图形的相似知识点总结及练习

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似

中考数学知识点总结图形的相似在中考数学中,图形的相似是一个重要的知识点。

它不仅在几何题目中频繁出现,也是解决实际问题的有力工具。

下面就让我们一起来详细了解一下图形相似的相关知识。

一、相似图形的概念相似图形是指形状相同,但大小不一定相同的图形。

比如说,两个正方形,它们的边长可能不同,但形状是一样的,这就是相似图形。

相似多边形对应角相等,对应边的比相等。

如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形就是相似多边形。

二、相似三角形1、相似三角形的判定(1)两角分别相等的两个三角形相似。

如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(2)两边成比例且夹角相等的两个三角形相似。

如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(3)三边成比例的两个三角形相似。

如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(1)相似三角形对应边的比等于相似比。

(2)相似三角形对应角相等。

(3)相似三角形周长的比等于相似比。

(4)相似三角形面积的比等于相似比的平方。

三、相似三角形的应用1、测量高度在实际生活中,我们常常需要测量一些物体的高度,比如旗杆、建筑物等。

这时就可以利用相似三角形的知识来解决。

通过测量一些已知长度的线段和对应的角度,构建相似三角形,从而求出物体的高度。

2、测量距离相似三角形还可以用于测量距离。

比如,在河的一岸要测量到对岸某一点的距离,可以在这一岸选取两个点,构建相似三角形,通过测量已知边的长度和角度,来计算出河的宽度。

四、位似图形1、位似图形的概念如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

(1)位似图形上任意一对对应点到位似中心的距离之比等于位似比。

(2)位似图形的对应边互相平行或在同一条直线上。

3、位似图形的作图在位似图形的作图中,要先确定位似中心,然后根据位似比确定对应点的位置,最后连接各点得到位似图形。

人教版相似图形知识点总结

人教版相似图形知识点总结

人教版相似图形知识点总结一、基本概念1. 相似图形的定义相似图形是指形状相同但大小可能不同的图形。

当两个图形的对应角相等,对应边成比例时,我们称这两个图形是相似的。

2. 相似比相似图形之间的边的长度比叫做相似比。

设两个相似图形的对应边分别为a和b,那么a:b就是它们的相似比。

3. 相似比的性质相似比是真分数或小数。

相似比的倒数也是其相似比。

4. 相似比的应用相似比可用于求解各种问题,如测量图形的大小,进行比例测量等。

在解决实际问题时,我们经常需要根据相似比进行尺寸的调整和计算。

二、相似图形的性质1. 对应角相等相似图形的对应角相等。

这意味着,如果两个图形是相似的,它们的对应角度度数是相等的。

2. 对应边成比例相似图形的对应边成比例。

这意味着,如果两个图形是相似的,那么它们的对应边的长度之比是相等的。

3. 面积的比相似图形的面积比等于边长比的平方。

设两个相似图形的对应边分别为a和b,它们的面积分别为S1和S2,那么S1:S2 = (a/b)²。

三、相似图形的判定1. 判断相似的方法(1)角对应相等判断两个图形是否相似,可以首先比较它们对应的角度是否相等。

如果对应角相等,则这两个图形是相似的。

(2)边成比例当两个图形的对应边成等比例时,它们是相似的。

也就是说,如果两个图形的对应边的长度之比相等,那么这两个图形是相似的。

2. 斜率的判断方法两条直线斜率相等,那么它们之间的夹角相等。

因此,我们可以通过计算两个图形的直线斜率来判断它们是否相似。

3. 重要结论如果三角形的一个角相等,则它们是相似的。

如果三角形的三边成比例,则它们是相似的。

四、相似图形的应用1. 相似图形的构造通过相似图形的性质,我们可以利用已知的图形构造出相似的新图形。

比如通过放缩、旋转等方式,我们可以构造出相似的图形。

2. 根据相似图形的性质进行计算使用相似图形的性质,我们可以进行各种计算。

比如求解未知边长、未知角度的大小等问题。

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

苏科版九年级数学下册第六章《图形的相似》知识点总结+易错点汇总

第六章《图形的相似》知识点一:比例线段1.比例线段:在四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即a cb d=,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 2.比例的基本性质:(1)基本性质:a cb d =⇔ ad =bc ;(b 、d ≠0)(2)合比性质:a c b d =⇔a b b ±=c dd±;(b 、d ≠0) (3)等比性质:a cb d ==…=m n =k (b +d +…+n ≠0)⇔......a c mb d n++++++=k .(b+d …+n ≠0) 3.平行线分线段成比例定理:(1)两条直线被一组平行线所截,所得的对应线段成比例.即如图所示,若l 3∥l 4∥l 5,则AB DEBC EF=.(2)平行于三角形一边的直线截其他两边(或两边的延长 线),所得的对应线段成比例.即如图所示,若AB ∥CD ,则OA OBOD OC=. (3)平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 如图所示,若DE ∥BC ,则△ADE ∽△ABC.4. 黄金分割:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB ==5-12≈0.618,那么线段AB 被点C 黄金分割.其中点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.例1:把长为10cm 的线段进行黄金分割,那么较长线段长为 cm 。

知识点二 :相似三角形的性质与判定5. 相似三角形的判定:(1) 两角对应相等的两个三角形相似(AAA).如图,若∠A =∠D ,∠B =∠E ,则△ABC ∽△DEF. (2) 两边对应成比例,且夹角相等的两个三角形相似. 如图,若∠A =∠D ,AC ABDF DE=,则△ABC ∽△DEF. FE DC B A学 班级 姓名 考试号-----------------------------------------------------------密---------------------------------封----------------------------------线--------------------------------------(3) 三边对应成比例的两个三角形相似.如图,若AB AC BCDE DF EF==,则△ABC∽△DEF.6.相似三角形的性质:(1)对应角相等,对应边成比例.(2)周长之比等于相似比,面积之比等于相似比的平方.(3)相似三角形对应高的比、对应角平分线的比和对应中线的比等于相似比.例2:(1)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为2,则△ABC与△DEF的面积之比为 .(2) 如图,DE∥BC, AF⊥BC,已知S△ADE:S△ABC=1:4,则AF:AG= .【学习目标】1.加深了解比例的基本性质、线段的比、成比例线段,认识图形的相似、位似等概念和性质.2.理解相似图形的性质与判定、位似的性质与把一个图形放大或缩小,在同一坐标系下感受位似变换后点的坐标的变化规律.【重点难点】重点:利用相似三角形知识解决实际的问题;位似的应用及在平面直角坐标系中作位似图形.难点:如何把实际问题抽象为相似三角形、位似形这一数学模型.【知识回顾】1、相似三角形定义:_________________________.2、判定方法:__________________________3、相似三角形性质:(1)对应角相等,对应边成比例;(2)对应线段之比等于;(对应线段包括哪几种主要线段?)(3)周长之比等于;(4)面积之比等于.4、相似三角形中的基本图形.(1)平行型(X型,A型); (2)交错型;(3)旋转型;(4)母子三角形.5、位似形的性质: .6、将一个图形按一定的比例放大或缩小的步骤为: . 【综合运用】1.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.2如图,在等腰三角形△ABC中,底边BC=60cm,高AD=40cm,四边形PQRS是正方形,S,R分别在AB,AC上,SR与AD相交于点E.(1)△ASR与△ABC相似吗?为什么?(2)求正方形PQRS的边长.【矫正补偿】如图1,已知矩形ABED,点C是边DE的中点,且AB = 2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明.【完善整合】1.通过本节课的学习你有那些收获?2.你还有哪些疑惑?第六章《图形的相似》易错疑难易错点1 对黄金分割的概念理解不清而出现漏解AB ,点C是线段AB的黄金分割点,则AC的长为.1. 已知线段20易错点2 找不准三角形的对应关系2. 如图,ACD ∆和ABC ∆相似需具备的条件是() A.AC AB CD BC =; B. CD BCAD AC=C. 2AC AD AB =g ;D. 2CD AD BD =g易错点3 混淆相似三角形的性质,误认为相似三角形的面积比等于相似比 3. 如图,若ADE ABC ∆∆:,DE 与AB 相交于点D ,与AC 相交于点E ,2DE =,5BC =,20ABC S ∆=,求ADE S ∆的值.易错点4 不能区分“相似”写“:”的含义4. 如图,在矩形ABCD 中,10,4AB AD ==,点P 是边AB 上一点,连接,PD PC ,若APD ∆与BPC ∆相似,则满足条件的点P 有 个.第4题第5题5. 如图,ABC ∆中,90C ∠=︒,16BC =cm ,12AC =cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点,P Q 分别从点,B C 同时出发,设运动时间为t s ,当t = 时,CPQ ∆与CBA ∆相似. 疑难点1 相似三角形的判定和性质的综合应用1. 如图是一块含30°角的直角三角板,它的斜边8AB =8cm ,里面空心DEF ∆的各边与ABC ∆的对应边平行,且各对应边间的距离都是1 cm ,那么DEF ∆的周长是( )A. 5cm ;B. 6cm ;C. (63)-cm ;D. (33)+cm第1题第2题2. 如图,已知矩形ABCD ,2,6AB BC ==,点E 从点D 出发,沿DA 方向以每秒1个单位长度的速度向点A 运动,点F 从点B 出发,沿射线AB 以每秒3个单位长度的速度运动,当点E 运动到点A 时,,E F 两点停止运动.连接BD ,过点E 作EH BD ⊥,垂足为H ,连接EF ,交BD 于点G ,交BC 于点M ,连接,CF EC .给出下列结论:①CDE CBF ∆∆:;②DBC EFC ∠=∠;③DE HGAB EH=;④GH 10.上述结论正确的个数为( )A.1B. 2C. 3D. 4 疑难点2 相似图形中的规律探索3.如图,在平面直角坐标系中,矩形AOCB 的两边,OA OC 分别在x 轴和y 轴上,且2,1OA OC ==.在第二象限内,将矩形AOCB 以原点O 为位似中心放大为原来的32倍,得到矩形111A OC B ,再将矩形111A OC B 以原点O 为位似中心放大32倍,得到矩形222A OC B ……依此类推,得到的矩形n n n A OC B 的对角线交点的坐标为 .第3题 第4题4.如图,已知正方形11ABC D 的边长为1,延长11C D 到1A ,以11A C 为边向右作正方形1122AC C D ,延长22C D 到2A ,以22A C 为边向右作正方形2233A C C D ……依此类推,若112A C =,且点12310,,,,,A D D D D …都在同一直线上,则正方形991010A C C D 的边长是 .疑难点3 相似三角形与函数等知识的综合5. 反比例函数y =的图象在第一象限的分支上有一点A (3,4),P 为x 轴正半轴上的一个动点,(1)求反比例函数解析式.(2)当P 在什么位置时,△OP A 为直角三角形,求出此时P 点的坐标.疑难点4 动态问题中的相似三角形6.如图,在直角坐标系中,点(0,4),(3,4),(6,0)A B C --,动点P 从点A 出发以1个单位长度/秒的速度在y 轴上向下运动,动点Q 同时从点C 出发以2个单位长度/秒的速度在x 轴上向右运动,过点P 作PD y ⊥轴,交OB 于点D ,连接DQ .当点P 与点O 重合时,两动点均停止运动.设运动的时间为t 秒.(1)当1t =时,求线段DP 的长;(2)连接CD ,设CDQ ∆的面积为S ,求S 关于t 的函数表达式,并求出S 的最大值; (3)运动过程中是否存在某一时刻,使ODQ ∆与ABC ∆相似?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由参考答案例1. 5(5-1);例 2.(1)9:4;(2)1:2 综合运用:1.分析:(1)根据平行四边形的性质可得AD ∥BC ,AB ∥CD ,即得∠ADF =∠CED ,∠B +∠C =180°,再由∠AFE +∠AFD =180°,∠AFE =∠B ,可得∠AFD =∠C ,问题得证; (2)根据平行四边形的性质可得AD ∥BC ,CD =AB =4,再根据勾股定理可求得DE 的长,再由△ADF ∽△DEC 根据相似三角形的性质求解即可. 证明:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AB ∥CD ∴∠ADF =∠CED ,∠B +∠C =180°∵∠AFE +∠AFD =180,∠AFE =∠B ∴∠AFD =∠C ∴△ADF ∽△DEC ; 解:(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,CD =AB =4。

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)篇1:相似图形的知识点总结相似图形的知识点总结知识点1.概念把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理篇2:相似图形相似图形教学交流课教案:第四章相似图形教学目标:1、知道线段比的概念。

相似相似三角形全部知识点总结附带经典习题和答案

相似相似三角形全部知识点总结附带经典习题和答案

拔高相似三角形习题集适合人群:老师备课,以及优秀同学拔高使用。

一、基础知识(不局限于此)(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b c bb a =⇔=2 (2)合比定理:d dc b b ad c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b ban d b m c a n m d c b a3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4.相似三角形的性质● (1)对应边的比相等,对应角相等. ● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 5.三角形中位线定义:连接三角形两边中点的线段 叫做三角形的中位线. 三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半. 7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

(完整版)相似三角形基本知识点+经典例题(完美打印版)

(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

(完整word版)九年级数学相似三角形知识点及习题

(完整word版)九年级数学相似三角形知识点及习题

相似三角形要点一、本章的两套定理第一套(比例的有关性质): b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形 直角三角形 全等三角形的判定 SASSSS AAS (ASA ) HL 相似三角形的判定 两边对应成比例夹角相等 三边对应成比例 两角对应相等一条直角边与斜边对应成比例 从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2三、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ X ”型。

相似原理知识点总结

相似原理知识点总结

相似原理知识点总结相似原理是几何学中的基本概念之一,它在几何学的许多领域中都有重要的应用。

相似原理主要是指两个几何图形在形状上相似,但尺寸可能不同的原理。

在这篇文章中,我们将会对相似原理进行深入的探讨,包括其定义、性质、常见的应用以及相关的定理。

一、相似原理的定义相似原理是指两个几何图形在形状上相似,但尺寸可能不同。

两个图形相似的条件是它们的对应角相等,对应边成比例。

简而言之,如果两个几何图形的所有对应角相等,且对应边的比例相等,那么这两个几何图形就是相似的。

在直角三角形中,有一种特殊的相似原理叫做“AA相似原理”。

当两个直角三角形的一个角相等时,另外一个角也相等,那么这两个三角形就是相似的。

另外,如果两个三角形的对应边成比例,那么它们也是相似的。

除了直角三角形外,对于其他类型的多边形和圆的相似原理也有一些特殊的条件。

但其核心思想都是相似的,即对应角相等,对应边成比例。

二、相似原理的性质相似原理有一些重要的性质,下面我们将逐一介绍这些性质:性质1:相似三角形的对应角相等相似三角形的一个重要性质是它们的对应角相等。

这意味着如果两个三角形是相似的,那么它们的对应角一定相等。

性质2:相似三角形的对应边成比例相似三角形的另一个重要性质是它们的对应边成比例。

即如果两个三角形是相似的,那么它们的对应边的比例一定相等。

性质3:相似三角形的周长成比例如果两个三角形是相似的,那么它们的周长也是成比例的。

这是因为相似三角形的对应边成比例。

性质4:相似三角形的面积成比例如果两个三角形是相似的,那么它们的面积也是成比例的。

这是因为相似三角形的对应边成比例。

以上的性质都是相似原理的基本性质,它们在解题过程中非常有用。

三、相似原理的应用相似原理在几何学的许多领域中有着广泛的应用。

下面我们将介绍一些常见的应用:应用1:求图形面积在求解图形的面积时,如果我们知道图形的相似图形,并且知道两者的比例关系,那么我们就可以利用相似原理来求解图形的面积。

图形的相似知识点总结及练习

图形的相似知识点总结及练习

图形的相似知识点总结及练习1、两条线段的比:选用同一长度单位量得两条线段量得AB、CD的长度分别是m、n,那么就说这两条线段的比是AB:CD =m:n例:已知线段AB=2、5m,线段CD=400cm,求线段AB与CD的比。

2、比例线段:四条线段a、b、c、d中,如果a与b的比等于c与d的比,即(或a:b=c:d),那么,这四条线段a、b、c、d叫做成比例线段,简称比例线段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。

)例:b,a,d,c是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d的长度。

(2)比例性质1、基本性质: (两外项的积等于两内项积)2、反比性质:(把比的前项、后项交换)3、更比性质(交换比例的内项或外项):4、等比性质:(分子分母分别相加,比值不变、)如果,那么、注意:(1)此性质的证明运用了“设法” ,这种方法是有关比例计算,变形中一种常用方法、 (2)应用等比性质时,要考虑到分母是否为零、 (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立、例:已知5、合比性质:(分子加(减)分母,分母不变)、知识点二:平行线分线段成比例定理1、平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。

用符号语言表示:∵AD//BE//CF,∴ABBC=DEEF,BCAC=EFDF,ABAC=DEDF2、推论:平行于三角形一边的直线与其它两边相交,截得的对应线段成比例。

(1)是“A”字型(2)是“8”字型经常考,关键在于找几何语言:由DE∥BC可得:、此推论较原定理应用更加广泛,条件是平行、例:如图,在四边形ABCD中,AD//BC,EF//BC,AGGC=23,则DFDC=_______。

知识点三:相似形多边形1、定义:各角分别相等、各边成比列的两个多边形叫做相似多边形。

2、相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。

图形的相似 知识归纳+真题解析

图形的相似 知识归纳+真题解析

(4)平行于三角形一边的直线和其他两边(或延长线)相交,所构成的三角形与原三角形相 似. 3.相似三角形的性质 (1)相似三角形周长的比等于相似比. (2)相似三角形面积的比等于相似比的平方. (3)相似三角形对应高、对应角平分线、对应中线的比等于相似比. 4.相似多边形的性质 (1)相似多边形周长的比等于相似比. (2)相似多边形面积的比等于相似比的平方. 5.位似图形 (1)定义 两个多边形不仅相似,而且每组对应顶点所在直线相交于一点,这个点叫做位似中 心,对应边的比叫做位似比.位似是一种特殊的相似. (2)性质 (1)位似图形上的任意一对对应点到位似中心的距离的比等于位似比; (2)位似图形对应点的连线或延长线相交于 (3)位似图形对应边成比例; (4)位似图形对应角相等. 一 点;
a c b d
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 (二)1.相似图形定义:形状相同的图形称为相似图形.相似图形的性质:对应角相等, 对应边的比成比例. 2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,且夹角夹角相等,那么 这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相 似;
AC AB
4.平行线分线段成比例定理,三条平行线截两条直线,所得的对应线段成比例。 ( 二 ) 1. 相 似 图 形 定 义 : 形 状 相 同 的 图 形 称 为 相 似 图 形 . 相 似 图 形 的 性 质 : 对 应 角 ,对应边的比 .
2.相似三角形的判定 (1)如果一个三角形的两角分别与另一个三角形的两角对应 似; (2)如果一个三角形的两条边与另一个三角形的两条边对应 个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应 似; (4)平行于三角形一边的直线和其他两边 (或延长线 )相交,所构成的三角形与原三角 形 . ,那么这两个三角形相 ,且夹角 ,那么这两 ,那么这两个三角形相

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

相似图形知识点总结

相似图形知识点总结

相似图形知识点总结一、相似图形的定义和性质1.1 相似图形的定义相似图形是指具有相同形状但大小可以不同的图形。

当两个图形的对应边成比例,并且对应的角度相等时,我们称这两个图形是相似的。

1.2 相似图形的性质相似图形具有以下性质:1) 对应角相等:相似图形中的对应角是相等的。

2) 对应边成比例:相似图形中的对应边的长度成比例。

3) 面积比例:相似图形的面积的比等于对应边的平方比。

1.3 相似图形与全等图形的区别相似图形和全等图形都具有相同的形状,但是它们之间有一个重要的区别:全等图形的对应边和对应角都相等,而相似图形的对应边成比例,对应角相等。

二、相似图形的判定条件2.1 AAA相似判定如果两个图形的对应角相等,则这两个图形是相似的。

2.2 AA相似判定如果两个图形的其中两组对应角相等,则这两个图形是相似的。

2.3 直角三角形的相似判定在直角三角形中,如两个直角三角形中对应角相等,则这两个三角形是相似的。

2.4 SSS相似判定如果两个图形的对应边成比例,则这两个图形是相似的。

2.5 SAS相似判定如果两个图形的其中两组对应边成比例,并且两组对应角相等,则这两个图形是相似的。

2.6 相似图形的判定定理在实际问题中,我们常常需要判定两个图形是否相似。

根据相似图形的性质,我们可以得到相似图形的判定定理,例如:角平分线定理、高度定理等。

三、相似图形的应用3.1 计算图形的面积相似图形的面积比例定理可以用于计算图形的面积。

根据相似图形的面积比例定理,我们可以得到如果两个图形相似,它们的面积的比等于对应边的平方比。

这个性质可以用于计算各种图形的面积,例如三角形、矩形、圆等。

3.2 计算图形的周长相似图形中的对应边成比例,这个性质可以用于计算图形的周长。

如果两个图形相似,它们的周长的比等于对应边的比例。

3.3 解决实际问题相似图形的性质和定理在解决各种实际问题中有着广泛的应用,例如解决建筑设计、地图测量、影视特效等问题。

苏科版八年级图形的相似教案知识点例题练习

苏科版八年级图形的相似教案知识点例题练习

图形的相像〔学问点+例题+练习〕一、比例的根本性质①:假如a :b=c :d 那么 = ;反过来,假如ad=bc 〔b ≠0,d ≠0〕,那么 = ,或 = 。

思索:由ad =bc 得到 a b =cd 。

还可以得到哪些不同的比例式? 推广:依据分式的性质,我们可以推导出下面两个结论∵a b =c d , ∵a b =c d , ∴a b + 1=c d + 1 ∴a b - 1=c d - 1 而a b + 1 =a+b b ,c d + 1=c+d d 而a b - 1 =a-b b ,c d - 1=c-d d ∴a+b b = c+d d ∴a-b b = c-d d于是,我们得到比例的另外两特性质:比例的根本性质②:假如a b =c d ,那么a+b b =c+d d比例的根本性质③:假如a b =c d ,a-b b =c-dd有时,在a b =c d 中,b=c ,即a b =bd ,我们那么把b 叫做a 及c 的比例中项。

即假设线段b 为线段a 及c 的比例中项,那么有b 2=ac 。

二、例题精讲:例1:〔1〕填空〔其中a 、b 、x 都表示线段的长度〕:①假设b :4=a :3,那么a :b = . ②假设3:x =2:6,那么x = 。

③假设x 为4和9的比例中线,那么x = 。

④假设2:x =3:〔2-x 〕,那么x = 。

〔2〕依据条件,求以下比的结果:①a-b b =38,求a b 的值;②x 2 = y 7 = z 5,那么x+y-zx的值。

例2:①假如a b =c d=ef ,那么a +c +e b +d +f =a b 成立吗?为什么?②假如a b =c d =…=m n 〔b +d +…+n ≠0〕,那么a +c +…+m b +d +…+n =ab 成立吗?为什么?一、黄金分割的概念:如图,点B 把线段AC 分成两部分,假如ABBCAC AB (大段及线段全长的比=小段及大段的比〕,那么称线段AC 被点B 黄金分割。

27.1图形的相似(基础练习)

27.1图形的相似(基础练习)

巩固练习第27章 图形的相似27.1 图形的相似(1)1、在下面的图形中,形状相似的一组是( )2、下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形3、要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm 、60cm 、80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( )A .1种B .2种C .3种D .4种4、下列说法正确的是( )A .人们从平面镜及哈哈镜里看到的不同镜像相似.B .人们从平面镜里看到的像与人的关系是相似图形,但不是全等图形.C .拍照时,镜头的取景与照片上的画面是相似的D .放幻灯片时投在屏幕上的画面与幻灯片上的图形是全等的5、在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm ,那么福州与上海之间的实际距离是多少?27.1图形的相似(2)巩固练习:1.△ABC 与△DEF 相似,且相似比是32,则△DEF 与△ABC 与的相似比是( ).A .32B .23C .52D .942.下列所给的条件中,能确定相似的有( )(1)两个半径不相等的圆;(2)所有的正方形; (3)所有的等腰三角形;(4)所有的等边三角形; (5)所有的等腰梯形;(6)所有的正六边形.A .3个B .4个C .5个D .6个3. 图中两个四边形是相似形,仔细观察这两个图形,它们对应边之间存在怎样的关系?对应角之间又有什么关系?4.如图,四边形EFGH相似于四边形ABCD,求∠A、∠C、∠H以及x、y、z的值.5.如图,△ABC与△DEF相似,求未知边x、y的长度。

6.如图,AB∥EF∥CD,CD=4,AB=9,若梯形CDEF与梯形EF AB相似,求EF的长.。

《图形的相似》中考常考考点专题(基础篇)(专项练习)-2022-2023学年九年级数学

《图形的相似》中考常考考点专题(基础篇)(专项练习)-2022-2023学年九年级数学

专题4.52 《图形的相似》中考常考考点专题(基础篇)(专项练习)一、单选题【知识点一】相似图形相关概念及性质【考点一】比例的性质✮✮线段的比(2018·甘肃陇南·中考真题)1. 已知23a b =(a ≠0,b ≠0),下列变形错误的是( )A. 23a b = B. 2a =3b C. 32b a = D. 3a =2b (2020·安徽阜阳·二模)2. 某零件长40厘米,若该零件在设计图上的长是2毫米,则这幅设计图的比例尺是( )A. 1:2000B. 1:200C. 200:1D. 2000:1【考点二】成比例线段✮✮黄金分割(2018·河北·模拟预测)3. 如图,画线段AB 的垂直平分线交AB 于点O ,在这条垂直平分线上截取OC OA =,以A 为圆心,AC 为半径画弧交AB 于点P ,则线段AP 与AB 的比是( )A. 2B.C.D. 2(2022·福建莆田·一模)4. P 是线段AB 上一点(AP BP >),则满足=AP BP AB AP,则称点P 是线段AB 的黄金分割点.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割点”.如图,一片树叶的叶脉AB 长度为10cm ,P 为AB 的黄金分割点(AP BP >),求叶柄BP 的长度.设cm BP x =,则符合题意的方程是( )A. ()21010x x -=B. ()21010x x =-C. ()21010x x -=D.()210110x x -=-【考点三】相似图形✮✮相似多边形(2021·四川成都·一模)5. 下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )A. B. C. D.(2020·河北衡水·一模)6. 在研究相似问题时,甲、乙两同学的观点如下:甲:将边长为4的菱形按图1的方式向外扩张,得到新菱形,它们的对应边间距为1,则新菱形与原菱形相似.乙:将边长为4的菱形按图2方式向外扩张,得到新菱形,每条对角线向其延长线两个方向各延伸1,则新菱形与原菱形相似;对于两人的观点,下列说法正确的是( ).A. 两人都对B. 两人都不对C. 甲对,乙不对D. 甲不对,乙对【考点四】相似多边形的性质(2022·山东淄博·二模)7. 如图,将一张矩形纸片沿两长边中点所在的直线对折,如果得到两个矩形都与原矩形相似,则原矩形长与宽的比是( )A. 2:1B. 3:1C. 3:2D. (2022·湖北省直辖县级单位·一模)8. 如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A. 2:3B. 4:9C.D. 16:81【考点五】平行线分线段成比例(2022·四川·巴中市教育科学研究所中考真题)9. 如图,在平面直角坐标系中,C 为AOB 的OA 边上一点,:1:2AC OC ,过C 作CD OB ∥交AB 于点D ,C 、D 两点纵坐标分别为1、3,则B 点的纵坐标为( )A. 4B. 5C. 6D. 7(2020·新疆·中考真题)10. 如图,在△ABC 中,∠A =90°,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E ,作BC 的垂线交BC 于点F ,若AB =CE ,且△DFE 的面积为1,则BC 的长为( )A. 10B. 5C.D. 【知识点二】相似三角形【考点一】相似三角形的判定(2022·浙江绍兴·二模)11. 如图,如果∠BAD =∠CAE ,那么添加下列一个条件后,仍不能确定△ADE 与△ABC 相似的是( )A. B =∠DB. ∠C =∠AEDC. AB AD =DE BCD. AB AD =AC AE (2022·山东东营·中考真题)12. 如图,点D 为ABC 边AB 上任一点,DE BC ∥交AC 于点E ,连接BE CD 、相交于点F ,则下列等式中不成立的是( )A. AD AE DB EC =B. DE DF BC FC =C. DE AE BC EC =D. EF AE BF AC=【考点二】相似三角形的性质和判定➽➸求解✮✮证明(2021·山东济宁·中考真题)13. 如图,已知ABC .(1)以点A 为圆心,以适当长为半径画弧,交AC 于点M ,交AB 于点N .(2)分别以M ,N 为圆心,以大于12MN 的长为半径画弧,两弧在BAC ∠的内部相交于点P .(3)作射线AP 交BC 于点D .(4)分别以A ,D 为圆心,以大于12AD 的长为半径画弧,两弧相交于G ,H 两点.(5)作直线GH ,交AC ,AB 分别于点E ,F .依据以上作图,若2AF =,3CE =,32BD =,则CD 的长是( )A. 510 B. 1 C. 94 D. 4(2022·黑龙江·哈尔滨市风华中学校三模)14. 如图,点F 是矩形ABCD 的边CD 上一点,射线BF 交AD 的延长线于点E ,则下列结论错误的是( )A. ED DF EA AB =B. DE EF BC FB =C. BC BF DE BE =D. BF BC BE AE=【考点三】相似三角形的性质和判定➽➸坐标✮✮网格(2016·江苏南京·一模)15. 如图,在平面直角坐标系中,点B 、C 在y 轴上,△ABC 是等边三角形,AB=4,AC 与x 轴的交点D0),则点A 的坐标为( )A. (1,B. (2,C. (1)D. (,2)(2012·湖北荆门·中考真题)16. 下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A. B. C. D.【考点四】相似三角形的性质和判定➽➸动点问题(2020·山东菏泽·一模)17. 如图,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 同侧,且∠ACD =∠ABC ,CD =2,点E 是线段BC 延长线上的动点.若△DCE 和△ABC 相似,则线段CE 的长为( )A. 43 B. 23 C. 43或3 D. 23或4(2021·河北石家庄·九年级期中)18. 如图,在锐角三角形ABC 中,6cm AB =,12cm AC =,动点D 从点A 出发到点B停止,动点E从点C出发到点A停止,点D运动的速度为1cm/s,点E运动的速度为2cm/s,如果两点同时开始运动,那么以点A,D,E为顶点的三角形与 相似时的运动时间为()ABCA. 3s或4.8sB. 3sC. 4.5sD. 4.5s或4.8s【考点五】相似三角形的性质和判定➽➸应用举例(2022·湖北十堰·中考真题)19. 如图,某零件的外径为10cm,用一个交叉卡钳(两条尺长AC和BD相等)可测量零件的内孔直径AB.如果OA:OC=OB:OD=3,且量得CD=3cm,则零件的厚度x为()A. 0.3cmB. 0.5cmC. 0.7cmD. 1cm(2020·山西·中考真题)20. 泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

相似图形知识点总结文库

相似图形知识点总结文库

相似图形知识点总结文库一、相似图形的定义相似图形是指两个或多个图形之间的形状相同,但大小可能不同的情况。

在几何中,通常用符号∼表示两个相似图形之间的关系。

例如,若图形A和图形B是相似的,则可以表示为A∼B。

相似图形的定义可以用比例来表达,即如果两个三角形ABC和DEF是相似的,那么它们的对应边的比例是相等的,即AB/DE=BC/EF=AC/DF。

二、相似图形的判定1. AAA相似判定法:如果两个三角形的对应角相等,那么它们是相似的。

2. AA相似判定法:如果两个三角形的两个对应角相等,那么它们是相似的。

3. SSS相似判定法:如果两个三角形的对应边成比例,那么它们是相似的。

4. 直接判定法:如果两个四边形的对应边成比例,那么它们是相似的。

在判定相似图形时,可以根据题目条件选择不同的方法进行判定,以确定两个或多个图形之间是否是相似的关系。

三、相似图形的性质1. 相似三角形的性质:(1) 相似三角形的对应角相等;(2) 相似三角形的对应边成比例;(3) 相似三角形的高线成比例;(4) 相似三角形的中位线成比例。

2. 相似四边形的性质:(1) 相似四边形的对应角相等;(2) 相似四边形的对应边成比例。

3. 相似图形的周长、面积与比例关系:(1) 如果两个图形相似,那么它们的周长之比等于它们的任意一条边的比;(2) 如果两个图形相似,那么它们的面积之比等于它们的任意一条边的比的平方。

四、相似图形的应用1. 图形的放大与缩小:在工程设计、地图制作等领域,相似图形的概念经常被用来进行图形的放大与缩小,以便得到需要的大小。

2. 测量与估算:利用相似图形的性质,可以利用已知的尺寸进行图形的测量与估算,从而得到未知尺寸的大小。

3. 面积与体积的计算:利用相似图形的面积与比例关系,可以方便地计算出图形的面积与体积。

4. 几何问题的解决:在几何问题中,利用相似图形的性质,可以更快速地解决一些有关形状和比例的问题,如建筑设计、城市规划等。

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)

相似三角形基本知识点+经典例题(完美打印版)相似三角形基本知识点+经典例题一、相似三角形的定义和性质相似三角形是指具有相同形状但大小不同的三角形。

它们的对应角度相等,对应边长成比例。

以下是相似三角形的基本知识点和性质:1. 相似三角形的定义:如果两个三角形对应角相等,且对应边成比例,则它们是相似三角形。

2. 相似三角形的性质:a. 对应角相等:两个相似三角形的对应角是相等的。

b. 对应边成比例:两个相似三角形的对应边的比值相等。

3. 相似三角形的判定条件:a. AA判定:如果两个三角形的两对对应角相等,则它们是相似三角形。

b. AAA判定:如果两个三角形的对应角相等,则它们是相似三角形。

二、相似三角形的比例关系相似三角形的对应边长之间存在一定的比例关系。

如果两个三角形是相似的,则对应边的比值相等。

以∆ABC∼∆DEF为例,A与D为对应顶角,AB与DE、BC与EF、AC与DF分别为对应边长。

则有以下比例关系:AB/DE = BC/EF = AC/DF三、相似三角形的应用相似三角形在几何学中有广泛的应用,下面通过一些经典例题来进一步了解相似三角形的应用。

例题一:已知∆ABC与∆DBC是相似三角形,AB = 3cm, BC = 4cm, AC = 5cm, DB = 2cm,求DC的长度。

解析:根据相似三角形的性质,可以得到以下比例关系:AB/DB = AC/DC3/2 = 5/DCDC = 10/5 = 2cm因此,DC的长度为2cm。

例题二:在平行四边形ABCD中,∠B的度数是∠D的度数的2倍。

若AB= 10cm,BC = 15cm,求AD的长度。

解析:由于ABCD是平行四边形,所以∠B = ∠D。

根据题目条件可得:∠B = 2∠D∠B + ∠D = 180°(平行四边形的内角和为180°)将∠B代入上式得:2∠D + ∠D = 180°3∠D = 180°∠D = 60°由相似三角形的性质可得AB/AD = BC/CD,代入已知值可得:10/AD = 15/CD将CD表示为AD的式子,并代入已知条件可得:10/AD = 15/(2AD)10AD = 30AD = 3cm因此,AD的长度为3cm。

专题05 图形的相似重难点题型专训(6大题型)(解析版)

专题05 图形的相似重难点题型专训(6大题型)(解析版)

专题05图形的相似重难点题型专训(6大题型)【题型目录】题型一比例的性质题型二线段的比题型三成比例线段题型四由平行判断成比例的线段题型五由平行截线求相关线段的长或比值题型六黄金分割【知识梳理】知识点一、线段的比与成比例线段线段的比两条线段长度的比叫做两条线段的比.注意:求两条线段的比时必须统一单位).成比例线段四条线段a、b、c、d中,如果dcba,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.知识点二、比例的性质知识点三、黄金分割黄金分割若线段AB上一点C把线段AB分成两条线段AC与BC(AC>BC),如果ACBCABAC,这时称点C是AB的黄金分割点,这个比值称为黄金比,它的值为618.0215.知识点四、相似图形相似图形在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:(1)相似图形就是指形状相同,但大小不一定相同的图形;(2)“全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两个图形是全等;相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.知识点五、平行线分线段成比例定理【经典例题一比例的性质】约分即可求解.【经典例题二线段的比】第二次裁剪所得矩形的长为第三次裁剪所得矩形的长为第四次裁剪所得矩形的长为第五次裁剪所得剩下的图形恰好是正方形,AC【答案】34/0.75为线段我们可以这样作图找到已知线段的黄金分割点:如图且12EF OE ,连接OF ;以F 为圆心,EF 交OE 于点P .根据材料回答下列问题:(1)根据作图,写出图中相等的线段:________(2)求OP 的长;(3)求证:点P 是线段OE 的黄金分割点.【答案】(1)EF FH ,OH OP (2)51OP (3)见解析【分析】(1)由题意知,EF FH ,OH (2)由勾股定理得225OF OE EF (3)由51OP ,可得2251OP235625OE PE ,则2OP OE 【详解】(1)解:由题意知,EF FH ,OH 故答案为:EF FH ,OH OP ;(2)解:∵EF OE ,∴90OEF ∵2OE ,【经典例题三成比例线段】是线段【经典例题四由平行判断成比例的线段】九年级四川省成都市七中育才学校校考阶段练习)如图,直线A.103B.152【答案】D【分析】根据平行线分线段成比例定理列出比例式,求出【详解】解:∵a b c∥∥,∴AB DEAC DF,A.BH AGBC ADB.EG AGCD AD【答案】D【分析】根据平行线分线段成比例定理、中点定义及相似三角形对应边成比例逐项判断即可得到答案.【答案】54【分析】根据平行线分线段成比例定理得出比例式,解答即可.【详解】解:∵直线123l l l ∥∥45AD BC DF CE ,5CE【答案】6【分析】根据角平分线的定义和平行线的性质可得后根据平行线分线段成比例定理,可得【详解】解:∵AD平分,∴EAD CAD(1)求证:AG CG ;(2)求证:2CGE BDN (3)若4BD DG ,GP 【答案】(1)见解析(2)见解析(3)3AG a【分析】(1)证明ABG (2)先证明DAF GPD NDC DCP BDN BDC NDC (3)证明PM PC ,得出【经典例题五由平行截线求相关线段的长或比值】A.14B【答案】A【分析】根据a b∥可得BGA.3 20【答案】A【分析】过点F作FG∥由FG BN∥,得BF NG【答案】5:3:2【分析】首先过点M作MK点,根据平行线分线段成比例定理,即可求得【详解】解:过点M作MK∵M是AC的中点,∴MN NK AN AMEC EF AE AC∵E、F为BC的三等分点,,∴BE EF FC【答案】16【分析】过点D 作DG ::BD CD EG CG 的值.∵:1:3AF FD ,BD ∴::AF FD AE EG ∴3EG AE ,EG ∴3EC EG CG(1)如果4AB ,8BC ,(2)如果:2:3DE EF ,AB 【答案】(1)6(2)15【分析】(1)由平行线分线段成比例定理得到(2)由平行线分线段成比例定理得到392BC AB ,即可得到【详解】(1)解:如图,∵123l l l ∥∥,∴AB DE BC EF,∵4AB ,8BC ,EF【经典例题六黄金分割】【点睛】本题考查了黄金分割点的意义,正确理解黄金分割的定义是解题的关键.上找一点51 51【答案】8516【分析】设AC m ,BD n ,根据【答案】1555【分析】根据黄金分割的定义,得2PA BP AB ,构建方程计算求解.【详解】解:根据题意,2PA BP AB ;∴2(10)10BP BP【点睛】本题考查黄金分割的定义,一元二次方程的求解;掌握黄金分割的定义是解题的关键.5.(2023秋·全国·九年级专题练习)综合与实践综合与实践课上,老师让同学们以(1)【操作判断】根据以上操作,直接写出图3中AGGB的值:______;(2)【问题解决】请判断图3中四边形BG MG的形状,并说明理由.(3)【拓展应用】我们知道:将一条线段AB分割成长、短两条线段AP 割点.在以上探究过程中,已知矩形纸片ABCD的宽AB为【重难点训练】A .5B 【答案】D 【分析】本题考查的是平行线分线段成比例定理,根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:∵a b ∥∥A. 454【答案】A【分析】本题考查黄金分割比求线段长,熟记黄金分割比答案,熟记黄金分割比是解决问题的关键.【详解】解:由黄金分割比,根据题意可得AB∵,8cm5AP AB故选:A.3.(2022上·山西运城形蕴藏着丰富的美学价值,我们可以用这样的方法画出黄金矩形;作正方形接EF,以FD为半径画弧,A.1个B.2个BG A .259B .27【答案】A【分析】本题考查了平行线分线段成比例,正方形的性质,掌握平行线分线段成比例是解题的关键.作FH BC ∥交CD 于H ,则DH HC 根据勾股定理得25AE ,所以【详解】解:如图,作FH ∥则45DH DF HC FG ,E ∵为CD 边中点,19HE ED ,FH AD ∵∥,19FE HE AE DE ,224225AE ∵,259FE .故选:A .5.(2023上·浙江·九年级周测)如图,点D ,与BC 的垂线CE 相交于点A .3:2B .5:3【答案】A 【分析】本题主要考查了平行线分线段成比例,4FC BC BF ,再根据DF ∥【详解】∵BE 平分ABC ,∴ABD FBD ,∵DF BC ,90A ,∴90DFB A ,【分析】本题考查的是三角形的重心的概念和性质、坐标与图形性质等知识点,根据三角形的重心的概念8.(2023上·浙江金华,,上,连结AB BC CACF三角形的中位线的判定及性质的综合应用,∵点B 和点F 关于直线DE ∴BD DF BF DE ,,∵AD DF ,∴AD BD DF ,∴,DBF DFB DAF 又DBF DFB DAF ∴ 2180DFB DFA ∴90,DFB DFA 即∴DE AC ∥,∴BD BE AD CE,∵AD BD ,∴BE CE ,∴132BE BC ,在Rt ABF 与Rt CBF △,由勾股定理可得:2222BF AB AF FB CB ,∴2222AB AF CB CF ∵56AB AC BC ,,【答案】3【分析】本题考查了平行四边形的性质,平行线分线段成比例,设行四边形的性质可得AD ∥【详解】解:设FD x ,由2AF FD ,则2AF x ,∵四边形ABCD 是平行四边形,AD BC ∥,AB CD ∥,2233AE AF x EC BC x ,23BE AE EG EC ,∵2BE ,223EG ,3EG ,故答案为:3.10.(2023上·安徽合肥·九年级校考期中)如图,矩形形ABNM 和矩形CDMN .(1)若矩形CDMN 与矩形的长是,如图所示.请你借助这张纸片,设法折出一个设正方形ABCD 的边长为在Rt BCF 中,BF 则2QF BF BQ 设AP PQ x ,则PD 在Rt QPF 和Rt DGF 有222FQ PQ DF 解得512x ,即点P 是AD 的黄金分割点(2)方法如图所示:第一步:对折矩形纸片第二步:再一次折叠纸片,使点14.(2023上·四川内江·九年级统考期中)巴台农神庙的设计代表了古希腊建筑艺术上的最高水平,它的平面图可看作宽与长的比是黄金矩形ABCD 的宽1AB (1)黄金矩形ABCD 的长BC ;(2)如图②,将图①中的黄金矩形裁剪掉一个以AB 为边的正方形ABEF ,得到新的矩形DCEF 是否为黄金矩形,并证明你的结论;(3)在图②中,连接AE ,求点D 到线段AE 的距离.【答案】(1)512(2)矩形DCEF 为黄金矩形,理由见解析(3)点D 到线段AE 的距离为1024【分析】本题考查了黄金分割,理解题目所给“黄金矩形”的定义是解题的关键.(1)根据512AB BC ,AB ,即可求解;(2)先求出512FD EC AD ,再求出DF EF 的值,即可得出结论;(3)连接AE ,DE ,过D DG AE 于点G ,根据1AB EF ,512AD,得出再根据12AED G S AD EF AE D ,即可求解.∵1AB EF ,AD∴22112AE ,在AED △中,12AED S 即AD EF AE DG ,则51122DG ,解得1024DG ,∴点D 到线段AE 的距离为15.(2022上·山西运城·九年级统考期中)阅读与思考请仔细阅读下列材料,并完成相应的任务.下面是小宇同学运用面积的思想对进行了证明.证明:如图,分别连接EB DC ,.设点E 到AB 的距离为1h ,点D 到AC 的距离为2h ,ADE BDE S S 111212AD h BD h AD BD ,ADE DEC S S …任务:(1)请补全以上证明过程.(2)应用以上结论解答问题:如图,在ABC 中,DG EC ∥,【答案】(1)见解析(2)见解析【分析】本题主要考查平行线分线段成比例定理的证明与应用:(1)根据两条平行线之间的距离处处相等,可得(2)直接利用平行线分线段成比例定理即可证明.【详解】(1)证明:如图,分别连接设点E 到AB 的距离为1h 则111212ADE BDE AD h S AD S DB BD h 221212ADE DEC AE h S AE S EC EC h ,设点B 到直线DE 的距离为∵DE BC ∥,点C 到直线DE 的距离与点∴12BDE DEC S S DE m ∴ADE BDE S S ADE DECS S ,∴ADDB AE EC.(2)证明:∵DG EC ∥∴AD AG DE GC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形基本知识点总结及练习知识点一:比例线段有关概念及性质 (1)有关概念1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比是AB:CD =m :n例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。

2.a :b=c(21.2.3.()a b c a ==⎪⎩.同时交换内外项4.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.例:已知的值求fd be c af d b f e d c b a ++++≠++===),0(545.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .知识点二:平行线分线段成比例定理1.平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例。

用符号语言表示: ∵AD//BE//CF,∴AB BC =DE EF ,BCAC=EF DF ,AB AC =DEDF2.推论:平行于三角形一边的直线与其它两边相交,截得的对应线段成比例。

几何语言:由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.例:如图,在四边形ABCD 中,AD//BC,EF//BC,AGGC =23,则DFDC =_______。

(1)是“A ”字型 (2)是“8”字型 经常考,关键在于找知识点三:相似形多边形1.定义:各角分别相等、各边成比列的两个多边形叫做相似多边形。

2.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边成比例。

3.判定:如果两个多边形的对应边成比列,对应角相等,那么这两个多边形相似。

(注意:判断两个多边形相似时,一要看各个角是否对应相等,二要看各条边是否对应成比列,这两个条件缺一不可。

)4.任意两个等边三角形相似,任意两个正方形相似,任意两个正n 边形相似。

例1:下列判断正确的是( )A.两个矩形一定相似 。

B.两个平行四边形一定相似。

C.两个正方形一定相似。

D.两个菱形一定相似。

例2:小明将一张报纸对折,发现对折后的半张报纸与整张报纸相似,你能算出报纸的长与宽的比吗?知识点四:黄金分割(1) 定义:在线段AB 上,点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,即AC 2=AB×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。

618.0215≈-=AB AC 所以:AB AC 215-=≈0.618AB 。

AB BC 253-= 例:已知线段AB=10cm,点C 是AB 的 黄金分割点,且AC >BC ,求AC 和BC 的长。

(2)黄金分割的几何作图:已知:线段AB.求作:点C 使C 是线段AB 的黄金分割点. 作法:①过点B 作BD ⊥AB ,使BD =12AB ;②连结AD ,在DA 上截取DE=DB ;③在AB上截取AC=AE,则点C就是所求作的线段AB的黄金分割点.黄金分割的比值为:.(3)黄金矩形:在矩形中,如果宽与长的比是黄金比,那么这个矩形叫做黄金矩形。

(4)黄金三角形:顶角为36。

的等腰三角形叫做黄金三角形,因为该三角形的底边比上腰长等于√5−12例:如图,△ABC中,∠A=36°,AB=AC,BD是角平分线.(1)求证:AD2=CD·AC;(2)若AC=a,求AD.知识点五:相似三角形1、相似三角形(1)定义:三角对应相等,三边对应成比例的两个三角形相似。

几种特殊三角形的相似关系:两个全等三角形一定相似(相似比为1)。

两个等腰直角三角形一定相似。

两个等边三角形一定相似。

两个直角三角形和两个等腰三角形不一定相似。

(2)性质:两个相似三角形中,对应角相等、对应边成比例。

(3)相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。

如△ABC与△DEF相似,记作△ABC ∽△DEF。

相似比为k。

(4)判定:①定义法:对应角相等,对应边成比例的两个三角形相似。

②三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。

2.三角形相似的判定定理:判定定理1:两角对应相等的两个三角形相似。

(此定理用的最多)几何语言:在△ABC 和△DEF 中 如果<A=<D,<B=<E ,那么△ABC ∽△DEF判定定理2:两边成比例且夹角相等的两个三角形相似。

几何语言:(如上图)在△ABC 和△DEF F 中 如果<A=<D,且ABDE =ACDF ,那么△ABC ∽△DEF判定定理3:三边对应成比例的两个三角形相似。

几何语言:(如上图)在△ABC 和△DEF 中如果AB DE=AC DF=BC EF,那么△ABC ∽△DEF例1:如图,(1)若 ABAE________,则△ABC ∽△AEF ;(2)若∠E =________,则△ABC ∽△AEF 。

直角三角形相似判定定理: ○1.有一个锐角相等的两个直角三角形相似。

○2.斜边与一条直角边对应成比例的两直角三角形相似。

3.补充:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似. 射影定理:CD ²=AD ·BD , AC ²=AD ·AB , BC ²=BD ·BA(在直角三角形的计算和证明中有广泛的应用).例:如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,(1)求证:AC 2=AD ·AB ;BC 2=BD ·BA ; (2)求证:CD 2=AD ·AD ; (3)求证:AC ·BC =AB ·CD .4.相似图形中常见的基本图形:5.相似三角形的性质①相似三角形对应角相等、对应边成比例.②相似三角形对应高、对应角平分线、对应中线、周长的比都等于相似比(对应边的比).③相似三角形对应面积的比等于相似比的平方.④两个相似三角形的相似比等于面积比的算术平方根⑤任意两个相似多边形的周长比都等于相似比,面积比都等于相似比的平方。

例1:已知△ABC∽△DEF,BD和EG是它们的对应中线,ACDF =35,EG=10cm,求BD的长。

例2:如果两个相似三角形的面积比为16:25,那么这两个相似三角形对应边的比是_______。

例3:如图,在△ABC中,点D、E分别是AB和AC上的点,DE//BC,AD=3BD,S⊿ABC=48求S⊿ADE相似的应用:位似(1)定义:如果两个多边形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

需注意:①位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形。

②两个位似图形的位似中心只有一个。

③两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。

④位似比就是相似比。

(2)性质:①位似图形上任意一对对应点到位似中心的距离之比等于位似比(相似比)。

②位似图形上任意位似对应点和位似中心在同一条直线上。

③位似图形上的对应线段平行或在同一条直线上。

④位似图形是特殊的相似图形,所以它具有相似图形的一切性质。

画位似图形的一般步骤:(1)确定位似中心(位似中心可能在图形内部也可能在图形外部也可能在图形上)(2)确定原图形的关键点(通常是多边形的顶点)(3)确定位似比(4)根据位似比,找出新图形的关键点,最后将各点顺次连接。

坐标变换与图形的关系:在直角坐标系中,将一个多边形每个顶点的横、纵坐标都乘以同一个数k(k≠0),所对应的图形与原图形位似,位似中心是坐标原点,他们的相似比为∣k∣。

例1:下列说法中正确的有()(1)位似多边形一定是相似多边形。

(2)相似多边形一定是位似多边形(3)两个位似多边形每一对对应点到位似中心的距离之比为2︰3,则两个多边形的面积之比为4︰9。

(4)两个位似多边形的对应边互相平行或在同一直线上。

例2:若△ABC与△DEF关于点O位似,其位似比是1:2,AO=5,则对应点A、D之间的距离是。

例3:在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O为位似中心,相似比为1,把线段AB缩短后得到线段A1B1,则A1B1,的长度等于。

3第5题BC D E A历年中考试题练习一、选择题 1、如图1,已知AD 与BC 相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°2、如图,已知D 、E 分别是的AB 、 AC 边上的点,且 那么等于( ) A .1 : 9 B .1 : 3 C .1 : 8D .1 :3、如图,是由经过位似变换得到的,点是位似中心,分别是的中点,则与的面积比是( ) A .B .C .D .第3题图 第4题图4、如上图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( )A.5:3B.3:5C.4:3D.3:4 5、如图,在中,、分别是、边的中点,若,则等于( ) A .5 B .4 C .3 D .26、已知,相似比为3,且的周长为18,则的周长为( )A .2B .3C .6D .54ABC ∆,DE BC //1ADE DBCE S S :=:8,四边形:AE AC DEF △ABC △O D E F ,,OAOB OC ,,DEF △ABC △1:61:51:41:2ABC ∆D E AB AC 6BC =DE ABC DEF △∽△ABC △DEF △AB C D O 图1B ACD E7、如图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( )A. B. C.D.8、 如图,在Rt △ABC 内有边长分别为的三个正方形,则满足的关系式是( ) A 、 B 、C 、D 、9、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A. B. C. D.10、下列四个三角形,与左图中的三角形相似的是( )二、填空题1、如图,两点分别在的边上,与不平行,当满足 条件(写出一个即可)时,.2、如果两个相似三角形的相似比是,那么这两个三角形面积的比是 .3、如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形是 和 ; 并写出它的面积比 .4、两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .5、如图4,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB=35x +45x -7221212525x x -,,a b c ,,a b c b a c =+b ac =222b ac =+22b a c ==91923194D E ,ABC △AB AC ,DE BC ADE ACB △∽△1:3(第10题) A . B . C . D .ABCDE PEHF GCBADCBA第3题图AEBD第9题9、如图,要测量A 、B 两点间距离,在O 点打桩,取OA 的中点 C ,OB 的中点D ,测得CD =30米,则AB =______米.11、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为__ ____米.三、解答题1、如图,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF. (1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.2、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:(1);(2)CG AE =.MN CN DN AN •=•图形的相似知识点总结及练习- 11 -3、如图,四边形和四边形都是平行四边形,点为的中点,分别交于点.(1)请写出图中各对相似三角形(相似比为1除外); (2)求.4、如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,。

相关文档
最新文档