小学思维数学讲义:容斥原理之最值问题-带详解
三年级上册数学奥数课件-容斥原理 人教版(共22张PPT)
练习一
1,五年级有122名学生参加语文、数学考试,每 人至少有一门功课取得优秀成绩。其中语文成绩 优秀的有65人,数学优秀的有87人。语文、数学 都优秀的有多少人?
2,四年级一班有54人,订阅《小学生优秀作文》 和《数学大世界》两种读物的有13人,订《小学 生优秀作文》的有45人,每人至少订一种读物, 订《数学大世界》的有多少人?
共79人
小品类 46人
曲艺类 39人
?人
46+39-79=6(人)
答:两项节目都参加的有6人。
重复部分=各部分之和-总体
拓展2、共有男生53人,分别参加了唱歌和跳舞
节目。已知参加唱歌的有33人,两样都参加的有 20人。问参加跳舞的有多少人?
共53人
唱歌33 人
20人
跳舞
?人
53-33+20=40(人)
2,一个班有55名学生,订阅《小学生数学报》的有32 人,订阅《中国少年报》的有29人,两种报纸都订阅 的有25人。两种报纸都没有订阅的有多少人?
3,某校选出50名学生参加区作文比赛和数学比赛,结 果3人两项比赛都获奖了,有27人两项比赛都没有获奖。 已知作文比赛获奖的有14人,问数学比赛获奖的有多 少人?
3,三年级一班参加合唱队的有40人,参加舞蹈队的 有20人,既参加合唱队又参加舞蹈队的有14人。这两 队都没有参加的有10人。请算一算,这个班共有多少 人?
例3、某班有56人,参加语文竞赛的有28人, 参加数学竞赛的有27人,如果两科都没有 参加的有25人,那么同时参加语文、数学 两科竞赛的有多少人?
练习三
1,一个旅行社有36人,其中会英语的有24人,会法 语的有18人,两样都不会的有4人。两样都会的有多 少人?
(完整版)小学奥数-容斥原理(教师版)(可编辑修改word版)
容斥原理森林中住着很多动物,据说狮子大王派仙鹤去统计鸟类的种数,蝙蝠跑过去对仙鹤说;“我有翅膀,我应该是属于鸟类的。
”于是仙鹤就把蝙蝠统计到鸟类的种类里去了,结果得出森林中一共有 80 种鸟类。
狮子大王又派大象去统计野兽的种类数,蝙蝠听说又来统计兽类了,急忙跑过去对大象说;“我没有羽毛,我应该是属于兽类的。
”于是大象就把蝙蝠统计到兽类的种类里去了,结果统计出森林中一共有 60 种兽类。
最后狮子大王问:“森林中共有鸟类和兽类多少种?”狡猾的狐狸听见了仙鹤和大象的统计结果,高兴地向狮子大王汇报:“这还不简单!森林中共有鸟类和兽类 140 种。
”这个统计正确吗?同学们肯定会说:“不对!蝙蝠被算了两次,应该再减去一,是 139 种。
”这个故事说明了一个数学问题,那就是被称为“容斥原理”的包含与排除问题。
当需要计数的两类事物互相包含(有部分重复交叉)时,应把重复计数的部分排除掉。
由此我们得到逐步排除法(容斥原理):当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分。
容斥原理 1如果被计数的事物有 A、B 两类,那么, A 类 B 类元素个数总和= 属于 A 类元素个数+ 属于 B 类元素个数—既是 A 类又是 B 类的元素个数。
即A∪B = A+B - A∩B容斥原理 2如果被计数的事物有 A、B、C 三类,那么, A 类和 B 类和 C 类元素个数总和= A 类元素个数+ B 类元素个数+C 类元素个数—既是 A 类又是 B 类的元素个数—既是 A 类又是 C 类的元素个数—既是 B 类又是 C 类的元素个数+既是 A 类又是 B 类而且是 C 类的元素个数。
即A∪B∪C = A+B+C - A∩B - B∩C - C∩A +A∩B∩C容斥原理 1【例 1】★一次期末考试,某班有 15 人数学得满分,有 12 人语文得满分,并且有 4 人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?【解析】依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A 类元素”,“语文得满分”称为“B 类元素”,“语、数都是满分”称为“既是 A 类又是 B 类的元素”,“至少有一门得满分的同学”称为“A 类和 B 类元素个数”的总和。
容斥原理之最值问题
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集AB 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分AB 计算了2次,多加了1次;在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
每个年级12道题,并且至少有8道题与其他各年级都不同。
容斥极值求最小值的原理
容斥极值求最小值的原理容斥原理是组合数学中的一种计数方法,用来解决多个集合的交集与并集的问题。
容斥极值求最小值则是在容斥原理基础上,通过一个极值问题来求满足条件的最小值。
容斥原理的基本思想是通过减去两两集合的交集的办法计算多个集合的并集。
具体而言,对于n个集合A1,A2,...,An,它们的并集的元素个数为:A1∪A2∪...∪An,=,A1,+,A2,+...+,An,-,A1∩A2,-,A1∩A3,-...-,An-1∩An,+,A1∩A2∩A3,+...+(-1)^(n-1),An-1∩An∩An+1,+...+(-1)^n,A1∩A2∩...∩Anmin ,B,, subject to B∩Ai = Bi , 1≤ i ≤ n其中,Ai代表集合A中的元素,Bi代表集合B中与集合Ai相交的元素。
为了实现求最小值,我们可以利用容斥原理的补集性质,将问题转化为求最大值问题。
具体而言,我们定义一个新的集合C,使得:C=A1∪A2∪...∪An-B则有:C,=,A1∪A2∪...∪An,-,B进一步,我们可以用集合C的元素个数来表示集合B的元素个数:B,=,A1∪A2∪...∪An,-,C这样,原问题就转化为了求集合C的最大值,即求解:max ,C,, subject to C∩Ai = Ci , 1≤ i ≤ n其中,Ci代表集合C中与集合Ai相交的元素。
接下来,我们可以利用容斥原理的求最大值性质,通过开辟额外的集合来求出集合C的最大值。
具体而言,我们定义一个新的集合D,使得:D=A1∩A2∩...∩An-C则有:D,=,A1∩A2∩...∩An,-,C进一步,我们可以用集合D的元素个数来表示集合C的元素个数:C,=,A1∩A2∩...∩An,-,D这样,原问题就转化为了求集合D的最小值,即求解:min ,D,, subject to D∩Ai = Di , 1≤ i ≤ n其中,Di代表集合D中与集合Ai相交的元素。
五年级奥数学习之容斥原理(彩色版_含解答)
例题 4
培英学校有学生 1000 人, 其中 500 人订阅了 《中国少年报》 ,
,250 人订阅了《数学报》 ,至少订阅两种报刊的 350 人订阅了《少年文艺》 有 400 人, 订阅了三种报刊的有 100 人. 请问: 这个学校有多少人没有订报?
32
容斥原理
课 本
ᄯڳભͱ ķ ĺ ļ Ĺ ༰ͱ ľ
爱喝茶,10 个人爱喝咖啡,那能不能就说办公室里有 17 个人呢?显然不能,因为可能 有一些人既爱喝茶也爱喝咖啡,如果直接将喝茶的人数和喝咖啡的人数相加,会把既爱 喝茶又爱喝咖啡的人计算 2 次(如上图所示) ,计算人数的时候要把这一部分减去才行. 比如,如果有 3 个人既爱喝茶又爱喝咖啡,那总的人数就应该是 7 + 10 − 3 = 14 人. 这就是我们今天要来研究的问题——有重叠的计数问题,即包含与排除问题.研究 这种问题通常需要画出示意图(如喝茶与喝咖啡的图) ,这样的示意图又叫做文氏图,下 面我们就用文氏图推导两个对象的容斥原理公式. 如右图所示,如果要计算三个部分的总数,直接计算 A+B 就会算多了,而多算的正好是③部分,只要把多算的减掉就可 以了.上述分析总结成公式就是:
怎么理解这个公式呢?我们还是利用文氏图来说明. 如图,我们在计算 A + B + C 时,有一些部分被重复计算了: ④、⑤、⑥被计算了两次,而⑦被计算了三次.因此我们需要 把重复计算的去掉.需要注意的是,去掉 A、B 重叠,B、C 重 叠和 A、C 重叠的部分后,④、⑤、⑥重复计算的一次去掉了, B 但⑦被去掉了三次,还需要补上一次,这就得到了上面的公式.
ڈᆐࢴ ڈᆐఅ
28
容斥原理
课 本
̙ׅ۟ԅఆ
(小学奥数)容斥原理之最值问题
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-5.容斥原理之最值問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 “走美”主試委員會為三~八年級準備決賽試題。
2020年部编版小学奥数容斥原理之最值问题
小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.知识要点教学目标7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
专题22容斥原理(解析)2
20222023学年小学五年级思维拓展举一反三精编讲义专题22 容斥原理专题简析:集合是指具有某种属性的事物的全体,它是数学中的最基本的概念之一。
如某班全体学生可以看作是一个集合,0、1、2、3、4、5、6、7、8、9便组成一个数字集合。
组成集合的每个事物称为这个集合的元素。
如某班全体学生组成一个集合,每一个学生都是这个集合的元素,数字集合中有10个元素。
两个集合中可以做加法运算,把两个集合A 、B 合并在一起,就组成了一个新的集合C 。
计算集合C 的元素的个数的思考方法主要是包含与排除:先把A 、B 的一切元素都“包含”进来加在一起,再“排除”A 、B 两集合的公共元素的个数,减去加了两次的元素,即:C=A +B -AB 。
在解包含与排除问题时,要善于使用形象的图示帮助理解题意,搞清数量关系的逻辑关系。
有些语言不易表达清楚的关系,用了适当的图形就显得很直观、很清楚,因而容易进行计算。
【典例分析01】五年级96名学生都订了报纸,有64人订了少年报,有48人订了小学生报。
两种报纸都订的有多少人?【思路引导】用左边的圆表示订少年报的64人,右边的圆表示订小学报的48人,中间重叠部分表示两种报刊都订的人数。
显然,两种报刊都订的人数被统计了两次:64+48=112人,知识精讲典例分析比总人数多112-96=16人,这16人就是两种报刊都订的人数。
【典例分析02】某校教师至少懂得英语和日语中的一种语言。
已知有35人懂英语,34人懂日语,两种语言都懂的有21人。
这个学校共有多少名教师?【思路引导】把懂英语和懂日语的人数加起来得35+34=69人,但是,两种语言都懂的21人被统计过两次,应该从69里去掉一个21才能得出这个地区外语教师的总人数:69-21=48人。
【典例分析03】学校开展课外活动,共有250人参加。
其中参加象棋组和乒乓球组的同学不同时活动,参加象棋组的有83人,参加乒乓球组的有86人,这两个小组都参加的有25人。
四年级数学思维能力拓展专题突破系列(十八)容斥原理讲义(含答案)
四年级数学思维能力拓展专题突破系列(十八)容斥原理------容斥原理基础(1)1、了解容斥原理二量重叠和三量重叠的内容。
2、掌握容斥原理在组合计数等各个方面的应用。
1、掌握容斥原理的概念。
2、熟记二元容斥原理。
例题1:实验小学四年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有29人,有12人两个小组都参加。
这个班有多少个人参加了语文或数学兴趣小组?例题2:某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了。
这个班既没参加美术小组也没参加音乐小组的有多少个人?例题3:某次英语考试由两部分组成,结果全班有12人得满分,第一部分有25人做对,第二部分有19人有错,问两部分都有错的有多少个人?例题4:在一根长30厘米的木棍上,从它的两端开始做标记,从左端开始每隔3厘米做一个标记,从右端开始每隔5厘米做一个标记。
那么木棍上共有多少个标记?例题5:某校参加数学竞赛有120名男生,80名女生。
参加语文竞赛有120名女生,80名男生。
已知该校总共有260名学生参加了竞赛,其中有75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生人数是多少名?(即是该课程的课后测试)练习1:芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少人?练习2:四(二)班有48名学生,在一节自习课上,写完语文作业的有30人,写完数学作业的有20人,语文数学都没写完的有6人。
⑴问语文数学都写完的有多少人?⑵只写完语文作业的有多少人?练习3:四年级一班有45人,其中26人参加了数学竞赛,22人参加了作文比赛,12人两项比赛都参加了.一班有多少人两项比赛都没有参加?练习4:实验二校一个歌舞表演队里,能表演独唱的有10人,能表演跳舞的有18人,两种都能表演的有7人.这个表演队共有多少人能登台表演歌舞?练习5:对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人.这个班一共有多少人?练习1:解析:如图,C BAA圆表示学画画的人,B圆表示学钢琴的人,C表示既学钢琴又学画画的人,图中A圆不含阴影的部分表示只学画画的人,有:43376-=(人),图中B圆不含阴影的部分表示只学钢琴的人,有:583721-=(人)。
实用的计数原理之容斥原理(内含大量实例和详细分析)
在计数时,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
容斥原理(1)如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+ B类元素个数—既是A类又是B类的元素个数。
例1 、一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。
试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电脑的有34人,二者都有的有27人,这个班有学生多少人?(并说一说你的想法。
)容斥原理(2)如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。
例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?分析:仿照例1的分析,你能先说一说吗?例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。
我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。
(精品)小学奥数7-7-5 容斥原理之最值问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。
部编版数学五年级暑假第13讲.容斥原理.超常体系
第13讲四年级春季排列组合初步五年级暑假枚举法进阶五年级暑假容斥原理五年级秋季排列组合进阶五年级秋季几何计数进阶两量容斥原理,三量容斥原理,容斥原理中的最值问题漫画释义知识站牌容斥,从字面上理解就是“包容”与“排斥”。
为了计算几种物体的总个数,首先计算所有包容了的物体个数,但包含多了(出现重叠对象),又要排斥某些物体,当排斥多了,又要包容若干物体……,如此继续下去,最终就可以得到我们所要求的物体个数。
容斥原理所体现的这种数学思想就是一种“多退少补,逐步淘汰”的取舍思想。
也许这样说比较枯燥,如果用图形和符号来研究这些问题就比较直观了,那么我们就用图形和符号这两个“拐杖”来学习容斥原理,借用教育家苏荷姆林斯基的一句名言来说:“用直观来照亮我们认识的路途!”1.熟练掌握两量容斥原理并处理两量最值问题;2.会利用容斥原理处理三量重叠及最值问题;3.会利用方程解决较复杂的容斥问题.容斥原理容斥原理I :两量重叠问题A B A B A B =+- (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ ”读作“交”,相当于中文“且"的意思.)图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即容斥原理II :三量重叠问题A B C A B C A B B C A C A B C=++---+ 图示如下:经典精讲课堂引入教学目标第13讲C A B AC B BA C 模块1:两量的容斥例1-3例1:两量容斥例2:容斥最值(利用线段图)例3:容斥最值(需要判断)模块2:三量容斥例4:截长度例5:开关灯例6:容斥最值(浇花,答题)模块3:容斥综合例7:普通方程解容斥例8:不定方程解容斥在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支?【分析】1~100,2的倍数有1002⎡⎤⎢⎥⎣⎦=50,3的倍数有1003⎡⎤⎢⎣⎦=33个,因为既是2的倍数,又是3的倍数的数一定是6的倍数,所以标签为这样的数有1006⎡⎤⎢⎥⎣⎦=16个.于是,既不是2的倍数,例题思路又不是3的倍数的数在1~100中有100-50-33+16=33.所以,游艺会为该项活动准备的奖品铅笔共有:50×2+33×3+33×1=232支.(1)有100种食品.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是____、_____.(2)某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班三项运动都会的人数的最大值和最小值分别是____、_____.(3)某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,那么,这个班四项运动都会的人数的最大值和最小值分别是____、_____.(4)在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,那么,恰好被3个人浇过的花最少有____盆.(5)60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,那么,这三项运动都不会的最多有___人.(6)甲、乙、丙都在读同一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么,甲、乙、丙3人共同读过的故事最少有____个.【分析】最大值不能超过几类中的最小值;而求最小值,则应该让次数平均分配.(1)最大值就是含铁的有43种.根据容斥原理最小值68+43-100=11,最小值可以用下图表示:(2)最大值为27.三项都会的最少,那么两项都会的应该最多.因此可以先让所有人都会两项.剩下的就是三项都会的最小值.27+33+40-48×2=4(3)同上分析:最大值为27,最小值为40+38+35+27-46×3=140-138=2人(4)为了恰好被3个人浇过的花盆数量最少,那么被四个人浇过的花、两个人浇过的花数量都要尽量多,那么应该可以知道被四个人浇过的花数量最多是30盆,那么接下来就变成乙浇了45盆,丙浇了50盆,丁浇60盆了,这时共有1003070-=盆花,我们要让这70盆中恰好被3个人浇过的花最少,这就是简单的容斥原理了,恰好被3个人浇过的花最少有45506070215++-⨯=盆.(5)2346040;6045;6048345⨯=⨯=⨯=.此题中有22人三项全会,要让都不会的最多,那么会两项的就应该最多.(40+45+48-22×3)÷2=33…1.因此除了22人外,至少还有34人会2项或1项运动.都不会的最多有60-22-34=4人.(6)考虑甲乙两人情况,有甲乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.第13讲(1)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有11人,每人最多参加两科,那么至少有人参加这次竞赛.(2)某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有人.(3)参加语文竞赛的有8人,参加数学竞赛的有9人,参加英语竞赛的有21人,每人最多参加两科,那么至少有人参加这次竞赛.【分析】此类问题算出最值后,一定要检验是否能办到.原因可见(3)小题.(1)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8911)214++÷=人参加竞赛,1495-=,14113-=,参加语文和英语竞赛的有5人,参加语文和数学竞赛的有3人,参加数学和英语竞赛的有6人,符合题意,因此至少有14人参加竞赛(2)根据题意可知,该班参加竞赛的共有28232071++=人次.由于每人最多参加2科,也就是说有参加2科的,有参加1科的,也有不参加的,共是71人次.要求参加2科的人数最多,则让这71人次尽可能多地重复,而712351÷= ,所以至多有35人参加2科,此时还有1人参加1科.那么是否存在35人参加两科的情况呢?由于此时还有1人是只参加一科的,假设这个人只参加数学一科,那么可知此时参加语文、数学两科的共有(282220)215+-÷=人,参加语文、英语两科的共有281513-=人,参加数学、英语两科的共有20137-=人.也就是说,此时全班有15人参加语文、数学两科,13人参加语文、英语两科,7人参加数学、英语2科,1人只参加数学1科,还有14人不参加.检验可知符合题设条件.所以35人是可以达到的,则参加2科的最多有35人.(当然本题中也可以假设只参加一科的参加的是语文或英语)(3)由于每人最多参加2科,也就是说有参加2科的,有参加1科的,要求参加的人最少,那么尽可能让每人都参加2科,所以理论上至少有(8921)219++÷=人参加竞赛,但参加英语竞赛的有21人,因此至少应该有21人参加竞赛.一根1001厘米长的木棒,从同一端开始,第一次每隔7厘米画一个刻度,第二次每隔11厘米画一个刻度,第三次每隔13厘米画一个刻度,如果按刻度把木棒截断,那么可以截出多少段?(学案对应:超常1,带号1)【分析】要求出截出的段数,应当先求出木棒上的刻度数,而木棒上的刻度数,相当于1、2、3、…、1000、1001这1001个自然数中7或11或13的倍数的个数,为:100110011001100110011001100128171113711713111371113⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++---+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎢⎥⨯⨯⨯⨯⨯⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,故木棒上共有281个刻度,可以截出281段.(注:此题中1001恰好是7,11,13的倍数,因此最后一个刻度不需要截.若是1002,那么刻度还是281个,但截成的是282段.)有2000盏亮着的电灯,各有一个拉线开关控制着,现按其顺序编号为1,2,3,…,2000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的灯有多少盏?棣莫弗的传奇容斥原理有一个有趣的历史,该原理最早的数学表述是有法国数学家棣莫弗在他关于概率论的教材——《机会的学说》中提出的。
六年级下册数学试题-小升初数学思维拓展第21讲 容斥原理(含答案解析)
小升初数学思维拓展第21讲 容斥原理一, 知识地图⎧⎧⎨⎪⎩⎪⎨⎧⎪⎨⎪⎩⎩⎧⎧⎪⎨⎩⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩二者关系分类三者关系容斥原理内容韦恩图内容公式算术法求总数,三项都参加,三项都不参加的方程法基本计算题型求一项参加,两项参加的--方程法求多项未知--方程法求只参加一项,只参加二项的--间接计算正方形与图形结合圆形整除最简真分数与数论知识结合与其他知识相结合平方数,立方数奇偶数三次都会最大最小最值问题会两次最大最小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎨⎪⎩⎪⎪⎩与排列组合结合电灯开关应用题型报数转身图形法其他题型表格法二,基础知识趣题导引:有一次,学而思小升初培训部进行数学和英语模拟测试,全体学员的考试成绩统计出来后,周老师在班上向同学报告所有学员的考试情况。
周老师说:“这次考试成绩比上一次有了很大的提高,说明同学们在这一段时间内非常认真地学习了学而思的课程,有我们老师的功劳,但更重要的是你们的努力,希望下一次考试可以更上一层楼。
我们全体六年级学员有1106人,其中数学成绩90分以上的有542人,英语成绩90分以上的有479人,数学和英语成绩都考90分以上的有256人,数学和英语成绩都在90分以下的有350人,希望这部分同学可以奋起直追,加倍努力,争取在下一次考试中也都可以拿到90分以上的好成绩。
”周老师的话刚说完,其中一个同学小明就举手说:“老师,您的统计数据有问题,至少有一个人数是不对的。
”周老师很从容的回答说:“没错,小明同学说得很对,确实有一个数据我故意说错的,就看大家能不能反应出来,你们知道是为什么吗?”于是大家都热烈讨论了起来,同学们,你们知道小明是如何很快又肯定的说有一个数据老师说错了吗?要想知道答案,先学好下面的内容了!(一)容斥原理介绍本章节的主要内容是解决涉及包含与排除关系的计算题与应用题,运用到的一个基本原理称为容斥原理,下面我们将容斥原理的内容介绍给大家,由于容斥原理中涉及的各部分之间的关系非常的微妙,希望同学可以仔细学习,细心体会。
小学奥数第30讲 容斥原理问题(含解题思路)
30、容斥原理问题
例1 在1至1000的自然数中,不能被5或7整除的数有______个。
(莫斯科市第四届小学数学竞赛试题)
讲析:能被5整除的数共有1000÷5=200(个);
能被7整除的数共有1000÷7=142(个)……6(个);
同时能被5和7整除的数共有1000÷35=28(个)……20(个)。
所以,能被5或7整除的数一共有(即重复了的共有):
200+142—28=314(个);
不能被5或7整除的数一共有
1000—314=686(个)。
例2 某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。
这部分学生达到优秀的项目、人数如下表:
求这个班的学生人数。
(全国第三届“华杯赛”复赛试题)
讲析:如图5.90,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。
只有篮球一项达到优秀的有
15—6—5+2=6(人);
只有游泳一项达到优秀的有
18—6—6+2=8(人);
只有短跑一项达到优秀的有
17—6—5+2=8(人)。
获得两项或者三项优秀的有
6+6+5—2×2=13(人)。
另有4人一项都没获优秀。
所以,这个班学生人数是13+6+8+8+4=39(人)。
三个集合的容斥原理最值
三个集合的容斥原理最值容斥原理(Inclusion-Exclusion Principle)是组合数学中的一个重要原理,用于计算多个集合的并、交以及其他组合问题。
它是由法国数学家Louis François Antoine Arbogast于1806年提出,并由数学家August Möbius在1831年进行了完善。
在理解容斥原理之前,我们需要了解一些基本概念。
首先,我们定义一个集合A,其元素个数为A 。
对于A的一些子集合,我们定义这些子集合的“权重”。
具体而言,如果A的子集合包含偶数个元素,则权重为正;如果包含奇数个元素,则权重为负。
通过这样的定义,我们可以将集合的并和交转换为集合的有权和与有权差。
现在,考虑三个集合A、B和C。
我们想要计算它们的并集的大小,即A ∪B ∪C 。
根据容斥原理,我们有如下公式:A ∪B ∪C = A + B + C - A ∩B - A ∩C - B ∩C + A ∩B ∩C我们可以通过这个公式计算出三个集合的并集的大小。
具体来说,在公式的右边,第一项表示A的大小,第二项表示B的大小,第三项表示C的大小。
这些项对应于每个集合的有权和。
然后,在第四项、第五项和第六项中,我们减去了两两集合的交,并将其视为有权差。
最后,在第七项中,我们通过加回三个集合的交来修正大小。
这个公式的推导可以通过Venn图来解释。
在一个Venn图中,我们将每个集合用一个圆表示,并通过它们的交来连接它们。
通过计算每个圆的大小以及相邻圆的交的大小,我们可以得到并集的大小。
通过类似的推理,我们可以计算三个集合的交集的大小,即A ∩B ∩C 。
根据容斥原理,我们有如下公式:A ∩B ∩C = A ∪B ∪C - A - B - C + A ∩B + A ∩C + B ∩C这个公式的推导和上述计算并集的方法类似,但是我们需要注意符号的不同。
在计算交集时,有权和对应于减去集合的大小,而有权差对应于加上两两集合的交。
数学五年级竞赛讲座第6讲容斥原理课件
求出|A|=100,|B|=66,|C|=40,|A∩B|=33, |A∩C|=20,|B∩C|=13,|A∩B∩C|=6, 所以|A∪B∪C|=|A|+|B|+|C|–|A∩B|–|B∩C|–
|A∩C|+|A∩B∩C|
=100+66+40–33–20–13+6=146. 这是1到200中间的自然数至少有能被2、3、 5中一个数整除的数的个数。 所以1到200的自然数中不能被2、3、5中任 何一个数整除的数有200–146=54(个)。
由题意|A|=75,|B|=83,|A∪B|=100–10=90, 根据容斥原理得 |A∩B|=|A|+|B|–|A∪B|=75+83–90=68. 答:两种语言都懂的旅客有68人。
对于任意三个有限集合A、B、C,我们可 以将上面的容斥原理推广得到如下的公式:
|A∪B∪C|=|A|+|B|+|C|–|A∩B|–|B∩C| –|A∩C|+|A∩B∩C|。
B
I
IV
II
VII
VI V
C III
而IV、V、VI部分的元素分别属于某两个集合,
第VII部分则是三个集合的交集。
由于A∪B∪C的元素分别来自集合A、B、C,
因此先计算|A|+|B|+|C|。
在这个和里,第I、II、III部分的元素只计 算了一次,而第IV、V、VI部分的元素各自计 算了两次,第VII部分的元素计算了三次。
最后由手中有红球的共有34人,手中有黄 球的共有26人,手中有篮球的共有18人,
可以填出区域I、II、III内分别填上16、7、5。
专题26 容斥原理—四年级数学思维拓展精编讲义(解析)
2022-2023学年小学四年级思维拓展举一反三精编讲义专题26 容斥原理专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n 个事物,如果采用不同的分类标准,按性质a 分类与性质b 分类(如图),那么具有性质a 或性质b 的事物的个数=N a +N b -N ab 。
【典例分析01】一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析 完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
【典例分析02】某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
Nab Nb Na 知识精讲典例分析【典例分析03】某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
【典例分析04】在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展含答案
(奥数典型题)容斥原理--2024年六年级下册小升初数学思维拓展容斥原理【知识点归纳】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数﹣既是A类又是B类的元素个数用符号可表示成:A∪B=A+B﹣A∩B(其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).容斥原理2:三量重叠问题A类、B类与C类元素个数的总和=A类元素的个数+B类元素个数+C类元素个数﹣既是A类又是B类的元素个数﹣既是B类又是C类的元素个数﹣既是A类又是C类的元素个数+同时是A类、B类、C类的元素个数.用符号表示为:A∪B∪C=A+B+C﹣A∩B﹣B∩C﹣A∩C+A∩B∩C1.三年级共有80名同学参加书法兴趣小组和美术兴趣小组,其中参加书法组的有52人,参加美术组的有48人.那么,既参加书法组又参加美术组的有多少人?2.我们班参入调查了饭后吃水果情况:30人喜欢吃苹果,27人喜欢吃梨,10人两种都喜欢,问我们班有多少人?3.同学们收集图片.张明、李红、蔡正明、王丹、熊威、高伟、梅芳7个人收集了名山图片,吴凤、李红、王丹、戴月红、高伟这5人收集了河流图片,吴心怡、张冬、李可这3人收集了奥运图片.(1)收集名山图片和奥运图片的共有多少人?(2)收集名山图片和河流图片的共有多少人?4.在校运动会上,共有30人参加跳远和跳高。
参加跳远的有18人,参加跳高的有22人,既参加跳远又参加跳高的有多少人?5.三(1)班有48人,其中订《少年报》的有32人,订《数学报》的有38人,有25人两份报都订。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标 例题精讲知识要点 1.先包含——A B + 重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +- 把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例1】“走美”主试委员会为三~八年级准备决赛试题。
每个年级12道题,并且至少有8道题与其他各年级都不同。
如果每道题出现在不同年级,最多只能出现3次。
本届活动至少要准备道决赛试题。
【考点】容斥原理之最值问题【难度】4星【题型】填空【关键词】走美杯,4年级,决赛,第9题【解析】每个年级都有自己8道题目,然后可以三至五年级共用4道题目,六到八年级共用4道题目,总共有864256⨯+⨯=(道)题目。
【答案】56题【例2】将1~13这13个数字分别填入如图所示的由四个大小相同的圆分割成的13个区域中,然后把每个圆内的7个数相加,最后把四个圆的和相加,问:和最大是多少?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】越是中间,被重复计算的越多,最中心的区域被重复计算四次,将数字按从大到小依次填写于被重复计算多的区格中,最大和为:13×4+(12+11+10+9)×3+(8+7+6+5)×2+(4+3+2+1)=240.【答案】240【例3】如图,5条同样长的线段拼成了一个五角星.如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】如下图,下图中“”位置均有两条线段通过,也就是交点,如果这些交点所对应的线段都在“”位置恰有红色点,那么在五角星上重叠的红色点最多,所以此时显现的红色点最少,有1994×5-(2-1)×10=9960个.【答案】9960【例4】某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球.那么,这个班至少有多少学生这三项运动都会?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】(法1)首先看至少有多少人会游泳、自行车两项,由于会游泳的有27人,会骑自行车的有33人,而总人数为48人,在会游泳人数和会骑自行车人数确定的情况下,两项都会的学生至少有27334812+-=人,再看会游泳、自行车以及乒乓球三项的学生人数,至少有1240484+-=人.该情况可以用线段图来构造和示意:40人33人23|24游泳自行车15|16总人数48人27人游泳27|2848|0|1(法2)设三项运动都会的人有x人,只会两项的有y人,只会一项的有z人,那么根据在统计中会n项运动的学生被统计n次的规律有以下等式:3227334048,,0x y z x y z x y z ++=++⎧⎪++≤⎨⎪≥⎩由第一条方程可得到10032z x y =--,将其代入第二条式子得到:100248x y --≤,即252x y +≥①而第二条式子还能得到式子48x y +≤,即248x y x +≤+②联立①和②得到4852x +≥,即4x ≥.可行情况构造同上.【答案】4【巩固】某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人最多参加两科,那么参加两科的最多有 人.【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 根据题意可知,该班参加竞赛的共有28232071++=人次.由于每人最多参加两科,也就是说有参加2科的,有参加1科的,也有不参加的,共是71人次.要求参加两科的人数最多,则让这71人次尽可能多地重复,而712351÷=,所以至多有35人参加两科,此时还有1人参加1科.那么是否存在35人参加两科的情况呢?由于此时还有1人是只参加一科的,假设这个人只参加数学一科,那么可知此时参加语文、数学两科的共有(282220)215+-÷=人,参加语文、英语两科的共有281513-=人,参加数学、英语两科的共有20137-=人.也就是说,此时全班有15人参加语文、数学两科,13人参加语文、英语两科,7人参加数学、英语两科,1人只参加数学1科,还有14人不参加.检验可知符合题设条件.所以35人是可以达到的,则参加两科的最多有35人.(当然本题中也可以假设只参加一科的参加的是语文或英语)【答案】35【巩固】60人中有23的人会打乒乓球,34的人会打羽毛球,45的人会打排球,这三项运动都会的人有22人,问:这三项运动都不会的最多有多少人?【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 设只会打乒乓球和羽毛球两项的人有x 人,只会打乒乓球和排球两项的有y 人,只会打羽毛球和排球两项的有z 人.由于只会三项运动中的一项的不可能小于0,所以x 、y 、z 有如下关系:()()()402204522048220x y x z y z ⎧-++≥⎪⎪-++≥⎨⎪-++≥⎪⎩将三条关系式相加,得到33x y z ++≤,而60人当中会至少一项运动的人数有()40454822256x y z ++-++-⨯≥人,所以60人当中三项都不会的人数最多4人(当x 、y 、z 分别取7、11、15时,不等式组成立).【答案】4【例 5】 图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?C丙B乙A甲【考点】容斥原理之最值问题 【难度】4星 【题型】填空【解析】 设甲借过的书组成集合A ,乙借过的书组成集合B ,丙借过的书组成集合C .A =33, B =44,C =55,A B=29,A C=25,B C=36.本题只需算出甲、乙、丙中至少有一人借过的书的最大值,再将其与100作差即可.=++---+,A B C A B C A B A C B C A B C当A B C最大时,A B C有最大值.也就是说当三人都借过的书最多时,甲、乙、丙中至少有一人借过的书最多.而A B C最大不超过A、B、C、A B、B C、A C6个数中的最小值,所以A B C 最大为25.此时A B C=33+44+55-29-25-36+25=67,即三者至少有一人借过的书最多为67本,所以这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过.【答案】33【巩固】甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了75个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】考虑甲乙两人情况,有甲乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.【答案】12【例6】某数学竞赛共160人进入决赛,决赛共四题,做对第一题的有136人,做对第二题的有125人,做对第三题的有118人,做对第四题的有104人。
在这次决赛中至少有____得满分。
【考点】容斥原理之最值问题【难度】5星【题型】填空【关键词】走美杯,5年级,决赛,第10题【解析】设得满分的人都做对3道题时得满分的人最少,有136+125+118+104-160⨯3=3(人)。
【答案】3人【例7】某班有46人,其中有40人会骑自行车,38人会打乒乓球,35人会打羽毛球,27人会游泳,则该班这四项运动都会的至少有人。
【考点】容斥原理之最值问题【难度】5星【题型】填空【关键词】希望杯,4年级,1试【解析】不会骑车的6人,不会打乒乓球的8人,不会羽毛球的11人,不会游泳的19人,那么至少不会一项的最多只有6+8+11+19=44人,那么思想都会的至少44人【答案】44人【例8】在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被3个人浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】5星【题型】填空【解析】为了恰好被3个人浇过的花盆数量最少,那么被四个人浇过的花、两个人浇过的花和一个人浇过的花数量都要尽量多,那么应该可以知道被四个人浇过的花数量最多是30盆,那么接下来就变成乙浇了45盆,丙浇了50盆,丁浇60盆了,这时共有1003070-=盆花,我们要让这70盆中恰好被3个人浇过的花最少,这就是简单的容斥原理了,恰好被3个人浇过的花最少有45506014015++-=盆.【答案】15【巩固】甲、乙、丙同时给100盆花浇水.已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】4星【题型】填空【解析】只考虑甲乙两人情况,有甲、乙都浇过的最少为:78+68-100=46盆,此时甲单独浇过的为78-46=32盆,乙单独浇过的为68-46=22盆;欲使甲、乙、丙三人都浇过的花最少时,应将丙浇过的花尽量分散在两端.于是三者都浇过花最少为58-32-22=4盆.【答案】4【巩固】在阳光明媚的一天下午,甲、乙、丙、丁四人给100盆花浇水,已知甲浇了30盆,乙浇了75盆,丙浇了80盆,丁浇了90盆,请问恰好被1个人浇过的花最少有多少盆?【考点】容斥原理之最值问题【难度】5星【题型】填空【解析】100盆花共被浇水275次,平均每盆被浇2.75次,为了让被浇1次的花多,我们也需要被浇4次的花尽量多,为30盆,那么余下70盆共被浇155次,平均每盆被浇2.21次,说明需要一些花被浇3次才可以.我们假设70盆都被浇3次,那么多出55次,每盆花少浇2次变为被浇1次最多可以变27次,所以本题答案为27盆.【答案】27。