指数函数对数函数幂函数的图像与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数、对数函数、幂函数的图像与性质
(一)指数与指数函数
1.根式 (1)根式的概念
(2).两个重要公式
①⎪⎩
⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a a
a n
n
;
②a a n
n =)((注意a 必须使n a 有意义)。
2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)m n
a
a m n N n *=>∈>、且;
②正数的负分数指数幂: 10,,1)m n
m n
a
a m n N n a
-
*=
=
>∈>、且
③0的正分数指数幂等于0,0的负分数指数幂没有意义、
注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );、 3.指数函数的图象与性质 n 为奇数 n 为偶数
图象
定义域 R 值域 (0,+∞) 性质
(1)过定点(0,1) (2)当x>0时,y>1; x<0时,0 (2) 当x>0时,0 (3)在(-∞,+∞)上就是增函数 (3)在(-∞,+∞)上就是减函数 注:如图所示,就是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系? 提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。即无论在轴的左侧还就是右侧,底数按逆时针方向变大。 (二)对数与对数函数 1、对数的概念 (1)对数的定义 如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。 (2)对数形式 特点 记法 一般对数 底数为a 0,1a a >≠且 log N a 常用对数 底数为10 lg N 自然对数 底数为e ln N 2(1)对数的性质(0,1a a >≠且):①1log 0a =,②log 1a a =,③log N a a N =,④log N a a N =。 (2)对数的重要公式: ①换底公式:log log (,1,0)log N N a b b a a b N =>均为大于零且不等于; ②1 log log b a a b = 。 (3)对数的运算法则: 如果0,1a a >≠且,0,0M N >>那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③)(log log R n M n M a n a ∈=; ④b m n b a n a m log log = 。 3、对数函数的图象与性质 图象 1a > 01a << 性 质 (1)定义域:(0,+∞) (2)值域:R (3)当x=1时,y=0即过定点(1,0) (4)当01x <<时,(,0)y ∈-∞; 当1x >时,(0,)y ∈+∞ (4)当1x >时,(,0)y ∈-∞; 当01x <<时,(0,)y ∈+∞ (5)在(0,+∞)上为增函数 (5)在(0,+∞)上为减函数 注:确定图中各函数的底数a,b,c,d 与1的大小关系 提示:作一直线y=1,该直线与四个函数图象交点的横坐标即为它们相应的底数。 ∴0 指数函数y=a x 与对数函数y=log a x 互为反函数,它们的图象关于直线y=x 对称。 (三)幂函数 1、幂函数的定义 形如y=x α (a ∈R)的函数称为幂函数,其中x 就是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 2、幂函数的图象 注:在上图第一象限中如何确定y=x 3,y=x 2,y=x,12 y x =,y=x -1方法:可画出x=x 0; 当x 0>1时,按交点的高低,从高到低依次为y=x 3,y=x 2, y=x,12 y x =, y=x -1; 当0 y x = ,y=x, y=x 2,y=x 3 。 y=x y=x 2 y=x 3 12 y x = y=x -1 定义域 R R R [0,+∞) {}|0x x R x ∈≠且 值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 x ∈[0,+∞)时,增; x ∈(,0]-∞时,减 增 增 x ∈(0,+∞)时,减; x ∈(-∞,0)时,减 定点 (1,1) 知识点1:指数幂的化简与求值 例1、(2007育才A) (1)计算:25 .021 21 3 2 5 .032 0625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;