、课程设计背景本课程设计是为了加深学生对平面向量的理解,通过线性运算的坐标表示,让学生加深对平面向量线性运算的认识,提高学生的计算能力。

二、教学目标1.了解平面向量的线性运算。

2.掌握平面向量线性运算的坐标表示方法。

3.能够计算平面向量的线性运算。

4.发展学生的逻辑思维能力和解决问题的能力。

三、教学内容1.平面向量的线性运算。

2.平面向量线性运算的坐标表示方法。

3.平面向量线性运算的计算方法。

4.例题分析与解答。

四、教学重难点1.教学重点:平面向量线性运算的坐标表示方法。

2.教学难点:平面向量线性运算的计算方法。

五、教学方法1.课堂讲授法:老师通过课件等方式详细讲解平面向量线性运算的坐标表示方法和计算方法。

2.互动式教学法:老师提出问题,让学生思考并发表自己的言论,促进学生思维的发展和思路的扩散。

3.小组活动法:老师组织学生分成多组,让学生在小组内自行完成练习,然后进行展示和讨论。

六、教学过程设计1. 导入环节介绍平面向量的概念和平面向量的坐标表示方法,让学生对平面向量有一个初步的认识。

2. 分组活动将学生分为多个小组,每组进行平面向量的线性运算练习,例如: $\\vec a+\\vec b$、$\\vec a -\\vec b$等。

3. 教师讲解讲解平面向量线性运算的坐标表示方法和计算方法。

4. 练习让学生自行完成一定的练习,检验学生的学习效果。

5. 总结与评价让学生自行总结本次课堂的重点和难点,并进行评价。

七、教学评估1.手工计算法。

2.计算机程序执行法。

八、优化策略本次教学主要应以提高学生的计算能力和逻辑思维能力为目标,应优化以小组互动为主的教学内容,让学生在小组内自行完成练习,并由老师进行指导,提高学生的参与度和学习效果。

九、教学反思本次课程设计重点突出了平面向量线性运算的坐标表示方法和计算方法,但在教学过程中,发现学生在计算过程中常常出现偷懒的情况,需要进一步加强对学生的管理和督促,提高学生的学习积极性和参与度。

北师大版高中必修44.2平面向量线性运算的坐标表示教学设计

北师大版高中必修44.2平面向量线性运算的坐标表示教学设计

北师大版高中必修44.2平面向量线性运算的坐标表示教学设计一、教学目标1.理解平面向量的定义与基本性质;2.掌握平面向量的坐标表示;3.掌握平面向量的线性运算,包括向量加法、数乘和内积;4.理解向量的投影与余弦定理;5.能够解决与平面向量有关的实际问题。

二、教学重点1.平面向量的坐标表示;2.向量的线性运算。

三、教学难点1.向量的内积;2.向量的投影。

四、教学过程1. 导入(5分钟)教师通过引入向量的概念,引导学生思考什么是向量,向量在生活中的应用。

2. 讲解(40分钟)(1)平面向量的坐标表示:教师首先介绍平面直角坐标系,引出向量的坐标表示。

然后,教师演示如何求两个向量的和、差、数量积和夹角余弦值,以及如何判断两个向量是否垂直或平行。

在解释示例问题时,强调向量坐标与长度的关系。

(2)向量的线性运算:教师先介绍向量加法和减法的概念,然后演示向量加法、减法、数乘的运算法则,并给出具体的例题进行分析。

最后,教师介绍向量的模长、投影及余弦定理的概念和求解方法。

3. 练习(30分钟)教师发放练习册,让学生在课堂上完成其中的练习题。

教师在这个过程中时刻观察学生的情况,并在学生答完题后进行解答和点评。

4. 拓展(25分钟)教师在此环节引入向量的实际问题应用,并给学生以实际问题进行讨论和解答。

这个过程中,教师要引导学生分析问题和思考解决问题的方法,让学生在运用向量处理实际问题的过程中,感受到向量运算的魅力,同时加深对向量的理解和运用。

五、教学方法1.几何演示法;2.演算法;3.问题导入法;4.讨论法;5.设计实践法。

六、板书设计板书设计七、教学评价教学评价主要从学生的学习效果、学生的课堂表现、教学反思等方面进行。

其中,学生的学习效果可以通过给学生进行评测来得出,学生的课堂表现可以通过教师对学生的互动、表现、回答问题等进行评价,教学反思可以通过课后对教学过程及效果进行分析和反思来完成。

八、教学反思1.在花费足够时间帮助学生理解坐标表示之后,可以让学生通过模拟实际问题,让学生体验一下向量的坐标表示的实际应用。

平面向量线性运算教案

平面向量线性运算教案

向量的加法;向量的减法;向量的数乘.教学目标通过经历向量加法的探究,掌握向量加法概念,结合物理学实际理解向量加法的意义。

能熟练地掌握向量加法的平行四边形法则和三角形法则, 并能作出已知两向量的和向量。

通 过探究活动,掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反 向量。

教学重点向量的加减法的运算。

〔 _____________ !教学难点教学过程」、导入高考对本内容的考查主要以选择题或者是填空题的形式来出题, 一般难度不大,属于简单题二、知识讲解I 考)向量加量加三法形法则在定义中所给出的求象量和的方法就是向量加法的三角形法则。

运用这一法则时 要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点, 则由第 一个向量的起点指向第二个向量的终点的向量即为和向量。

0位移的合成可以看 作向量加法三角形法则的物理模型。

知识点 向量的加减法的几何意义 。

【知识导图】(2)平行四边形法则以同一点O 为起点的两个已知向量 A.B 为邻边作平行四边形,则以O 为起点的 对角线OC 就是a 与b 的和。

我们把这种作两个向量和的方法叫做向量加法的平 行四边形法则。

由于方向反转两次仍法法原来的方向,因此 a 和-:互为相反向量 于是 -(-a) =a 。

我们规定,零向量的相反向量仍是零向量特别地,我们有(- ’)a =’ a) = 1 (-a) , ' (a ~b)二 1 a - 1 b 。

向量共线的等价条件是:如果1(1 - 0)与b 共线,那么有且只有一个实数•,使二、例题精析类型一 平面向量的坐标表示 例题1已知边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标和 uuiv uuuv AB 与AD 的坐标.任一向量与其相反向量的和是零向量,即■I T所以,如果a,b 是互为相反的向量,那么考点3实数与向量的积的运算律 设'为实数,那么■I 峙(1) ' (%) =Cja;⑵('"' L )a 八 a "a;a (-a) = (-a) a = 0。

【精品】高中数学必修3《2.2平面向量的线性运算公开课优质教学设计教案

【精品】高中数学必修3《2.2平面向量的线性运算公开课优质教学设计教案

2.2 平面向量的线性运算[教学目标]一、知识与能力:1.掌握向量的加法的定义,会用向量加法的三角形法则和向量加法的平行四边形法则作两个向量的和向量;2.能准确表述向量加法的交换律和结合律,并能熟练运用它们进行计算;3.掌握向量减法的概念,能准确做出两个向量的差向量,理解向量的减法运算可以转化为向量的加法运算。

4.理解实数与向量的积和它的几何意义;5.理解实数与向量的积的三条运算律,并会运用它们进行计算;6.理解一个向量与非零向量共线的充要条件;会表示与非零向量共线的向量,能判断两个向量是否共线二、过程与方法:1.经历向量加法三角形法则和平行四边形法则的归纳过程;2.体会数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.[教学重点]向量加法、减法定义的理解;实数与向量的积的定义、运算律,向量共线的充要条件.[教学难点]向量加法、减法的意义;向量共线的充要条件.[教学时数]2课时。

[教学过程]第一课时一、新课导入1.物理学中,两次位移,OA AB的结果与位移OB是相同的。

2.物理学中,作用于物体同一点的两个不共线的合力如何求得?3.引入:两个向量的合成可用“平行四边形法则”和“三角形法则”求出,本节将研究向量的加法。

二、向量的加法1.已知向量a,b,在平面内任取一点A,作AB=a,BC=b,则向量AC叫做a与b 的和,记作a+b,即a+b=AB BC AC+=求两个向量和的运算,叫做向量的加法.这种求作两个向量的方法叫做三角形法则,简记“首尾相连,首是首,尾是尾”。

以同一点O为起点的两个已知向量a,b为邻边作OABC,则以O为起点的对角线OC就是a与b的和。

我们把这种作两个向量和的方法叫做向量加法的平行四边形法则。

对于零向量与任一向量a,规定a+0=0+a=a例1 已知向量a,b,用两种方法求作向量a+b。

作法一:在平面内任取一点O,作OA=a,AB=b,则OB=a+b.作法二:在平面内任取一点O,做OA=a,OB=b,以OA、OB为邻边作OBCA,则OC=a+b。

《平面向量的线性运算》说课稿新人教A版

《平面向量的线性运算》说课稿新人教A版

《平面向量的线性运算》说课稿(新人教A版必修4)《向量的加法》说课稿一、教材分析:《向量的加法》是《必修》4第二章第二单元中"平面向量的线性运算"的第一节课。

本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。

向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。

所以本课在"平面向量"及"空间向量"中有很重要的地位。

二、学情分析:学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。

学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

三、教学目的:1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。

能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。

掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

四、教学重、难点重点:向量的加法法则。

探究向量的加法法则并正确应用是本课的重点。

两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。

难点:对三角形法则的理解;方向相反的两个向量的加法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平面向量的线性运算》复习教学设计
高中数学北师大版
西安交通大学第二附属中学
刘正伟
§5.1平面向量的线性运算
【教学目标】
知识与能力;过程与方法;情感、态度、价值观;
1.掌握向量加法,减法的运算,并理解其几何意义;
2.掌握向量数乘向量的运算及其几何意义,理解向量共线的充要条件;
了解向量共线的含义,理解向量共线判定和性质定理。

【教学重点、难点】
重点:理解并掌握向量的线性运算及向量共线的充要条件;
难点:向量的线性运算及向量共线的充要条件的应用。

【教具准备】
多媒体课件
【教学方法】
启发引导式;讲练结合
【教学设计】
(一).复习导入
问题:前面我们已经复习了的向量的有关概念,知道了向量是既有大小又有方向的量,物理中既有大小又有方向的量?
学生:速度,加速度,位移,力
力可以合成也可以分解,那么向量怎么运算
那么我们今天一起回顾向量的线性运算——板书课题
(二)知识要点
1.向量的线性运算
a 是一个非零向量,若存在一个实数λ.,使得
b =λa ,则向量b 与非零向量a 共线.
3.【知识拓展】
1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n ——→=A 1A n →
,特别地,一个封闭图形,首尾连接而成的向量和为零向量.
2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →
).
3.OA →=λOB →+μOC →
(λ,μ为实数),点A ,B ,C 共线 λ+μ=1.
题型一 平面向量的线性运算 命题点1 向量的线性运算
例2 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →
等于( ) A.23b +13
c B.53c -23
b
C.23b -13c
D.13b +23
c (2)(2015·课标全国Ⅰ)设D 为△ABC 所在平面内一点,若BC →=3CD →
,则( ) A.AD →
=-13AB →+43AC →
B.AD →=13AB →-43AC →
C.AD →=43AB →+13AC →
D.AD →=43AB →-13
AC →
答案 (1)A (2)A
解析 (1)∵BD →=2DC →,∴AD →-AB →=BD →=2DC → =2(AC →-AD →), ∴3AD →=2AC →+A B →, ∴AD →=23AC →+13AB →=2
3b +13
c .
(2)∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →
=-13AB →+43AC →.
题型二
根据向量线性运算求参数
例2 (1)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC

(λ1、λ2为实数),则λ1+λ2的值为________.
(2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →
,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →
,则x 的取值范围是( )
A.⎝ ⎛⎭⎪⎫0,12
B.⎝ ⎛⎭⎪⎫0,13
C.⎝ ⎛⎭
⎪⎫-12,0 D.⎝ ⎛⎭
⎪⎫-13,0 答案 (1)1
2
(2)D
解析 (1)DE →=DB →+BE →=12AB →+23
BC →
=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.
(2)设CO →=yBC →
, ∵AO →=AC →+CO →
=AC →+yBC →=AC →+y (AC →-AB →) =-yAB →+(1+y )AC →.
∵BC →=3CD →
,点O 在线段CD 上(与点C ,D 不重合),
∴y ∈⎝ ⎛⎭
⎪⎫0,13, ∵AO →=xAB →+(1-x )AC →,
∴x =-y ,∴x ∈⎝ ⎛⎭
⎪⎫-13,0. 思维升华 平面向量线性运算问题的常见类型及解题策略
(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.
(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.
(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较求参数的值.
如图,一直线EF 与平行四边形ABCD
的两边AB ,AD 分别交于E ,F 两点,且交对角线AC 于点K ,其中,AE →=25AB →,AF →=12AD →

AK →
=λAC →
,则λ的值为( )
A.29
B.27
C.25
D.2
3 答案 A
解析 ∵AE →=25AB →,AF →=12
AD →,
∴AB →=52
AE →,AD →=2AF →.
由向量加法的平行四边形法则可知, AC →
=AB →+AD →

∴AK →=λAC →=λ(AB →+AD →)
=λ⎝ ⎛⎭
⎪⎫52AE →+2AF → =52
λAE →+2λAF →, 由E ,F ,K 三点共线,可得λ=2
9,
故选A.
思想方法 感悟提高
1.向量的线性运算要满足三角形法则和平行四边形法则,做题时,要注意三角形法则
与平行四边形法则的要素.向量加法的三角形法则要素是“首尾相接,指向终点”;
向量减法的三角形法则要素是“起点重合,指向被减向量”;平行四边形法则要素
是“起点重合”.
2.可以运用向量共线证明线段平行或三点共线.如AB →∥CD →且AB 与CD 不共线,则AB ∥CD ;若AB →∥BC →
,则A 、B 、C 三点共线
作业布置 练出高分
1.步步高P241-242
2.预习平面向量基本定理及坐标表示
课后反思
本节课按课前预设完成了教学任务,但教学理念陈旧,课堂上没有充分发挥学生的主动性和积极性,教师不能大胆放手让学生去探索,造成了课堂上教师讲的多。

今后首先转变教学理念,放手让学生来探索,设计多样的课堂活动调动学生的积极性,从而才能使自己进步。

欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料
等等
打造全网一站式需求。

相关文档
最新文档