安徽省皖南八校2020届高三第三次联考数学(理)试题
备战2021高考 专题05 平面解析几何(教师版含解析)
专题05 平面解析几何1.(2020届安徽省皖南八校高三第三次联考)已知双曲线2222:1(0,0)x yC a ba b-=>>的渐近线方程为0x±=,则双曲线C的离心率为( )ABC.D【答案】A【解析】由题知ba=又222+=a b c,解得3cea==.故选A。
2.(2020届甘肃省高三第一次高考诊断)已知双曲线()22105x ymm-=>的一个焦点为()3,0F-,则其渐近线方程为( )A.y x=B.y x=C.52y x=±D.25y x=±【答案】B【解析】由于双曲线()22105x ymm-=>的一个焦点为()3,0F-,则2354m=-=,双曲线的标准方程为22154x y-=,其渐近线方程为y x=±.故选B。
3.(2020届甘肃省高三第一次高考诊断)已知抛物线()220y px p=>经过点(M,焦点为F,则直线MF的斜率为( )A.BC.2D.-【答案】A【解析】抛物线()220y px p =>经过点(M(222p =⨯,2p =,()1,0F ,MF k =,故选A 。
4.(2020届甘肃省兰州市高三诊断)已知双曲线()2222100x y a b a b-=>,>的一条渐近线过点(2,﹣1),则它的离心率是( )A B C D .【答案】A【解析】因为(2,﹣1)在双曲线的渐近线y ba=-x 上, 所以a =2b ,即a 2=4b 2,所以e 2===,故选A 。
5.(2020届甘肃省兰州市高三诊断)已知点()4,2M --,抛物线24x y =,F 为抛物线的焦点,l 为抛物线的准线,P 为抛物线上一点,过P 作PQ l ⊥,点Q 为垂足,过P 作FQ 的垂线1l ,1l 与l 交于点R ,则QR MR +的最小值为( )A .1+B .CD .5【答案】D 【解析】根据抛物线定义得PF PQ =,1l FQ ⊥,则1l 为FQ 的垂直平分线,FR RQ ∴=,()224125QR MR FR MR FM ∴+=+≥=++=.故选D 。
皖南八校2020高三数学第三次联考试题理含解析
故选:A.
【点睛】本题考查了椎体的体积,考查了面面垂直的性质,考查了球的表面积的求解。求球的体积或表面积时,关键是求出球的半径,通常设半径,结合勾股定理列方程求解。本题的关键是面面垂直这一条件的应用.
11.已知函数 , ,若函数 有6个零点,则实数 的取值范围为( )
A学第三次联考试题 理(含解析)
―、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1。已知集合 , ,则 ( )
A。 B. C. D。
【答案】C
【解析】
【分析】
解不等式 ,结合 ,用列举法表示集合 ,从而可求交集.
【详解】 , .
A。 是增函数B。 是减函数
C. 可以取得最大值2D。 可以取得最小值
【答案】C
【解析】
【分析】
由辅助角公式可求得 , ,由题意可知,不妨取 ,令 ,结合 的图像,可选出正确选项。
【详解】解: ,
,
因为 在区间 上是增函数,且 , ,
则 ,即 ,不妨取 ,设 ,则 ,则图像为
所以, 在 先增后减,可取到最大值为2。
3.已知等差数列 的前n项和为 ,若 ,则公差 等于( )
A。 B. C. 1D。 2
【答案】D
【解析】
【分析】
由 ,可求出 ,进而可知 ,结合 ,可求出公差。
【详解】解: , , , 。
又由 ,得 。
故选:D。
【点睛】本题考查了等差数列的通项公式,考查了等差数列的求和公式,考查了等差中项。对于等差、等比数列问题,一般都可用基本量法,列方程组求解,但是计算量略大.有时结合数列的性质,可简化运算,减少运算量。
2020届安徽省高三数学联考试题(理)及答案
2020届安徽省高三数学联考试题(理)及答案一、单选题1.复数z 满足()1243i z i -=+(i 为虚数单位),则复数z 的模等于( )AB C .D .【答案】B【解析】根据复数模的性质和求解直接解得结果即可. 【详解】4312i z i +===- 故选:B 【点睛】本题考查复数模长的求解,涉及到复数模的性质的应用,属于基础题.2.已知全集为R ,集合{}2,1,0,1,2A =--,102x B xx -⎧⎫=<⎨⎬+⎩⎭,则()U A C B ⋂的元素个数为()A .1B .2C .3D .4【答案】C【解析】解分式不等式求得集合B ,根据交集和补集的定义求得集合()U A C B ⋂,进而得到元素个数. 【详解】{}10212x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭{2U C B x x ∴=≤-或}1x ≥(){}2,1,2U AC B ∴=-,有3个元素故选:C 【点睛】本题考查集合元素个数的求解,涉及到分式不等式的求解、交集和补集的混合运算,属于基础题.3.已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D .既不充分也不必要条件【答案】A【解析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论. 【详解】(),a b 为开区间 ∴最小值点一定是极小值点 ∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【点睛】本题考查充分条件、必要条件的判断,涉及到导数极值与最值的相关知识;关键是能够明确极值点处的导数值为0,但导数值为0的点未必是极值点.4.2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。
安徽省皖南八校2020届高三8月摸底联考数学理科试题含答案
“皖南八校”2020届高三摸底联考数学(理科)2019.8 考生注意:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两郜分。
满分150分,考试时间120分钟。
2. 考生作答时,请将答案答在答题卡上。
第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;第Ⅱ卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效........。
3. 本卷命题范围:必修①~⑤。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|50A x x x =-<,{}2|40B x x =-≤,则A B =I ( ) A . {}|05x x ≤<B . {}|02x x ≤<C . {}|05x x <<D . {}|02x x <≤2. 《西游记》《三国演义》《水浒传》《红楼梦》是我国古典小说四大名著.若在这四大名著中,任取2种进行阅读,则取到《红楼梦》的概率为( ) A .23B .12C .13D .143. 若71tan 43πα⎛⎫+= ⎪⎝⎭,则tan α=( ) A . 3B . -3C . 2D . -24. 已知()3,2AB =--uu u r ,(),1AC m =uu u r,3BC =uu u r ,则BA AC ⋅=uu r uuu r ( )A . 7B . -7C . 15D . -155. 函数()()222cos x x x f x x-+=+的部分图象大致为( )A .B .C .D .6. 公元263年左右,我国数学家刘徽创立了“割圆术”,并利用“割圆术”得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.下图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 1.732≈,sin150.2588≈o ,sin 7.50.1305≈o )A . 24B . 32C . 38D . 467. 下列函数中,以2π为周期且在区间3,24ππ⎛⎫⎪⎝⎭上单调递减的是( ) A . ()cos 2f x x =B . ()sin 2f x x =C . ()2sin cos f x x x =D . ()22sin 1f x x =-8. 已知5log 0.5a =,3log 0.3b =,0.30.5c =,则( ) A . a b c <<B . b a c <<C . a c b <<D . b c a <<9. 某几何体的三视图如图,则该几何体的体积为( )A . 82π-B . 8π-C . 122π-D . 12π-10. 数列{}n a 满足21112n n n a a a +++=,11a =,8115a =,1n n nb a a +=,数列{}n b 的前n 项和为n S ,则满足1123n S >的最小的n 的值为( ) A . 9B . 10C . 11D . 121l . 在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( ) A .3B .6C .7D .1412. 设函数()f x 的定义域为R ,且满足()()12f x f x +=,当[)0,1x ∈时,()2f x x x =-.若(),x t ∈-∞时,()f x 的最大值为1,则实数t 的取值范围是( )A .514,24⎛ ⎝⎦B .514,24⎡-⎢⎣⎭C .⎛⎝⎦D .⎡⎢⎣⎭ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 若x ,y 满足约束条件2311x y x y +≤⎧⎪≥⎨⎪≥-⎩,则2z x y =-的取值范围是______.14. 某校高三年级有400名学生,在一次数学测试中,成绩都在[]80,130(单位:分)内,其频率分布直方图如图,则这次测试数学成绩不低于100分的人数为______.15. 已知,2παπ⎛⎫∈⎪⎝⎭,2sin 2cos21αα=-,则sin α=______. 16. 已知点P 是函数32y x x=+的图象上的一点,则点P 到直线210x y ++=的距离的最小值为______.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤. 17.(本小题满分10分)在等比数列{}n a 中,()3214a a a =-,且4a ,54a -,5a 成等差数列. (1)求数列{}n a 的通项公式;(2)若2log n n n b a a =+,求数列{}n b 的前n 项和n T . 18.(本小题满分12分)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c .已知()cos sin sin cos b A c B B B =-. (1)求角C ;(2)若a =4c =,求b 的值. 19.(本小题满分12分)在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是矩形,E ,F ,G 分别是棱BC ,AD ,PA 的中点.(1)求证:PE P 平面BFG ;(2)若1PD AD ==,2AB =,求点C 到平面BFG 的距离. 20.(本小题满分12分)影响消费水平的原因很多,其中重要的一项是工资收入.研究这两个变量的关系的一个方法是通过随机抽样的方法,在一定范围内收集被调查者的工资收入和他们的消费状况.下面的数据是某机构收集的某一年内上海、江苏、浙江、安徽、福建五个地区的职工平均工资与城镇居民消费水平(单位:万元).y bx a =+$$$,其中()()()121n iii ni i x x y y b x x==--=-∑∑$1221ni ii ni i x y nx yx nx==-=-∑∑,a y bx =-$$;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1万,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?(b $的结果保留两位小数) (参考数据:6.9 4.6 6.4 4.4 6.2 3.984.08⨯+⨯+⨯=,2226.9 6.4 6.2127.01++=) 21.(本小题满分12分)已知圆C 的圆心C 的坐标为()1,2,且圆C 与直线l :270x y --=相切,过点()2,0A 的动直线m 与圆C 相交于M ,N 两点,直线m 与直线l 的交点为B . (1)求圆C 的标准方程; (2)求MN 的最小值;(3)问:()AM AN AB +⋅uuu r uuu r uu u r是否是定值?若是,求出这个定值;若不是,请说明理由.22.(本小题满分12分) 已知函数()2k f x x k x =+-,当1,22x ⎡⎤∈⎢⎥⎣⎦时,()f x 的取值范围是10,2⎡⎤⎢⎥⎣⎦. (1)求k 的值;(2)若不等式()22x x f m ≥⋅对x R ∈恒成立,求实数m 的取值范围; (3)若函数()()221321x xtg x f t =-+--有3个零点,求实数t 的取值范围.“皖南八校”2020届高三摸底联考·数学(理科)参考答案一、选择题: 1-5:DBCBC 6-10:ADBAD11、12:DA7. D 周期为2π的有C 、D ,又在3,24ππ⎛⎫⎪⎝⎭上递减,选D . 8. B ()()5533log 1log 2log 3log 10a b -=---3535log 21log 10log 10log 100=--+=->. ∴a b >,∵0c >,0a <,∴b a c <<.9. A 该几何体是一个棱长为2的正方体左右两旁各去掉半径为1的半个圆柱得到的,体积为32282ππ-=-.11. D 长方体中,11BC CC ==,1BC 11AD BC ==13AD B π∠=,知AB =,∴在11AB D ∆中,111AB B D ==,11cos 14B AD ∠==.又∵11BC AD P ,∴11B AD ∠是1AB 与1BC 所成的角.二、填空题:13. []1,7- 14. 220 15..三、解答题:17. 解:(1)设{}n a 的公比为q ,由()1314a a a =-,得()21114a q a q a =-,∴2440a a -+=,∴2q =,∵4a ,54a -,5a 成等差数列,∴()45624a a a +=-,∴()1118162164a a a +=-, ∴11a =, ∴12n n a -=.(2)12log 21n n n n b a a n -=+=+-,123n n T b b b b =+++⋅⋅⋅+()()()()2110212221n n -=++++++⋅⋅⋅++-()()()2112220121n n -=+++⋅⋅⋅+++++⋅⋅⋅+-()112122n n n --=+- ()1212n n n -=-+. 18. 解:(1)在ABC ∆中,由()cos sin sin cos b A c B B B =-及正弦定理,得()sin cos sin sin sin cos B A C B B B =-.∵sin 0B >,()cos cos cos cos sin sin A B C B C B C =-+=-+, ∴cos cos sin sin sin sin cos sin B C B C B C B C -+=-. ∴cos cos cos sin B C B C =.∵B ,C 都是锐角,∴tan 1C =,∴4C π=.(2)法一:在ABC ∆中,由余弦定理,得2161822b b =+-⨯,∴2620b b -+=,∴3b =±.当3b =时,a ,b ,c 中,b 最大,222cos 02a c b B ac +-==>,B 是锐角,当3b =a ,b ,c 中,a 最大,222cos 02b c a A bc +-==<,A 是钝角,与A 是锐角不符.∴3b =+.法二:在ABC ∆中,由正弦定理,得sin 3sin sin 424a C A B ===.∵A 是锐角,∴cos 4A =,∵()sin sin sin cos cos sin B A C A C A C =+=+34==.∴sin 3sin c Bb C== 19.(1)证明:连接DE ,∵在矩形ABCD 中,E ,F 分别是BC ,AD 中点,∴DF BE =,DF BE P ,∴四边形BEDF 是平行四边形,∴DE BF P . ∵G 是PA 的中点,∴FG PD P .∵,PD DE ⊄平面BFG ,,FG BF ⊂平面BFG , ∴PD P 平面BFG ,DE P 平面BFG . ∵PD DE D =I ,∴平面PDE P 平面BFG . ∵PE ⊂平面PDE ,∴PE P 平面BFG .(2)解:法一:∵PD ⊥平面ABCD ,FG PD P ,∴FG ⊥平面ABCD . 过C 在平面ABCD 内,作CM BF ⊥,垂足为M ,则FG CM ⊥.∵FG BF F =I ,∴CM ⊥平面BFG ,∴CM 长是点C 到平面BFG 的距离. 在矩形ABCD 中,F 是AD 中点,1AD =,2AB =,BCM FBA ∆∆:. ∴CM BCBA FB=.∵FB ==,1BC AD ==,∴CM =,即点C 到平面BFG . 法二:设C 到平面BFG 的距离为d ,在矩形ABCD 中,1122AF AD ==,2AB =,∴2BF ==. ∵PD ⊥平面ABCD ,BF ⊂平面ABCD ,∴PD BF ⊥,∵FG PD P ,∴FG BF ⊥,1122FG PD ==,∴BFG ∆的面积为128BF FG ⨯=. ∵BCF ∆的面积为112BC AB ⨯=,C BFG G BCF V V --=,∴11113832d ⨯=⨯⨯,∴17d =C 到平面BFG的距离为17. 20. 解:(1) 6.9 6.4 6.2 6.53x ++==, 4.6 4.4 3.94.33y ++==.284.083 6.5 4.30.230.88127.013 6.50.26b -⨯⨯==≈-⨯, 4.30.88 6.5 1.42a =-⨯=-,∴所求线性回归方程为0.88 1.42y x =-$.(2)当9.8x =时,0.889.8 1.427.204y =⨯-=$,7.204 6.60.6041-=<, 当 5.6x =时,0.88 5.6 1.42 3.508y =⨯-=$,3.8 3.5080.2921-=<, 所以得到的线性回归方程是可靠的.21. 解:(1)∵圆C 与直线l :270x y --=相切,圆心为()1,2,∴半径r ==∴圆C 的方程为()()221220x y -+-=.(2)∵MN ==d 是圆心C 到直线m 的距离,∴d 最大时,MN 最小.∵当()2,0A 是弦MN 中点时,d 最大,且max d AC ===∴MN的最小值为=(3)设MN 中点为P ,则CP MN ⊥即CP AB ⊥,∴0CP AB ⋅=uu r uu u r, 且2AM AN AP +=uuu r uuu r uu u r ,∴()()22AM AN AB AP AB AC CP AB +⋅=⋅=+⋅uuu r uuu r uu u r uu u r uu u r uuu r uu r uu u r 222AC AB CP AB AC AB =⋅+⋅=⋅uuu r uu u r uu r uu u r uuu r uu u r .当m 与x 轴垂直时,m 方程为2x =,代入圆C 方程得2y =MN 中点P 的坐标为()2,2,直线2x =与直线l 的交点B 坐标为52,2⎛⎫- ⎪⎝⎭,∴50,2AB ⎛⎫=- ⎪⎝⎭uu u r .∵()1,2AC =-uu u r ,∴5AC AB ⋅=-uuu r uu u r ,∴()10AM AN AB +⋅=-uuu r uuu r uu u r ; 当MN 与x 轴不垂直时,设m 方程为()2y k x =-,由()2270y k x x y =-⎧⎪⎨--=⎪⎩,得475,2121k k B k k -⎛⎫- ⎪--⎝⎭, ∴55,2121k AB k k --⎛⎫= ⎪--⎝⎭uu u r , ∴()551,2,2121k AC AB k k --⎛⎫⋅=-⋅ ⎪--⎝⎭uuu r uu u r ()5125105212121k k k k k -=-==----, ∴()10AM AN AB +⋅=-uuu r uuu r uu u r , ∴()AM AN AB +⋅uuu r uuu r uu u r 是定值,定值为-10. 22. 解:(1)当0k ≤时,()f x 在1,22⎡⎤⎢⎥⎣⎦上是增函数,11022f ⎛⎫=≠ ⎪⎝⎭,与已知不符. 当0k >且0x >时,()2f x k ≥,当且仅当x =. ()f x在(是减函数,在)+∞上是增函数.1,22⎡⎤⎢⎥⎣⎦时,20f k =-=,1k =,此时()12f x x x =+-,()11222f f ⎛⎫== ⎪⎝⎭符合题意.1,22⎡⎤⎢⎥⎣⎦时,由题意知102f ⎛⎫= ⎪⎝⎭,()122f =或()20f =,1122f ⎛⎫= ⎪⎝⎭,求得43k =而1,22⎡⎤⎢⎥⎣⎦,不合题意. ∴1k =.(2)()22x x f m ≥⋅可化为12222x x x m +-≥⋅, ∴2212111222x x x m ⎛⎫⎛⎫≤-+=- ⎪ ⎪⎝⎭⎝⎭. ∵x R ∈,∴()10,2x∈+∞,∴0x =,112x =时,2112x ⎛⎫- ⎪⎝⎭取最小值0. ∴0m ≤即m 的取值范围是(],0-∞.(3)由题意知210x -≠,0x ≠, 令21x u -=,则()0,u ∈+∞,函数()g x 有3个零点,化为()232210u t u t -+++=有两个不等的实数解,且两解1u ,2u 满足101u <<,21u ≥, 设()()23221h u u t u t =-+++,则()()021010h t h t =+>⎧⎪⎨=-<⎪⎩或()()001032012h h t ⎧⎪>⎪=⎨⎪+⎪<<⎩, ∴0t >即t 的取值范围是()0,+∞.。
高三数学三次联考理试题
皖南八校2021届高三第三次联考数 学 试 题〔理〕考生注意: 1.本套试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两局部。
满分是150分,考试时间是是120分钟。
2.考生答题时,请将答案答在答题卡上,第I 卷每一小题在选出答案以后,需要用2B铅笔把答题卡上对应题目之答案标号涂黑;第II 卷请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内答题,超出答题区域书写之答案无效,在试题卷、...................草稿纸上答题无效。
.........第一卷〔选择题,一共50分〕一、选择题:本大题一一共10小题,每一小题5分,一共50分。
在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的。
1.211i i +⎛⎫= ⎪-⎝⎭〔 〕 A .i B .-i C .1 D .-12.集合3{|0,}(1)x M x x R x =≥∈-,2{|31,}N y y x x R ==+∈,那么M N =〔 〕A .φB .{|1}x x ≥C .{|1}x x > D .{|10}x x x ≥<或3.“12m =〞是“直线(2)310m x my +++=与直线(2)(2)30m x m y -++-=互相垂直〞的〔 〕A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件4.双曲线22221(,0)x y a b b a b -=>>的离心率为,那么椭圆22221x y a b +=的离心率为〔 〕A .12BCD 5.在OAB ∆中,OA=4,OB=2,点P 是AB 的垂直一局部线l 上的任一点,那么OP AB ⋅=〔 〕A .6B .-6C .12D .-126.ABC ∆中,45,2,A AB BC ∠=︒==那么C ∠=〔 〕 A .30° B .60° C .120° D .30°或者150°7.320|1|,A x dx A =-=⎰则〔 〕 A .0 B .6 C .8 D .2238.一颗质地均匀的正方体骰子,其六个面上的点数分别为1,2,3,4,5,6,将这颗骰子连续抛掷三次,观察向上的点数,那么三次点数依次构成等差数列的概率为〔 〕A .112B .118C .136D .71089.一个几何体的三视图如下图,且其侧视图是一个等边三角形,那么这个几何体的体积为 〔 〕A .(4)33π+ B .(4)3π+ C .(8)32π+ D .(8)36π+ 10.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,假设目的函数(0,0)z ax by a b =+>>的最大值为12,那么2294a b +的最小值为〔 〕A .12B .1325C .1D .2第二卷〔非选择题,一共100分〕二、填空题:本大题一一共5小题,每一小题5分,一共25分。
2020年安徽高三下学期高考模拟理科数学试卷(6月皖南八校联考)-学生用卷
2020年安徽高三下学期高考模拟理科数学试卷(6月皖南八校联考)-学生用卷一、选择题(本大题共12小题,每小题5分,共60分)1、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第1题5分已知全集U={−1,0,1,2,3,4},集合A,B满足∁U A={0,2,4},∁U B={−1,0,1,3},则A∩B=().A. {−1,0,1,2,3,4}B. {−1,1,2,3,4}C. {0}D. ∅2、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第2题5分若a−2i=(1+i)(1+bi)(a,b∈R,i为虚数单位),则复数a+bi在复平面内对应的点位于().A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第3题5分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第3题5分已知a=0.30.4,b=40.3,c=log0.24,则().A. c<b<aB. c<a<bC. a<b<cD. b<c<a4、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第4题5分2020~2021学年天津西青区张家窝中学高二上学期期中第8题3分已知椭圆C的焦点为F1(−1,0),F2(1,0),过点F1的直线与C交于A,B两点,若△ABF2的周长为8,则椭圆C的标准方程为().A. x 216+y215=1B. x 28+y27=1C. x 24+y23=1D. x 23+y24=15、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第5题5分2020~2021学年3月河北衡水桃城区衡水中学高三上学期月考理科第4题5分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第6题5分已知正项等比数列{a n}的首项a1=1,前n项和为S n,且S1,S2,S3−2成等差数列,则a4=().A. 8B. 18C. 16 D. 1166、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第6题5分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第7题5分执行如图所示的程序框图,若输出S的值为105,那么判断框中应填入的关于k的判断条件是().A. k<4?B. k<5?C. k>4?D. k>5?7、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第7题5分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第8题5分我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,常用函数的图象研究函数的性质,也常用函数的解析式来琢磨函数的图象特征.如函数y=−2sin2x+cosx+1,x∈(−π,π)的图象大致为().A.B.C.D.8、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第8题5分2020~2021学年安徽黄山高二上学期期末理科第8题5分已知圆锥的顶点为P,母线PA,PB所成角的余弦值为34,PA与圆锥底面所成角为60°,若△PAB 的面积为√7,则该圆锥的体积为().A. 2√2πB. √2πC. 2√63πD. √63π9、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第9题5分已知函数f(x)={−x2+ax,x⩽22ax−5,x>2,若存在x1,x2∈R,且x1≠x2,使得f(x1)=f(x2),则实数a的取值范围为().A. (−∞,4)B. (−∞,14)C. (−∞,3)10、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第10题5分 2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第10题5分2020~2021学年江西宜春丰城市江西省丰城中学高三上学期期中理科第10题5分将函数f(x)=3sin2x 的图象向右平移φ(0<φ<π2)个单位长度后得到函数g(x)的图象.若对满足|f(x 1)−g(x 2)|=6的x 1,x 2,有|x 1−x 2|min =π6,则φ=( ).A. 5π12B. π3C. π4D. π611、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第11题5分 已知双曲线Γ:4x 2−y 2a 2=1的左右焦点分别为F 1,F 2,离心率e =2.若动点P 满足|PF 1||PF 2|=√2,则直线PF 1的倾斜角θ的取值范围为( ).A. [0,π4]∪(π2,3π4] B. [π4,π2)∪[3π4,π) C. [0,π4]∪[3π4,π) D. [π4,π2)∪(π2,3π4]12、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第12题5分 已知函数f (x )的定义域为R ,且f ′(x )<f (x )恒成立,若f (e +1)=1(其中e 是自然对数的底数),则不等式f (lnx +x )−e lnx+x−e−1<0的解集为( ).A. (0,e )B. (e,+∞)D. (e +1,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第13题5分已知甲、乙两位同学8次数学单元测试的成绩(百分制)可用如图所示的茎叶图表示,且甲同学成绩的平均数比乙同学成绩的平均数小2,则m = .14、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第14题5分 已知a →,b →是两个非零向量,且|a →|=|b →|=|a →−b →|,则a →与2a →−b →的夹角为 .15、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第15题5分 已知α是锐角,且cos(α+π5)=13,则cos(2α+π15)= .16、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第16题5分已知四边形ABCD 是边长为5的菱形,对角线BD =8(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置,棱AC ,PD 的中点分为E ,F ,且四面体PACD 的外接球球心落在四面体内部(如图2),则线段EF 长度的取值范围为 .三、解答题(本大题共5小题,每小题12分,共60分)17、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第17题12分 2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第18题12分△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,sinA =√53,B =2A ,b =4. (1) 求a 的值.(2) 若D 为BC 中点,求AD 的长.18、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第18题12分 如图,直棱柱ABCD −A 1B 1C 1D 1中,底面ABCD 是菱形,AA 1=AC =2BD =4,点F ,Q 是棱BB 1,DD 1的中点,E ,P 是棱AA 1,CC 1上的点,且AE =C 1P =1.(1) 求证:EF//平面BPQ .(2) 求直线BP 与平面PQE 所成角的正弦值.19、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第19题12分 2020~2021学年10月山西太原小店区山西大学附属中学高三上学期月考理科第20题已知抛物线C :y 2=2px (p >0)的焦点F 到直线x −y +1=0的距离为√2.(1) 求抛物线C 的方程.(2) 过点F 的直线l 与C 交于A ,B 两点,交y 轴交于点P ,若|AB →|=3|BP →|,求直线l 的方程.20、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第20题12分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第21题12分已知函数f(x)=(x+1)lnx−(k+1)x+a+1,其中k,a∈R.(1) 若k=0,求函数f(x)的单调区间.(2) 若对任意x∈[1,e],a∈[1,e],不等式f(x)⩾0恒成立,求k的取值范围.21、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第21题12分2020年元旦联欢晚会上,A,B两班各设计了一个摸球表演节目的游戏:A班在一个纸盒中装有1个红球,1个黄球,1个白球,这些球除颜色外完全相同,记事件A n:同学们有放回地每次摸出1个球,重复n次,n次摸球中既有红球,也有黄球,还有白球;B班在一个纸盒中装有1个蓝球,1个黑球,这些球除颜色外完全相同,记事件B n:同学们有放回地每次摸出1个球,重复n次,n次摸球中既有蓝球,也有黑球,事件A n发生的概率为P(A n),事件B n发生的概率为P(B n).(1) 求概率P(A3),P(A4)及P(B3),P(B4).(2) 已知P(A n)=aP(A n−1)+b n−1P(B n−1),其中a,b为常数,求P(A n).四、选做题(本大题共2小题,选做1题,共10分)选修4-4:坐标系与参数方程22、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第22题10分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第22题10分在平面直角坐标系xOy中,已知曲线C的参数方程为{x=cosαy=3sinα(α为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,直线l1的极坐标方程为ρsin(θ+π4)=3√2.(1) 求曲线C的普通方程和直线l1的直角坐标方程.(2) 若射线l2的极坐标方程为θ=π3(ρ⩾0),设l2与C相交于点A,l2与l1相交于点B,求|AB|.选修4-5:不等式选讲23、【来源】 2020年安徽高三下学期高考模拟理科(6月皖南八校联考)第23题10分2020年安徽高三下学期高考模拟文科(6月皖南八校联考)第23题10分已知a、b、c都是正数,求证:(1) b2a +c2b+a2c⩾a+b+c.(2) 2(a+b2−√ab)⩽3(a+b+c3−√abc3).1 、【答案】 D;2 、【答案】 D;3 、【答案】 B;4 、【答案】 C;5 、【答案】 A;6 、【答案】 B;7 、【答案】 B;8 、【答案】 C;9 、【答案】 A;10 、【答案】 B;11 、【答案】 C;12 、【答案】 B;13 、【答案】4;14 、【答案】π6;15 、【答案】4√6−718;16 、【答案】√142<EF<4;17 、【答案】 (1) 3.;(2) AD=√3056.;18 、【答案】 (1) 证明见解析.;(2) 2√3535.;19 、【答案】 (1) y2=4x.;(2) 2√2x−y−2√2=0或2√2x+y−2√2=0.;20 、【答案】 (1) 增区间为(0,+∞),无减区间.;(2) (−∞,1].;21 、【答案】 (1) 29,49,34,78.;(2) 1+(13)n−1−2(23)n−1(n∈N∗).;22 、【答案】 (1) x+y=6.;(2) 5√3−6.;23 、【答案】 (1) 证明见解析.;(2) 证明见解析.;。
2020届安徽省高三数学联考试题(理)及答案
2020届安徽省高三数学联考试题(理)及答案一、单选题1.复数z 满足()1243i z i -=+(i 为虚数单位),则复数z 的模等于( )AB C .D .【答案】B【解析】根据复数模的性质和求解直接解得结果即可. 【详解】4312i z i +===- 故选:B 【点睛】本题考查复数模长的求解,涉及到复数模的性质的应用,属于基础题.2.已知全集为R ,集合{}2,1,0,1,2A =--,102x B xx -⎧⎫=<⎨⎬+⎩⎭,则()U A C B ⋂的元素个数为()A .1B .2C .3D .4【答案】C【解析】解分式不等式求得集合B ,根据交集和补集的定义求得集合()U A C B ⋂,进而得到元素个数. 【详解】{}10212x B x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭{2U C B x x ∴=≤-或}1x ≥(){}2,1,2U AC B ∴=-,有3个元素故选:C 【点睛】本题考查集合元素个数的求解,涉及到分式不等式的求解、交集和补集的混合运算,属于基础题.3.已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的( )A .充分不必要条件B .必要不充分条件C .充要条件 D .既不充分也不必要条件【答案】A【解析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论. 【详解】(),a b 为开区间 ∴最小值点一定是极小值点 ∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【点睛】本题考查充分条件、必要条件的判断,涉及到导数极值与最值的相关知识;关键是能够明确极值点处的导数值为0,但导数值为0的点未必是极值点.4.2011年国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源于中国古代数学家祖冲之的圆周率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽省皖南八校2020届高三第三次联考
数学(理科)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x|1≤x ≤4},B=*2
{|23}x x x ∈-≤N ,则A ∩B=
A. {x|1≤x ≤3}
B. {x|0≤x ≤3}
C. {1,2,3}
D. {0,1,2,3} 2.已知i 为虚数单位,复数z 满足(1-i)z=2+2i,则z z ⋅= A.4 B.2 C.-4
D.-2 3.已知等差数列{a n }的前n 项和为S n ,若888,S a ==则公差d 等于
1.4A 1.2B C.1 D.2
4.新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为A,B,C,D,E 五个等级。某试点高中2019年参加“选择考”总人数是2017年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2017年和2019年“选择考”成绩等级结果,得到如下图表:
针对该校“选择考”情况,2019年与2017年比较,下列说法正确的是
A.获得A 等级的人数不变
B.获得B 等级的人数增加了1倍
C.获得C 等级的人数减少了
D.获得E 等级的人数不变 5.函数()cos x x y e e x -=-的部分图象大致是
6.已知双曲线22
22:1(0,x y C a b a b
-=>>0)的一条渐近线与圆22(2)1x y -+=相切,则双曲线C 的离心率为 23.A .3B .22C .2D 7.在△ABC 中5,AC AD E =u u u r u u u r 是直线BD 上一点,且2,BE BD =u u u r u u u r ,若,AE mAB nAC =+u u u r u u u r u u u r 则m+n= 2.5A 2.5B - 3.5C 3.5
D -
8.若函数()3sin cos f x x
x =
+在区间[a,b]上是增函数,且f(a)=-2,f(b)=2,则函数()3cos sin g x x x =-在区间[a,b]上
A.是增函数
B.是减函数
C.可以取得最大值2
D.可以取得最小值-2 9.若曲线y=ln(x+a)的一条切线为y=ex-b(e 为自然对数的底数),其中a,b 为正实数,则
11ea b +的取值范围是 A. [2,e) B. (e,4] C. [2,+∞) D. [e,+∞)
10.在三棱锥P- ABC 中,已知,,43APC BPC PA π
π
∠=∠=⊥AC,
PB ⊥BC,且平面PAC ⊥平面PBC,三棱锥P- ABC 的体积为
3,若 点P,A,B,C 都在球O 的球面上,则球O 的表面积为
A.4π
B.8π
C.12π
D.16π
11.已知函数22()3,()()f x x g x f x x =-+=+b,若函数y= f(g(x))有6个零点,则实数b 的取值范围为 A. (2,+∞)
B. (-1,+∞)
C. (-1,2)
D.(-2,1) 12.已知抛物线2:2(0)C y px p =>,其焦点为F,准线为l,过焦点F 的直线交抛物线C 于点A 、B(其中A 在x
轴上方),A,B 两点在抛物线的准线上的投影分别为M,N,若||3,MF =|NF|=2,则||||
AF BF = .3 B.2 C.3 D.4
二、填空题:本题共4小题,每小题5分,共20分。
13.二项式6(x x
展开式中的常数项为____ 14.在平面直角坐标系中,若角α的始边是x 轴非负半轴,终边经过点22(sin
,cos ),33
P ππ则cos(π+α)=____ 15.已知函数f(x)是定义域为R 的偶函数,∀x ∈R ,都有f(x+2)=f(-x),当0<x ≤1时,213log ,02()11,12x x f x x x ⎧-<<⎪⎪=⎨⎪-≤≤⎪⎩
,则9()(11)4f f -+=____.
16.已知各项均为正数的数列{a n }的前n 项和为S n ,满足333321232n n n a a a a S S ++++=+L ,设,2n n
n
a b =数列{b n }的前n 项和为T n ,则使得T n <m 成立的最小的m 的值为______. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17. (12分)
在△ABC 中,内角A,B,C 的对边分别为a,b,c,满足2acos A=bcos C+ccos B.
(1)求A;
(2)若△ABC 的面积为63,27,a =求△ABC 的周长。
18. (12分)
如图,在四棱锥P- ABCD 中,底面ABCD 为长方形,PA ⊥底面ABCD,PA=AB=4,BC=3,E 为PB 的中点,F 为线段BC 上靠近B 点的三等分点。
(1)求证:AE ⊥平面PBC;
(2)求平面AEF 与平面PCD 所成二面角的正弦值。
19. (12分)
2019新型冠状病毒(2019- nCoV)于2020年1月12日被世界卫生组织命名,冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病。某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:
(2)从.上述感染者中随机抽取3人,记未戴口罩的人数为X,求X 的分布列和数学期望,
参考公式:2
2
()()()()()n ad bc K a b c d a c b d -=++++ ,其中n=a+b+c+d. 参考数据:
20. (12分)
已知点12,F F 是椭圆C 22
22:1(0)x y a b a b
+=>>)的左、右焦点,椭圆上一点P 满足1PF x ⊥
轴,2112|5||,||PF PF F F ==
(1)求椭圆C 的标准方程;
(2)过2F 的直线l 交椭圆C 于A,B 两点,当△ABF 1的内切圆面积最大时,求直线l 的方程.
21. (12分)
已知函数2()ln(2)()f x x a x a =++∈R
(1)当x ∈[-1,1]时,求函数f(x)的最大值;
(2)若函数f(x)存在两个极值点12,,x x 求证12()() 2.f x f x +>
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22. [选修4-4:坐标系与参数方程](10分)
在平面直角坐标系中,直线l的参数方程为
4
1
5
3
1
5
x t
y t
⎧
=+
⎪⎪
⎨
⎪=+
⎪⎩
(t为参数),以直角坐标系的原点为极点,以x轴的非负
半轴为极轴建立极坐标系,曲线C
的极坐标方程为).
4
π
ρθ
=-
(1)求直线l的极坐标方程和曲线C的直角坐标方程;
(2)已知直线l与曲线C交于A,B两点,试求A,B两点间的距离.
23.[选修4- 5:不等式选讲](10分)
已知a>0,b>0,a+b=1.
(1)
;
(2)若不等式
11
|||1|
x m x
a b
+-+≤+对任意x∈R及条件中的任意a,b恒成立,求实数m的取值范围.。