自动增益控制电路设计
一种自动增益控制放大器的设计
![一种自动增益控制放大器的设计](https://img.taocdn.com/s3/m/f24c3e3954270722192e453610661ed9ad515526.png)
一种自动增益控制放大器的设计摘要:本文介绍了一种自动增益控制放大器的设计方法,该方法采用反馈电路实现自动增益控制,使放大器在输入信号强度变化时保持输出信号稳定。
设计中采用了MOSFET管和电容的组合连接方式,使放大器具有高增益和低噪声系数,同时实现了高稳定性和可靠性。
实验结果表明,该自动增益控制放大器具有优良的性能,适用于信号放大和处理的多种应用场景。
关键词:自动增益控制;放大器设计;反馈电路;MOSFET管;电容连接;稳定性正文:1.引言随着科技的不断发展,信号处理技术在通信、电子、计算机等领域得到了广泛应用。
在众多信号处理技术中,信号放大是其中的重要环节之一。
而自动增益控制放大器是实现信号放大的重要器件之一。
它可以在输入信号强度变化时自动调整增益,使输出信号稳定。
因此,本文提出了一种自动增益控制放大器的设计方法,旨在提高放大器的性能和稳定性,并适用于多种信号处理场景。
2.设计原理自动增益控制放大器的设计原理是基于反馈电路实现自动调节增益。
如图1所示,当输入信号Uin经过放大器后,产生的输出信号Uout被反馈到放大器的控制端A处,与输入信号进行比较,产生一个误差电压Ue。
该误差电压被输入到一个控制器中进行处理,控制器通过调节放大器的增益,使误差电压接近于0,从而实现自动增益控制。
图1 自动增益控制放大器原理图在设计中,我们采用了MOSFET管和电容的组合连接方式,如图2所示。
MOSFET管可以提供高增益和低噪声系数,电容与MOSFET管的组合连接方式可以提供稳定性。
此外,在设计中还考虑了放大器的输出阻抗和带宽等因素,使放大器的性能更加优良。
图2 自动增益控制放大器组合连接示意图3.实验方法为验证设计的可行性和有效性,我们进行了一系列实验。
实验中,我们利用模拟电路软件对自动增益控制放大器进行模拟分析,并对其输出信号进行测量分析。
实验结果表明,该放大器具有优良的性能和稳定性。
4.实验结果与分析实验结果显示,该自动增益控制放大器在不同频率和输入信号强度下均能达到稳定的输出信号。
自动增益控制(AGC)电路
![自动增益控制(AGC)电路](https://img.taocdn.com/s3/m/fc647ef3700abb68a982fb73.png)
二、电视机自动增益控制电路
1、工作原理:
V1、V2构成差分射级输出器,实现隔离作用;V3、V4构成差分放大器,提高共模抑制比;V5是V3、V4的多发射级恒流源,稳定直流工作点。
三级中放总增益为80dB,均可自动增益控制。
控制过程:当AGC不起控时信号最弱,则V6饱和导通,V5发射级电流最大,等效为V3、V4的发射级电阻最小,则V3、V4的增益最大;当AGC起控时,V6退出饱和,V5发射级电流减小,负反馈作在深度饱和状态,V7工作在中饱和状态,V8因V9、V10恒流源的分流作用工作在浅饱和状态。
当信号最弱时,UAGC很高,增益在最大状态
当信号增强时,UAGC减小,V8首先进入放大状态,然后是V7,最后才是V6。
当信号最强时,UAGC很小,V8、V7、V6、都在截止状态,增益在最小状态。
自动增益(AGC)电路
在放大电路的应用中,经常会碰到一些要求增益会自动调节的电路。
自动增益电路的目的:无论信号的强弱、天气的变化和距离的远近,输出端输出的信号都能保证在稳定的状态。
应用在目标检测(机器人技术)、自动跟踪(军事领域)和稳定输出(电视机)
控制方式:在保证输出的信号稳定的前提下,应考虑的问题是——如何提高信噪比——所以控制方式是后级逐渐向前级控制。
自动增益控制电路
![自动增益控制电路](https://img.taocdn.com/s3/m/a316f900551810a6f4248606.png)
自动增益控制电路前言在通信、导航、遥测遥控系统中,由于受发射功率大小、收发距离远近、电波传播衰落等各种因素的影响,接收机所接收的信号变化范围很大,信号最强时与最弱时可相差几十分贝。
如果接收机增益不变,则信号太强时会造成接收机饱和或阻塞,而信号太弱时又可能被丢失。
因此,必须采用自动增益控制电路,使接收机的增益随输入信号的强弱而变化。
这是接收机中几乎不可缺少的辅助电路。
在发射机中或其他电子设备中,自动增益控制电路也有广泛的应用。
一、工作原理1.电路组成与框图自动增益控制电路是一种在输入信号变化很大的情况下,通过调节可控增益放大器的增益,使输入信号幅值基本恒定或仅在小范围内变化的一种电路,其组成方框图如下: 输入信号振幅为,输出信号振幅为,可控放大器增益为,即其是控制信号的函数,则有:= ()2.比较过程在AGC电路里,比较参量是信号电平,所以采用电压比较器。
网络由电平检测器、低通滤波器和直流放大器组成。
反馈网络检测出信号振幅电平(平均电平或峰值电平),滤去不需要的较高频率分量,然后进行适当放大后与恒定的参考电平比较,产生一个误差信号。
控制信号发生器在这里可看作是一个比例环节,增益为k 。
若减小而使减小时,环路产生的控制信号将使增益1增大,从而使趋于增大。
若增大而使增大时,环路产生的控制信号将使减小,从而使趋于减小。
无论何种情况,通过环路反馈不断地循环反馈,都应该使输出信号振幅保持基本不变或仅在较小范围内变化。
,.滤波器的作用环路中的低通滤波器是非常重要的。
由于发射机功率变化,距离远近变化,电波传播衰落等引起信号强度的变化是比较缓慢的,所以整个环路应具有低通传输特性,这样才能保证仅对信号电平的缓慢变化有控制作用。
尤其当输入为调幅信号时,为了使调幅波的有用幅值变化不会被自动增益控制电路的控制作用所抵消(此现象称为反调制),必须恰当的选择环路的频率响应特性,使对高于某一频率的调制信号的变化无响应,而仅对低于这一频率的缓慢变化才有控制作用。
运放自动增益控制电路
![运放自动增益控制电路](https://img.taocdn.com/s3/m/77a8159c1eb91a37f0115cdf.png)
一种性能优良结构简单的 AGC 电路许多应用类电子装置中都需要自动增益控制电路。
自动增益控制电路的功能是在输入信号幅度变化较大时,能使输出信号幅度稳定不变或限制在一个很小范围内变化的特殊功能电路,简称为 AGC 电路。
AGC 电路的基本原理是随着输入信号幅度的变化产生一个相应变化的直流电压 (AGC 电压 ) ,利用这一电压去控制一种可变增益放大器的放大倍数(或者控制一种可变衰减电路的衰减量 ) :当输入信号幅度较大时 AGC 电压控制可变增益放大器的放大倍数减小 ( 或者增大可变衰减电路衰减量),当输入信号幅度较小时 AGC 电压控制可变增益放大器的放大倍数增加(或者减小可变衰减电路衰减量) .显然,这种自动增益控制可以达到输出信号幅度基本稳定的目的。
增益可调的运算放大器 ( 如 AD603) 常被用在 AGC 电路中,但是这一类器件不仅价格高,而且市面上难以买到.经过多次试验,笔者使用普通元件设计出了一种成本低廉、性能优良、结构简单的 AGC 电路。
原理见图 1 .图 1 中,输入信号经电阻 R1 、 R2 分压后送往运放 F1 的同相输入端,二极管 VD 对运放 F1 的输出信号整流后,经过一个π形滤波电路得到一个负向的 AGC 电压,这一电压经运放 F2 放大后送往场效应管 3DJ6 的栅极。
当输入信号的幅值较大时,相应地得到了较大的 AGC 电压,运放 F2 输出较大的负压至场效应管 3DJ6 的栅极,增大了场效应管 3DJ6 的源漏极间的电阻,从而减小了运放 F1 的放大倍数{输入信号的幅度进一步加大时,场效应管 3DJ6 的源漏极间的电阻也会进一步加大,使运放 F1 的放大倍数进一步减小……直至场效应管 3DJ6 的源漏极被完全夹断,这时运放 F1 失去放大能力成了电压跟随器。
反之,当输入信号的幅值较小时, AGC 电压也很小,运放 F2 输出也小,场效应管 3DJ6 的源漏极问的电阻很低,使运放 Fl 得到较大的放大倍数,从而在 F1 的输出端可以得到幅值较大的信号。
自动增益控制电路的设计与实现_图文.
![自动增益控制电路的设计与实现_图文.](https://img.taocdn.com/s3/m/540800cadaef5ef7bb0d3c51.png)
自动增益控制电路的设计与实现实验报告北京邮电大学信息与通信工程学院一:课题名称自动增益控制电路的设计与实现二:摘要及关键词1、摘要:在处理输入的模拟信号时,经常会遇到通信信道或传感器衰减强度大幅变化的情况;另外,在其他应用中,如监控系统中的多个相同传感器返回的信号中,频谱结构和动态范围大体相似,而最大波幅却相差甚多的现象。
很多时候系统会遇到不可预知的信号,导致因为非重复性事件而丢失数据。
此时,可以使用带AGC(自动增益控制)的自适应前置放大器,使增益能随信号强弱而自动调整,以保持输出相对稳定。
本实验在介绍了AGC电路的基础上,采用了一种相对简单而有效实现预通道AGC的方法,电路中使用了一个短路双极晶体管直接进行小信号控制的方法。
2、关键词:驱动缓冲可变衰减自动增益控制电压跟随器反馈三:设计任务要求1、基本要求:1)设计实现一个AGC电路,设计指标以及给定条件为:输入信号0.5~50mVrms;输出信号:0.5~1.5Vrms;信号带宽:100~5KHz;2)设计该电路的电源电路(不要求实际搭建),用PROTEL软件绘制完整的电路原理图(SCH)及印制电路板图(PCB)2、提高要求:1)设计一种采用其他方式的AGC电路;2)采用麦克风作为输入,8Ω喇叭作为输出的完整音频系统。
3、探究要求:1)如何设计具有更宽输入电压范围的AGC电路;2)测试AGC电路中的总谐波失真(THD)及如何有效的降低THD。
四:设计思路及总体结构框架1、设计思路①该实验电路中使用了一个短路双极晶体管直接进行小信号控制的方法,从而相对简单而有效实现预通道AGC的功能。
如下图,可变分压器由一个固定电阻R1和一个可变电阻构成,控制信号的交流振幅。
可变电阻采用基极-集电极短路方式的双极性晶体管微分电阻实现为改变Q1电阻,可从一个由电压源和大阻值电阻R2组成的直流源直接向短路晶体管注入电流。
为防止R2影响电路的交流电压传输特性。
R2的阻值必须远大于R1.DetetorVGAInput Output反馈式AGC由短路三极管构成的衰减器电路②对正电流的I所有可用值(一般都小于晶体管的最大额定设计电流),晶体管Q1的集电极-发射极饱和电压小于它的基极-发射极阈值电压,于是晶体管工作在有效状态。
自动增益控制AGC电路
![自动增益控制AGC电路](https://img.taocdn.com/s3/m/988be5e69ec3d5bbfd0a74ab.png)
自动增益控制(AGC)电路自动增益控制(AGC)电路是无线电接收设备中的重要电路,用来保证接收幅度的稳定。
自动增益控制(AGC)电路的作用是能根据输入信号的电压的大小,自动调整放大器的增益,使得放大器的输出电压在一定范围内变化。
它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器和可控增益放大器组成。
其中可控增益放大器是实现增益控制的关键。
一、自动增益控制电路(AGC)的工作原理(一)AGC的作用自动增益控制电路的作用,是在输入信号幅度变化很大的情况下,自动保持输出信号幅度在很小范围内变化的一种自动控制电路。
自动增益控制电路可以看成由反馈控制器和(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器和控制电压产生器组成,被控对象是可控增益放大器。
可控增益放大器的输入信号就是AGC电路的输入信号.(二)AGC各单元电路的功能与基本工作原理1.电平检测器电平检测器的功能是检测出输出信号的电平值,通常由振幅检波器实现,它的输出与输入信号电平成线性关系,其输出电压为。
2.低通滤波器环路中的低通滤波器具有非常重要的作用。
由于发射功率变化、距离远近变化、电波传播衰落等引起信号强度的变化是自动增益控制电路需要进行控制的范围,这些变化比较缓慢,而当输入为调幅信号时,调幅波的幅值变化是传递信息的有用幅值变化.这种变化不应被自动增益控制电路的控制作用减弱或抵消(此现象称为反调制),由于两类信号的变化频率不同,就可以恰当选择环路的频率响应特性,适当地选择低通滤波器的传输特性,使环路对高于某一频率的调制信号的变化无响应,而对低于这一频率的缓慢变化具有抑制作用。
3.直流放大器直流放大器将低通滤波器输出的电平值进行放大后送至电压比较器,由于电平检测器输出的电平信号的变化频率很低,例如几赫左右,所以一般均采用直流放大器进行放大。
4.电压比较器经直流放大器放大后的输出电压与给定的基准电压进行比较,输出误差信号电压,当电压比较器增益为时,服从下列关系式5.控制电压产生器控制电压产生器的功能是将误差电压变换为适合可变增益放大器需要的控制电压,这种变换可以是幅度的放大或电压极性的变换。
《高频电子线路》自动增益控制实验(AGC)
![《高频电子线路》自动增益控制实验(AGC)](https://img.taocdn.com/s3/m/16d7035e793e0912a21614791711cc7930b77869.png)
《高频电子线路》自动增益控制实验(AGC)一、实验目的1、掌握AGC工作原理。
2、掌握AGC主放大器的增益控制范围。
二、实验内容1、比较没有AGC和有AGC两种情况下输出电压的变化范围。
2、测量AGC的增益控制范围。
三、实验仪器1、1号模块 1块2、6号模块 1块3、2号模块 1块4、双踪示波器 1台四、实验原理图15-1是以MC1350作为小信号选频放大器并带有AGC的电路图,F1、F2为陶瓷滤波器(中心频率分别为4.5MHz和10.7MHz),选频放大器的输出信号通过耦合电容连接到输出插孔P4。
输出信号另一路通过检波二极管D1进入AGC反馈电路。
R14、C18为检波负载,这是一个简单的二极管包络检波器。
运算放大器U2B为直流放大器,其作用是提高控制灵敏度。
检波负载的时间常数C18•R14应远大于调制信号(音频)的一个周期,以便滤除调制信号,避免失真。
这样,控制电压是正比于载波幅度的。
时间常数过大也不好,因为那样的话,它将跟不上信号在传播过程中发生的随机变化。
跨接于运放U2B的输出端与反相输入端的电容C17,其作用是进一步滤除控制信号中的调制频率分量。
二极管D3可对U2B输出控制电压进行限幅。
W4提供比较电压,反相放大器U2A的2、3两端电位相等(虚短),等于W4提供的比较电压,只有当U2B输出的直流控制信号大于此比较电压时,U2A才能输出AGC控制电压。
图15-1 自动增益控制电路原理图(AGC)对接收机中AGC的要求是在接收机输入端的信号超过某一值后,输出信号几乎不再随输入信号的增大而增大。
根据这一要求,可以拟出实现AGC控制的方框图,如图15-2所示。
图15-2自动增益控制方框图图中,检波器将选频回路输出的高频信号变换为与高频载波幅度成比例的直流信号,经直流放大器放大后,和基准电压进行比较放大后作为接收机的增益调节电压。
不超过所设定的电压值时,直流放大器的输出电压也较小,加到比较器上的电压低于基准电压,此时环路断开,AGC电路不起控。
低频接收机自动增益控制电路的分析与设计
![低频接收机自动增益控制电路的分析与设计](https://img.taocdn.com/s3/m/c1fe29cf58f5f61fb7366618.png)
内仅 含 热噪声 和散 粒噪 声 , 由于热 噪声 和散 粒 噪声
均属 白噪声 , 因此 中频段 又称 为 白噪声 区 。
电路 而言 , 其本 级噪声 主要有 运算 放大 器 的 电压 输 入 噪声 , 电流 输 人 噪声 以及 电阻 的热 噪声 。 中 电 其
制 电路 的设 计 。
关键词 中 图分 类 号
An y i nd De i n o al s s a s g fAG e r ui o w e ue c c i e Ci c tf r Lo Fr q n y Re e v r
Zh u Zh y An Zh h n Lu u h i Ch n n in o iu io g o Ch n u e g Ha q a g
乎 不 变 。图 4中 , 通 滤波 器 的作 用是 决 定 反馈 支 低 路 的反应 速度 , 因此 , 通 滤 波 器 时 问常 数 是 整 个 低 自动增 益控 制 环路 的重 要参 数 。时 间常数 小 , 带 通 宽 , 应速 度快 , 反 即在输 入端 信 号起 伏 频 率较 高 时 , 自动增 益控 制 系统 的反 馈支 路 也 能及 时 地反 应 , 使 输 出的信 号基 本保 持 不变【 。 5 ]
收 稿 日期 :0 0 1 2 1 年 2月 1 日, 回 日期 :0 1年 1 1 5 修 21 月 4日 作 者 简 介 : 志 宇 , , 士 研 究 生 , 程 师 , 究 方 向 : 频通 信技 术 。安 志 鸿 , , 程 师 , 究 方 向 : 频 通信 技 术 。 周 男 硕 工 研 低 男 工 研 低
雷达自动增益控制电路硬件设计与实现
![雷达自动增益控制电路硬件设计与实现](https://img.taocdn.com/s3/m/c45480372f60ddccda38a01f.png)
开 发应用
雷达 自动增益控制 电路硬件设计 与实现
余 立
( 中国电子科技 集 团公 司第二十研 究所,陕西 西安 7 1 0 0 6 8) 摘 要 :雷达 自动增益控制 电路 的主要作用是对接收到的回波信 号进行增益控制 ,当回波信号弱时,接收机工作于 高增益状
态;当回波信 号强时,接收机工作于低增 益状 态。本文介绍 了一种基于 F P G A 的闭环 AG C电路 的软硬件设计 ,该 电路 一方
面作为雷达接收机 跟 中心机通信 的一个接 口,负责接收 中心机下发 的数据 ,并上传接 收机 的 自 检信息给 中心机;另一方面,
该 电路还接收 中频接收机传 输过来的中频信号 的检 波电平 , 并以此计算接 收通道的数控衰减量 ,然后将衰减量反馈给接收前
端和 中频 接 收 机 进 行 增 益 控 制 。
所有C P L D / F P G A 产 品 。基 于 Q u a r t u s I I 的C P L D / F P G A设 计 开
本 设 计 选 用 的 电源 芯 片 是 L i n e a r T e c h n o l o g y的 L T M4 6 1 5 ,该芯 片 效率 高 达 9 5 %, 可 提 供 双 路 4 ADC ( 0 . 8 V 至5 V) 以及 一 路 1 . 5 A ( 1 . 1 4 V至 3 . 5 V) 的L D O输 出 。其 输 入
为Al t e r a 公 C y c l o n e I V系列 的E P 4 C E 1 5 。 由于系统对于A D采样 的速率要求 并不高,所 以本设计
选 用 的 是A D公司 的A D9 2 2 5 。该 A D是~ 片单 通道 的1 2 位 A D,最高采样率为2 5 Ms p s ,本设计使用的采样率为5 Ms p s 。 通过改变S E N S E ̄ I 脚 、R E F C O M ̄ l 脚 、C ML 引脚 的接法可 以改变其输 入信 号的范 围。经实测 ,本设计的检波 电平输入 范围2 ~3 V,因此 ,将AD的S E N S E引脚与v I F 引脚相连, R E F C OM ̄ I 脚 接地 ,C ML 引脚 与vI N B引脚相连 ,此 时AD 的输入范围为2 . 5 V~3 . 5 V。
自动增益控制电路的设计与实现计划书
![自动增益控制电路的设计与实现计划书](https://img.taocdn.com/s3/m/2be85d8eaf1ffc4fff47acb3.png)
自动增益控制电路的设计与实现计划书1自动增益控制电路的背景与意义1.1自动增益控制电路的背景随着微电子技术、计算机网络技术和通信技术等行业的迅速发展,自动增益控制电路越来越被人们熟知并且广泛的应用到各个领域当中。
自动增益控制线路,简称AGC 电路。
它是限幅装置的一种,是利用线性放大和压缩放大的有效组合对输出信号进行调整。
当输入信号较弱时,线性放大电路工作,保证输出声信号的强度;当输入信号强度达到一定程度时,启动压缩放大电路,使声输出幅度降低,满足了对输入信号进行衰减的需要。
也就是说,AGC功能可以通过改变输入输出压缩比例自动控制增益的幅度,扩大了接收机的接受范围,它能够在输入信号幅度变化很大的情况下,使输入信号幅度保持恒定或仅在较小范围内,不至于因为输入信号太小而无法正常工作,也不至于因为输入信号太大而使接收机发生饱和或堵塞。
在电路设计中,这种线路被大量的运用,从尖端的雷达技术到日常的广播电视系统,自动增益控制无疑很好的解决了各种技术中存在的信号强度问题。
1.2自动增益控制电路的意义当输入信号电压变化很大时,保持接收机输出电压恒定或基本不变。
具体地说,当输入信号很弱时,接收机的增益大,自动增益控制电路不起作用;当输入信号很强时,自动增益控制电路进行控制,使接收机的增益减小。
这样,当接收信号强度变化时,接收机的输出端的电压或功率基本不变或保持恒定。
因此对AGC电路的要求是:在输入信号较小时,AGC电路不起作用,只有当输入信号增大到一定程度后,AGC电路才起控制作用,使增益随输入信号的增大而减少。
为实现上述要求,必须有一个能随外来信号强弱而变化的控制电压或电流信号,利用这个信号对放大器的增益自动进行控制。
由上述分析可知,调幅中频信号经幅度检波后,在它的输出中除音频信号外,还含有直流分量。
直流分量大小与中频载波的振幅成正比,也即与外来高频信号成正比。
因此,可将检波器输出的直流分量作为AGC控制信号。
2.Rb变化对Q点和电压放大倍数的影响2.1原理图图 2-12.2仿真模拟1.当Rb=3MΩ时电路图如下图2-2所示图 2-2UCEQ和Au仿真结果如下图2-3所示图 2-3 2.当Rb=3.2MΩ时电路图如下图2-4所示图 2-4 UCEQ和Au仿真结果如下图2-5所示:图 2-5 3.当信号源V1=10mv时,输出波形如下图2-6所示图 2-6 4.当信号源V1=20mv时,输出波形如下图2-7所示图 2-72.3仿真数据Rb=3MΩ和3.2MΩ时的UCEQ和Au仿真结果如下表2-1所示:表2-1 仿真数据2.4实验结论:(1)Rb增大时,ICQ减小,UCEQ增大,|Au |减小。
高性能自动增益控制_AGC_电路的设计与实现
![高性能自动增益控制_AGC_电路的设计与实现](https://img.taocdn.com/s3/m/c808a72f915f804d2b16c1d7.png)
《电测与仪表》199817总第35卷第391期高性能自动增益控制(A GC)电路的设计与实现天津大学精仪学院 张汉奇 黄战华 蔡敬忠摘要 介绍利用AD603设计的自动增益控制电路,试验结果表明:该电路增益调节范围宽,频率响应带宽高,具有良好的性能。
关键词 放大器 自动增益控制一、引 言在信号检测处理过程中,经常需要对信号电平进行调整;微弱的电信号经长线传输后,需要进行适当的补偿和校正。
自动增益控制电路在解决上述问题时具有其独特的效果。
我们利用可控增益放大器(AD603)配以适当的外围电路,用反馈控制技术实现了自动增益控制的设计电路。
该电路可广泛用于仪器仪表检测及视频信号处理等领域。
二、AD603的性能特点AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器。
带宽90MHz时增益变化范围为-11dB~+31dB;带宽为9MHz时为9dB~51dB。
增益变化范围可进行控制。
共有三种模式:(1)5脚与7脚断开时,增益变化范围为9dB~51dB;(2)5脚与7脚短接时,增益变化范围为-11dB~+31dB;(3)5脚与7脚之间接一电阻时,可使增益变化范围进行平移,例如5脚与7脚间接2115kΩ电阻时,增益变化范围为0dB~40dB。
其主要技术指标如下:信号输入电阻(3、4脚)100Ω峰值输入电压90MHz 峰值输出电压(R L≥500Ω)±3V 输出短路电流50mA 输出阻抗(f≤10MHz)2Ω增益控制精度(-015V≤V G≤+015V)±015dB增益控制输入电阻(1、2脚)50MΩ供电电压±5V(±5%)静态电流1215mA 值得注意的是:(1)在±5V电源供电时,最大信号输入为1Vrms(±114V峰—峰值);(2)信号输入阻抗为100Ω,在某些应用场合下,需要在输入端加一级缓冲器或预放大器用以阻抗匹配;(3)将两个AD603串联使用可扩展增益控制范围。
自动增益控制(AGC)放大器实现方案
![自动增益控制(AGC)放大器实现方案](https://img.taocdn.com/s3/m/8261ca5cb307e87101f6965f.png)
{
if(adval>vref_t)
dac_code++;
else
dac_code--;
D=4096/dac_code/10;//占空比
}
//DAC控制函数
void dac_spi(uint dac_code)
{
uchar n;
sync=0;
sclk=1;
for(n=0;n<16;n++)
void start_ad()
{
adwr=1;
_nop_();
adwr=0;
_nop_();
adwr=1;
}
//AD读取函数
uchar get_ad()
{
P1=0xff;
adrd=1;
_nop_();
adrd=0;
_nop_();
adval=P1;
adrd=1;
return adval;
}
//CODE处理函数
{
sclk=1;
dac_code=dac_code<<1;
sdin=CY;
sclk=0;
}
sdin=1;
sync=1;
sclk=0;
delayus(10);
}
//主函数
void main()
{
uchar ad_n;
T0_init();
vref_s=0.5;
dac_code=0x0029;
pwm=0;
——得到输出电压幅值后,将adval与设定电压幅值相比较(vref_t为转化后的值,与adval直接比较),若adval>vref_t,说明输出电压幅值应该减小,增益应该减小,相应dac_code应该增大——dac_code++;反之,dac_code--。同时通过增益计算占空比。
自动增益控制放大器电路设计
![自动增益控制放大器电路设计](https://img.taocdn.com/s3/m/61ff448427d3240c8547ef69.png)
自动增益控制放大器电路设计作者:赛前辅导教师:摘要系统由变增益放大电路,峰值检测电路,AD转换电路,控制电路组成。
可变增益电路部份以AD603为核心,信号经AD603后,经峰值检测电路检测电压峰值、以ADC0809进行AD转换。
再将信号传至AT89S52,AT89S52产生PWM波控制AD603的放大倍数。
从而实现可变增作用。
AbstractSystem consists of variable gain amplifier, peak detector circuit, AD converter circuit, control circuit. AD603 variable gain circuit section to the core, the signal by the AD603, after the peak detection circuit detects the peak voltage to the AD converter ADC0809. Then the signal transmitted AT89S52, AT89S52 generate PWM wave control AD603 magnification. Increasing role in achieving variable.一、系统方案论证与比较可变增益放大器选择方案一:利用放大器和场效应管一路组成的电路实现自动增益控制。
整个电路由包括场效应管在内的压控增益放大器,整流滤波电路,直流放大器组成,实现增益的闭环控制。
信号自输入端进入到电路中,运放A1组成压随器,作为输入级。
由运放A2组成反向放大器,其增益由场效应管的源极和漏极之间的电阻决定。
输出电压通过整流电路和滤波电路形成压控电压,加到场效应管的栅极,当压控电压发生转变时,源极和漏极之间的电阻亦发生转变,因此放大器的放大倍数也发生转变,因此当音频信号强时自动减小放大器的倍数,信号弱时自动增大放大器的倍数,从而实现音量的自动调节,达到自动增益控制的目的。
自动增益控制(AGC)
![自动增益控制(AGC)](https://img.taocdn.com/s3/m/3fe5a827bceb19e8b8f6bad0.png)
任务一自动增益控制(AGC)电路任务引入在调幅接收机接收电台信号时,由于各发射台功率有大有小,发射台离接收机得距离远近不一,无线电波传播过程中得多径效应与衰落等原因,使接收天线上感生得有用信号强度相差非常悬殊,而且往往有很大得起伏变化(约为~倍),有可能在接收微弱信号时造成某些电路(例如检波器)不能正常工作而丢失信号,而在接收强信号时造成放大电路得阻塞(非线性失真)。
为此在接收设备中几乎无例外得都必须采用自动增益控制电路,用来压缩有用信号强度得变化范围.任务分析自动增益控制(AGC)电路得作用就是能根据输入信号得电压得大小,自动调整放大器得增益,使得放大器得输出电压在一定范围内变化。
自动增益控制(AGC)电路就是无线电接收设备中得重要电路,用来保证接收幅度得稳定.它一般由电平检测器(峰值检波电路)、低通滤波器、直流放大器、电压比较器、控制电压产生器与可控增益放大器组成.其中可控增益放大器就是实现增益控制得关键.相关知识一、自动增益控制电路(AGC)得工作原理1.AGC得作用自动增益控制电路得作用,就是在输入信号幅度变化很大得情况下,自动保持输出信号幅度在很小范围内变化得一种自动控制电路.2.AGC得组成框图自动增益控制电路得组成框图如图3-5-2所示。
图3-5—2自动增益控制电路得组成框图由图可见,自动增益控制电路可以瞧成由反馈控制器与(控制)对象两部分组成,其中反馈控制器由电平检测器、低通滤波器、直流放大器、电压比较器与控制电压产生器组成,被控对象就是可控增益放大器。
可控增益放大器得输入信号就就是AGC电路得输入信号,其输出信号,其增益为增益受控制电压得控制,控制电压就是由电压比较器产生得误差电压经控制电压产生器变换后得到得,增益可写成或,它就是误差电压(或控制电压)得函数.也可以直接用误差电压控制可控增益放大器得增益。
3.AGC各单元电路得功能与基本工作原理(1)电平检测器电平检测器得功能就是检测出输出信号得电平值,通常由振幅检波器实现,它得输出与输入信号电平成线性关系,其输出电压为。
agc电路设计
![agc电路设计](https://img.taocdn.com/s3/m/5025d7ef85254b35eefdc8d376eeaeaad1f31638.png)
agc电路设计AGC电路是自动增益控制电路(Automatic Gain Control Circuit)的简称,是一种常用于电子设备中的控制电路,用于自动调节信号的增益,以保持信号的稳定性和恢复度。
本文将从AGC电路的基本原理、工作过程和应用领域等方面进行介绍。
我们来了解一下AGC电路的基本原理。
AGC电路通过不断检测输入信号的幅度变化,然后根据设定的增益范围和目标值,自动调节放大器的增益,使输出信号的幅度保持在一个稳定的范围内。
这样做的好处是,可以有效地抑制信号的干扰和失真,提高信号的恢复度和质量。
AGC电路的工作过程可以分为三个主要阶段:检测、比较和调节。
首先,输入信号经过检测电路,将信号的幅度转换为电压信号。
然后,将检测到的电压信号与设定的目标值进行比较,得到一个误差信号。
最后,根据误差信号的大小和方向,通过控制放大器的增益来调节输出信号的幅度,使其逼近目标值。
AGC电路广泛应用于各种电子设备中,尤其在无线通信系统和音频处理领域中得到了广泛的应用。
在无线通信系统中,AGC电路可以用来自动调节接收信号的增益,以适应信号强度的变化,提高通信质量和覆盖范围。
在音频处理领域中,AGC电路可以用来自动调节音频信号的增益,使音频信号的幅度保持在一个合适的范围内,避免因音量过高或过低而影响音质。
除了在无线通信系统和音频处理领域中的应用,AGC电路还可以应用于其他领域,如雷达系统、图像处理和医学设备等。
在雷达系统中,AGC电路可以用来自动调节接收信号的增益,以适应目标距离和强度的变化,提高雷达探测的精度和可靠性。
在图像处理中,AGC 电路可以用来自动调节图像的亮度和对比度,使图像显示更清晰和鲜明。
在医学设备中,AGC电路可以用来自动调节医学图像的亮度和对比度,以提供更准确的诊断结果。
总结一下,AGC电路是一种常用的控制电路,通过自动调节信号的增益,保持信号的稳定性和恢复度。
它的工作原理是通过检测、比较和调节三个阶段来实现的。
自动增益控制电路的设计与实现
![自动增益控制电路的设计与实现](https://img.taocdn.com/s3/m/b201c7d0d4bbfd0a79563c1ec5da50e2524dd18b.png)
⾃动增益控制电路的设计与实现电⼦电路综合设计实验实验5 ⾃动增益控制电路的设计与实现实验报告学院:信息与通信⼯程学院班级:姓名:学号:班内序号:⼀.课题名称:⾃动增益控制电路的设计与实现⼆.实验⽬的1.了解AGC(⾃动增益控制)的⾃适应前置放⼤器的应⽤。
2.掌握AGC电路的⼀种实现⽅法。
3.提⾼独⽴设计电路和验证实验的能⼒。
三.实验摘要在处理输⼊模拟信号时,经常会遇到通信信道或传感器衰减强度⼤幅变化的情况。
针对此问题,可以采⽤⾃动增益控制(AGC)的⾃适应前置放⼤器,使增益能够随信号强弱⽽⾃动调整,以保持输出相对稳定。
AGC电路实现有反馈控制、前馈控制和混合控制三种,本实验采⽤了短路双极晶体管直接进⾏⼩信号控制的⽅法,控制输⼊信号在0.5mV~50Vrms范围(40dB 范围内),使输出信号在0.5~1.5Vrms,即输出电压变化不超过5dB,信号带宽100~5KHz,从⽽简单有效地实现了AGC的功能。
关键词:⾃动增益控制反馈控制直流耦合互补级倍压整流四.设计任务要求1.基本要求:1)设计⼀个AGC电路,要求设计指标以及给定条件为:·输⼊信号:0.5~50mVrms;·输出信号:0.5~1.5Vrms;·信号带宽:100~5KHz。
2)设计该电路的电源电路(不要求实际搭建),⽤PROTEL软件绘制完整的电路原理图及印制电路版图。
2.提⾼要求:设计⼀种采⽤其他⽅式的AGC电路。
五.设计思路和总体结构框图1.设计思路AGC电路的实现有反馈控制、前馈控制和混合控制等三种,典型的反馈控制AGC由可变增益放⼤器(VGA)以及检波整流控制组成,本实验中电路采⽤了短路双极晶体管直接进⾏⼩信号控制的⽅法,从⽽简单⽽有效的实现AGC功能,如图1。
图1-反馈式AGC如图2,可变分压器由⼀个固定电阻R1和⼀个可变电阻构成,控制信号的交流振幅。
可变电阻由采⽤基极—集电极短路⽅式的双极晶体管微分电阻实现,为改变Q1的电阻,可从⼀个有电压源V2和⼤阻值电阻R2组成的电流源直接向短路晶体管注⼊电流。
麦克放大器自动增益控制电路的设计
![麦克放大器自动增益控制电路的设计](https://img.taocdn.com/s3/m/b04d0a0a53d380eb6294dd88d0d233d4b14e3f6e.png)
2020年4月a m HJo u rn al o f G reen Science and T ech n o lo gy第8期麦克放大器自动增益控制电路的设计郎文飞,李娜(焦作大学机电工程学院,河南焦作454000)摘要:指出了随着A I 应用快速进入现代人的生活,智能语音控制技术正迅速成为当代的一个技术热点,产 品遍及儿童学习、智能音箱、会议系统、教育培训等。
智能语音控制技术关键是语音的采集和识别,语音识 别是在云端完成,而语音的采集在当地完成,所以麦克放大电路就是采集的前端。
实际情况中,人的声音 有大有小、离麦克的距离有近有远。
麦克(M IC )放大电路的自动增益控制(A G C )就非常重要和有必要,为 此,给出了麦克放大器自动增益控制电路的设计,并进行了实物测试,以供参考。
关键词:M I C ;A M P ;A G C ;A I ;智能语音控制中图分类号:T N 912文献标识码:A文章编号:1674-9944(2020)8-0173-021引言人类能够听到的音频范围是20 H z 〜20 k H z ,但讲话的音频范围是〇. 3〜3 k H z ,在A I 领域智能语音控制 对音频的研究范围就是〇. 3〜3k H z[1~«。
因此麦克放 大器自动增益控制电路设计的频率范围也就是0. 3〜 3 k H z 。
麦克在获取语音信号之后,就将一个模拟的声音信 号转换成一个变化规律相同的电信号,完成第一步数据 采集的的任务。
但是,采集过来的语音信号电平有时会 很大,有时会很小或者有突变;电平太大,信号会阻塞、 失真,谐波和噪声会加大,影响通话。
需要将信号的放 大倍数减小,以获取一个电平正常的值,保证正常通话。
电平太小,会听不清或听不到通话,就需要进行适当地 放大,以获取一个正常的电平值,保证正常通话。
要解 决上述两个问题,就必须对咪头采集的信号进行自动增 益补偿:将小信号进行较大的放大,将大信号进行较小的放大,对其电平值进行限制。
QAM接收机自动增益控制电路的设计
![QAM接收机自动增益控制电路的设计](https://img.taocdn.com/s3/m/3fffb6fdba0d4a7302763a1e.png)
常工作 也不至 于因为鞫人信 号太大而使接 收机溢出 出现 错 误。 自动增 益控制电路 的控制下 . 在 整个 系统的性能能够 得以保证 . 使得 下一级电路能 够在正常 的状 态下工作 . 以 所 自动增益控 制电路在接收机 中具有 相当重要的地位 本文提 出一套完 整的自动增益控制 的实现 方案 包括模拟部分 的硬 件电路设计 以及用 F GA实现 自动增益 控制的方法 , P
J
‘
要 对数 据 进 行截 位就 可 以 实现 除法 电路
一
~
燕值的符 —
’ i
设 初值
节 省 系 统 资 源 。 的 设 置 可 以 控 制 低 通 滤 波 a
糊
电
~
一
一
一
器 跟踪输入信 号变化 的速度 .a 大 ,跟踪 越 越 慢 ,但 是 稳 态 的波 动 较 小 ;a 小 ,跟 踪 越 越快 ,稳态 波动越大 。
田
I 技 世
术
样下来数据送入 F G 然后 检测信号的平 PA 均 电平 并将信 号的平均 电平与参 考电平相 减 把 差值送入 A GC智能控 制模 块 . GC 由A 智能 控制模块来控制最终输 出P WM 信号的 占空比 然后将输 出的 P WM 信号过一个模
拟 低 通 滤 波 滤 除 高 频 分 量 就 可 以产 生 直
,改 a A 力 } ……l …
流控制电压。
一
, ●、 、
. 一
_
…
一、 /
i
b. ‘r 、J rf l
{ : 二 l
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子科技大学
课程设计报告
学生姓名:学号:指导教师:
一、课程名称:模拟电路基础
二、课程设计名称:自动增益控制电路
三、课程设计目的:
运用所学的模电知识,设计一个自动增益控制电路,输入电压为正弦波,当其幅值由于某种原因产生变化时,增益产生相应变化,使得输出电压幅值基本不变。
四、课程设计内容:
设计方案及原理框图:
这个电路的第一部分是模拟乘法器;第二部分是由1A,1R,2R和
R构成的同相比例运算电路,其输出为整个电路的输出;第三部分8
是由2A ,4R ,2D 构成的精密整流电阻;第四部分是由3A ,5R 和C 构成的有源滤波电路;第五部分是由4A ,6R 和7R 构成的差分放大电路。
4A 的输出电压4O u 作为模拟乘法器的输入,与输出电压I u 相乘,因此引入了反馈,是一个闭环系统。
下面对各部分分别介绍:
(1).模拟乘法器
根据所学知识,模拟乘法器的输出电压:04101U kU U kU U Y X ==
(2).同相比例放大器放大器输出电压为011201U R R U ⎪⎭
⎫ ⎝⎛+= 设43R R =,则精密电阻的输出电压有一下关系
当00>U 002=U ;当00<U 002U U -=;所以它为半波整流电路。
(3).有源滤波器电压放大倍数⎪⎭⎫ ⎝
⎛=+==C R f f f j U U A H
u 502032111π 可见电路为低通滤波电路,当参数选择合理,可使输出电压为直流,且正比于0U
(4).差分放大电路输出电压()()034036
704U U A U U R R U REF u REF -=-=,所以输出正比于基准电压REF U 和03U 的差值。
五、课程设计步骤:
按照这个框图,Multisim设计的电路图如下:
六、仿真数据及结果分析:
用正弦波做激励信号
在正弦波上叠加小信号时的实验结果
由实验结果可以看出,该电路有自动调节增益的功能。
输入信号的轻微扰动并不影响输出信号。
原理分析:
当1U 幅值增大,则o U 也随之增大,03U 必然增大,
导致()03U U REF -减小,从而0U 减小,若1U 幅值减小,则与上述过程相反,在参数合适的情况下,在一定频率范围内,这个电路就有自动调节增益的作用。
七、课程设计结论:
本次课程设计设计了一个自动增益控制电路,用Multisim 仿真,达到预期效果。
八、总结及心得体会:
通过这次课程设计,使我运用Multisim 仿真更加娴熟,也更加加深了对于模电相应知识的了解和运用,收获匪浅。