基于Matlab的相关频谱分析程序教程

合集下载

实验一 基于Matlab 的频谱分析

实验一 基于Matlab 的频谱分析

实验一 基于Matlab 的频谱分析一、实验目的1、 掌握时域抽样定理。

2、通过实验加深对FFT 的理解;3、熟悉应用FFT 对典型信号进行频谱分析的方法。

二、实验内容与数据1、用MATLAB 实现对信号()()t t x 202cos ⨯=π的抽样。

设抽样频率为100Hz 。

数字角频率为:是否周期序列,若是周期是多少。

参考程序:t0 = 0:0.001:0.1;x0 =cos(2*pi*20*t0);plot(t0,x0,'r')hold on%信号最高频率fm 为20 Hz,%按100 Hz 抽样得到序列。

Fs = 100t=0:1/Fs:0.1;x=cos(2*pi*20*t);stem(t,x);hold offtitle('图1 连续信号及其抽样信号')x=1 0.309 -0.809 -0.809 0.309 1 0.309 -0.809 -0.809 0.309 12、 离散傅立叶变换(DFT )()()()4/sin 8/sin ππn n n x +=是一个N =16的有限长序列,用MATLAB 求其DFT的结果,并画出其结果图。

参考程序:N=16;n=0:1:N-1; %时域采样xn=sin(n*pi/8)+sin(n*pi/4);k=0:1:N-1; %频域采样WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;subplot(2,1,1)stem(n,xn);title('图2 有限长序列')subplot(2,1,2)stem(k,abs(Xk));title('有限长序列的DFT')结果:Xk=-0 + 0i -0 - 8i -0 - 8i 0 - 0i 0 - 0i 0 - 0i 0 - 0i 0 - 0i 0 - 0i 0 - 0i0 - 0i -0 - 0i 0 - 0i 0 - 0i 0 + 8i 0 + 8i3、快速傅立叶变换(FFT)MATLAB 为计算数据的离散快速傅立叶变换,提供了一系列丰富的数学函数,主要有Fft、Ifft、Fft2 、Ifft2, Fftn、ifftn和Fftshift、Ifftshift等。

实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性

实验2利用MATLAB分析信号频谱及系统的频率特性引言:在信号处理和通信领域中,频谱分析是一项非常重要的技术。

频谱分析可以帮助我们了解信号的频率特性,包括频率成分和幅度。

MATLAB是一款功能强大的数学软件,提供了多种工具和函数用于信号处理和频谱分析。

本实验旨在通过MATLAB分析信号频谱及系统的频率特性,深入理解信号处理和频域分析的原理和应用。

实验步骤:1.生成一个信号并绘制其时域波形。

首先,我们可以使用MATLAB提供的函数生成一个信号。

例如,我们可以生成一个用正弦函数表示的周期信号。

```matlabt=0:0.001:1;%时间范围为0到1秒,采样率为1000Hzf=10;%信号频率为10Hzx = sin(2*pi*f*t); % 生成正弦信号plot(t,x) % 绘制信号的时域波形图title('Time domain waveform') % 添加标题```2.计算信号的频谱并绘制频谱图。

使用MATLAB中的FFT函数可以计算信号的频谱。

FFT函数将信号从时域转换为频域。

```matlabFs=1000;%采样率为1000HzL = length(x); % 信号长度NFFT = 2^nextpow2(L); % FFT长度X = fft(x,NFFT)/L; % 计算X(k)f = Fs/2*linspace(0,1,NFFT/2+1); % 计算频率轴plot(f,2*abs(X(1:NFFT/2+1))) % 绘制频谱图title('Frequency spectrum') % 添加标题```3.使用MATLAB分析系统的频率特性。

MATLAB提供了Signal Processing Toolbox,其中包含了分析系统频率特性的函数和工具。

```matlabHd = designfilt('lowpassfir', 'FilterOrder', 6,'CutoffFrequency', 0.3, 'SampleRate', Fs); % 设计一个低通滤波器fvtool(Hd) % 显示滤波器的频率响应``````matlab[W,F] = freqz(Hd); % 计算滤波器的频率响应plot(F,abs(W)) % 绘制滤波器的振幅响应title('Frequency response of lowpass filter') % 添加标题```实验结果:运行上述代码后,我们可以得到如下结果:1.时域波形图2.频谱图3.滤波器频率响应讨论与结论:本实验通过MATLAB分析信号频谱及系统的频率特性,深入理解了信号处理和频域分析的原理和应用。

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法引言频谱分析是信号处理和电子工程领域中一项重要的技术,用于分析信号在频率域上的特征和频率成分。

在实际应用中,频谱分析广泛应用于音频处理、图像处理、通信系统等领域。

Matlab是一种强大的工具,可以提供许多功能用于频谱分析。

本文将介绍利用Matlab进行频谱分析的方法和一些常用的工具。

一、Matlab中的FFT函数Matlab中的FFT(快速傅里叶变换)函数是一种常用的频谱分析工具。

通过使用FFT函数,我们可以将时域信号转换为频域信号,并得到信号的频谱特征。

FFT 函数的使用方法如下:```Y = fft(X);```其中,X是输入信号,Y是输出的频域信号。

通过该函数,我们可以得到输入信号的幅度谱和相位谱。

二、频谱图的绘制在进行频谱分析时,频谱图是一种直观和易于理解的展示形式。

Matlab中可以使用plot函数绘制频谱图。

首先,我们需要获取频域信号的幅度谱。

然后,使用plot函数将频率与幅度谱进行绘制。

下面是一个示例:```X = 1:1000; % 时间序列Y = sin(2*pi*10*X) + sin(2*pi*50*X); % 输入信号Fs = 1000; % 采样率N = length(Y); % 信号长度Y_FFT = abs(fft(Y)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, Y_FFT);```通过上述代码,我们可以得到输入信号在频谱上的特征,并将其可视化为频谱图。

三、频谱分析的应用举例频谱分析可以应用于许多实际问题中。

下面将介绍两个常见的应用举例:语音信号分析和图像处理。

1. 语音信号分析语音信号分析是频谱分析的一个重要应用领域。

通过对语音信号进行频谱分析,我们可以探索声波的频率特性和信号的频率成分。

在Matlab中,可以使用wavread 函数读取音频文件,并进行频谱分析。

下面是一个示例:```[waveform, Fs] = wavread('speech.wav'); % 读取音频文件N = length(waveform); % 信号长度waveform_FFT = abs(fft(waveform)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, waveform_FFT);```通过上述代码,我们可以获取语音信号的频谱特征,并将其可视化为频谱图。

基于Matlab的频谱分析

基于Matlab的频谱分析

基于Matlab 的频谱分析一、实验目的1、掌握时域抽样定理。

2、通过实验加深对FFT 的理解。

3、熟悉应用FFT 对典型信号进行频谱分析的方法。

二、实验原理1、时域抽样定理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率 大于等于2倍的信号最高频率 ,即 。

时域抽样是把连续信号 变成适于数字系统处理的离散信号 。

对连续信号以间隔T 抽样,则可得到的离散序列为 。

图1 连续信号抽样的离散序列若 ,则信号 与 的频谱之间存在:其中: 的频谱为, 的频谱为 。

可见,信号时域抽样导致信号频谱的周期化。

(rad/s))e (j ΩX ()∑∞-∞=-=n n X T)(j 1samωω)e (j ΩX []k X )e (j ωX )j (ωX T sam/2πω=[]k X ()t X []()kTt kT X X ==k ()t X []k X ()t X []()kT t kT X X ==k m sam f f 2≥samf m f为抽样角频率, 为抽样频率。

数字角频率Ω与模拟角频率ω的关系为:Ω=ωT 。

2、 离散傅立叶变换(DFT )有限长序列)(n x 的离散傅立叶变换(DFT )为10,)()]([)(10-≤≤==∑-=-N n W n x n x DFT k X N n kn N逆变换为10,)(1)]([)(10-≤≤==∑-=-N n W k X N k X IDFT n x N n kn N3、快速傅立叶变换(FFT )在各种信号序列中,有限长序列占重要地位。

对有限长序列可以利用离散傅立叶变换(DFT)进行分析。

DFT 不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。

有限长序列的DFT 是其z 变换在单位圆上的等距离采样,或者说是序列傅立叶的等距离采样,因此可以用于序列的谱分析。

FFT 是DFT 的一种快速算法,它是对变换式进行一次次分解,使其成为若干小数据点的组合,从而减少运算量。

基于Matlab的DFT及FFT频谱分析

基于Matlab的DFT及FFT频谱分析

基于Matlab的DFT及FFT频谱分析基于Matlab的DFT及FFT频谱分析一、引言频谱分析是信号处理中的重要任务之一,它可以揭示信号的频率特性和能量分布。

离散傅里叶变换(DFT)及快速傅里叶变换(FFT)是常用的频谱分析工具,广泛应用于许多领域。

本文将介绍通过Matlab进行DFT及FFT频谱分析的方法和步骤,并以实例详细说明。

二、DFT及FFT原理DFT是一种将时域信号转换为频域信号的离散变换方法。

它将信号分解成若干个正弦和余弦函数的叠加,得到频率和幅度信息。

FFT是一种高效的计算DFT的算法,它利用信号的对称性和周期性,将计算复杂度从O(N^2)降低到O(NlogN)。

FFT通过将信号分解成不同长度的子序列,递归地进行计算,最终得到频谱信息。

三、Matlab中的DFT及FFT函数在Matlab中,DFT及FFT可以通过内置函数进行计算。

其中,DFT使用函数fft,FFT使用函数fftshift。

fft函数可直接计算信号的频谱,fftshift函数对频谱进行频移操作,将低频移到频谱中心。

四、Matlab中DFT及FFT频谱分析步骤1. 读取信号数据首先,将待分析的信号数据读入到Matlab中。

可以使用内置函数load读取文本文件中的数据,或通过自定义函数生成模拟信号数据。

2. 时域分析通过plot函数将信号数据在时域进行绘制,以观察信号的波形。

可以设置合适的坐标轴范围和标签,使图像更加清晰。

3. 信号预处理针对不同的信号特点,可以进行预处理操作,例如去除直流分量、滤波等。

这些操作可提高信号的频谱分析效果。

4. 计算DFT/FFT使用fft函数计算信号数据的DFT/FFT,并得到频谱。

将信号数据作为输入参数,设置采样频率和点数,计算得到频谱数据。

5. 频域分析通过plot函数将频谱数据在频域进行绘制,观察信号的频率特性。

可以设置合适的坐标轴范围和标签,使图像更加清晰。

6. 结果解读根据频谱图像,分析信号的频率成分、幅度分布和峰值位置。

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解

MATLAB信号频谱分析FFT详解FFT(快速傅里叶变换)是一种常用的信号频谱分析方法,它可以将信号从时域转换到频域,以便更好地分析信号中不同频率成分的特征。

在MATLAB中,使用fft函数可以方便地进行信号频谱分析。

首先,我们先介绍一下傅里叶变换的基本概念。

傅里叶变换是一种将信号分解成不同频率成分的技术。

对于任意一个周期信号x(t),其傅里叶变换X(f)可以表示为:X(f) = ∫(x(t)e^(-j2πft))dt其中,X(f)表示信号在频率域上的幅度和相位信息,f表示频率。

傅里叶变换可以将信号从时域转换到频域,以便更好地分析信号的频率特征。

而FFT(快速傅里叶变换)是一种计算傅里叶变换的高效算法,它通过分治法将傅里叶变换的计算复杂度从O(N^2)降低到O(NlogN),提高了计算效率。

在MATLAB中,fft函数可以方便地计算信号的傅里叶变换。

使用FFT进行信号频谱分析的步骤如下:1. 构造信号:首先,我们需要构造一个信号用于分析。

可以使用MATLAB中的一些函数生成各种信号,比如sin、cos、square等。

2. 采样信号:信号通常是连续的,为了进行FFT分析,我们需要将信号离散化,即进行采样。

使用MATLAB中的linspace函数可以生成一定长度的离散信号。

3. 计算FFT:使用MATLAB中的fft函数可以方便地计算信号的FFT。

fft函数的输入参数是离散信号的向量,返回结果是信号在频率域上的复数值。

4. 频率换算:信号在频域上的复数值其实是以采样频率为单位的。

为了更好地观察频率成分,我们通常将其转换为以Hz为单位的频率。

可以使用MATLAB中的linspace函数生成一个对应频率的向量。

5. 幅度谱计算:频域上的复数值可以由实部和虚部表示,我们一般更关注其幅度,即信号的相对强度。

可以使用abs函数计算出频域上的幅度谱。

6. 相位谱计算:除了幅度谱,信号在频域上的相位信息也是重要的。

实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析系统频域分析是指通过对系统的输入输出信号进行频域分析,从而分析系统的频率响应特性和频率域特征。

利用MATLAB进行系统频域分析可以方便地实现信号的频谱分析、滤波器设计等功能。

下面将介绍如何利用MATLAB进行系统频域分析的基本步骤。

一、信号频谱分析1. 将信号导入MATLAB环境:可以使用`load`函数导入数据文件,或者使用`audioread`函数读取音频文件。

2. 绘制信号的时域波形图:使用`plot`函数绘制信号的时域波形图,以便对信号的整体特征有一个直观的了解。

3. 计算信号的频谱:使用快速傅里叶变换(FFT)算法对信号进行频谱分析。

使用`fft`函数对信号进行频域变换,并使用`abs`函数计算频谱的幅度。

4. 绘制信号的频谱图:使用`plot`函数绘制信号的频谱图,以便对信号的频率特征有一个直观的了解。

二、滤波器设计1.确定滤波器类型和要求:根据系统的要求和信号的特性,确定滤波器的类型(如低通滤波器、高通滤波器、带通滤波器等)和相应的频率响应要求。

2. 设计滤波器:使用MATLAB中的滤波器设计函数(如`fir1`、`butter`、`cheby1`等)来设计滤波器。

这些函数可以根据指定的滤波器类型、阶数和频率响应要求等参数来生成相应的滤波器系数。

3. 应用滤波器:使用`filter`函数将滤波器系数应用到信号上,得到滤波后的信号。

三、系统频率响应分析1. 生成输入信号:根据系统的要求和实际情况,生成相应的输入信号。

可以使用MATLAB中的信号生成函数(如`square`、`sine`、`sawtooth`等)来生成基本的周期信号,或者使用`randn`函数生成高斯白噪声信号。

2.绘制输入信号的频谱图:使用前面提到的信号频谱分析方法,绘制输入信号的频谱图。

3. 输入信号与输出信号的频域分析:使用`fft`函数对输入信号和输出信号进行频谱分析,并使用`abs`函数计算频谱的幅度。

如何使用Matlab技术进行频谱分析

如何使用Matlab技术进行频谱分析

如何使用Matlab技术进行频谱分析一、引言频谱分析是一种广泛应用于信号处理领域的重要技术,可以帮助我们了解信号的频率成分和能量分布情况。

Matlab作为一种强大的科学计算软件,提供了丰富的函数和工具包,能够方便快捷地进行频谱分析。

本文将介绍如何使用Matlab技术进行频谱分析,从数据处理到结果展示,将为读者提供全面的指导。

二、数据准备与导入首先,我们需要准备一组待分析的信号数据。

这可以是一个来自传感器的实时采集数据,也可以是从文件中读取的离线数据。

Matlab提供了多种数据导入函数,例如`csvread`函数可以导入CSV格式的数据文件,`load`函数可以导入Matlab的二进制数据文件。

三、时域分析在进行频谱分析之前,我们通常需要先对信号进行必要的时域分析。

这包括对信号进行采样、滤波、降噪等处理,以便获得更准确的频谱分析结果。

1. 采样:如果信号是以连续时间形式存在,我们需要首先对其进行采样。

Matlab提供了`resample`函数可以进行信号的采样,可以根据需要进行上采样或下采样操作。

2. 滤波:滤波是常用的信号处理方法之一,可以去除信号中的噪声以及不感兴趣的频率成分。

Matlab提供了多种滤波函数,例如`lowpass`函数可以进行低通滤波,`bandpass`函数可以进行带通滤波。

3. 降噪:在一些实际应用场景中,信号可能受到各种干扰和噪声的影响。

在进行频谱分析之前,我们需要对信号进行降噪处理,以获得准确的频谱结果。

Matlab提供了`denoise`函数可以进行信号的降噪处理,例如小波降噪、基于稀疏表示的降噪等。

四、频谱分析方法频谱分析是指对信号的频率成分进行分析和研究的过程。

常见的频谱分析方法有傅里叶变换、功率谱估计、自相关函数等。

1. 傅里叶变换:傅里叶变换是频谱分析的基础方法之一,可以将信号从时间域转换到频域。

Matlab提供了`fft`函数用于计算离散傅里叶变换(DFT),可以得到信号的频谱图。

利用MATLAB软件对音频信号进行频谱分析与处理

利用MATLAB软件对音频信号进行频谱分析与处理

利用MATLAB软件对音频信号进行频谱分析与处理一、简介频谱分析是通过对信号的频率成分进行分析,它允许我们了解信号的特性,计算信号的能量分布,同时还可以用来定位造成干扰的频率组件,以及检测和分析信号的变化。

MATLAB是一种编程语言和科学计算软件,它可以非常便捷地实现对音频信号的频谱分析和处理。

二、实现方法1.导入音频信号在使用MATLAB进行频谱分析时,首先需要先将音频信号导入MATLAB环境中。

可以使用audioplayer和audioread函数来完成这一步骤,示例代码如下:[audioData, fs] = audioread(‘AudioFile.wav’);player = audioplayer(audioData, fs);play(player);其中audioData表示从wav文件中读取的音频数据,fs表示采样率,player表示存储audioData和fs的audioplayer实例,play函数可以播放音频文件。

2.信号预处理针对所记录的音频信号,需要进行一些基本的信号处理操作,包括去噪、均衡、时域平均等。

去噪可以用MATLAB内置的函数完成,例如:audioData_NoiseRemoved = denoise(audioData,‘meanspectrum’);均衡是指将频谱的一些区域调整到更好的水平,可以用equalizer函数实现:audioData_Equalized = equalizer(audioData, ‘bandwidth’, 0.2);时域平均则可以使用conv函数实现:audioData_Meaned = conv(audioData, [1/N 1/N ... 1/N]);3.频谱分析频谱分析的主要工作是计算信号的谱密度,也就是每一个频率分量的能量。

应用MATLAB对信号进行频谱分析

应用MATLAB对信号进行频谱分析

应用MATLAB对信号进行频谱分析信号的频谱分析是一种重要的信号处理方法,可以帮助我们深入了解信号的频域特性。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行频谱分析。

在MATLAB中,频谱分析可以使用多种方法来实现,包括离散傅立叶变换(DFT)、快速傅立叶变换(FFT)等。

下面将介绍几种常用的频谱分析方法及其在MATLAB中的应用。

1.离散傅立叶变换(DFT)离散傅立叶变换是将信号从时域转换到频域的一种方法。

在MATLAB 中,可以使用fft函数进行离散傅立叶变换。

例如,假设我们有一个长度为N的信号x,可以通过以下代码进行频谱分析:```matlabN = length(x);X = fft(x);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```以上代码将信号x进行离散傅立叶变换,并计算频谱的幅度谱(P),然后根据采样频率和信号长度计算频率轴。

最后使用plot函数绘制频谱图。

2.快速傅立叶变换(FFT)快速傅立叶变换是一种高效的离散傅立叶变换算法,可以在较短的时间内计算出频谱。

在MATLAB中,fft函数实际上就是使用了快速傅立叶变换算法。

以下是使用FFT进行频谱分析的示例代码:```matlabN = length(x);X = fft(x);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```3.窗函数窗函数可以改善频谱分析的效果,常见的窗函数有矩形窗、汉宁窗、汉明窗等。

在MATLAB中,可以使用window函数生成窗函数,然后将窗函数和信号进行乘积运算,再进行频谱分析。

以下是使用汉宁窗进行频谱分析的示例代码:```matlabN = length(x);window = hann(N);xw = x.*window';X = fft(xw);fs = 1000; % 采样频率f = fs*(0:(N/2))/N;P = abs(X/N).^2;plot(f,P(1:N/2+1))```以上代码通过生成一个汉宁窗,并将窗函数与信号进行乘积运算得到xw,然后将xw进行频谱分析。

如何在Matlab中进行信号频谱分析

如何在Matlab中进行信号频谱分析

如何在Matlab中进行信号频谱分析一、引言信号频谱分析是一种重要的信号处理技术,它可以帮助我们理解信号的频率特性和频谱分布。

在Matlab中,有多种方法可以用来进行信号频谱分析,本文将介绍其中几种常用的方法。

二、时域分析1. 快速傅里叶变换(FFT)快速傅里叶变换(FFT)是最常用的频谱分析工具之一。

在Matlab中,可以使用fft函数对信号进行FFT分析。

首先,将信号数据传入fft函数,然后对结果进行处理,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和频谱分布。

2. 窗函数窗函数可以帮助我们减小信号分析过程中的泄漏效应。

在Matlab中,可以使用hamming、hanning等函数生成窗函数。

通过将窗函数乘以信号数据,可以减小频谱中的泄漏效应,得到更准确的频谱图。

三、频域分析1. 功率谱密度(PSD)估计功率谱密度(PSD)估计是一种常见的频域分析方法,用来估计信号在不同频率上的功率分布。

在Matlab中,可以使用pwelch函数进行PSD估计。

pwelch函数需要输入信号数据和采样频率,然后输出信号的功率谱密度图。

2. 自相关函数自相关函数可以帮助我们了解信号的周期性。

在Matlab中,可以使用xcorr函数计算信号的自相关函数。

xcorr函数需要输入信号数据,然后输出信号的自相关函数图。

四、频谱图绘制与分析在进行信号频谱分析后,我们需要将分析结果进行可视化。

在Matlab中,可以使用plot函数绘制频谱图。

通过观察频谱图,我们可以进一步分析信号的频率成分和频谱特性。

可以注意以下几点:1. 频谱图的横轴表示频率,纵轴表示幅度。

通过观察频谱图的峰值位置和幅度大小,可以了解信号中频率成分的分布情况。

2. 根据信号的特点,选择合适的分析方法和参数。

不同的信号可能需要采用不同的分析方法和参数,才能得到准确的频谱分布。

五、实例分析为了更好地理解如何在Matlab中进行信号频谱分析,以下是一个简单的实例分析。

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序```Matlab%定义信号参数fs = 1000; % 采样频率t = 0:1/fs:1-1/fs; % 时间向量f1=10;%第一个频率成分f2=100;%第二个频率成分x = sin(2*pi*f1*t) + sin(2*pi*f2*t); % 信号%计算信号的FFTN = length(x); % 信号长度X = fft(x); % FFT变换X_mag = abs(X(1:N/2))/N; % 取FFT结果的一半并除以信号长度得到幅度谱f = (0:N/2-1)*fs/N; % 计算频率向量%绘制频谱figure;plot(f, X_mag);xlabel('Frequency (Hz)');ylabel('Magnitude');title('FFT Spectrum Analysis');grid on;```在上述程序中,我们首先定义了信号的参数,例如采样频率(fs)、时间向量(t)和信号的频率成分(f1和f2)。

然后,我们使用这些参数生成信号(x),该信号是由两个不同频率的正弦波叠加而成。

接下来,我们计算信号的FFT(通过调用fft函数),并使用abs函数取FFT结果的绝对值。

我们还将FFT结果的一半(因为FFT结果是对称的,前一半包含了频谱信息)除以信号长度,得到幅度谱(X_mag)。

频率向量(f)通过简单计算得到。

使用上述程序,我们可以计算并绘制任意信号的频谱。

只需修改信号的参数、生成信号的代码和绘图设置,就可以适应不同的应用需求。

除了上述示例程序,MATLAB还提供了许多其他函数和工具,用于更详细的频谱分析,如频谱图的平滑、窗函数的应用、频谱峰值的查找等。

读者可以根据自己的需求进一步研究和探索MATLAB的频谱分析功能。

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序
ti=[0:length(xifft)-1]/fs;
figure(2);
subplot(236);
plot(ti,magx);
xlabel('t');
ylabel('y');
title('通过IFFT转换的矩形波波形');
grid;
%****************3.白噪声****************%
grid;
%求功率谱
power=sq.^2;
figure(3);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('白噪声功率谱');
grid;
%求对数谱
ln=log(sq);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('正弦信号y=2*pi*10t功率谱');
grid;
%求对数谱
ln=log(sq);
figure(1);
subplot(235);
clear;close all;
fs=400;T=1/fs;
Tp=0.04;N=Tp*fs;
N1=[N,4*N,8*N];%三种长度0.04s 4*0.04s 8*0.04s
%矩形窗截断
for m=1:3
n=1:N1(m);

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析信号频谱分析是一种将时域信号转换为频域信号的方法。

频谱分析可以帮助我们了解信号的频率成分、频率特性以及频率分布情况。

MATLAB 是一种强大的信号处理工具,提供了丰富的函数和工具用于频谱分析。

在MATLAB中,频谱分析主要通过使用FFT(快速傅里叶变换)来实现。

FFT可以将时域信号转换为频率域信号,它是一种高效的计算算法,可以快速计算信号的频谱。

首先,我们需要先读取信号数据并将其转换为MATLAB中的矩阵数据形式。

可以使用`load`函数读取信号数据,然后将其存储为一个向量或矩阵。

```matlabdata = load('signal_data.txt');```接下来,我们可以使用`fft`函数对信号进行频谱分析。

`fft`函数会返回一个复数向量,表示信号在频率域的频率分量。

```matlabfs = 1000; % 采样频率N = length(data); % 信号长度frequencies = (0:N-1)*(fs/N); % 计算频率坐标轴spectrum = fft(data); % 进行FFT变换```在以上代码中,我们先计算了信号的采样频率`fs`和信号的长度`N`。

然后使用这些参数计算频率坐标轴`frequencies`。

最后使用`fft`函数对信号进行FFT变换,得到信号的频谱`spectrum`。

为了得到信号的幅度谱图,我们可以使用`abs`函数计算复数向量的绝对值。

```matlabamplitude_spectrum = abs(spectrum);```接下来,我们可以绘制信号的幅度谱图。

使用`plot`函数可以绘制信号在频率域的幅度分布图。

```matlabfigure;plot(frequencies, amplitude_spectrum);xlabel('Frequency (Hz)');ylabel('Amplitude');title('Amplitude Spectrum');```此外,我们还可以绘制信号的功率谱图。

利用Matlab绘制正弦信号的频谱图并做相关分析

利用Matlab绘制正弦信号的频谱图并做相关分析

利用Matlab绘制正弦信号的频谱图并做相关分析一、作业要求:1、信号可变(信号的赋值、相位、频率可变);2、采样频率fs可变;3、加各种不同的窗函数并分析其影响;4、频谱校正;5、频谱细化。

二、采用matlab编写如下程序:clear;clf;fs=100;N=1024; %采样频率和数据点数A=20;B=30;C=0.38;n=0:N-1;t=n/fs; %时间序列x=A*sin(2*pi*B*t+C); %信号y=fft(x,N); %对信号进行傅里叶变换yy=abs(y); %求得傅里叶变换后的振幅yy=yy*2/N; %幅值处理f=n*fs/N; %频率序列subplot(3,3,1),plot(f,yy); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图1:fs=100,N=1024');grid on;%两种信号叠加,x=A*sin(2*pi*B*t+C)+2*A*sin(2*pi*1.5*B*t+2.5*C); %信号y=fft(x,N); %对信号进行傅里叶变换yy=abs(y); %求得傅里叶变换后的振幅yy=yy*2/N; %幅值处理f=n*fs/N; %频率序列subplot(3,3,2),plot(f,yy); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图2:fs=100,N=1024,两种信号叠加');grid on;%加噪声之后的图像x=A*sin(2*pi*B*t+C)+28*randn(size(t));y=fft(x,N);yy=abs(y);yy=yy*2/N; %幅值处理subplot(3,3,3),plot(f(1:N/2.56),yy(1:N/2.56));xlabel('频率/\itHz');ylabel('振幅');title('图3:fs=100,N=1024混入噪声');grid on;%改变采样点数N=128N=128;n=0:N-1;t=n/fs; %时间序列x=A*sin(2*pi*B*t+C); %信号y=fft(x,N); %对信号进行傅里叶变换yy=abs(y); %求得傅里叶变换后的振幅yy=yy*2/N; %幅值处理f=n*fs/N; %频率序列subplot(3,3,4),plot(f(1:N/2.56),yy(1:N/2.56)); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图4:fs=100,N=128');grid on;%改变采样频率为200Hz时的频谱fs=400;N=1024;n=0:N-1;t=n/fs;x=A*sin(2*pi*B*t+C); %信号y=fft(x,N); %对信号进行快速傅里叶变换yy=abs(y); %求取傅里叶变换的振幅yy=yy*2/N; %幅值处理f=n*fs/N;subplot(3,3,5),plot(f(1:N/2.56),yy(1:N/2.56)); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图5:fs=400,N=1024');grid on;%加三角窗函数fs=100;N=1024; %采样频率和数据点数n=0:N-1;t=n/fs; %时间序列x=A*sin(2*pi*B*t+C); %信号window=triang(N);%生成三角窗函数x=x.*window';%加窗函数y=fft(x,N); %对信号进行傅里叶变换yy=abs(y); %求得傅里叶变换后的振幅yy=yy*2/N; %幅值处理f=n*fs/N; %频率序列subplot(3,3,6),plot(f(1:N/2.56),2*yy(1:N/2.56)); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图6:fs=100,N=1024,加三角窗函数');grid on;%加海明窗函数后的频谱fs=100;N=1024;n=0:N-1;t=n/fs;x=A*sin(2*pi*B*t+C); %信号window=hamming(N);%生成海明窗函数x=x.*window';%加窗函数y=fft(x,N); %对信号进行快速傅里叶变换yy=abs(y); %求取傅里叶变换的振幅yy=yy*2/N; %幅值处理f=n*fs/N;subplot(3,3,7),plot(f(1:N/2.56),1.852*yy(1:N/2.56)); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图7:fs=100,N=1024,加海明窗函数');grid on;%加汉宁窗函数后的频谱fs=100;N=1024;n=0:N-1;t=n/fs;x=A*sin(2*pi*B*t+C); %信号window=hanning(N);%生成汉宁窗函数x=x.*window';%加窗函数y=fft(x,N); %对信号进行快速傅里叶变换yy=abs(y); %求取傅里叶变换的振幅yy=yy*2/N; %幅值处理f=n*fs/N;subplot(3,3,8),plot(f(1:N/2.56),2*yy(1:N/2.56)); %绘出随频率变化的振幅xlabel('频率/\itHz');ylabel('振幅');title('图8:fs=100,N=1024,加汉宁窗函数');grid on;三、运行结果如下:四、分析与结论:1)从所做图像可以看出,信号的幅值均小于真实值,说明在截断信号时存在泄露。

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析信号的频谱分析是一种重要的信号处理技术,广泛应用于通信、声音处理、图像处理等领域。

MATLAB作为一种功能强大且易于使用的数学软件工具,也提供了丰富的信号频谱分析函数和工具箱,方便进行频谱分析的研究和实践。

在本文中,我们将详细介绍MATLAB在信号频谱分析方面的应用,并通过几个实例来说明其使用方法和结果分析。

首先,我们需要了解频谱是什么。

频谱是对信号在频率域上的表示,描述了信号在各个频率上的强度分布情况。

频谱分析是将信号从时域转换到频域的过程,可以通过多种方法实现,其中最常用的是快速傅里叶变换(FFT)。

MATLAB提供了fft函数来完成信号的快速傅里叶变换,并得到信号的频谱。

以音频信号为例,我们可以使用MATLAB读取音频文件,并进行频谱分析。

具体步骤如下:1. 使用audioread函数读取音频文件,将其转换为数字信号。

```matlab[y,Fs] = audioread('audio.wav');```其中,y是音频信号的数据向量,Fs是采样率。

2.对信号进行快速傅里叶变换,得到信号的频谱。

```matlabY = fft(y);```3.计算频谱的幅度谱,即频谱的绝对值。

```matlabP = abs(Y);```4.根据采样率和信号长度计算频率轴。

```matlabL = length(y);f=Fs*(0:(L/2))/L;```5.绘制频谱图。

```matlabplot(f,P(1:L/2+1));xlabel('Frequency (Hz)');ylabel('Amplitude');```通过以上步骤,我们可以得到音频信号的频谱图像。

从频谱图中可以看出信号在各个频率上的强度分布情况,有助于我们对信号进行分析和处理。

除了音频信号,我们还可以对其他类型的信号进行频谱分析,比如图像信号。

MATLAB提供了imread函数用于读取图像文件,并通过fft2函数进行二维快速傅里叶变换。

实验1用MATLAB进行信号频谱分析

实验1用MATLAB进行信号频谱分析

实验1用MATLAB进行信号频谱分析提供一个实验步骤,帮助您用MATLAB进行信号频谱分析。

以下是一个详细步骤,您可以按照提示进行操作。

1.准备信号数据选择一个信号数据,可以是一个音频文件或一个由数字数据表示的信号。

确保该文件位于MATLAB当前工作目录下,或者提供文件的完整路径。

2.导入信号数据在MATLAB命令窗口中键入以下命令,将信号数据导入到MATLAB中:`data = audioread('filename.wav');`或者,如果信号数据是数字数据矩阵,可以直接将其赋值给变量:`data = your_signal_data;`3.绘制时域波形图使用以下命令可以绘制信号的时域波形图:`plot(data);`这将绘制出信号的波形图。

可以使用音频播放器在MATLAB环境中播放信号,以便更好地了解信号特征:`sound(data, Fs);`这里的Fs是信号的采样率,通常以赫兹(Hz)为单位。

4.计算信号的频谱频谱可以通过对信号进行傅里叶变换来获得。

在MATLAB中,可以使用fft函数执行傅里叶变换。

使用以下命令来计算信号的频谱:`N = length(data); %获取信号数据的长度``Y = fft(data); %执行傅里叶变换``P = abs(Y/N); %计算信号的频谱(单侧幅度谱)`5.绘制频谱图使用以下命令可以绘制信号的频谱图:`f=(0:N-1)*(Fs/N);%计算频率轴``plot(f, P); %绘制频谱图``xlabel('频率(Hz)');``ylabel('幅度');`6.可选步骤:去除直流分量信号的频谱通常包含一个直流分量(频率为0Hz),可以通过以下步骤将其去除:`P(1)=0;%设置直流分量的幅度为0``plot(f, P); %绘制修正后的频谱图`到此为止,我们已经使用MATLAB完成了信号频谱分析的基本步骤。

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB实现
一、信号频谱分析介绍
信号的频谱分析,又称信号的谱分析或谱分析,是一种分析信号按频率分布的重要技术。

频谱分析可以揭示信号中功率分布的情况,以及信号的噪声水平、低频成分、高频成分、端频成分的大小和具体位置、信号的频谱结构等信息。

(1)实验步骤。

1)准备信号;
2)使用fft函数提取信号的频率谱;
3)使用plot函数绘制信号的频谱图;
4)观察信号的频谱特征。

(2)MATLAB代码
%信号频谱分析
fs = 8000; % 采样频率
t = 0:1/fs:1; % 时间定义
x = sin(2*pi*100*t); % 信号x
X = fft(x); % 进行FFT转换
%频谱绝对值
X_abs = abs(X);
nf = length(X_abs); % 频谱长度,计算频率
f = (0:nf-1)*fs/nf; % 频率定义
%绘制频谱图
plot(f, X_abs);
xlabel('frequency/Hz');
ylabel('amplitude/mv');
title('Signal Spectrum');
通过分析,可以看出,信号频率主要集中在100Hz,其峰值为1.2mv,除此以外,分布范围有200~700Hz,峰值不大。

三、结论
本次实验分析了信号的频谱分析及其在MATLAB中的应用,利用MATLAB的fft函数可以很快速地实现信号的频谱分析。

基于MATLAB的信号的频谱分析

基于MATLAB的信号的频谱分析

基于MATLAB 的信号的频谱分析一.题目的说明及设计指标DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。

文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。

通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。

二.建模分析离散傅里叶变换x(n)是一个长度为M 的有限长序列,则x(n)的N 点离散傅立叶变换为:X(k)=DFT[x(n)]=kn N W N n n x ∑-=10)(,k=0,1,...,N-1;N j e N W π2-= 逆变换:x(n) =IDFT[X(k)]= knN W k X N n N -∑-=10)(1,k=0,1,...,N-1对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。

为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。

同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。

假设信号为:)()(t u e t x t-=分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab 信号处理工具箱 谱估计专题频谱分析Spectral estimation (谱估计)的目标是基于一个有限的数据集合描述一个信号的功率(在频率上的)分布。

功率谱估计在很多场合下都是有用的,包括对宽带噪声湮没下的信号的检测。

从数学上看,一个平稳随机过程n x 的power spectrum (功率谱)和correlation sequence (相关序列)通过discrete-time Fourier transform (离散时间傅立叶变换)构成联系。

从normalized frequency (归一化角频率)角度看,有下式()()j mxx xx m S R m eωω∞-=-∞=∑注:()()2xx S X ωω=,其中()/2/21limN j n n N n N X x e Nωω→∞=-=∑πωπ-<≤。

其matlab近似为X=fft(x,N)/sqrt(N),在下文中()L X f 就是指matlab fft 函数的计算结果了使用关系2/s f f ωπ=可以写成物理频率f 的函数,其中s f 是采样频率()()2/sjfm f xx xxm S f R m eπ∞-=-∞=∑相关序列可以从功率谱用IDFT 变换求得:()()()/22//22sss f jfm f j m xx xx xx s f S e S f e R m d df f πωππωωπ--==⎰⎰序列n x 在整个Nyquist 间隔上的平均功率可以表示为()()()/2/202ss f xx xx xx s f S S f R d df f ππωωπ--==⎰⎰ 上式中的()()2xx xx S P ωωπ=以及()()xx xx sS f P f f = 被定义为平稳随机信号n x 的power spectral density (PSD)(功率谱密度) 一个信号在频带[]1212,,0ωωωωπ≤<≤上的平均功率可以通过对PSD 在频带上积分求出[]()()211212,xxxx P P d P d ωωωωωωωωωω--=+⎰⎰从上式中可以看出()xx P ω是一个信号在一个无穷小频带上的功率浓度,这也是为什么它叫做功率谱密度。

PSD 的单位是功率(e.g 瓦特)每单位频率。

在()xx P ω的情况下,这是瓦特/弧度/抽或只是瓦特/弧度。

在()xx P f 的情况下单位是瓦特/赫兹。

PSD 对频率的积分得到的单位是瓦特,正如平均功率[]12,P ωω所期望的那样。

对实信号,PSD 是关于直流信号对称的,所以0ωπ≤≤的()xx P ω就足够完整的描述PSD 了。

然而要获得整个Nyquist 间隔上的平均功率,有必要引入单边PSD 的概念:()()0020onesided xx P P πωωωωπ-≤<⎧=⎨≤<⎩ 信号在频带[]1212,,0ωωωωπ≤<≤上的平均功率可以用单边PSD 求出[]()2121,onesidedP P d ωωωωωω=⎰频谱估计方法Matlab 信号处理工具箱提供了三种方法 Nonparametric methods (非参量类方法)PSD 直接从信号本身估计出来。

最简单的就是periodogram (周期图法),一种改进的周期图法是Welch's method 。

更现代的一种方法是multitaper method (多椎体法)。

Parametric methods (参量类方法)这类方法是假设信号是一个由白噪声驱动的线性系统的输出。

这类方法的例子是Yule-Walker autoregressive (AR) method和Burg method。

这些方法先估计假设的产生信号的线性系统的参数。

这些方法想要对可用数据相对较少的情况产生优于传统非参数方法的结果。

Subspace methods (子空间类)又称为high-resolution methods(高分辨率法)或者super-resolution methods (超分辨率方法)基于对自相关矩阵的特征分析或者特征值分解产生信号的频率分量。

代表方法有multiple signal classification (MUSIC) method或eigenvector (EV) method。

这类方法对线谱(正弦信号的谱)最合适,对检测噪声下的正弦信号很有效,特别是低信噪比的情况。

方法描述函数周期图PSD 估计spectrum.periodogram,periodogramWelch 重叠,加窗的信号段的平均周期图spectrum.welch, pwelch, cpsd,tfestimate, mscohere多椎体多个正交窗(称为锥)的组合做谱估计spectrum.mtm, pmtmYule-Walker AR 时间序列的估计的自相关函数计算自回归(AR)谱估计spectrum.yulear, pyulearBurg 通过最小化线性预测误差计算自回归(AR)谱估计spectrum.burg, pburgCovariance (协方差)通过最小化前向预测误差做时间序列的自回归(AR)谱估计spectrum.cov, pcov修正协方差通过最小化前向及后向预测误差做时间序列的自回归(AR)谱估计spectrum.mcov, pmcov MUSIC 多重信号分类spectrum.music, pmusic特征向量法虚谱估计spectrum.eigenvector, peig Nonparametric Methods非参数法下面讨论periodogram, modified periodogram, Welch, 和multitaper法。

同时也讨论CPSD函数,传输函数估计和相关函数。

Periodogram周期图法一个估计功率谱的简单方法是直接求随机过程抽样的DFT,然后取结果的幅度的平方。

这样的方法叫做周期图法。

一个长L的信号[]Lx n的PSD的周期图估计是()()2ˆL xxs X f P f f L=注:这里()L X f 运用的是matlab 里面的fft 的定义不带归一化系数,所以要除以L 其中()[]12/0s L jfn f L L n X f x n e π--==∑实际对()L X f 的计算可以只在有限的频率点上执行并且使用FFT 。

实践上大多数周期图法的应用都计算N 点PSD 估计()()2ˆL k xx ks X f P f f L=,,0,1,,1sk kf f k N N==-其中()[]12/0L jkn N L k L n X f x n e π--==∑选择N 是大于L 的下一个2的幂次是明智的,要计算[]L k X f 我们直接对[]L x n 补零到长度为N 。

假如L>N ,在计算[]L k X f 前,我们必须绕回[]L x n 模N 。

作为一个例子,考虑下面1001元素信号n x ,它包含了2个正弦信号和噪声 randn('state',0);fs = 1000; % Sampling frequencyt = (0:fs)/fs; % One second worth of samples A = [1 2]; % Sinusoid amplitudes (row vector)f = [150;140]; % Sinusoid frequencies (column vector) xn = A*sin(2*pi*f*t) + 0.1*randn(size(t));注意:最后三行表明了一个方便的表示正弦之和的方法,它等价于: xn = sin(2*pi*150*t) + 2*sin(2*pi*140*t) + 0.1*randn(size(t));对这个PSD 的周期图估计可以通过产生一个周期图对象(periodogram object )来计算 Hs = spectrum.periodogram('Hamming'); 估计的图形可以用psd 函数显示。

psd(Hs,xn,'Fs',fs,'NFFT',1024,'SpectrumType','twosided')00.10.20.30.40.50.60.70.80.9-80-70-60-50-40-30-20-100Frequency (kHz)P o w e r /f r e q u e n c y (d B /H z )Power Spectral Density Estimate via Periodogram平均功率通过用下述求和去近似积分 求得 [Pxx,F] = psd(Hs,xn,fs,'twosided'); Pow = (fs/length(Pxx)) * sum(Pxx) Pow = 2.5059你还可以用单边PSD 去计算平均功率[Pxxo,F] = psd(Hs,xn,fs,'onesided');Pow = (fs/(2*length(Pxxo))) * sum(Pxxo) Pow = 2.5011 周期图性能下面从四个角度讨论周期图法估计的性能:泄漏,分辨率,偏差和方差。

频谱泄漏考虑有限长信号[]L x n ,把它表示成无限长序列[]x n 乘以一个有限长矩形窗[]R w n 的乘积的形式经常很有用:[][][]L R x n x n w n =⋅因为时域的乘积等效于频域的卷积,所以上式的傅立叶变换是()()()/2/21s s f L R sf X f X W f d f ρρρ-=-⎰前文中导出的表达式()()2ˆL xxs X f P f f L=说明卷积对周期图有影响。

正弦数据的卷积影响最容易理解。

假设[]x n 是M 个复正弦的和[]1k Mj n k k x n A e ω==∑其频谱是()()1Ms k k k X f f A f f δ==-∑对一个有限长序列,就变成了()()()()/211/21s s f M ML s k k R k R k k k sf X f f A f W f d A W f f f δρρρ==-=--=-∑∑⎰所以在有限长信号的频谱中,Dirac 函数被替换成了形式为()R k W f f -的项,该项对应于矩形窗的中心在k f 的频率响应。

一个矩形窗的频率响应形状是一个sinc 信号,如下所示-500-400-300-200-1000100200300400500-80-70-60-50-40-30-20-100矩形窗在物理频率上的功率谱密度frequency/HzP S D d B w a t t /H z该图显示了一个主瓣和若干旁瓣,最大旁瓣大约在主瓣下方13.5dB 处。

相关文档
最新文档