2х600MW发电厂毕业设计论文

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键词电力系统,短路计算,设备选择,母线,高压断路器
3.5.3容量得选择…………………………………………………………………………..10
10.3500kV母线短路(k1)….…………………………….………………….………………..39
第一部分 说明书
第1章主变压器的选择
1.1容量和台数的确定
主变压器的容量、台数直接影响主接线的形式和配电装置的结构。如果变压器容量选得过大、台数过多,不仅增加投资,增大占地面积,而且也增加了运行电能损耗,设备未能充分发挥效益;若容量选得过小,将可能“封锁”发电机剩余功率的输出,这在技术上是不合理的,因为每千瓦的发电设备投资远大于每千瓦的变电设备投资。为此,必须合理地选择变压器。
(2)一个元件故障的情况
1)任何一组母线故障不影响机组和出线运行。如500kV W2母线故障时,保护动作,QF3、QF6、QF9跳闸,其他进出线能继续工作,并通过W1母线并联运行。
2)一台半断路器故障最多影响二回进出线停电。靠近母线侧断路器故障时,只影响一回线停电,如QF1故障,QF2、QF4和QF7跳闸,只影响L1出线停运。进出线之间联络断路器故障时,影响二回线停电。例如QF2故障,QF1、QF3跳闸,将使T1和L1停运。
2.3主接线方案的拟定
2.3.1发电机-变压器单元接线
600MW发电机组大都采用发电机-双绕组变压器单元接线,如图2.1所示。这种接线开关设备少,操作简便,有利于实现机、炉、电的集中控制。由于省去了高压配电装置,明显地减少了设备检修工作量,以及因不设发电机电压级母线,在发电机出口可不装断路器,而在发电机和变压器之间采用分相封闭母线,使得在发电机和变压器低压侧短路的几率和短路电流相对减小,避免了由于额定电流或短路电流过大,使得选择出口断路器时,受制造条件或价格甚高等原因造成的困难。
考虑环境条件对电气设备的影响,尤其是温度和海拔高度超过电气设备的使用条件时,应采取相应措施。由于厂址平均海拔高度为50米,一般不会超过设备额定使用高度,所以不用考虑高度对电气设备的影响;电气设备一般使用的额定环境温度为 ,而电厂所在地的年最高温度为 ,平均温度为15 ,最低温度为零下33 ,设备实际运行环境温度不会超过其额定温度,所以对一般设备不会造成影响;但裸导体的额定环境温度为 ,其允许电流必须根据实际环境温度进行修正。另外要考虑重型设备运输问题。
第2章电气主接线的设计
2.1主接线设计的要求和原则
电气主接线是发电厂电气部分的主体结构,是电力系统网络结构的重要组成部分,直接影响运行的可靠性、灵活性,并对电气设备选择、配电装置布置、继电保护、自动装置和控制方式的拟定都有决定性的关系。因此,主接线的正确、合理设计,必须综合处理各个方面的因素,经过技术、经济论证比较后方可确定。
2.灵活性
电气主接线应能适应适应运行状态,并能灵活地进行运行方式的转换。灵活性包括:操作的方便性、调度的方便性和扩建的方便性。
3.经济性
在设计主接线时,主要矛盾往往发生在可靠性与经济性之间。通常设计应在满足可靠性和灵活性的前提下做到经济合理。经济性主要考虑:节省一次投资、占地面积少和电能损耗少。
2.1.2大机组超高压主接线可靠性的特殊要求
摘 要
本毕业设计论文是2 600MW发电厂电气部分初步设计。全论文除了摘要、毕业设计书之外,还详细的说明了各种设备选择的最基本的要求和原则依据。 变压器的选择包括:发电厂主变压器、高压备用变压器及高压厂用变压器的台数、容量、型号等主要技术数据的确定;电气主接线主要介绍了电气主接线的重要性、设计依据、基本要求、各种接线形式的优缺点以及主接线的比较选择,并制定了适合本厂要求的主接线; 厂用电接线包括:厂用电接线的总要求以及厂用母线接线设计。短路电流计算是最重要的环节,本论文详细的介绍了短路电流计算的目的、假定条件、一般规定、元件参数的计算、网络变换、以及各短路点的计算等知识; 高压电气设备的选择包括母线、高压断路器、隔离开关、电流互感器、电压互感器、高压开关柜的选择原则和要求,并对这些设备进行校验和产品相关介绍 。而根据本论文所介绍的高压配电装置的设计原则、要求和500KV的配电装置,决定此次设计对本厂采用分相中型布置。继电保护和自动装置的规划,包括总则、自动装置、一般规定和发电机、变压器、母线等设备的保护, 而发电厂和变电所的防雷保护则主要针对避雷针和避雷器的设计。此外,在论文适当的位置还附加了图纸(主接线、平面图、防雷保护等)及表格以方便阅读、理解和应用。
2.3.2 500KV电压母线接线
1.双母线四分段接线
双母线四分段(双母双分段)接线方式如图2.2所示。由于随着断路器制造质量的提高,旁路母线的应用已逐渐减少,按规定采用SF6断路器的主接线不宜增设旁路设施。双母线四分段接线具有如下优点:
(1)母线可以轮流检修而不致使供电中断。当一组母线检修时,可将该组母线上的电源和负荷切换到另一组母线上运行。
电力变压器按每相的绕组数分为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂式等型式。
容量为200MW以上大机组都采用与双绕组变压器成单元接线,而不于三绕组变压器组成单元接线。这是由于机组容量大,其额定电流及短路电流都很大,发电机出口断路器制造困难,价格昂贵,且对供电可靠性要求较高,所以,一般在发电机回路及厂用分支回路均采用分相封闭母线,而封闭母线回路中一般不装高断路器和隔离开关。
1.2.3绕组接线组别
变压器三相绕组的接线组别必须和系统电压相位一致,否则不能并列运行。电力系统采用的绕组连接方式只有星形“Y”和三角形“d”两种。而在发电厂中,一般考虑系统或机组的同步并列要求以及限制3次谐波对电源的影响等因素,主变压器接线组别一般都选用YN,d11常规接线。
全星形接线变压器用于中性点不接地系统时,3次谐波无通路,将引起正弦波电压畸变,并对通信设备发生干扰,同时对继电保护整定的准确度和灵敏度均有影响。在我国,全星形接线变压器均为自耦变压器,电压变比多为220/110/35、330/220/35、330/110/35、500/220/110kV,由于500、330、220、110kV均系中性点直接接地系统,系统的零序阻抗较小,所以自耦变压器设置三角形绕组用以对线路3次谐波的分流作用已显得不十分必要。
通常发电厂主变压器中很少采用有载调压,因为可以通过调节发电机励磁来实现调节电压,一般均采用无激磁调压。
1.2.5冷却方法
电力变压器的冷却方式随变压器型式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。大容量变压器一般采用强迫油循环风冷却,在发电厂水源充足的情况下,为压缩占地面积,也可采用强迫油循环水冷却。强迫油循环水冷却的散热效率高,节省材料,减小变压器本体尺寸,但要一套水冷却系统和有关附件,在冷却器中,油与水不是直接接触,在设计时和运行中,以防止万一产生泄漏时,水不至于进入变压器内,严重地影响油的绝缘性能,故对冷却器的密封性能要求较高。
图2.2 双母线四分段接线
双母线四分段接线也存在缺点:当母线故障或检修时,隔离开关作为倒换操作电器,倒闸操作比较复杂,容易造成误操作。由于双母线四分段接线具有较高的可靠性,而且运行经验也比较丰富,所以可用于500kV系统。
2.一台半断路器接线
一台半断路器(3/2)接线是600MW机组电压母线广泛采用的接线形式,不但兼有及环形接线的全部优点,而且可靠性和灵活性更高。另外与双母线四分段接线相比,隔离开关少,配电装置结构简单,占地面积小,土建投资少,隔离开关也不用参加倒闸操作,减少了因误操作引起事故的可能性。但由于每一回路包含2个断路器,进出线故障将引起2个断路器动作,增加了断路器的维护工作量。
如图2.3所示,一台半断路器采用交叉布置的方式,即将同名回路交叉布置在不同串中的不同母线侧,可避免同名回路全部停运的现象。主变压器与500kV的配电装置之间常采用干式电缆连接,不会增加间隔布置的困难,反而提高了供电可靠性。
图2.3一台半断路器接线
一台半断路器可靠性定性分析:
来自百度文库(1)元件检修的情况
任何一组母线或一台断路器检修需退出工作时都不会影响机组运行。例如:500kV W1母线检修,只要断开QF1、QF4、QF7、QS12、QS42、QS72等即可,不影响供电,并可以检修W1母线上的SQ11、QS41、QS71等母线隔离。QF1检修时,只需断开QF1及QS11、QS12即可。
任何断路器检修,不影响对系统的连续供电;任何一进出线断路器故障或拒动以及母线故障,不应切除一台以上机组和相应的线路;任何一台断路器检修和另一台断路器故障或拒动相重合、以及当母线分段或母线联络断路器故障或拒动时,不应切除两台以上机组和相应的线路。
2.1.3主接线设计的原则
根据发电厂在电力系统中的地位和作用,首先应满足电力系统的可靠运行和经济调度的要求。根据规划容量、输送电压等级、进出线回路数,供电负荷的重要性、保证供需平衡、电力系统线路容量、电气设备性能和周围环境等条件确定。应满足可靠性、灵活性和经济性的要求。
2.2原始资料分析
本次设计的凝汽式发电厂,装机容量为2 600MW,属大型发电厂,在系统中有举足轻重的地位,供电容量大、范围广,发生事故可能使系统运行稳定遭到破坏,甚至瓦解,造成巨大损失,又因为高电压、大电流对电器设备又有特殊的要求,所以必须采用供电可靠性高、调度灵活的接线形式,并要进行定性分析。以最大限度的避免由于主接线结构引起的局部限出力、限送电。
采用单相变压器时,由于备用单相变压器一次性投资大,利用率不高,故应综合考虑系统要求、设备质量以及按变压器故障率引起的停电损失费用等因素,确定是否装设备用单相变压器。若确需装设,可按地区(运输条件允许)或同一电厂3~4组的单相变压器(容量、变比与阻抗均相同),合设一台备用单相变压器考虑。
1.2.2绕组数与结构
对单元接线的变压器,其容量应按发电机的额定容量扣除本机组的厂用负荷后,留有 的裕度来确定,即
(1.1)
式中 ——变压器的计算容量,kV·A;
——发电机的额定功率,kW;
——发电厂的厂用电率,%;
——发电机的功率因数。
1.2型式和结构的选择
1.2.1相数
主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。由于大型变压器随着容量的增大,尺寸和重量也增大。所以当发电厂与系统连接的电压等级为500kV时,600MW机组单元连接的主变压器综合考虑运输和制造条件,经技术经济比较,可采用单相组成的三相变压器。
2.1.1主接线设计的基本要求
1.可靠性
定量分析主接线的可靠性时,考虑发电厂在系统中的地位和作用、用户的负荷性质和类别、设备制造水平及运行经验等诸多因素。
定性分析主接线的可靠性考虑:断路器检修时,能否不影响供电;线路、断路器或母线故障时以及母线或母线隔离开关检修时,停运出线回路数的多少和停电时间的长短,以及能否保证对I、II类负荷的供电;发电厂或变电站全部停电的可能性;大型机组突然停运时,对电力系统稳定运行的影响与后果等因素。
(4)运行中如一段母线故障,可将故障母线上的负荷和电源,倒到正常母线上运行,能迅速恢复供电。
(5)高度灵活。各电源和负荷可以任意在一组母线上运行,并可根据潮流变化或其它要求改变运行方式。
(6)扩建方便。向双母线左右任何方向扩建,均不会影响两组母线的电源和负荷自由组合分配,在施工中也不会造成原有回路停电。
1.2.4调压方式
调压是通过变压器的分接开关切换,改变变压器高压侧绕组匝数,从而改变其变比,实现电压的调整。切换方式有两种:一种是不带电切换,称为无激磁调压,调整范围通常在 以内;另一种是带负荷切换,称为有载调压,调整范围可达 ,但结构复杂、价格昂贵,只有在两种情况下才予以选用:接于出力变化大的发电厂的主变压器,特别是潮流方向不固定,且要求变压器二次电压维持在一定水平时;接于时而为送端,时而为受端,具有可逆工作特点的联络变压器,为保证供电质量,要求母线电压恒定时。
(2)正常运行时,电源和线路均分在四段母线上,母联和分段断路器均合上,四段母线同时并列运行。当任意一段母线故障时,只有1/4电源和负荷停电;当任一分段或母联断路器故障时,只有1/2电源和负荷停电。
(3)当进出线母线侧隔离开关需要检修时,只需该进线(或出线)和与该隔离开关相连的母线停电,而不影响其他回路的正常供电。
相关文档
最新文档