新版直流电机H桥驱动电路
h桥mos直流电机驱动电路_解释说明以及概述
h桥mos直流电机驱动电路解释说明以及概述1. 引言1.1 概述本文将深入探讨H桥MOS直流电机驱动电路的原理、优势和应用案例分析,并介绍设计和优化时需要考虑的因素。
H桥MOS直流电机驱动电路是一种常见且重要的电路,广泛应用于各个领域,如家用洗衣机、无人驾驶汽车以及工业自动化设备等。
通过对该电路的研究,可以更好地理解其工作原理,为日后的设计提供指导。
1.2 文章结构文章由以下几个部分组成:引言、H桥MOS直流电机驱动电路解释说明、H桥MOS直流电机驱动电路的应用案例分析、H桥MOS直流电机驱动电路设计和优化考虑因素以及结论。
在引言部分,我们将对本文内容进行简要概括,并介绍各个部分的内容安排。
1.3 目的本文的目标在于全面解释和说明H桥MOS直流电机驱动电路,包括其原理、优势和工作原理。
同时,还将通过详细分析多个应用案例来展示该类型电路在实际应用中的作用和重要性。
此外,我们还将介绍设计和优化该电路时需要考虑的因素,并展望未来H桥MOS直流电机驱动电路可能的发展方向。
通过本文的阐述,读者将能够掌握有关H桥MOS直流电机驱动电路的基础知识,并为相关领域的实际应用提供参考依据。
2. H桥MOS直流电机驱动电路解释说明2.1 H桥MOS电路原理H桥MOS直流电机驱动电路是一种常见的电路,用于控制直流电机的旋转方向和速度。
它由四个功率开关MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)组成,通常配对使用,以构成两个互补开关对。
H桥MOS电路采用了全可控技术,通过不同的开关组合来改变电流流向、极性和大小。
当第一个互补开关导通时, 电机的正极与供电源相连, 而负极与地连接;而当第二个互补开关导通时, 两者则互换。
2.2 H桥MOS直流电机驱动的优势H桥MOS直流电机驱动具有以下几个优势:首先,它能够实现双向控制。
通过调整开关的状态,可以改变电机的旋转方向,使其正反转自如。
直流电机H桥驱动原理和驱动电路选择L90_L298N_LMD18200
直流电机H桥驱动原理和驱动电路选择
L90_L298N_LMD18200
引言:
一、直流电机H桥驱动原理
H桥驱动电路是一种能够实现正转、反转和制动的驱动方式,它由四个开关元件组成,能够控制电流的流向和大小。
通过合理的控制开关元件的导通和截止,可以实现对直流电机的正转、反转和制动等功能。
H桥驱动电路常见的两种工作方式:
1.正转:左侧两个开关导通,右侧两个开关截止;
2.反转:右侧两个开关导通,左侧两个开关截止。
在正转和反转的过程中,需要注意避免短路现象,即左侧两个开关和右侧两个开关同时导通,这将短路电源导致电路故障。
因此,需要通过时序控制来确保开关元件的导通和截止顺序正确。
二、驱动电路选择
1.L9110
L9110是一款低电压驱动电机的H桥芯片,适用于驱动小功率直流电机。
其特点如下:
-工作电压范围:2.5V-12V;
-静态工作电流:≤1.2A;
-最大峰值电流:2.5A。
L9110适用于一些低功率的应用场景,如小型智能车、机器人等。
2.L298N
L298N是一款常用的H桥驱动芯片,适用于较大功率的直流电机驱动。
其特点如下:
-工作电压范围:4.8V-46V;
-最大输出电流:2A;
-输出功率:≤25W。
L298N适用于一些较大功率的应用场景,如工业设备、机器人等。
-工作电压范围:12V-55V;
-过流保护:有;
-输出电流:≤3A。
总结:。
直流电机H桥驱动原理和驱动电路选择L9110_L298N_LMD18200
在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM (脉冲宽度调制)调速。
2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
H桥驱动电路:H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。
要使电机M运转,必须使对角线上的一对三极管导通。
例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
电机顺时针转动。
当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。
完整的晶体管H桥驱动电路,PWM1,PWM2,为电机方向控制输入端,PWM1=1,PWM2=0时正转,PWM=0,PWM2=1时电机反转。
PWM1,PWM2同时也是电机调速的脉宽输入端。
晶体管是最为廉价的控制方法,但在晶体管上有明显的压降,会产生功率的损耗,效率不高,适宜应用在低电压,小功率的场合。
新版直流电机H桥驱动电路
直流电机H桥驱动电路(带正反转和使能)
公司买了一些100W的直流电机,功率很大,让我做个驱动电路,要求有正反转,还让电机能停能转,停和转的时候不能影响电机的转动方向,我想了一下,用继电器来驱动正反转,但是电机如果频繁换向,继电器是扛不住的,触电打火会影响接触不良,于是,我想到了用场效应管来驱动电机。
如果要用场效应管来驱动电机正反转,我第一个想到了H桥,于是就设计出电路图来。
然后进一步的改进:
用cd4011与H桥结合,CD4011是四个双输入与非门电路,
整体图如下:
功能:当S1闭合时,电机正转,断开后反转,
S2闭合时,电机转,断开后电机停,
电机功率100W (当然电机功率更大的话,只需换大一点功率的场效应管就行了)
驱动电压24V
控制电压12V
看到这个文档的朋友千万要注意了,他这个电路只能控制12V的输出电压。
如果是24V的直流电机,要在管子的控制极加三极管抬高控制通断的电压,因为控制管子的通断其实就是G、S极的之间的压差(小于4V左右不导通,大于4V左右导通),你如果是供电24V,而芯片CD4011出来的控制电压信号只有12V,这样造成G-S的压差是12V或者是24V,一侧的两个管子是一直导通的!!!!这一通电就要烧管子,这篇文章的作者非常坑人,大家一定记清楚了。
三极管推荐使用9014,两级的电阻推荐使用33KΩ的直插电阻。
H桥电路原理图
H桥电路原理及直流电机驱动编程分类:MCS-51单片机标签:h桥电路原理上图中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H.4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
要使电机运转,必须使对角线上的一对三极管导通。
例如,如下图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动.当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
上图所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向).典型的H桥驱动电路如下:PWM1为1,PWM2为1时,Q1和Q2导通,节点1和2都是低电平,Q15和Q16导通,电机不工作PWM1为0,PWM2为0时,Q1和Q2不导通,节点1和2都是高电平,Q13和Q14导通,电机不工作PWM1为1,PWM2为0时,Q1导通而Q2不导通,节点1是低电平而2是高电平,Q14和Q15导通,电机逆时针旋转PWM1为0,PWM2为1时,Q1不导通而Q2导通,节点1是高电平而2是低电平,Q13和Q16导通,电机顺时针旋转C语言代码:功能:能是电机正转,逆转,停止。
#include<AT89X52。
h〉#define uchar unsigned char#define uint unsigned intsbit Key_UP=P3^2; //正转按键sbit Key_DOWN=P3^3; //反转按键sbit Key_STOP=P3^4; //停止按键sbit ZZ=P1^0; //控制端,用单片机的P1.0口sbit FZ=P1^1; //控制端,用单片机的P1。
h桥驱动电路工作原理
h桥驱动电路工作原理嗨,小伙伴!今天咱们来唠唠这个超有趣的H桥驱动电路的工作原理哈。
你可以把H桥驱动电路想象成一个超级交通枢纽,就像那种有好多条路可以走的大十字路口。
这个电路主要是用来控制电机的,不管是直流电机正转、反转还是刹车,它都能搞定呢。
咱先说说这个H桥的结构吧。
它长得就像一个字母“H”,所以才叫H桥。
这个“H”的四条“腿”呢,可都是很有讲究的。
每一条“腿”上都连接着一个电子元件,一般是晶体管之类的,就像每个路口都有一个小交警在指挥交通一样。
当我们想要电机正转的时候呀,就像是要让车朝着一个方向顺利行驶。
这时候呢,H桥的其中两个对角线上的元件就开始工作啦。
比如说左上角和右下角的元件就像是打开了绿灯,电流就从电源经过这两个元件,然后顺利地流到电机里面,电机就欢快地正转起来啦。
这个过程就好像是给电机注入了一股正能量,让它朝着我们期望的方向转动。
那要是想让电机反转呢?这就像让车掉头往回开。
这时候就轮到另外两个对角线的元件大显身手啦,也就是右上角和左下角的元件开始工作。
电流就会改变方向,从电源经过这两个元件再到电机,电机就会按照相反的方向转动起来。
是不是很神奇呢?就像这个电路有魔法一样,能轻松改变电机的转动方向。
还有刹车的情况呢。
这就好比是突然在路中间设置了一个大障碍物,让车停下来。
在H桥驱动电路里,要实现刹车,就是让电机的两端都接到电源或者地,这样电机就没有办法转动啦。
就像是电机突然被定住了一样,它想动也动不了咯。
这个H桥驱动电路在很多地方都超级有用呢。
比如说在那些小小的遥控汽车里面,就是靠这个电路来控制汽车前进、后退的。
还有那些电动小风扇,如果想要它能正反转来调节风向,也可以用到H桥驱动电路。
不过呢,这个电路也不是没有小脾气的。
在实际应用的时候呀,要特别注意元件的选择。
如果选的晶体管功率不够大,就像小交警没有足够的力气指挥交通一样,可能就没办法让电机正常工作啦。
而且呢,在切换电机正反转的时候,也要小心一点,就像车辆掉头的时候要注意周围的情况一样,要是切换得太快或者太突然,可能会对电路或者电机造成不好的影响呢。
H桥驱动电路原理
H桥驱动电路图1中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图1 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图2 H桥电路驱动电机顺时针转动图3所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图3 H桥驱动电机逆时针转动二、使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
(与本节前面的示意图一样,图4所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。
h桥直流电机驱动电路
h桥直流电机驱动电路H桥直流电机驱动电路是一种常用的电子电路,用于控制直流电机的转动方向和速度。
它由四个开关器件和一个直流电源组成,能够根据输入信号来控制电机的正转、反转以及停止。
本文将详细介绍H桥直流电机驱动电路的工作原理和应用。
我们来了解一下H桥直流电机驱动电路的基本结构。
H桥电路由四个开关器件组成,通常使用晶体管或功率MOSFET作为开关器件。
这四个开关器件分为上桥臂和下桥臂,上桥臂的两个开关器件分别连接于电机的一个端子和电源的正极,下桥臂的两个开关器件分别连接于电机的另一个端子和电源的负极。
通过控制这四个开关器件的通断状态,可以改变电机的电流流向,从而实现电机的正转、反转和停止。
接下来,我们来详细说明H桥直流电机驱动电路的工作原理。
当上桥臂的两个开关器件都关闭时,上桥臂与电机形成闭环,电流从电源正极流向电机,电机正转;当上桥臂的两个开关器件都打开时,上桥臂与电机断开,电机停止转动。
同样地,当下桥臂的两个开关器件都关闭时,下桥臂与电机形成闭环,电流从电机流向电源负极,电机反转;当下桥臂的两个开关器件都打开时,下桥臂与电机断开,电机停止转动。
通过这种方式,可以实现电机的正转、反转和停止。
H桥直流电机驱动电路的控制信号通常由微控制器或其他数字电路产生。
控制信号的频率通常在几十kHz到几百kHz之间,可以通过PWM(脉宽调制)技术来实现。
PWM技术通过改变开关器件的通断时间比例来控制电机的转速。
通断时间比例越大,电机的平均电流越大,转速越快;通断时间比例越小,电机的平均电流越小,转速越慢。
通过调整PWM的占空比,可以实现电机的速度调节。
H桥直流电机驱动电路不仅可以控制电机的转向和转速,还可以实现动态制动和能量回收。
动态制动是指通过改变电机的工作状态,将电机的转动能量转化为电能,并回馈到电源中,实现能量的回收和再利用。
这种制动方式可以提高系统的能量利用效率,降低能耗。
另外,H桥直流电机驱动电路还可以实现电机的电磁刹车,即通过改变电机回路的状态,使电机产生反电动势,从而使电机停止转动。
小型轮式机器人直流电机H桥驱动电路的设计
Electronic Technology •电子技术Electronic Technology & Software Engineering 电子技术与软件工程• 99【关键词】机器人 H 桥驱动电路 MOS 管1 电路总体设计1.1 电路总体设计本电路包括电源电路、H 桥电路、MOS 管Q2控制电路、MOS 管Q3控制电路、MOS 管Q7控制电路、MOS 管Q8控制电路。
如图1所示。
1.2 电路基本原理小型轮式机器人直流电机H 桥驱动电路的设计文/宋泽清直流电机由MOS 管Q2、Q3、Q7、Q8驱动。
MOS 管Q2、Q3、Q7、Q8分别由对应的控制电路控制,各控制电路通过对H 桥电路四个MOS 管的控制实现对直流电机的控制。
2 电路设计2.1 电源电路电源电路由12V 电池插座J4、电源开关S1、防反接二极管D9、电解电容C2、瓷片电容C3、开关稳压电源芯片U4、电感L1、二极管D10、电解电容C4、瓷片电容C1、电阻R45及电源指示发光二极管D11组成。
如图2所示。
当开关S1按下时12V 电池电源由插座J4引入,供给H 桥及H 桥MOS 管控制电路,+12V 的电源经过开关稳压芯片U4稳压后为H 桥MOS 管控制电路提供5V 电源。
当开关S1再次按下时,断开系统电源。
2.2 H桥电路设计H 桥电路由MOS 管Q2、Q3、Q7、Q8及通过接线端子J1接入的直流电机组成。
如图2所示。
当MOS 管Q2和Q8导通时,电流从12V 电源正极流过MOS 管Q2、直流电机、MOS 管Q8,然后入地,从而使直流电机正转。
当MOS 管Q3和Q7导通时,电流从12V 电源正极流过MOS 管Q3、直流电机、MOS 管Q7,然后入地,从而使直流电机反转。
当MOS 管Q2和Q3导通或MOS 管Q7和Q8导通时,直流电机接入闭合回路,从而使直流电机制动。
中的每一个基因,随机从[1,2M -1]之间选择一个数字作为初始化分配结果。
H桥电机驱动IR2110组成的全H桥驱动模块,具有过热过流保护功能
一、H桥驱动电路图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥驱动电机逆时针转动二、使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
电机驱动H桥电路
单片机直流电机驱动H桥电路
2009年05月20日星期三下午 01:14
图中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
要使电机运转,必须使对角线上的一对三极管导通。
例如,如下图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
下图所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
典型的H桥驱动电路。
H桥直流电机驱动电路设计
H桥直流电机驱动电路设计本文针对直流电机的驱动电路的各个模块进行了详细的分析与设计,主要介绍了大功率直流电机驱动电路的设计流程。
经分析,该电路可以很好地控制直流电机的正反转及调速,并且具有结构简单,驱动能力强,低功耗,低成本等优点。
关键字:H桥驱动电力MOS管直流电机一、引言直流电动机凭借其良好的线性特性、优异的控制性能、以及可以实现频繁的无级快速启动、制动和反转等特点成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。
特别是第二代全控型电力半导体器件(GTR、GTO、MOSFET、IGBT)的发展,以及脉冲宽度调制(PWM)技术的成熟,使得直流电机具有了更加广泛的应用前景。
二、直流电机驱动电路总体结构直流电机驱动电路分为光电隔离电路、死区控制电路、电机驱动逻辑电路、驱动信号放大电路、H桥功率驱动电路等五部分。
其中控制信号有控制电机转向的DIR信号和控制电机转速的PWM信号。
1、光电隔离电路2、死区控制电路3、电机驱动逻辑电路4、H桥功率驱动电路设计近30年来,电力电子技术的迅猛发展,带动和改变着电机控制的面貌和应用。
常用的电子开关器件有继电器,三极管,MOS管,IGBT等。
普通继电器属机械器件,开关次数有限,开关速度比较慢,而且继电器内部为感性负载,对电路的干扰比较大。
晶体管本身有导通电阻,在通过大电流时会明显发热,如果没有散热措施会很容易烧毁,一般使用于小功率驱动电路。
电力MOS管导通电阻远比普通三极管低,允许流过更大的电流,且内置有反向二极管来保护管子本身,使用MOS管搭建H桥,高位电路要用P沟道管,低位电路要用N沟道管。
IGBT 管由于价格昂贵一般不采用。
3)功率驱动芯片IR2130小功率驱动电路可以采用上圖的H桥驱动电路,当驱动功率比较大时,一般桥臂电压也比较高,为了安全和可靠,希望驱动回路(主回路)与控制回路绝缘。
此时,主回路必须采用浮地前置驱动。
如上图4所示,其中浮地前置驱动电路都是互相独立的并由独立的电源供电。
h桥电机驱动电路
h桥电机驱动电路H桥电机驱动电路H桥电机驱动电路是一种常用的电路设计,用于控制直流电机的运转方向和速度。
它通过使用四个电晶体来控制电机的正反转,并且可以通过改变电晶体的导通方式来控制电机的速度。
本文将详细介绍H桥电机驱动电路的工作原理、组成和应用。
1. 工作原理H桥电机驱动电路由四个电晶体组成,其中两个电晶体用于控制电机的正转,另外两个电晶体用于控制电机的反转。
当电机需要正转时,对应的两个电晶体导通,使电流流过电机,使其正转。
当电机需要反转时,其他两个电晶体导通,使电流流动方向相反,使电机反转。
为了控制电机的速度,可以通过改变电晶体的导通方式来改变电机的驱动电流。
常见的方法是使用PWM (Pulse Width Modulation) 技术,在一个周期内改变电晶体导通的时间比例,从而改变电机的转速。
较短的导通时间比例会使电机转速增加,而较长的导通时间比例会使电机转速降低。
2. 组成H桥电机驱动电路由以下几个主要组成部分构成:2.1 电源电源提供所需的电压和电流,以驱动电机正常运行。
通常使用直流电源作为电机的电源,其电压根据电机的驱动要求而定。
2.2 控制信号输入端H桥电机驱动电路需要控制信号来控制电机的转向和速度。
这些控制信号通常来自于微控制器、单片机或其他控制设备。
控制信号输入端接收这些信号,并根据信号的不同导通对应的电晶体,从而控制电机的运行。
2.3 逻辑电路逻辑电路用于控制电晶体的导通和截止状态。
它接收控制信号,并根据信号的逻辑状态来控制电晶体的导通和截止。
2.4 电晶体H桥电机驱动电路使用四个电晶体,通常为MOSFET (金属氧化物半导体场效应管) 或者IGBT (绝缘栅双极性晶体管)。
这些电晶体用于控制电机的正反转和速度。
2.5 保护电路为了保护电机和电路,H桥电机驱动电路通常还会包含一些保护电路,例如过流保护、过温保护和反向电压保护等。
这些保护电路能够有效防止电机损坏和电路故障。
3. 应用H桥电机驱动电路广泛应用于各种领域和场合,例如机器人控制、汽车电动系统、工业自动化等。
直流电机h桥驱动电路原理
直流电机h桥驱动电路原理
H桥驱动电路是一种常用于直流电机驱动的电路结构。
它由四个功率开关组成,可以控制电流的流向,从而实现电机的正反转和调速控制。
下面我将详细介绍H桥驱动电路的原理和工作过程。
H桥驱动电路由四个开关组成,分别为S1、S2、S3和S4。
当S1和
S4导通时,电流从电源正极经过S1进入电机,然后通过S4返回电源负极,电机开始正转。
当S2和S3导通时,电流则从电源负极经过S3进入电机,然后通过S2返回电源正极,电机开始反转。
通过控制S1、S2、S3和S4的导通和断开,可以实现电机的正反转控制。
在H桥驱动电路中,还需要一个控制电路来控制开关的导通和断开。
控制电路通常由微控制器或逻辑门电路实现。
通过控制电路,我们可以对开关进行精确的控制,从而实现电机的调速控制。
当S1和
S2导通时,电机转速较快;当S3和S4导通时,电机转速较慢;当S1、S2、S3和S4都断开时,电机停止转动。
H桥驱动电路的工作过程如下:首先,根据控制信号控制开关的导通和断开,确定电机的转向和转速;然后,根据开关的状态,控制电流的流向,使电机正常工作;最后,根据需要调整开关的状态,实现电机的正反转和调速控制。
总结起来,H桥驱动电路通过控制开关的导通和断开,实现电流的流向控制,从而驱动直流电机的正反转和调速控制。
它是一种简单
有效的电机驱动方案,广泛应用于各种直流电机驱动系统中。
希望通过本文的介绍,读者对H桥驱动电路的原理和工作过程有所了解。
直流电机(H桥)驱动电路
直流电机(H桥)驱动电路图4.12中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图4.12 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图4.13 H桥电路驱动电机顺时针转动图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图4.14 H桥驱动电机逆时针转动驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。
H桥驱动电路分析
H桥驱动电路分析
图中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
直流电机H桥驱动原理和驱动电路选择L9110 L298N LMD18200
在直流电机驱动电路的设计中,主要考虑一下几点:1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。
如果不需要调速,只要使用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM (脉冲宽度调制)调速。
2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。
1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。
2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。
要提高电路的效率,可以从保证功率器件的开关工作状态和防止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。
3)对控制输入端的影响。
功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或光电耦合器实现隔离。
4)对电源的影响。
共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。
5)可靠性。
电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。
H桥驱动电路:H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。
要使电机M运转,必须使对角线上的一对三极管导通。
例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
电机顺时针转动。
当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。
完整的晶体管H桥驱动电路,PWM1,PWM2,为电机方向控制输入端,PWM1=1,PWM2=0时正转,PWM=0,PWM2=1时电机反转。
PWM1,PWM2同时也是电机调速的脉宽输入端。
晶体管是最为廉价的控制方法,但在晶体管上有明显的压降,会产生功率的损耗,效率不高,适宜应用在低电压,小功率的场合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流电机H桥驱动电路(带正反转和使能)
公司买了一些100W的直流电机,功率很大,让我做个驱动电路,要求有正反转,还让电机能停能转,停和转的时候不能影响电机的转动方向,我想了一下,用继电器来驱动正反转,但是电机如果频繁换向,继电器是扛不住的,触电打火会影响接触不良,于是,我想到了用场效应管来驱动电机。
如果要用场效应管来驱动电机正反转,我第一个想到了H桥,于是就设计出电路图来。
然后进一步的改进:
用cd4011与H桥结合,CD4011是四个双输入与非门电路,
整体图如下:
功能:当S1闭合时,电机正转,断开后反转,
S2闭合时,电机转,断开后电机停,
电机功率100W (当然电机功率更大的话,只需换大一点功率的场效应管就行了)
驱动电压24V
控制电压12V
看到这个文档的朋友千万要注意了,他这个电路只能控制12V的输出电压。
如果是24V的直流电机,要在管子的控制极加三极管抬高控制通断的电压,因为控制管子的通断其实就是G、S极的之间的压差(小于4V左右不导通,大于4V左右导通),你如果是供电24V,而芯片CD4011出来的控制电压信号只有12V,这样造成G-S的压差是12V或者是24V,一侧的两个管子是一直导通的!!!!这一通电就要烧管子,这篇文章的作者非常坑人,大家一定记清楚了。
三极管推荐使用9014,两级的电阻推荐使用33KΩ的直插电阻。