回转窑用煤粉燃烧器操作参数选用和优化

合集下载

回转窑内燃料的燃烧解读

回转窑内燃料的燃烧解读

影响黑火头长度的因素有:
煤粉的组成与细度、一次空气的温度和流速、二次风量与 风温等。
煤粉愈细,煤粉中挥发分的含量越高,提高一次风温, 增加一次空气的比例,都会使黑火头缩短。
在窑的操作中,应形成适合烧成需要的好火焰,即高温 部分较长,黑火头较短,火焰平稳。
燃 烧 器
5、煤粉燃烧器(喷嘴)—喷煤管
第二章
第五节
回转窑
回转窑内燃料的燃烧
回转窑可以采用气体、液体和粉状固体染料。 煅烧粘土、高铝熟料和水泥熟料多采用粉状固体燃料—煤粉。 煅烧镁石、白云石熟料,由于要求的煅烧温度高,多采用天然气、重油 和液化石油气等高热值的燃料。 不同的燃料燃烧具有各自不同的特点。 一、回转窑用煤的质量要求:
窑型 湿法窑 干法窑 干燥基灰分(%) 干燥基挥发分(%) 干燥基低位热值(kj/kg) <28 <25 18~30 18~30 >21000 >23000
这种喷煤管,内、外两个通道为净风道,分别称内风和外风。 内风通道的出口端装有旋流叶片,所以又 称为旋流风。 中间通道为输送煤粉的通道,称为煤风。
三股风在出口处汇合形成了同轴旋转的复杂射流。操作时 通过改变内、外风速和风量的比例,可以灵活调节火焰形状和 燃烧强度,以满足窑内煅烧熟料温度分布的要求。
当旋风强度大,火焰变得粗而短,高温带会相对更集 中。反之,火焰会被拉长。

例:在下述条件下,计算喷煤管的直径d。
G=300吨/日=12500kg/h; =0.2 kg煤/kg熟料;
3 Va =7.8 N m / kg 煤;

P=20%
【解】v=60m/s
V1

Va GP 3600 100


7.8 0.20 12500 20 = 3600 100

5 回转窑火焰的调节

5 回转窑火焰的调节

5 回转窑火焰的调节目前国内预分解窑大多采用三风道或四风道燃烧器,而火焰形状则是通过内流风和外流风的合理匹配来进行调整的。

由于预分解窑人窑生料CaC03分解率已高达90%左右,所以一般外流风风速应适当提高,这样可以控制烧成带稍长一点,以利于高硅酸率料子的预烧和细小均齐熟料颗粒的形成。

如需缩短火焰使高温带集中一些或煤质较差,燃烧速度较慢时,则可以适当加大内流风,减少外流风;如果煤质较好或窑皮太薄,窑简体表面温度偏高,需要拉长火焰,则应加大外流风,减少内流风。

但是外流风风量过大时容易造成火焰太长,产生过长的浮窑皮,容易结后圈,窑尾温度也会超高;内流风风量过大,容易造成火焰粗短、发散,不仅窑皮易被烧蚀,顶火逼烧还容易产生熟料结粒粗大并出现黄心熟料。

目前国内大中型预分解窑生产线大多设有中央控制室。

操作员在中控室操作时主要观察彩色的CRT上显示带有当前生产工况数据的模拟流程图。

但火焰颜色,实际烧成温度、窑内结圈和窑皮等情况在电视屏幕上一般看不清楚,所以最好还应该经常到窑头进行现场观察。

在实际操作中,假如发现烧成带物料发粘,带起高度比较高,物料翻滚不灵活,有时出现饼状物料,这说明窑内温度太高了。

这时应适当减少窑头用煤量,同时适当减少内流风,加大外流风使火焰伸长,缓解窑内太高的温度。

若发现窑内物料带起高度很低并顺着耐火砖表面滑落,物料发散没有粘性,颗粒细小,熟料fCaO高,则说明烧成带温度过低,应加大窑头用煤量,同时加大内流风,相应减少外流风,使火焰缩短,烧成带相对集中,提高烧成带温度,使熟料结粒趋于正常。

假如发现烧成带窑简体局部温度过高或窑皮大量脱落,则说明烧成温度不稳定,火焰形状不好,火焰发散冲刷窑皮及火砖。

这时应减少甚至关闭内流风,减少窑头用煤量,加大外流风,使火焰伸长或者移动喷煤管,改变火点位置,重新补挂窑皮,使烧成状况恢复正常。

总之,窑内火焰温度、火焰形状要勤观察勤调整,以满足实际生产的需要。

6 篦式冷却机的操作和调整篦式冷却机的操作目标是要提高其冷却效率,降低出冷却机的熟料温度,提高热回收效率和延长篦板的使用寿命。

煤粉燃烧器的燃烧特性分析及优化

煤粉燃烧器的燃烧特性分析及优化

煤粉燃烧器的燃烧特性分析及优化一、引言煤炭是目前全球能源结构中使用最广泛的一种化石燃料。

作为一种高碳含量的燃料,煤炭的燃烧过程不仅会排放大量的二氧化碳等温室气体,还会产生一系列的氮氧化物、硫化物和颗粒物等污染物。

因此,对煤炭的燃烧过程进行研究和优化,对改善大气环境质量、提高能源利用效率具有重要意义。

二、煤粉燃烧器的工作原理煤粉燃烧器是一种用于将煤粉喷入燃烧设备中进行燃烧的装置。

它由供煤系统、风送系统、燃烧系统和废气排放系统等组成。

煤粉燃烧器的工作原理是将煤粉与空气混合后形成可燃混合物,并在高温条件下使其燃烧。

燃烧过程产生的热能被传递给传热介质(如锅炉水),最终转化为蒸汽或热水供给用户。

三、煤粉燃烧器的燃烧特性1. 热传导性能:煤炭的燃烧过程中,热量需要通过煤粉颗粒内部的热传导才能向外传递。

因此,煤粉的热传导性能直接影响燃烧器的效率和燃烧特性。

通常情况下,热传导性能较好的煤粉能够更充分地释放燃烧热量,提高燃烧效率。

2. 可燃性:煤炭的可燃性是指其在一定温度和氧气条件下燃烧所需的最低点火能量。

可燃性较好的煤炭可以更容易地点燃,燃烧稳定性更高。

通过调整煤粉的粒度、挥发分含量以及煤粉和空气的混合比例等方式,可以优化煤粉的可燃性。

3. 燃烧速率:煤粉在燃烧器中的燃烧速率直接影响燃烧器的热功率输出和燃烧效率。

较高的燃烧速率可以提高燃烧器的工作效率,减少煤粉的燃烧时间,提高燃烧器的热能利用率。

四、煤粉燃烧器燃烧特性的优化方法1. 优化煤粉的粒度分布:通过调整煤粉的粒度分布,可以实现煤粉在燃烧过程中更充分地释放燃烧热量。

一般来说,粉煤的细度越高,燃烧速度越快,燃烧效率越高。

因此,通过合理选择磨煤机的工作参数以及采取适当的分类器来控制煤粉的粒度,可以优化煤粉的燃烧特性。

2. 调整煤粉的挥发分含量:煤炭的挥发分含量对煤粉的燃烧特性有着重要影响。

挥发分含量较高的煤粉可以更容易地点燃,燃烧稳定性更好。

因此,在煤炭的选择和准备过程中,可以通过合理调整煤粉的挥发分含量,来优化煤粉的燃烧特性。

煤粉燃烧机技术参数

煤粉燃烧机技术参数

煤粉燃烧机技术参数煤粉燃烧机是一种常见的燃烧设备,广泛应用于发电、钢铁、化工等行业。

在选择和使用煤粉燃烧机时,了解其技术参数是非常重要的。

下面将详细介绍煤粉燃烧机的一些关键技术参数。

1. 燃烧机热效率煤粉燃烧机的热效率是衡量其能源利用率的重要指标。

热效率越高,说明燃烧过程中能够更有效地转化燃料的化学能为热能。

煤粉燃烧机的热效率一般在75%到90%之间,高效的燃烧机能够达到甚至超过90%的热效率。

2. 燃烧机燃料适应性煤粉燃烧机的燃料适应性是指其能够适应的燃料种类和燃烧特性。

煤粉燃烧机通常可以适应多种煤种,如无烟煤、烟煤、褐煤等。

同时,一些高级煤粉燃烧机还能够适应燃烧其他固体燃料,如生物质颗粒等。

3. 燃烧机燃烧方式煤粉燃烧机的燃烧方式通常有两种:喷射燃烧和流化床燃烧。

喷射燃烧是指将煤粉喷入燃烧室,与空气混合后燃烧。

流化床燃烧则是将煤粉与一定量的石英砂等颗粒物料一起投入燃烧器中,在高速气流的作用下形成流化床,使燃烧更加均匀充分。

4. 燃烧机燃烧稳定性煤粉燃烧机的燃烧稳定性是指其在不同负荷运行时燃烧的稳定程度。

燃烧稳定性好的煤粉燃烧机可以保证燃烧的均匀性和可靠性,避免燃烧不完全或燃烧过程中的闪燃现象。

5. 燃烧机排放浓度煤粉燃烧机的排放浓度是指其在燃烧过程中产生的废气中各种污染物的浓度。

煤粉燃烧机在燃烧过程中会产生二氧化硫、氮氧化物等有害气体,因此需要通过控制燃烧参数和采取排放控制措施来降低排放浓度,以满足环保要求。

6. 燃烧机控制系统煤粉燃烧机的控制系统是实现燃烧过程自动化和智能化的关键。

燃烧机的控制系统通常由温度、压力、流量等传感器和控制器组成,能够实时监测和调节燃烧过程中的各项参数,保证燃烧的稳定性和安全性。

7. 燃烧机功率范围煤粉燃烧机的功率范围是指其能够适应的燃烧热负荷范围。

不同行业和应用领域对燃烧机的功率需求各不相同,煤粉燃烧机需要根据实际情况选择合适的功率范围,以确保正常运行和高效燃烧。

煤粉燃烧器操作说明书

煤粉燃烧器操作说明书

更换
3. 管道内有杂物造成送煤粉 清除或加大风量
空气量不足
1. 径、轴向比例不佳
调节相应阀门
2. 一次风过大或过小
检查送风管道,是否有漏风情
3. 燃烧器气流喷出动量低 况
1. 窑炉用风配合不当
调节总排风或适当关小三次风
2. 窑尾负压过大
阀门
3. 系统排风量不够,窑内燃烧 清理系统结皮堵料
4、窑尾温度偏低
14--270m/s,煤风喷出速度:22— 28m/s。 3、工作原理及结构特点 3.1 工作原理
窑头一次风机通过管道进入 YRS 煤粉燃烧器净风管后分成三股 气流,分别进入燃烧器的外、内风道和中心风道,外、内风道中间为 煤风风道,内风喷嘴处设有旋流器,能使内风产生旋转气流喷出,中 心风风道出口处设有火焰稳定板,外风中心风及煤风以轴向气流喷 出,煤粉喷出后与高温二次风充分混合并燃烧。内外净风管及中心风 管分别设有风量调节手动蝶阀。
2. 预喂料螺旋机积料卡死 停篦床,否则还会出现生料,
3. 风机故障
还会使窑温迅速降低,重新启
6、窑头喷煤系统停车 4. 煤粉计量秤磨损或严重堵 动困难,调整系统风量及准动

风量、慢转窑
5. 电气故障
查明故障,尽快处理
第 9 页 共 10 页
6 常见故障及处理
常见故障 1、黑火头长不着火
2、火焰分叉
3、火焰形状不好
可能的原因或现象
主要操作处理
1. 煤粉太粗
降低煤粉筛余
2. 煤粉水分大
降低煤粉水分
3. 二次风温低
调整火焰提高窑头温度或油煤
4. 内风太小或外风太大
混烧
1. 燃烧器外风管内有杂物 清除
2. 外风管头部变形

TCNB型燃烧器调试操作要点(发水泥厂)

TCNB型燃烧器调试操作要点(发水泥厂)

TCNB型煤粉燃烧器调试操作要点一、结构特点1、TCNB型煤粉燃烧器为四风道结构型式(头部结构见图1);2、风道顺序为:(由外至内)冷却风、轴流风、煤风、旋流风。

3、操作原理:通过以上各个主风道的合理匹配设计,可以实现喷煤管头部较大的负压卷吸区,可有效的卷吸高温的二次风,确保窑头煤粉的稳定着火燃烧。

4、冷却风道可有效防止燃烧器的头部磨损及保持一定形状的火焰,防止出现局部高温及烧损窑皮的现象。

5、TCNB型燃烧器由于通道风速较高,燃烧器的推力达1500 m/s.%以上,可满足各种燃料的充分燃尽,对提高劣质煤的利用十分有利。

同时由于一次净风量低,相应可降低系统NOx的生成量。

图1二、调试操作要点:1、各风道头部出口面积为不可调结构,风速的调整依靠各风道阀门的开度及风机转速调节;2、操作时刻度尺须位于“0”位;3、燃烧器的火焰调节以调整轴流风机、旋流风机的转速以及冷却风阀门的开度来控制;4、以各风道显示的压力参数来指导操作;(可参照燃烧器上压力表的表压与中控室的压力指示参数)5、建议将轴流风机、旋流风机操作信号接入中控室,便于燃烧器的操作;6、为保证操作的准确性,点火初期必须比较燃烧器上压力表的表压指示与中控室的压力参数指示之间有无偏差,若两者存在偏差,需选择指示准确的参数来指导操作。

三、点火前燃烧器各个风道的阀门开度要求如下:轴流风风道:全开旋流风风道:全开,冷却风风道:阀门开度设置在10~20%之间,冷却点火油管风道的阀门开度设置在10~20%之间四、点火初期燃烧器操作要点:点火时,燃烧器各风道压力参数控制如下:在此情况下,逐渐加风、加煤,在保持火焰不灭的情况下,再加风、再加煤,使窑内温度逐渐升高。

一定要注意,必须按照先加风,后加煤的顺序进行操作,风机调节量以2~3Hz 为单位,情况稳定后,再逐步上调。

五、正常生产时燃烧器操作要点:升温投料后,燃烧器各风道压力参数控制如下:轴流风风道风压:50Kpa~70 Kpa旋流风风道风压:20Kpa~25 Kpa冷却风风道风压:1Kpa~1.5 Kpa冷却点火油管风道:保持阀门开度在10~20%之间在窑况稳定的情况下,以上参数基本能保证生产需求。

回转窑参数控制意义和范围

回转窑参数控制意义和范围

注意事项
1、风煤匹配不合理, 过剩空气系数偏低,通 常在0.9~1.0左 分解炉各 右,且不稳定; 部位压力 2、煤粉喂量不稳定, 聚变,入 计量波动大; 窑溜子温 3、分解炉系统温度控 度忽高忽 制偏高,分解率太高, 低,煤粉 通常大于95%; 在炉内出 现“爆燃” 4、喂料不稳定,有脉 冲现象; 现象 5、系统漏风点多; 6、操作不当,调整频 繁
常见故障及处理办法
现象 产生原因 处理办法 注意事项


1、筒内有杂物,垮塌耐 火材料,结皮掉落; 2、翻板阀动作不灵活或 漏风量太大; 3、用风不合理,风料配 合不好; 4、高温结皮; 5、系统开、停机频繁; 6、操作不当,工艺管理 不到位; 7、碱、酸、氨等有害成 分富集。
1、定期检查, 1、每次检修清理杂物进行 杜绝任何地点 投球确认; 漏风或内漏; 2、修理好翻板阀保证工 2、清料时注意 作灵活; 安全保护; 3、投料过程要逐步加风、 3、堵塞时检查 加料不能太猛; 应由上而下, 4、减少机、电故障率; 清堵时应由下 而上; 5、杜绝烧高温; 4、每次检修清 6、定期清结皮; 理各处结皮、 7、稳定原燃材料成分。 积料。
常见故障与处理办法
现象 产生原因 处理方法 注意事项 1、检修期间 认真检查炉内 各部位形状及 尺寸 2、一些重要 部位如溜管、 撒料箱修补后 一定要拆模验 收 3、有燃烧器 的分解炉一定 要根据情况定 期更换
炉 锥 部 结 皮
1、合理调整分料挡板, 1、分解炉内部有局部高 让物料均匀分布在炉内 温现象 2、适当煤质变化及时调 2、煤质变化大、全硫 整用风比例,通常可关小 高、挥发份高、发热量 三次风挡板和燃烧器用风 大 3、检查各撒料箱和溜管 3、各部位结构发生变 形状及时按图恢复 化、物料分散度不好或 4、操作上炉内温度应不 分料挡板卡死 大于900℃,炉出口温度 4、操作原因,长期高 应小于880℃,只要入窑 温 分解率在92-95%之间温 度越低越好。

浅谈回转窑用煤粉燃烧器操作参数选用和优化复习进程

浅谈回转窑用煤粉燃烧器操作参数选用和优化复习进程

浅谈回转窑用煤粉燃烧器操作参数选用和优化浅谈回转窑用煤粉燃烧器操作参数的合理选择和优化1.研究意义回转窑工作原理是利用回转着的窑筒体,不断旋转带动固体物料不断翻滚,以其暴露的新表面与掠过的气体进行传热和传质并产生化学反应。由于回转窑内的物料是处于堆积态,窑内气-固、固-固之间的换热效率就相对较低,研究高温热处理条件下回转窑内发生的物质与能量的转化与传递,研究空气过剩系数、二次风温度、内外风量比等操作参数对窑内传热过程的影响,并对操作参数进行优化,从而求得烟气、物料、窑内外壁沿窑长方向的温度变化规律,借此了解煅烧窑内温度分布及炉窑热工特性,可为优化窑的操作参数提供理论依据。

并对煤粉燃烧器的操作参数进行优化,这对提高回转窑内换热效率、降低回转窑能耗具有重要的意义。

水泥熟料烧成反应是指硅酸二钙与氧化钙生成的液固相反应。

由于水泥熟料强度的主要组成来源是C3S,因此C2S+Ca O→C3S的烧成过程对整个煅烧过程具有至关重要的作用。

对 C-S-A-F-MgO 系统而言,该反应主要发生在熔融的液相中,液相出现的温度约为1550K(1277℃)。

烧结反应的机理可以这样描述:固相反应生成的 C2S和之前未被反应的 CaO在液相中溶解、扩散并在液相中发生反应、经液相的过饱和及反扩散,最后经过再结晶形成新相 C3S。

从传热学的角度来说,窑内物料因入窑生料表观分解率为90~95%,分解吸热反应所需的热量很少,公斤熟料约200~100千焦,物料升温吸热量约为450~500千焦,而熟料矿物形成是以放热反应为主,设熟料中C2S占0.20%, C3S占0.60%,C3A占0.08%,C4AF占0.10%,反应过程放热量约为655千焦。

基于窑内熟料形成热基本是一个负值,所以可以认为窑内传热已不是主要矛盾,而熟料矿物生成的晶格形成和晶体生长所需维持的高温条件及在烧成带的停留时间成为矛盾的主要方面。

2. 回转窑用燃烧器对性能的要求根据物料煅烧难易程度、窑的工况调节火焰形状。

回转窑工艺、操作要求及推荐参数

回转窑工艺、操作要求及推荐参数

九沣矿业直接还原铁铁磷还原法生产回转窑工艺、操作要求及推荐参数一、回转窑直接还原法工艺流程1、回转窑法工艺流程一般如上图所示(九沣矿业使用的工艺流程与上图不完全一致)。

回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。

作业时,将一定粒度的原料(氧化铁皮)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。

在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。

窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。

如热量不足,可在窑头增设煤粉烧嘴补充。

物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。

调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。

使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。

从排料端排出的高温料通过溜槽落入冷却筒。

靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。

为改善物料运动强化冷却,筒内装有扬料板。

在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发生再氧化。

冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。

非磁性颗粒料含较高固定碳,可作还原剂重新利用。

二、回转窑设备组成回转窑设备主要由筒体、滚圈、支承装置、传动装置、窑头罩、密封装置、集尘室、燃烧装置及热烟室等部分构成,详见上图。

(1)筒体。

回转窑的筒体由钢板卷成,从铆接已发展为全部焊接。

筒体应具有足够的刚度和强度,以保证在安装和运转中轴线的直线性和截面的圆度。

2500td级回转窑燃烧器技术文本(无烟煤)

2500td级回转窑燃烧器技术文本(无烟煤)

2500t/d级回转窑燃烧器技术文本(无烟煤)一、主要技术参数设备名称:2500t/d级回转窑燃料燃烧装置用途:用于TSD炉型2500t/d级 4x60m回转窑内的煤粉燃烧设备总重量:约16500 kg(不包括一次风机)1.配套回转窑及篦冷机回转窑产量:正常2500t/d水泥熟料最大2700t/d水泥熟料单位热耗:3093kJ/kg篦冷机型式:充气梁型篦冷机2.煤粉的成份及热值挥发分:5~8%灰分:15~25%水分:0.5% 最大1.5%低位热值:23000 kJ/kg容重:0.84~0.89t/m3细度:0.08mm筛筛余3~5%温度:60~70℃3.煤粉输送空气流量:2200~2700m3/h温度:60~70℃燃烧器入口处压力:约6000Pa煤粉/空气的浓度: 3.2kg/m34.四通道回转窑燃烧器性能及参数燃烧器能力: 正常129 GJ/h,最大139 GJ/h控制范围: 10:1燃料: 煤粉、轻柴油喷煤管总长度: 约12570mm浇注料长度: 约6324mm喷煤管的烧煤量: 正常5600 kg/h最大8000 kg/h一次风吸入端压力: 约15000 Pa一次风比例: 约10%●喷煤管的喷嘴部分如内、外、煤三个风道的出口端和螺旋叶片均采用耐热铸钢制作,且易于更换。

●煤粉入口处设有防磨保护层。

●在喷煤管的煤粉入口处设有检查孔。

●在喷煤管的中部和尾部设有内、外风及煤风出口面积可调的调整装置,其可调量为供货状态出口面积的0.5~1.5倍,以适应不同煤质时对喷煤管出口风速的要求。

●喷煤管的内、外风入口管道上设有调节内、外风比例的手动蝶阀。

5.移动小车及轨道移动小车为悬挂式,小车悬挂在轨道上,由小车上的减速电动机驱动,使小车可前后移动。

小车内设有蜗轮丝杠升降机装置,对喷煤管工作角度进行调节,其上下左右可调的角度为3°。

在喷煤管工作时,以热态窑口为基点,喷煤管允许向前移动1050mm,亦允许退出窑口200mm,此喷煤管的最佳活动范围及喷煤管退出回转窑的极限位置由设在轨道处的3个限位开关控制。

回转窑工艺、操作要求及推荐参数

回转窑工艺、操作要求及推荐参数

九沣矿业直接还原铁铁磷还原法生产回转窑工艺、操作要求及推荐参数一、回转窑直接还原法工艺流程1、回转窑法工艺流程一般如上图所示(九沣矿业使用的工艺流程与上图不完全一致)。

回转窑是与水平稍呈倾斜放置在几组支撑托轮上、内衬耐火材料可连续旋转的筒形高温反应器。

作业时,将一定粒度的原料(氧化铁皮)、部分还原煤(包括返回炭)和脱硫剂按比例连续从窑加料端(尾端)加入,随着窑体转动(0.5~1.2r/min),物料受摩擦力被带起一定高度并因重力作用翻滚落下,同时向窑排料端(低端)前移一小距离。

在窑排料端还设有还原煤喷送装疆,靠高压空气将适宜粒度的还原煤送入窑内,调节喷送空气量能有效地控制喷入距离和分布。

窑内物料加热和反应热由排料端和沿窑长装设的伸入窑内的供风管送入空气(一次风和二次风),燃烧窑内还原煤释放的挥发分、还原反应生成的CO和碳提供。

如热量不足,可在窑头增设煤粉烧嘴补充。

物料在前移过程中逐渐被逆向的热气流加热,完成干燥、预热、碳酸盐分解、脱硫、铁氧化物(或其他元素)还原和渗碳反应等。

调节各风管供风量、煤粉和还原煤数量、粒度和分布,可灵活的控制窑内温度和分布。

使入窑铁矿石在窑内停留8~10小时和950~1100℃下转变成海绵铁。

从排料端排出的高温料通过溜槽落入冷却筒。

靠筒外喷水(或内、外同时喷水)将料冷却到120℃以下。

为改善物料运动强化冷却,筒内装有扬料板。

在回转窑卸料端及冷却筒两端安装有密封装置,生产时维持微正压,防止空气吸入发生再氧化。

冷却后的物料经筛分分级、磁选分离得出磁性颗粒料(直接还原铁)、磁性粉料、非磁性颗粒料和非磁性粉。

非磁性颗粒料含较高固定碳,可作还原剂重新利用。

二、回转窑设备组成回转窑设备主要由筒体、滚圈、支承装置、传动装置、窑头罩、密封装置、集尘室、燃烧装置及热烟室等部分构成,详见上图。

(1)筒体。

回转窑的筒体由钢板卷成,从铆接已发展为全部焊接。

筒体应具有足够的刚度和强度,以保证在安装和运转中轴线的直线性和截面的圆度。

回转窑燃烧器选择与使用

回转窑燃烧器选择与使用

预分解窑燃烧器的选择与使用一、煤粉燃烧的三个阶段煤粉燃烧过程可以分为准备、燃烧和燃尽三个阶段。

1、准备阶段包括燃料的干燥、预热和干馏煤粉受热后,水分汽化,煤粉温度≥100℃,物理水分全部逸出,干燥结束。

继续加热至一定程度,开始分解,放出挥发物,剩下固体焦炭,这一过程称干馏。

挥发份越多,挥发份放出需要的温度越低,反之亦然。

褐煤大约130℃,无烟煤约400℃,烟煤介于两者之间。

煤粉在准备阶段,由于燃烧尚未开始,基本上不需要空气,是吸热过程。

2、燃烧阶段燃烧阶段包括挥发物和焦炭的燃烧;挥发物主要是碳氢化合物,当挥发物到达一定的温度和浓度时,先于焦炭着火燃烧。

通常把挥发物着火燃烧的温度粗略地看作煤粉的着火温度。

挥发物多的燃料,着火温度低,反之亦然。

焦炭燃烧是煤粉的主要燃烧,焦炭的发热量一般占总发热量的一半以上,是煤粉燃烧过程中主要热量来源。

焦炭燃烧所需的时间比挥发物长得多,由于焦炭的燃烧是多相反应,完全燃烧比挥发物困难,如何提高焦炭的燃烧速度及燃尽率是组织燃烧重要的一环。

3、燃尽阶段(或称灰渣形成阶段)焦炭将烧完时,焦炭外壳形成了一层灰渣,空气很难掺入里面参与燃烧,从而使燃烧缓慢进行,尤其是高灰份煤粉就更难燃尽。

此阶段放热量不大,所需空气量也很少,但要保持较高温度,并给予时间。

二、煤粉气流燃烧的特点当原煤磨成煤粉时,受热面积和单位质量表面积大大增加。

当煤的密度为1000kg/m3时,1Kg煤的球形颗粒在不同尺寸具有的表面积。

不同颗粒尺寸的1Kg煤的单位质量比面积煤颗粒状况颗粒直径(mm)单位质量表面积(m2/Kg)在冷空气中的相对速度(m/s)块状煤30 0.05 -粗煤粉300×10-3 5 3.5×10-3细煤粉30×10-350 3.5×10-5当煤粉的平均颗粒直径很小时,单位质量的表面积很大,而煤粉和空气流之间的相对速度很小,这样煤粉颗粒将悬浮在空气流中。

回转窑燃烧器的选择及使用

回转窑燃烧器的选择及使用

回转窑燃烧器的选择及使用摘要:对于现在的危废处置的焚烧体系来说,回转窑燃烧器是非常重要的,对于其有着直接的影响,而且对于其处理的质量也有所提升,对于窑皮的表层也有着一定的影响,所以,其各个方面都有着重要的作用,要做好适宜的选择。

因此,本文主要通过对其性能的研究,对其选择以及使用进行了进一步的分析。

关键词:回转窑;燃烧器;选择;使用1 一般燃烧器的主要性能1.1 一次风量一次风是经燃烧器通道提供给燃烧用的净风,它对火焰成形、燃料燃烧、吸卷二次风的数量都有很大的影响,但因一次风温度低,过多使用会降低火焰温度,且增加一次风机的电耗,因此,在燃烧器设计选型时必须控制一次风的使用量。

通常用一次风率来表征。

也就是说在保证燃烧器使用性能的情况下,一次风率越低,性能越优越。

1.2 一次风速和旋流强度一次风出口速度和旋流风的旋流强度对煤粉燃烧和窑速影响较大。

燃烧器一次风的轴流风速大小一方面控制着引射高温二次风的量,另一方面影响火焰的刚度,过小则不利于火焰成形和吸卷周围的高温空气以及造成火焰过于疲软而缺乏穿透力,还会导致煤粉的沉落,产生不完全燃烧。

出口速度过大会挤占后面的燃烧空间,导致窑尾温度过高;而旋流风的旋流角和风速控制着火焰内部回流区和强化煤粉与空气的混合,并影响燃料的着火快慢,影响黑火焰的位置。

1.3 火焰及动量由于水泥窑内的熟料烧成是通过火焰光辐射进行传播的,因此火焰的温度和形状就十分的关键。

火焰的温度分布反映了能量粒子的分布情况,均匀的分布对熟料煅烧非常有利,窑内好的火焰形状可以使用尽量少的空气而几乎没有CO的残留,燃烧器的动量决定了火焰的形状。

2 回转窑燃烧器的选择2.1一号燃烧器概况燃烧器共3台,其中一号燃烧器安装在旋转窑前端板,燃烧器轴向中心线立面上平行于转窑中心线,平面投影上与转窑中心线成7度夹角,喷嘴的雾化角为40度,火焰长度范围在2.5m--6m,以保证燃烧火焰对炉膛内均匀加热,同时避免火焰伤及转窑的耐火材料。

石灰回转窑优化燃烧的分析与对策

石灰回转窑优化燃烧的分析与对策

石灰回转窑优化燃烧的分析与对策
欧阳宇;关宏志;于浩;张志强;甄新刚
【期刊名称】《冶金能源》
【年(卷),期】2024(43)1
【摘要】近年来随着煤炭价格不断上涨和国家对环保管控力度趋严,结合公司的发展规划,制定了降低或取缔煤粉燃料的使用,实现清洁燃烧的攻关目标。

基于此,从调整石灰回转窑燃料结构方面着手,通过对回转窑燃烧器改造、煤气预热、提高自动化程度和掺混少量天然气等措施,优化燃料的使用,减少转炉煤气放散损失,并达到了提升回灰窑产能、降低燃料成本、稳定煅烧工况及环保达标的目的。

【总页数】4页(P29-32)
【作者】欧阳宇;关宏志;于浩;张志强;甄新刚
【作者单位】日钢营口中板有限公司辽宁省中厚板专业技术创新中心
【正文语种】中文
【中图分类】TQ1
【相关文献】
1.浅谈石灰回转窑低热值煤气富氧燃烧新工艺
2.浅谈活性石灰回转窑燃烧系统的设计
3.煤粉性能及其燃烧控制对石灰回转窑结圈的影响
4.燃煤式活性石灰回转窑燃烧的工艺分析
5.富氧燃烧技术在石灰回转窑中的应用研究及经济性预测
因版权原因,仅展示原文概要,查看原文内容请购买。

材料工程技术专业《回转窑对煤粉燃烧器的要求》

材料工程技术专业《回转窑对煤粉燃烧器的要求》

回转窑对煤粉燃烧器的要求1 对燃料具有较强的适应性,尤其是在燃烧无烟煤或劣质煤时,能保证在较低空气过剩系数下完全燃烧,CO和NO排放量最低。

2 火焰形状能使整个烧成带具有强而均匀的热辐射,有利于熟料结粒、矿物晶相正常发育,防止烧成带扬尘,形成稳定的窑皮,延长耐火砖使用寿命。

3 外风采用环形间断喷射,保证热态不变形,射流均匀稳定,形成良好的火焰形状,最好采用多个小喷嘴喷射。

4 采用拢焰罩技术,防止产生峰值温度,降低有害气体NO 的排放,使窑内温度分布合理,提高预烧能力。

5 采用火焰稳定器,受喂煤量、煤质和窑情变化波动的影响小,火焰更加稳定。

6 结构简单,调节灵敏、方便,适应不同窑情的变化,满足烧不同煤质和形成不同火焰的要求。

窑内煤粉点燃的模式窑内煤粉的点燃着火,随煤质的差异及其加热速率的不同,有三种模式。

1 均相点燃。

当其挥发分含量较多,加热速率不很快时,因挥发物首先析出而着火,随之固定碳开始燃烧。

2 非均相点燃。

当其挥发分较少,加热速率很快时,挥发分还来不及析出,其中的固定碳已经到达了燃点温度而首先着火。

3 联合点燃。

当挥发分和固定碳同时点燃时,那么称为联合点燃。

采用烟煤为燃料的水泥窑,多属均相点燃;无烟煤那么应考虑到非均相点燃的情况。

一次风温度因一次风温度较低室温,其用量越少那么煤粉空气混合体到达燃点温度所需的热量越少,越容易着火燃烧。

一次风用量少,意味着煤粉燃烧时所用的二次风多。

经验说明每减少%一次风量将节省熟料热耗/g。

燃烧器推动力煤粉与二次风的混合速度和质量,以及其本身的燃烧速率均随着燃烧器推动力M值的增大而提高,M值是一次风的质量流量m与其喷出速度v值的乘积,即MN=mg/s×Vm/s相对燃烧推动力,即一次风百分数与其风速之乘积。

增加一次风量显然是不可取的,所以提高一次风速是增强燃烧推动力的主要手段,但V值太大,阻力骤增,风机电耗上升,在一定的燃烧条件范围内,V值有一最正确范围。

回转窑点火燃烧器调整方法

回转窑点火燃烧器调整方法

回转窑点火燃烧器调整方法回转窑是用于烧结或煅烧材料的设备,其点火燃烧器的调整是确保生产过程稳定和能源效率的重要步骤。

以下是一些一般的回转窑点火燃烧器调整方法:
清洁和维护:首先,确保点火燃烧器和相关设备保持清洁,并进行定期的维护,以确保其正常运行。

检查气源:确认燃气或燃油供应源是否充足,检查阀门、管道和连接是否无漏。

确保燃料和空气的适当比例:点火燃烧器需要确保燃料和空气的混合比例适当。

可以通过调整供气阀门或者风扇的速度来实现。

调整点火装置:点火装置的位置和方向需要正确设置,以确保火焰能够均匀地覆盖窑内的物料。

监测温度和氧气浓度:安装温度和氧气浓度传感器,以便实时监测窑内的温度和氧气浓度。

这些数据可以用于调整点火燃烧器的工作参数。

使用高效的燃烧技术:考虑采用高效的燃烧技术,如低氮氧化物燃烧技术,以减少氮氧化物排放并提高能源利用率。

调整点火强度:根据窑内物料的要求,可以调整点火燃烧器的火焰强度和大小。

定期校准和监测:定期校准点火燃烧器和相关控制系统,以确保其性能稳定。

这些调整方法可能会根据具体的回转窑类型、应用和工艺要求而
有所不同。

因此,在进行调整之前,建议请专业技术人员或设备制造商提供指导,以确保点火燃烧器的安全和有效运行。

此外,确保在调整点火燃烧器时遵循适用的安全规程和操作程序。

TCNB新型煤粉燃烧器使用说明书(全)-5500t

TCNB新型煤粉燃烧器使用说明书(全)-5500t

第一章概述1、概述新型煤粉燃烧器是天津水泥工业设计院有限公司研制开发的新一代的燃烧设备,该项目课题组研究人员基于多年的实践经验,根据冷、热态实验的技术参数,以国内外的煤粉燃烧器为基础,采用现代最新燃烧技术的大速差和强旋流理论,结合全国原煤资源的特性以及我国水泥窑的燃料燃烧特点,运用计算机仿真技术,综合考虑多学科研究和发展成果研制而成。

该燃烧器适用于我国水泥生产行业各类回转窑,具有一次风量比例低、燃烧推力大的显著技术特点。

其高速的出口射流,大大强化了煤粉气流和二次热风的混合,最大限度消除了不完全燃烧,减少了不必要的热损失,并有利于降低热耗和利用低、劣质燃料;其独特的结构设计,具有灵便快捷的火焰调节手段,可使火焰形状随时满足窑内工况的需要,有利于建立合理的煅烧制度,提高产品质量;其卓越的燃烧特性,可提高回转窑的煅烧能力,充分发掘了设备的潜在能力以增加产量。

新型煤粉燃烧器由天津水泥工业设计院有限公司――中天仕名科技集团完成制造,本用户手册就用户关心的安装、操作及维护等问题作了较为详细的介绍,用户在使用设备之前必须仔细阅读。

2、燃烧器性能保证的前提条件用户需为本燃烧器的使用提供基本的使用条件,以保证TCNB-K32型回转窑用四风道煤粉燃烧器达到良好的使用效果。

本燃烧器性能保证的前提条件如下:相关工艺系统正常;窑头二次风温约1050℃左右;送煤风配置误差最大不超过10% ;送煤粉的空气中不得含有大颗粒的异物或棉纱等物;燃烧器的喷嘴及煤粉入口处不允许出现堵塞现象。

第二章主要技术性能及参数1、基本概况:设备名称:TCNB新型煤粉燃烧器型号:5500t/d生产厂家:天津水泥工业设计研究院有限公司-中天仕名科技集团用途:用于5500t/d级 4.8x72m回转窑内的煤粉燃烧外形尺寸:12000(长度)X1200(高度)设备总重量:约20000kg(不包括风机)支撑小车型式:落地式配套回转窑产量:正常5000t/d水泥熟料最大5500t/d水泥熟料单位热耗:3094kJ/kg2、适应的煤粉成份及热值挥发分:29.15%灰分:19.43%水分:0.5% 最大2%低位热值:22990±1250 kJ/kg容重:0.84~0.89t/m3细度:0.08mm筛筛余8~10%温度:60~70℃3、输送煤粉用风机参数流量:62.4m3/min压力:49KPa温度:60~70℃4、燃烧器的性能及参数用煤量正常16000kg/h最大20000kg/h最小~1000kg/h送煤量调节范围: 1:6~1:10煅烧用主燃料: 煤粉点火用燃料:普通轻柴油燃烧器总长度: 约12000mm浇注料长度: 约6065mm燃烧器中心高:1750mm5、一次风机参数一次风机由买方自备,配置要求如下:轴流风机:1台形式:罗茨风机(带变频调速)风量:50~55m3/min风压:约96000 Pa旋流风机:1台(由旋流风道与外风道共用)使用厂家原有的一次风机形式:罗茨风机(带变频调速)使用风量:约90~95m3/min使用风压:约29400 Pa风机出口处需配有手动蝶阀和可曲挠合成橡胶接头6、点火用燃油液压系统参数燃料:普通轻柴油工作流量:4800 l/h工作压力: 5.5 MPa最高压力: 6 MPa系统流量:93 l/min贮油罐体积:8 m3齿轮泵:14MPa (25ml/r)滤油器精度:20μm该系统包括:具有进油和回油功能,带滤油器和压差显示器的泵阀控制站1台,带回流管的油枪1套,包括雾化器、软管、快速接头、截止阀,2个流量计用于固定在现场的管架上,第三章燃烧器部件清单一套完整的回转窑燃烧器设备,主要包括以下部件1、喷煤管本体(附图1)单重:~7000 kg数量:1套喷煤管本体中包括:带蜗轮蜗杆调节装置的阀门3件,分别在生产中用于轴流风、旋流风及外风的调节;带手柄式齿槽调节装置的阀门3件,分别在检修时用于冷却煤风管、油枪及轴流风管,这些阀门在生产中禁止使用。

回转窑燃烧器的调校和使用

回转窑燃烧器的调校和使用

回转窑燃烧器的调校和使用作者:何志军来源:《中国化工贸易·上旬刊》2019年第02期摘要:在水泥生产过程中,主要使用的燃料为煤,作为回转窑用燃烧器,喷煤管在熟料煅烧过程中起着关键的作用。

水泥熟料的品质、窑的产量、耐火材料的使用周期和使用寿命、单位熟料热耗等等无不与喷煤管的选择和使用息息相关。

这里面使用过程中的调整最为关键,它直接决定了水泥窑的产量、耐火材料的使用寿命以及单位熟料热耗。

关键词:燃烧器;喷煤管;窑皮;燃煤1 燃料的情况介绍1.1 介绍喷煤管就不得不介绍它要使用的燃煤目前我国对煤种的划分如下:①无烟煤:V%为0-10;②烟煤:贫煤:V%为:10-20;瘦煤:V%为14-20;焦煤:V%为14-30;肥煤:V%为26-37;气煤:V%为30-37;弱粘煤:V%为20-37;不粘煤:V%为20-37;长焰煤:V%为大于37;③褐煤:V%为大于40。

1.2 原则上水泥企业可以使用所有煤种以下几个指标数值的高低,直接影响着回转窑的产质量,应加以关注。

1.2.1 燃煤的热值煤的热值是衡量燃煤性能的重要指标。

一般来讲,煤的热值越高,煤的燃烧性能就越好。

目前大的水泥公司有倾向于采用高热值燃煤的趋势。

这是因为,煤热值高,不仅用煤量减少了,而且煤的发热一般都较快,对水泥窑达到高产低耗的目的,综合经济效益不比采用低廉的劣质煤差。

1.2.2 燃煤的挥发份煤的挥发份一般是由碳元素同氢、氧、硫等元素组成的有机化合物。

在煤粉燃烧前它首先析出气化而燃烧,随着挥发份的提高,火焰变长,呈现出气体火焰的特性。

煤的燃烧能力与挥发份含量成正比,因此在采用低挥发份的燃料时,为了获得相同的燃料燃烧时间,通常采用减小煤粉粒径来控制煤粉的燃烧。

1.2.3 煤粉细度在回转窑窑头烧成带,二次风温一般均大于1000℃,火焰温度大于1800℃,煤粉在这种环境下的燃烧速率主要受扩散速率控制。

对于受扩散速率控制的反应过程,煤粉燃尽时间与颗粒大小的二次方成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回转窑用煤粉燃烧器操作参数选用和优化————————————————————————————————作者:————————————————————————————————日期:浅谈回转窑用煤粉燃烧器操作参数的合理选择和优化1.研究意义回转窑工作原理是利用回转着的窑筒体,不断旋转带动固体物料不断翻滚,以其暴露的新表面与掠过的气体进行传热和传质并产生化学反应。由于回转窑内的物料是处于堆积态,窑内气-固、固-固之间的换热效率就相对较低,研究高温热处理条件下回转窑内发生的物质与能量的转化与传递,研究空气过剩系数、二次风温度、内外风量比等操作参数对窑内传热过程的影响,并对操作参数进行优化,从而求得烟气、物料、窑内外壁沿窑长方向的温度变化规律,借此了解煅烧窑内温度分布及炉窑热工特性,可为优化窑的操作参数提供理论依据。

并对煤粉燃烧器的操作参数进行优化,这对提高回转窑内换热效率、降低回转窑能耗具有重要的意义。

水泥熟料烧成反应是指硅酸二钙与氧化钙生成的液固相反应。

由于水泥熟料强度的主要组成来源是C3S,因此C2S+Ca O→C3S的烧成过程对整个煅烧过程具有至关重要的作用。

对C-S-A-F-MgO系统而言,该反应主要发生在熔融的液相中,液相出现的温度约为1550K(1277℃)。

烧结反应的机理可以这样描述:固相反应生成的C2S和之前未被反应的CaO在液相中溶解、扩散并在液相中发生反应、经液相的过饱和及反扩散,最后经过再结晶形成新相C3S。

从传热学的角度来说,窑内物料因入窑生料表观分解率为90~95%,分解吸热反应所需的热量很少,公斤熟料约200~100千焦,物料升温吸热量约为450~500千焦,而熟料矿物形成是以放热反应为主,设熟料中C2S占0.20%,C3S占0.60%,C3A占0.08%,C4AF占0.10%,反应过程放热量约为655千焦。

基于窑内熟料形成热基本是一个负值,所以可以认为窑内传热已不是主要矛盾,而熟料矿物生成的晶格形成和晶体生长所需维持的高温条件及在烧成带的停留时间成为矛盾的主要方面。

2. 回转窑用燃烧器对性能的要求根据物料煅烧难易程度、窑的工况调节火焰形状。

因此回转窑对煤粉燃烧器的性能要求是必须易于调节。

煤粉燃烧形成的火焰形状应是肥瘦适宜的棒槌状,这样的火焰形状可使整个烧成带具有强而均匀的热辐射,从而在烧成带形成致密又稳定的窑皮,既可生成质量均匀且优质的水泥熟料,又延长了水泥回转窑耐火砖的使用寿命。3. 煤粉燃烧和火焰形成过程煤粒燃烧过程是一个非常复杂的气固两相流动与煤粉燃烧共同存在的过程,具体包括了预热、挥发份析出、挥发份燃烧及焦炭的燃烧。

3.1煤粒反应过程:图1 煤粒反应模型3.2火焰的燃烧过程:图2 火焰燃烧各个阶段区域A区:黑火头,长0.1-1.0m,在该区域燃料和助燃空气充分混合,但燃料尚未点燃,处于加热阶段。

温度逐渐上升到600℃。

B区:火焰的诞生地,挥发物质和助燃轻质油析出和燃烧生成CO2和H2O。

所达温度600-1100℃。

A区和B区的边界称为火焰的起点。

C区:煤燃烧和燃油裂化释放出碳。

温度上升到1100-1600℃。

D区:H2和CO2还原反应生成CO和H。

温度上升到高于1600℃。

E区:H和CO燃烧重新得到CO2和H2O,伴随有白炽粒子。

F区:燃烧的最后阶段,生成CO2和H2O,并伴有过剩空气。

3.3火焰形状的调节3.3.1火焰粗短的调节:增大旋流风出风面积和角度,火焰变粗,同时增大外轴流风的风速,保证外轴流风包裹火焰形状,即减小外轴风的出风面积,提高外轴风的风速和风压。

标尺直观判断:旋流风标尺数字变大,外轴风标尺数字变小。

3.3.2火焰细长的调节:减小旋流风出风面积和角度,火焰变细,同时减小外轴流风的风速,保证外轴流风包裹火焰形状,即增大外轴风的出风面积,减小外轴风的风速和风压。

标尺直观判断:旋流风标尺数字变小,外轴风标尺数字变大。

增加推力意味着供给煤管的轴向风更多的能量。

增加旋转力意味着增加放射性能量从而增加了气流量。

图3 火焰调整示意图4回转窑内煤粉燃烧模型的建立4.1假设条件回转窑内煤粉燃烧数学模型包括烟气的紊流、气体燃烧和辐射现象。

这里用到两个假设:一是烟气流动为稳态条件,且窑内压力恒定;二是烟气按不可压缩流对待。

4.2物理模型回转窑的原型规格为ф4×60m。去除燃烧带内衬及窑皮的厚度之后,有效内径为ф3.4m。

模拟区域取为20m,包括了从窑头开始至烧成带结束的连续区域。

网格化的回转窑模型:图4 回转窑模型基于四通道煤粉燃烧器已在新型干法水泥生产线上得以广泛应用,本文也选取四通道煤粉燃烧器进行模拟。

四风道煤粉燃烧器的结构见图,选取的计算区域见图图5 燃烧器模型1-外净风道;2-煤风道;3-内净风道;4-中心风道;5-点火油枪通道4.3煤燃烧模型煤粉由四通道煤粉燃烧器送入,煤粉与高温空气在进入窑内后进行混合,其燃烧特征符合非预混燃烧模型,因此煤粉的气相燃烧模型采用非预混燃烧模型。煤粉的流动用离散相模型来模拟,此模型可以预测出单个煤粒的运动轨迹。离散项的轨迹与气相连续方程交替计算也包含了煤粒与气体间的热量、动量和质量的传递。4.4辐射模型由于回转窑内的辐射换热主要体现在气体与颗粒之间。

在气体与煤粉湍流运动的基础上,引入非预混燃烧模型计算煤粉的燃烧,与此同时耦合计算气体与煤粉颗粒之间的辐射换热。

4.5初始条件及边界条件二次风、煤风和内净风进口采用风速边界条件,根据实测工况参数范围直接设定入窑速度。燃烧器的中心风、外净风出口速度很大,为可压缩流,进口采用质量边界条件,直接设定入窑质量流率。出口采用压力边界条件,出口压力设定为-70Pa。

对于近壁面,以及气固界面,沿烟气流动方向采用壁面函数。计算选取的各种初始条件及边界条件见表:项目风道入口温度/K 入口速度/m/s质量流率/kg/s二次风1373.0 8.4 22.65一次风中心风361.0 116.0 0.047 内净风321.0 71.0 0.69 煤风385.0 25.0 1.086 外净风334.0 310.0 1.48 表1 初始条件及边界条件项目Mad Aad Vad FCad煤粉 1.32 18.2 25.78 54.7表2 煤的工业分析%煤粉低位发热量(DAF)为25.27MJ/kg,热值为1000J/(kg·K),密度为1.01kg/m3。

一次风和二次风为净空气,由21%的氧气和79%的氮气组成。

5 模拟结果及分析本文采用同规格生产线的热工标定实测参数作为初始参数进行计算。

着重研究了空气过剩系数、内外风量比及二次风温度对窑内温度分布的影响。

测试工况下内外风量比为0.47,二次风量为24.38kg/s,窑头过剩空气系数为1.12,二次风温度为1373K。窑内温度分布模拟结果见图。

窑内温度分布的主要影响因素内外风量比R、空气过剩系数n、二次风温度T(K)和旋流角a(°)的值列在图下方。图6 模拟工况下窑内温度分布图由图6可以看出,火焰形状呈向外波动的棒槌形,这与从工程经验所知的实际火焰形状相符。

如图6指示,煤粉在离燃烧器喷嘴较远的一个窄而短的区域内高温燃烧,喷嘴附近的烟气温度均比较低,黑火头较长,这使得实际的烧成带较短,而使冷却带延长,预热分解带也相应缩短,这种窑内温度分布会降低窑的有效传热面积,因此不能满足水泥烧结所需的温度要求。同时由于高温区域较小,煤粉极易燃烧不完全,未来得及燃烧的煤粒或在物料内燃烧,或被物料带出,还有的甚至被烟气带出窑外,造成较大的机械损失及化学不完全燃烧热损失,甚至出现结皮、烧损衬料与窑壁等事故。回转窑的现场热工测试结果也证明了这一点。5.1过剩空气系数n对燃烧过程的影响在燃烧器的主要操作参数中,窑头空气过剩系数对窑内火焰形状及烟气温度分布有重要影响,同时也关系着燃烧器性能的发挥。因此通过调整空气过剩系数n来改善窑内火焰形状及烟气温度分布。

在R=0.47,T=1373K,a=15°条件下,空气过剩系数从1.0到1.2的范围变化时窑内火焰形状和烟气温度分布情况,结果见图7。图7.1 空气过剩系数n=1.0时窑内火焰形状及烟气温度分布图7.2 空气过剩系数n=1.05时窑内火焰形状及烟气温度分布图7.3 空气过剩系数n=1.12时窑内火焰形状及烟气温度分布图7.4 空气过剩系数n=1.2时窑内火焰形状及烟气温度分布图7.1~7.4是不同空气过剩系数时回转窑内火焰形状及烟气温度分布情况。由图可知,随着空气过剩系数的增大,高温区域逐渐向后移动且变得狭长,平均温度下降。空气过剩系数n=1.0时,火焰短而粗,平均温度较高,火焰长度11m,熟料烧成温度有效区间长度为6.5m,黑火头长度3.5m。根据工程经验,回转窑内黑火头的长度一般在0.5 m-1 m范围内为好。黑火头过长,会降低对回转窑的有效传热面积,对煅烧不利,进而影响产品质量;黑火头过短,会使出窑熟料温度过高,导致冷却机负荷增加,易烧坏喷煤嘴。空气过剩系数为1.12时,火焰长度为13m,熟料烧成温度有效区间长度为8m,火焰形状为良好的棒槌状,但黑火头长度为4m,长度过长。当过剩空气系数n=1.2时,火焰变细变长,火焰平均温度降低,熟料烧成温度有效区间长度为6m,窑壁区域烟气温度下降,燃烧区域较长。空气过剩系数过大造成的长火焰适于在点火烘窑或当窑温过高、耐火内衬有烧损时使用,且过多的助燃空气还会造成烟气排放损失。空气过剩系数n=1.05时,煤粉在燃烧器喷嘴前方燃烧,火焰集中,熟料烧成温度有效区间长度为9m,黑火头长度为1.0m,符合黑火头最佳长度为0.5m-1.0m的要求,火焰形状和长度适中,有利于强化生产,属于比较理想的活泼型火焰。煤粉燃烧中心温度高达2000K煤粉燃烧集中在距燃烧器喷嘴较远处一个“窄而短”的区域。这使得在燃烧带较长距离释放出热量,可成倍增加烧成带的长度,成倍提高烧成熟料能力,从而成倍增加窑产量。这种火焰尤其适用于新型的干法窑。并且可以看到在靠近燃烧器头部的位置,形成了一个长度适中的低温区域,这可以用于冷却燃烧器的喷嘴,起到保护燃烧器的作用。由以上对比结果可知,空气过剩系数对火焰形状及性能有重要影响,过剩空气系数较小时,火焰粗而短,平均温度比较高;当过剩空气系数过大时,火焰细而长,火焰平均温度降低,燃烧区域变长,且过多的助燃空气还会延迟煤粉燃烧的时间,这是喷嘴附近烟气温度较低,黑火头较长的主要原因。图中显示最佳的空气过剩系数为1.05,可根据窑况在合适的范围内进行调节。5.2内外风量比R对燃烧过程的影响在实际生产过程中,经常通过调节内、外风量的方法来调节火焰形状。所以现在研究不同内、外风量比时窑内火焰形状、烟气温度分布的变化规律。确定空气过剩系数n=1.05,在a=15°,T=1373K 条件下,R值从0.37到0.8的范围内变化,比较不同内外风量比时窑内烟气温度分布情况。内外风量的变化会引起一次风量的变化,通过调整二次风量来保证1.05的空气过剩系数。模拟结果见图8。图8.1 内外风比R=0.37时窑内火焰形状及烟气温度分布图8.2 内外风比R=0.47时窑内火焰形状及烟气温度分布图8.3 内外风比R=0.6时窑内火焰形状及烟气温度分布图8.4 内外风比R=0.37时窑内火焰形状及烟气温度分布图8.1~8.4为不同内外风量比时窑内温度分布情况。虽然旋流内风所占比例较小,旋流强度不大,但煤粉喷出后的着火不仅需要靠外风对高温二次空气的卷吸作用来预热煤粉,而且要与内风进行混合。由图(a)(b)所示,内外风量比由0.37增大到0.47,由于内风量的增加使得内风速度增加了15m/s,有利于径向上烟气和煤粉的混合,但外风量的减小使得外风速度降低了6m/s,降低了外风对高温二次风的卷吸,但旋流程度大大增强,而卷吸影响相对较小,0.47的内外风量比使得窑内高温区域在径向和轴向都能扩展,火焰变粗变短,黑火头长度适中,可较好地保护燃烧器喷嘴,窑内火焰形状及其温度分布都能满足窑头冷却带、燃烧带的温度要求,可保证水泥熟料的烧成质量。保持内风量不变,通过降低外风量增大内外风量比。随着内外风量比进一步增大,由图(c)所示,0.6的内外风量比,外风道速度降低了69m/s,图(d)所示,0.8的内外风量比使得外风速度降低了129m/s,大大降低了外风对高温二次风的卷吸作用,延迟了煤粉的点火时间,使火焰变细变长,黑火头较长,轴向流动和温度衰减加快,窑内温度分布不利于强化生产。可根据水泥工艺对火焰形状和温度分布的要求选择不同的内外风量比。

相关文档
最新文档