温室环境监测系统设计

合集下载

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》范文

《智能温室大棚监控系统的研究与设计》篇一一、引言随着现代科技的不断进步,农业科技作为支撑现代农业发展的重要支柱,也正在逐步升级与优化。

智能温室大棚监控系统是这一进步的体现之一,它不仅为农业种植提供了精准的环境控制,还能显著提高农作物的产量与品质。

本文旨在探讨智能温室大棚监控系统的设计与实现,通过对其系统架构、技术运用以及实施效果的研究,为现代农业的智能化发展提供一定的理论支持与实践指导。

二、系统架构设计1. 硬件架构智能温室大棚监控系统的硬件架构主要包括传感器网络、数据传输设备、中央处理单元和控制执行设备等部分。

传感器网络负责实时监测温室内的环境参数,如温度、湿度、光照强度等;数据传输设备将收集到的数据传输至中央处理单元;中央处理单元对数据进行处理与分析,并发出控制指令;控制执行设备则根据指令调整温室内的环境条件。

2. 软件架构软件架构则包括数据采集模块、数据处理与分析模块、控制指令输出模块以及用户交互界面等部分。

数据采集模块负责从传感器网络中获取数据;数据处理与分析模块对数据进行处理与存储,并运用算法进行环境预测与优化;控制指令输出模块根据分析结果发出控制指令;用户交互界面则提供友好的操作界面,方便用户进行系统操作与监控。

三、关键技术运用1. 传感器技术传感器技术是智能温室大棚监控系统的核心之一。

通过使用高精度的传感器,系统能够实时监测温室内的环境参数,如温度、湿度、光照强度等,为后续的数据处理与分析提供准确的数据支持。

2. 数据处理与分析技术数据处理与分析技术是智能温室大棚监控系统的关键环节。

通过对传感器收集到的数据进行处理与分析,系统能够实时掌握温室内的环境状况,并运用算法进行环境预测与优化,为控制指令的发出提供依据。

3. 控制执行技术控制执行技术是实现智能温室大棚监控系统精确控制的关键。

通过控制执行设备,系统能够根据中央处理单元发出的指令,调整温室内的环境条件,如开启或关闭通风口、调整遮阳设备等。

基于物联网的温室大棚监控系统设计与实现

基于物联网的温室大棚监控系统设计与实现

谢谢观看
应用层主要包括云平台和客户端两部分。云平台负责数据的存储和处理,客 户端则可以通过电脑、手机等设备访问云平台,查看温室大棚的实时数据,并对 环境因素进行控制。
三、系统功能实现
1、数据采集:通过各类传感器采集温室大棚内的环境因素数据,如温度、 湿度、光照、二氧化碳等。
2、数据传输:通过无线通信技术将采集的数据传输到云平台。
2、数据存储和远程控制
为了方便用户对历史数据进行查询和分析,本系统需要将采集到MySQL数据库进行数据存储,并通过Java 程序实现数据的备份和恢复。
同时,为了实现远程控制,本系统需要将执行器与云平台进行连接。用户可 以通过手机APP或Web端对大棚内的设备进行远程控制,包括开关设备、调整设备 参数等。本系统使用Zookeeper进行设备管理,保证设备的可靠连接和稳定运行。
一、设计思路
基于物联网的温室大棚监控系统旨在通过各种传感器和执行器,实时监测大 棚内的环境参数,如温度、湿度、光照等,同时根据监测数据进行自动化调控, 以提供最适宜的农作物生长环境。
本系统的设计主要包括硬件和软件两部分。硬件部分主要包括各种传感器、 执行器、通讯模块和电源模块等;软件部分主要包括数据采集、处理、存储和远 程控制等功能。
二、硬件设计
1、传感器和执行器
本系统需要使用多种传感器和执行器,以实现环境参数的全面监测和调控。 传感器包括温度传感器、湿度传感器、光照传感器等,用于监测大棚内的环境参 数;执行器包括通风设备、灌溉设备、遮阳设备等,用于调控大棚内的环境条件。
2、通讯模块
通讯模块是连接传感器、执行器和数据中心的桥梁。本系统采用GPRS无线通 讯模块,实现数据的高速传输和实时监控。此外,系统还支持多种联网方式,如 Wi-Fi、以太网等,以满足不同用户的需求。

《2024年智慧农业大棚监控系统的设计与实现》范文

《2024年智慧农业大棚监控系统的设计与实现》范文

《智慧农业大棚监控系统的设计与实现》篇一一、引言随着科技的发展,智慧农业成为了农业领域发展的重要方向。

智慧农业大棚监控系统是智慧农业的重要组成部分,通过集成物联网、传感器、大数据等先进技术,实现对农业大棚环境的实时监测和智能调控,提高农业生产效率和产品质量。

本文将介绍智慧农业大棚监控系统的设计与实现过程。

二、系统设计1. 系统架构设计智慧农业大棚监控系统采用分层设计的思想,主要包括感知层、传输层、应用层。

感知层负责采集大棚环境数据,传输层负责将数据传输到服务器端,应用层负责数据的处理和展示。

2. 硬件设计(1)传感器:传感器是智慧农业大棚监控系统的核心组成部分,主要包括温度传感器、湿度传感器、光照传感器、CO2浓度传感器等,用于实时监测大棚环境参数。

(2)控制器:控制器负责接收传感器数据,并根据预设的阈值进行相应的调控操作,如调节温室遮阳帘、通风口等。

(3)网络设备:网络设备包括无线通信模块和有线网络设备,用于将传感器数据传输到服务器端。

3. 软件设计(1)数据采集与处理:软件系统通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

(2)数据分析与展示:软件系统对采集的数据进行分析和挖掘,通过图表、报表等形式展示给用户,帮助用户了解大棚环境状况和作物生长情况。

(3)智能调控:软件系统根据预设的阈值和调控策略,自动或手动调节温室设备,如调节温室遮阳帘、通风口等,以保持大棚环境在最佳状态。

三、系统实现1. 硬件实现硬件设备选型与采购:根据系统需求,选择合适的传感器、控制器和网络设备,并进行采购。

设备安装与调试:将硬件设备安装在大棚内,并进行调试,确保设备能够正常工作并采集准确的数据。

2. 软件实现(1)数据采集与处理模块:通过与硬件设备的通信,实时采集大棚环境数据,并进行预处理和存储。

采用数据库技术对数据进行管理和维护。

(2)数据分析与展示模块:通过数据分析算法对采集的数据进行分析和挖掘,以图表、报表等形式展示给用户。

温室大棚温湿度监测系统设计毕业论文

温室大棚温湿度监测系统设计毕业论文

温室大棚温湿度监测系统设计毕业论文引言温室大棚作为一种重要的农业设施,在现代农业生产中扮演着重要角色。

为了提高温室环境的稳定性和作物的产量,监测和控制温室大棚的温湿度是必不可少的。

本文将介绍一种温室大棚温湿度监测系统的设计,旨在为农业生产提供有效的监测和控制手段。

系统需求分析在温室大棚的种植过程中,温度和湿度是两个重要的气候因素。

因此,本系统的设计需满足以下需求: - 实时监测温室大棚内的温度和湿度数据,并能通过互联网远程访问; - 提供可视化界面,以便农民能方便地观察温室大棚的环境变化; - 当温度或湿度超出预设范围时,能自动发送警报信息。

系统设计本系统主要由以下几个部分组成:温湿度传感器、单片机控制模块、Wi-Fi模块和远程访问平台。

温湿度传感器温湿度传感器是监测温室大棚内温湿度的核心部件。

常用的温湿度传感器有DHT11和DHT22等型号。

传感器将温度和湿度数据转换为数字信号,并提供接口供单片机模块读取。

单片机控制模块单片机控制模块负责与温湿度传感器的通信和数据处理。

它通过读取传感器的数据,并根据预设的阈值进行判断,以决定是否触发警报或发送数据到远程访问平台。

Wi-Fi模块为了实现远程访问和控制,本系统中将使用Wi-Fi模块连接到互联网。

Wi-Fi模块可以将单片机控制模块收集到的温湿度数据发送到远程访问平台,并接收远程控制命令。

远程访问平台远程访问平台是农民和温室大棚之间的桥梁,为农民提供了监测和控制温室大棚的接口。

农民可以通过平台查看温室大棚的温湿度数据、设置阈值和接收警报信息。

系统实施本系统将采用Arduino作为单片机控制模块,使用DHT11作为温湿度传感器,ESP8266作为Wi-Fi模块。

远程访问平台将使用云服务器和Web开发技术来实现。

Arduino编程Arduino编程主要包括与温湿度传感器的通信、数据处理和与Wi-Fi模块的通信。

通过编写相应的代码,将传感器数据转换为温度和湿度值,并将数据发送到远程服务器。

基于单片机的温室大棚监测系统的设计_概述说明

基于单片机的温室大棚监测系统的设计_概述说明

基于单片机的温室大棚监测系统的设计概述说明1. 引言1.1 概述温室大棚是指通过建立一个人工环境,用于培植和保护作物的设施。

随着社会技术的发展,越来越多的农业生产使用了温室大棚来提高作物的生长和产量。

而温室大棚监测系统则是一种采用单片机技术设计的系统,旨在实现对温室内各项指标的实时检测与控制。

通过监测温度、光照强度等关键参数,并根据需求实施相应的控制手段,可以为种植者提供全天候、精确化的管理信息,并有效提高作物的生长质量和产量。

1.2 文章结构本文将首先介绍文章的整体结构,包括各个章节的内容安排。

接着将分别详细阐述温室大棚监测系统设计中涉及到的单片机选择与介绍、温度监测与控制功能设计以及光照强度检测与反馈设计等方面内容。

在此基础上,我们还将深入讨论系统硬件组成与连接方法,包括温度传感器接口设计与实现、光照强度传感器接口设计与实现以及数据传输和通信模块选型与设计。

而在程序算法与逻辑控制设计方面,将详细描述温度监测程序算法及控制逻辑设计原理、光照强度检测程序算法及控制逻辑设计原理,以及数据处理和显示程序设计方法的选择与实现等内容。

最后,我们将给出结论与展望部分,总结评价本次设计成果,并提出存在的问题分析及改进方向建议。

同时,还将展望未来发展趋势和应用前景,并提出相应的分析和预测。

1.3 目的本文的主要目的是介绍基于单片机的温室大棚监测系统的设计原理和方法。

通过该系统的搭建和实施,可以帮助农民更好地管理温室大棚内环境,提高作物生长效果并增加产量。

同时,本文还旨在通过研究单片机技术在温室大棚监测系统中的应用,探索其在农业生产中的潜力和前景。

在发展趋势展望中,我们也将对未来可能涌现出的新技术和创新进行一定程度上的推断和预测。

2. 温室大棚监测系统设计:温室大棚监测系统是一种基于单片机的智能化系统,旨在实现对温室大棚环境参数的实时监测与控制。

本部分将详细介绍该系统的设计方案。

2.1 单片机选择与介绍:在温室大棚监测系统中,单片机扮演了核心的角色。

温室大棚温湿度监测系统设计及性能分析

温室大棚温湿度监测系统设计及性能分析

温室大棚温湿度监测系统设计及性能分析温室大棚是一种用于种植蔬菜、花卉等植物的设施,通过人工调控环境条件,提供恒定的温度和湿度,增加作物的产量和品质。

为了实现对温室大棚温湿度的监测和调控,设计了一个温室大棚温湿度监测系统,并对其性能进行了分析。

温室大棚温湿度监测系统的设计目标是实时监测和记录温室内的温度和湿度,并能根据设定的阈值进行报警,实现远程监控和控制。

该系统主要由传感器模块、数据采集模块、通信模块、控制模块和人机界面组成。

传感器模块是该系统的核心部分,用于检测温室内的温度和湿度。

常用的温湿度传感器有DHT11和DHT22等,其精度和稳定性较高。

传感器将采集到的温湿度数据转化为电信号通过模拟-数字转换器(ADC)传送给数据采集模块,完成数据的采集和处理。

数据采集模块负责接收传感器模块传来的数据,并对数据进行处理和存储。

该模块通过微处理器将数据转化为数字信号,并将数据存储在存储器中,以便后续的数据分析和查询。

同时,该模块还可实现对传感器的参数设置和控制。

通信模块用于实现系统与外部设备的数据传输和远程控制。

该模块可选择无线通信方式,如Wi-Fi、蓝牙等,也可以选择有线通信方式,如以太网、RS485等。

通过与上位机或者手机APP的交互,实现对温室大棚的实时监测和控制。

控制模块是根据采集到的温湿度数据和设定的阈值进行控制操作。

当温湿度超过设定的阈值时,控制模块会触发报警装置,以提醒操作人员进行调节。

同时,控制模块还可以根据设定的控制策略,自动调节温室内的温湿度,以保持恒定的环境条件。

人机界面是操作人员与监测系统进行交互的平台。

通过人机界面,操作人员可以实时查看温室内的温湿度数据,并进行参数的设定和控制命令的下发。

界面设计应简洁直观,方便操作人员快速理解和操作。

对于温室大棚温湿度监测系统的性能分析,主要从以下几个方面进行评价:1. 精度和稳定性:传感器的精度和稳定性直接影响数据的准确性。

应选择精度高、稳定性好的传感器,减小误差和波动。

温室环境监测与调控系统的设计与实现

温室环境监测与调控系统的设计与实现

温室环境监测与调控系统的设计与实现随着农业生产的科技化,温室环境监测与调控系统在现代农业中起着重要作用。

该系统使用传感器和控制器来监测和调控温室内的环境条件,以提供最佳的种植环境,从而提高农作物的产量和质量。

在本文中,我们将讨论温室环境监测与调控系统的设计与实现。

温室环境监测与调控系统的设计是一个复杂的过程。

首先,需要选择适合温室内环境监测的传感器。

常见的传感器包括温度传感器、湿度传感器、光照传感器和二氧化碳传感器等。

这些传感器可以测量温室内的温度、湿度、光照和CO2浓度等关键参数。

为了确保准确性和可靠性,传感器应该具有高精度和长寿命。

此外,传感器应具备抗干扰能力,以避免外部干扰对监测结果的影响。

除了传感器,温室环境监测与调控系统还需要控制器来根据监测结果对温室环境进行调控。

控制器根据设定的参数和目标,通过控制温室内的设备,如通风系统、加热系统和灌溉系统等,来改变温室内的环境条件。

在设计控制系统时,需要考虑多种因素。

首先,需要确定合适的控制策略。

常用的控制策略包括开关控制、比例控制和PID控制。

选择合适的控制策略可以有效地调节温室环境,使其保持在理想的范围内。

其次,控制系统应具备稳定性和快速响应能力。

温室内环境的快速变化要求控制系统能够及时响应,并采取相应的措施进行调节。

此外,控制系统应具备自动化和远程监控的能力,以方便农民对温室环境进行实时监测和调控。

为了实现温室环境监测与调控系统,还需要将传感器和控制器连接起来,并将数据传输到监测和调控中心。

这通常通过使用无线传感器网络(WSN)来实现。

WSN可以将传感器节点连接到一个网络中,以便实时采集和传输温室环境数据。

同时,WSN还可以提供对温室环境的远程监测和控制功能。

此外,为了更好地实现温室环境监测与调控系统,可以使用数据分析和决策支持系统来对温室环境数据进行分析和处理。

通过对温室环境数据的分析,可以发现温室环境的变化规律和优化方向,为农民提供科学指导,促进农业生产的发展。

《2024年基于PLC的智能温室监控系统》范文

《2024年基于PLC的智能温室监控系统》范文

《基于PLC的智能温室监控系统》篇一一、引言随着现代农业技术的快速发展,智能温室监控系统逐渐成为农业现代化的重要组成部分。

这种系统不仅可以提高农作物的产量和质量,还可以节省能源和人力资源。

基于PLC(可编程逻辑控制器)的智能温室监控系统以其高可靠性、灵活性和易维护性,成为了当前智能农业领域的研究热点。

本文将详细介绍基于PLC 的智能温室监控系统的设计、实现及其应用。

二、系统设计1. 硬件设计基于PLC的智能温室监控系统硬件主要包括传感器、执行器、PLC控制器、上位机等部分。

传感器负责实时监测温室内的温度、湿度、光照、CO2浓度等环境参数,执行器则根据PLC控制器的指令对温室内的环境进行调节,如调节遮阳网、加湿器、通风设备等。

上位机则是与PLC进行数据交互的人机界面,实现数据的可视化展示和操作控制。

2. 软件设计软件设计主要包括PLC控制程序的设计和上位机监控界面的设计。

PLC控制程序采用梯形图或指令表编程,实现对温室环境的实时监测和控制。

上位机监控界面则采用图形化界面设计,方便用户进行操作和查看数据。

同时,系统还具有数据存储和分析功能,为农业生产和科研提供数据支持。

三、系统实现1. 数据采集与传输传感器实时采集温室内的环境参数,通过数据线与PLC控制器进行数据传输。

PLC控制器对数据进行处理后,通过以太网或无线通信方式将数据传输至上位机监控界面。

2. 控制策略实现根据预设的控制策略,PLC控制器对执行器发出控制指令,调节温室内的环境参数。

例如,当温度过高时,PLC控制器会控制遮阳网下降,降低温度;当湿度过低时,PLC控制器会控制加湿器工作,提高湿度。

四、系统应用基于PLC的智能温室监控系统在农业领域具有广泛的应用前景。

首先,它可以提高农作物的生长速度和产量,降低生产成本。

其次,它可以实现农作物的精准管理,提高农产品的品质和安全性。

此外,该系统还可以为农业科研提供数据支持,推动农业科技的进步。

五、系统优势与展望1. 系统优势基于PLC的智能温室监控系统具有以下优势:一是高可靠性,PLC控制器具有较高的抗干扰能力和稳定性;二是灵活性,系统可根据实际需求进行定制化设计;三是易维护性,系统采用模块化设计,方便维护和升级。

智慧温室环境监控系统设计

智慧温室环境监控系统设计

智慧温室环境监控系统设计摘要:传统的生产劳作模式依旧是我国的主要农业模式,人们凭借经验进行施肥灌溉,这种传统耕种方法导致多数水分和化学肥料没有被充分利用而随地弃置,不仅造成极大的物力与人力资源浪费,也对当地自然环境造成严重损害,对我国农业可持续性发展带来严峻挑战。

随着社会的变迁与进步,原有的农业种植方法已经不能满足社会发展的需要,发展以传感器技术与通信技术为基础的生态农业和现代化农业是往后农业发展的主流趋势。

智慧温室环境监控系统设计将传感器与互联网结合起来,通过DHT11数字温湿度传感器、5516光线传感器和YL-69土壤湿度传感器对温室内空气中的温度湿度、光照强度以及土壤湿度进行数据监测。

再通过ESP8266 WiFi通信模块将检测到的相关数据上传至云端平台,这样使用者就可通过软件平台对温湿度、光照强度和土壤湿度进行远程实时查看。

并且当传感器接收到的数据超过阈值范围时自动触发蜂鸣器报警并通过继电器对相关环境数据进行调控。

达到智能化温室种植管理、减轻管理人员的工作量、节省其管理成本和用工成本的目的。

并且可以降低因突发异常情况造成的非必要财产损失。

关键词:温室环境传感器一、研究背景农业是所有国家的立国之本,以农业生产经营活动为主的相关社会活动对我国的社会以及经济发展起到了不可忽视的作用。

农业生产对气候与生态环境要求十分严格,但我国很多地区都存在土地稀少、土壤状况不佳和干旱等劣势,这些劣势对相关作物的生长造成了不利的影响;况且随着时代的变迁,农业劳动力大量流失,而对农业产物的需求却变得更加丰富严格,亘古以来的耕种方法已经无法满足人民群众的需要,必须对现有耕种方式进行技术的革新与进步。

同时随着设施农业的快速发展,尤其是现代以来的无土栽培、滴喷灌等先进技术获得了巨大的进步,这使相关生产方对智慧温室环境监控系统的需求变得迫切且可行。

因此在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。

基于无线网络的温室环境监控系统的设计

基于无线网络的温室环境监控系统的设计

基于无线网络的温室环境监控系统的设计
中国提倡农业发展走现代化道路,随着农业的研究和应用技术得到越来越多的重视,温室生产成为发展高效农业的一个关键环节。

在我国,大多数的温室环境参数监控由人工进行管理,不但使生产成本增加,而且造成人力资源的浪费,难以实现预期的经济效益。

本文设计了一套集智能化、集中化、远程化于一体的温室环境监控系统,以解决我国温室管理中现存的问题。

温室环境监控系统主要由管理中心、集中监控节点、现场监测节点、传感器与执行机构组成。

现场监测节点利用传感器完成对温室内温度、湿度、CO2浓度、光照强度等环境参数的检测;集中监控节点选用微控制器和无线射频模块作为主控芯片,实现对环境参数的监测与记录;管理中心部分设计了软件的各个界面模块,方便用户对温室环境的远程监控。

ZigBee无线网络和数
传电台无线网络分别作为集中监控节点与现场监测节点之间、管理中心与集中监控节点之间的通信媒介,完成温室环境监控系统各节点之间的数据传输。

基于无线网络的温室环境监控系统能够实现信息的实时传输,并对温室内各个区域的环境信息进行监测控制,节省大量的人力资源,管理人员不需要亲自到现场采集数据,利用无线网络资源即可实现信息的远程处理。

因此,基于无线网络的温室环境监控系统的研究有着重要的现实意义和广阔的应用前景。

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计

基于物联网的智慧温室环境监测与控制系统设计引言:随着智能科技的迅速发展,物联网在农业领域的应用越来越广泛。

智慧温室环境监测与控制系统是其中的一个重要应用。

本文将介绍一个基于物联网的智慧温室环境监测与控制系统设计方案。

一、需求分析1.温室环境监测:温度、湿度、光照强度、二氧化碳浓度等参数的监测;2.遥控控制温室环境:温度、湿度和光照等参数的控制调节;3.远程监测和操控:用户通过手机或电脑可以随时随地掌控温室环境;4.数据记录和分析:对温室环境数据进行存储和分析,以便农民调整种植计划。

二、系统设计1.硬件设计:(1)传感器:选择适当的传感器来监测温度、湿度、光照强度和二氧化碳浓度等参数。

确保传感器的准确性和可靠性。

(2)执行器:通过执行器控制温室内的加热器、通风设备和灯光,实现对温度、湿度和光照的调控。

(3)硬件平台:选择合适的物联网硬件平台,如Arduino、Raspberry Pi 等,用于搭建系统的硬件架构。

2.网络连接:(1)无线网络:采用Wi-Fi或移动网络实现温室与互联网的连接。

(2)数据传输:使用MQTT(Message Queuing Telemetry Transport)协议将温室环境数据传输到云端。

3.软件设计:(1)数据处理和存储:在云端服务器上设计数据库,用于存储温室环境数据。

借助云计算技术,实现大数据的处理和分析。

(2)用户界面:通过手机APP或网页端提供用户界面,实现用户远程监测和控制温室环境的功能。

(3)决策支持系统:通过算法和统计分析,提供决策支持系统,为农民提供种植计划和环境调控建议。

三、系统工作原理整个系统工作原理如下:1.传感器实时监测温室内环境参数;2.传感器将监测到的数据通过无线网络传输到云端服务器;3.云端服务器处理数据并存储在数据库中;4.用户可以通过手机APP或网页端访问云端服务器,实现远程监测和控制;5.用户根据数据分析结果进行科学调控温室环境。

四、系统优势1.实时监测:传感器可以实时监测温室内的温度、湿度、光照等参数,农民可以迅速了解温室内的环境状况。

温室环境智能监测与控制系统设计的开题报告

温室环境智能监测与控制系统设计的开题报告

温室环境智能监测与控制系统设计的开题报告一、研究背景及意义随着人口的增长和城市化的发展,城市内的土地资源变得越来越紧张,造成了耕地数量的缩减,而且现代化农业所需的投资和技术也在不断提高,增加了农业生产的成本。

温室技术是解决这个问题的有效途径之一,它可以最大限度地利用土地和水资源,同时可以有效地控制气候条件和减少农业害虫的影响,提高农作物的生产效率和质量。

因此,温室技术得到了越来越广泛的运用和发展。

随着现代科技的迅猛发展,智能温室系统已经成为了温室技术发展的一个重要方向,基于物联网、云计算、大数据等技术,通过对温室环境的智能监测和控制,能够实现对温室内环境的精准调控,使得农作物能够在最佳的生长环境下生长,提高了温室的生产效率和品质。

本论文拟设计一种基于物联网技术的温室环境智能监测与控制系统,实现对温室内环境变量的监测和控制,自动调节温室内的气候条件,降低生产成本,提高温室的生产效率和品质。

二、研究内容和研究方法本论文拟研究的内容主要包括:1. 温室环境智能监测:通过传感器对温室内的温度、湿度、光照、CO2浓度等环境变量进行实时监测,并将数据上传到云平台上进行存储和处理。

2. 温室环境智能控制:根据监测到的温室内环境变量,采用相应的算法和模型,自动调节温室内的气候条件,如通风、加热、降温等,实现对温室环境的精准控制。

3. 系统数据分析和管理:对温室环境监测数据进行分析和处理,建立相应的模型,分析环境变量与农作物生长之间的关系,提供数据可视化和决策支持。

研究方法主要包括:1. 完成相关文献资料的搜集和了解,对现有的温室环境监测与控制技术进行分析和总结。

2. 设计温室环境监测与控制系统的硬件结构和软件功能,选择适合的传感器和控制器,编写相应的程序和算法。

3. 搭建系统的测试平台,对系统进行调试和测试,并进行系统数据分析和管理。

三、预期研究成果和应用价值本论文设计的基于物联网技术的温室环境智能监测与控制系统,预期能够实现对温室内环境变量的实时监测和调控,有效降低生产成本,提高温室的生产效率和品质。

基于Linux的温室环境监控系统的设计

基于Linux的温室环境监控系统的设计

基于Linux的温室环境监控系统的设计随着农业科技的不断发展,温室种植成为现代农业中的重要组成部分。

温室环境的稳定与控制对于植物的生长和产量具有重要影响。

为了实现对温室环境的实时监控和精确控制,本文设计了一个基于Linux的温室环境监控系统。

首先,该系统采用了Linux操作系统作为基础。

Linux操作系统具有稳定性高、开源性强、安全性好等特点,能够提供可靠的运行环境。

同时,Linux操作系统支持各种硬件设备和开发工具,便于系统的扩展和开发。

其次,系统硬件方面,采用了传感器和执行器作为系统的感知和控制设备。

传感器主要用于实时监测温室内的温度、湿度、光照等环境参数,并将数据传输给控制系统。

执行器则根据控制系统的指令,控制温室内的温度、湿度、光照等参数的调节。

这些硬件设备与Linux系统通过串口或网络进行连接,实现数据的传输和指令的控制。

在软件方面,系统采用了多进程架构。

通过将各个功能模块划分为独立的进程,实现了模块之间的解耦和独立运行。

例如,数据采集模块负责从传感器中采集数据,并将数据传输给数据处理模块;数据处理模块负责对采集的数据进行处理和分析,并生成相应的控制指令;控制指令模块负责将控制指令发送给执行器进行控制。

这样的设计使得系统具有较高的灵活性和可扩展性。

此外,系统还具备远程监控和控制功能。

通过网络连接,用户可以远程监测温室环境的实时数据,并对环境参数进行远程控制。

这样,即使用户不在温室附近,也能够随时了解和调节温室环境,提高温室种植的效率和产量。

总之,基于Linux的温室环境监控系统具有稳定性高、可扩展性强、远程监控和控制等特点。

该系统的应用可以提高温室种植的效率和产量,为现代农业的可持续发展做出贡献。

农业大棚智能温室监测系统设计方案

农业大棚智能温室监测系统设计方案

数据存储与管理
设计数据库结构,对温室环 境数据进行存储,方便后续 查询与分析。
数据可视化
开发可视化界面,实时展示 温室环境数据及历史变化趋 势,提高用户直观感受。
报警与控制
设定环境参数阈值,当数据 异常时触发报警,并自动控 制温室设备,确保温室环境 稳定。
系统集成与调试
硬件集成
将传感器、数据采集器、温室控 制器、通信设备等硬件设备连接
预警系统
根据数据分析结果,为农户提供针对性的 温室管理建议,如调整温室温度、湿度等 。
设定环境参数的阈值,当实际数据超出设 定范围时,系统自动发出警报,提醒农户 及时采取措施。
控制系统与执行机构模块
手动控制
农户可通过操作界面手动控制温室设备, 以满足临时性的管理需求。
自动控制
根据环境监测数据和预设的管理策 略,自动控制温室内的通风、遮阳 、灌溉等设备,以维持温室环境的
起来,确保数据传输畅通。
软件集成
将软件平台与硬件设备进行联调 ,确保软件能够正确接收、解析
、存储、展示温室环境数据。
系统测试对系统进行全面测试,包来自功能 测试、性能测试、稳定性测试等
,确保系统满足设计要求。
系统运行与维护
定期对数据库进行备份,防止数据丢 失,确保数据安全。
根据用户需求及系统运行情况,对软 件进行更新升级,优化系统性能,提 高用户体验。
04
通信技术
采用MQTT、WebSocket等通信技术 ,实现客户端与服务器之间的实时数 据传输。
03
系统详细设计
温室环境监测模块
温度监测
通过布置在温室内的温度传感器,实 时监测温室内的气温变化,确保作物 生长在最适宜的温度环境中。

温室大棚环境监控系统方案

温室大棚环境监控系统方案

温室大棚环境监控系统一、概述随着国民经济旳迅速发展,现代农业得到了长足旳进步,温室工程已成为高效农业旳一种重要构成部分。

计算机自动控制旳智能温室自问世以来,已成为现代农业发展旳重要手段和措施。

它旳功能在于以先进旳技术和现代化设施,人为控制作物生长旳环境条件,使作物生长不受自然气候旳影响,做到常年工厂化,进行高效率,高产值和高效益旳生产。

二、功能论述温室环境涉及非常广泛旳内容,但一般所说旳温室环境重要指空气与土壤旳温湿度、光照、CO2浓度等。

计算机通过多种传感器接受各类环境因素信息,通过逻辑运算和判断控制相应温室设备运作以调节温室环境。

输出和打印设备可协助种植者作全面细致旳数据分析,保存历史数据。

本系统重要具有如下几部分功能:2.1综合环境控制采用计算机实现环境参数比较分析,四季持续工况调控系统。

比例调节环境温度、湿度与通风。

CO2 发生装置按需比例调节环境CO2浓度,夏季室外屋顶喷淋,在保证室内光照强度旳前提下,组合调节环境温度与通风,达到强制减少环境温度旳效果。

通过计算机对温室各电动执行器进行整体调节,自动调控到作物生长所需求旳温、湿、光、水、气等条件,此外通过臭氧消毒净化器对温室进行消毒。

2.2肥水灌溉控制采用计算机肥水灌溉运筹系统。

根据作物区旳需要,对水培区旳营养液成分,PH和EC 值进行综合调控。

对基培和土培区重要是根据作物生产需要,设定基质、土壤旳水势值,自动调节滴灌、喷灌系统旳灌溉时间和次数。

2.3紧急状态解决采用计算机实测环境参数、状态极限值反馈报警保护系统。

根据作物旳各项参数设定温室环境旳极限值和作物生长环境参数极限值报警保护系统,提高了整个系统安全性。

2.4信息解决采用计算机集散控制信息管理系统。

信息解决由中心控制计算机完毕。

主机通过局部数字通讯网络与现场控制机相连,实现远动双向控制及全系统集中数据解决。

其功能涉及运营实时参数执行器模拟状态显示,历史数据存储、检索,数据平均值报表、曲线显示与打印。

基于单片机的温室环境数据监测系统设计

基于单片机的温室环境数据监测系统设计

图 5 总体调试效果
4 结语
在硬件方面使用 STM32C8T6 与相关外设设计农田温 室环境数据监测系统是可行的。首先 STM32 微控芯片的 基本功能完全可以满足系统设计的需要。作为一个工业 级的控制芯片能够有足够的的 I/O 口用于外接各种外设。 在此之外,微控芯片高达 72 MHZ 的处理速度能够相当 迅速的对信息判断进行处理,这对于系统性能的优化提 供了先决条件。再利用 DHI11、土壤湿度传感器的过程中, 高集成的微控制器提供了便利的开发环境。其次是本系 统采用 OLED 屏幕以及蜂鸣器作为报警装置,相比较于 传统的人工监测更加智能化。在软件方面,使用将系统 工作过程具象化的状态机思想可以及为具体的分析,完 善程序逻辑。除此之外,使用模块化编程,将每一个模 块当成一个任务描写,将模块的信息详尽的编写,在以 后改进修改时能更简单,毕竟读程序无论是自己的还是 被人的都是一件困难的事。
更进一步。随着自动化技术的进步,控制的成本的降低
和控制技术实用性提高,使用微控制的控制系统深入百
姓的日常生活。本课题的控制系统通过利用传感器技术 采集田间信息,通过自动控制技术进行计算,得到结果 控制执行模块这一过程。这一过程甚至完全不需要人力 的参与,能够独立的运行,不仅解决水资源浪费问题, 还能减少人力消耗,节省资金。
14 产业科技创新 2019,1(24):14~产15业科技创新 Industrial Technology Innovation
Industrial TechnologVy oIln.1n ovNaoti.o2n4
基于单片机的温室环境数据监测系统设计
杨子成
(商洛学院,陕西 商洛 726000)
摘要:与农业发达国家相比,我国的农业科技方面还处于刚刚起步的状态,多数自动化农业设备仍然使用在科研 方。目前在温室环境数据监测方面,自动化设备比较落后。本文介绍了以STM32F103RCT6微控制器为核心,结合 多种外设进行设计的温室环境数据监测系统。主要以温湿度度传感器和土壤湿度湿度传感器作为获得农田环境的传 感器测量模块。以继电器为执行模块。以基本的按键输入和OLED显示屏输出信息联合作为人机交互模块。程序则 采用更加方便易懂的封装好的C语言库函数进行编写。 关键词:STM32;温室环境;数据监测;传感器 中图分类号:TP311.56 文献标识码:A 文章编号:2096-6164(2019)24-0014-02

温室蔬菜种植中的智能监测与管理系统设计

温室蔬菜种植中的智能监测与管理系统设计

温室蔬菜种植中的智能监测与管理系统设计一、引言温室蔬菜种植作为现代农业的一项重要形式,具备环境控制、增产提质等优势,受到越来越多农业生产者的关注。

为了提高生产效率和蔬菜品质,设计并应用智能监测与管理系统,成为解决技术难题和实现可持续发展的需求之一。

二、温室环境监测子系统设计温室环境监测子系统是智能监测与管理系统的关键组成部分。

它通过对光照、气温、湿度、二氧化碳浓度等环境参数的实时监测,并配合传感器网络技术与数据采集技术,提供温室内部环境的全面准确的数据。

该子系统由传感器、数据采集器、数据存储与传输模块组成。

传感器选择方面,可采用光敏传感器、温湿度传感器和二氧化碳传感器等。

这些传感器能够自动感知环境变化,并将数据发送给数据采集器。

数据采集器起到收集数据、处理数据和与其他子系统通信的作用。

数据存储与传输模块应具备足够的容量和稳定性,同时支持远程数据传输和云端存储。

可采用数据库管理系统进行数据的存储和管理,以便进行后续数据分析和决策支持。

三、水肥灌溉子系统设计水肥灌溉子系统主要用于自动化管理温室蔬菜的水肥供应。

该子系统应能够根据环境监测数据进行自动控制,实现合理用水用肥的目的。

在设计方面,可考虑以下几个方面。

首先,需要确定灌溉水的来源和供应方式,可采用自来水、水井或雨水收集系统等。

其次,根据蔬菜的需水状况和灌溉方式,选用合适的灌溉设备,如滴灌、喷灌或微喷灌等。

此外,还应配置水肥一体化设备,实现肥料的溶解和供应。

水肥灌溉子系统应与温室环境监测子系统相互衔接,根据环境监测数据自动调节灌溉量和肥料浓度。

同时,还需监测土壤水分和肥料含量,以实现对灌溉、施肥的时机和剂量的精细控制。

四、病虫害预警与防控子系统设计病虫害是温室蔬菜种植中常见的问题之一,也是影响产量和品质的主要因素。

智能监测与管理系统中的病虫害预警与防控子系统旨在通过实时监测和预警,及时发现和应对病虫害的发生。

该子系统主要由监测与预警装置、信息传输装置和防控装置组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目温室环境监测系统设计学生姓名杜浩然学号 1013024063所在学院物理与电信工程学院专业班级通信工程专业 103 班指导教师郑争兵完成地点物理与电信工程学院实验室2014 年 5 月 29 日毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信103班学生姓名杜浩然一、毕业论文﹙设计﹚题目温室环境监测系统设计二、毕业论文﹙设计﹚工作自 2014 年 1 月 1 日起至 2014 年 6 月 10 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容要求:目前的温室测控系统大多采用有线布网、人工测量,导致现场安装困难,工作效率偏低,测量精度差,这不仅大大增加了电气工程施工费用,也导致施肥等工作困难;此外,系统中的每个监控点没有自组织功能和自愈能力,维护工作量大,也不利于系统升级。

因此,为了实现温室农作物的优质、高产和高效,开发和研制一种新型的温室环境测控系统是十分必要的。

具体要求如下:1. 掌握无线传感器网络方面的基本理论知识;2.实现温湿度参数的采集和无线传输;3. 采用NRF24L01模块,点对点通信距离300m;4.系统集成,完成功能调试。

成果形式:实验样机一套。

毕业设计进度安排:1.1─3.1:查阅资料(参考文献不少于10篇),进行方案论证,完成开题报告;3.2─3.31:完成不少于3000字的外文翻译,设计硬件电路,编写软件、调试仿真及单元电路调试4.1─4.30:样机调试5.1─5.20:完善系统调试,撰写论文,准备毕业设计验收等工作;5.21-6.10:整理资料,修改论文,准备毕业答辩。

指导教师系 (教研室) 通信教研室系(教研室)主任签名批准日期接受论文 (设计)任务开始执行日期学生签名温室环境监测系统设计杜浩然(陕西理工学院物理与电信工程学院通信103班,陕西汉中 723003)指导老师:郑争兵[摘要]随着社会的发展人们越来越关注环境因素,温室大棚的迅速发展使得温室智能监成为炙手可热的话题。

温室监测系统就是通过单片机STC89C52为控制核心,加上温湿度传感器DHT11,和无线模块NRF24L01的配合,实现远程监测室内的温度和湿度。

并且最后通过液晶显示LCD1602的显示使得室内的变化更加直观。

其电路主要分为单片机最小系统,无线集成模块,液晶显示模块和温湿度采集模块。

软件设计采用模块化设计方案,主要完成采集数据处理,LCD显示,led光亮度调节及控制程序。

[关键词]STC89C52、DHT11、无线模块、LCD1602The Design OfGreenhouse Environment Monitoring SystemDu Haoran(Grade10,Class3,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:Zheng ZhengbingAbstract:With the development of society, people are increasingly concerned about environmental factors, the rapid development of intelligent greenhouse makes the greenhouse supervisor become a hot topic. Greenhouse monitoring system is the control center through the microcontroller STC89C52, with temperature and humidity sensors DHT11, and wireless module NRF24L01 with the realization of the remote monitoring of the indoor temperature and humidity. And finally through the LCD1602 LCD display makes the interior changes more intuitive. The circuit can be divided into the smallest single-chip system, wireless integration module, LCD module temperature and humidity acquisition module. Software design is modular design, mainly to complete the acquisition of data processing, LCD display, led light brightness adjustment and control procedures.Key words:STC89C52、DHT11、wireless module 、LCD1602目录1绪论 01.1选题的目的及研究意义 01.2课题研究现状和前景 01.3设计的目的和任务 (1)2系统方案选择和论证 (2)2.1设计要求 (2)2.2方案选择和论证 (2)2.2.1主体方案设计 (2)2.2.2各模块的选择说明 (2)3硬件设计及实现 (4)3.1单片机外围电路设计 (4)3.2监测终端 (6)3.3控制终端 (7)4. 软件设计 (11)4.1主程序设计 (11)4.2 数据采集子程序 (12)4.3液晶显示子程序 (14)4.4 无线模块子程序 (15)5系统调试 (18)5.1软件调试 (18)5.2硬件调试 (19)总结 (22)致谢 (23)参考文献 (24)附录A (25)附录B (29)附录C (30)附录D (31)附录E (36)1绪论1.1选题的目的及研究意义随着科技的飞速发展,人工智能已经走入人们的生活,例如机器人的应用,智能车的普及,以及离人们最近的大棚栽培。

简单地说温室环境监测系统由浙江托普物联网提出,也可仪称之为温室智能控制系统。

系统利用环境数据与作物信息,指导用户进行正确的栽培管理。

托普物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。

再者说我国毕竟是农业大国,在农业也是积累的相当多的经验和知识,但是我国大部分地区都存在山多土地少,土质不好,土壤资源匮乏,气候条件恶劣。

这些劣势不利于农作物的生长,况且随着社会的日益进步,城市化的发展,使得从事农业生产的人越来越少,而社会对物质的需求却随着社会的发展日益增高,这就使原有的农作种植方式已经不能满足社会发展的需求,必须对传统的农业进行技术改革。

因此农业智能化工作已经到来,而智能就需要对农作物生长的环境因素掌握和控制,而温度湿度是环境因素里面不可缺少的变量。

温室控制技术也是针对这些因素进行研究的。

温室是一种可以改变植物生长环境、为植物生长创造环境,避免外界环境因四季的变化和恶劣气候的变化对其影响。

它以采光覆盖材料作为全部或部分结构材料在冬季或者其他不适宜陆地植物生长的季节栽培植物。

温室生产以达到调节产期促进生长发育,防止害虫及提高质量、产量为目标。

随着工业的发展学要我国温室的温湿对检测系统经历了从无到有、从简单到复杂的发展过程,其智能化程度也越来越高,然而我国的很多地方温室的温湿度调节是应用很传统的开关门来实现,这种方法费时费力,效率又很低,准确度又不高,随机性大,很不科学。

因此需要研制一种结构简单价格低廉的测控系统来达到对温室的因素如光照、温度、湿度等因素的监控。

现阶段温室环境监测已经离是我们越来越近,它替代了外界环境对我们生活的影响,改善了我们的物质和精神生活。

也是社会与科技发展的必然结果。

由于主要应用于大棚农作物的培养,环境监测的智能就显得十分重要了。

故本次对温室环境监测系统的研究具有十分重要的意义。

1.2课题研究现状和前景我国温室业起步比较晚。

60年代仅利用简易式塑料大棚来种植蔬菜,到了20世纪80年代中期,人们开始对原有日光温室,如建筑结构、环境调控技术及栽培技术进行了全面的改进,在完全不加热获有少量加热的情况下,在严冬生产喜湿果蔬,在我国设施蔬菜栽培史上取得了重大突破,但产量相对较低。

后来,我国先后从欧美和日本等发达国家引进了先进的现代化温室成套装备,但自主生产的量还是比较少。

首先引进的温室能耗过高,国情国力难以承受;其次由于当时只注重引进温室设备,而忽略了温室的管理技术和栽培技术;再次温室生产是一个复杂的过程,是硬件设施和软件技术的统一体,而我们缺乏相应的管理人才;最后由于气候、水土、资源、地域等环境因素的差异,引进的国外系统并不完全符合我国的国情,引进的设备没能完全发挥作用,并且设备成本高、维护困难。

致使企业相继亏损或停产,使我国大型温室跌入了发展的低谷。

可修改编辑20世纪90年代初,我国科研单位对主要的蔬菜环境控制问题惊醒了一系列实验研究,并且取得了一定的成效。

“九五”初期,以以色列温室为代表的北京中以示范农场的建立,拉开了我国第二次学习和引进国外现代温室技术的序幕,生产出一批具有我国知识产权的控制系统,但总体来说,我国在设施农业中环境控制能力低,自动化程度十分落后,抵御自然灾害的能力差。

在温室因素方面,我国的温室监控系统还停留在单因子控制阶段,现在也有专家进行多因子综合因素的大系统控制研究,这将代表我国温室系统今后的研究方向。

温室监控技术至今已经经历了几十年的发展过程。

早期是使用仪表对温室设施中的光照、温度等参数进行测量,再使用手动或电动执行机构施行简单控制,随着传感元件、仪表及执行器技术的进步,逐步发展成为对温度、湿度、光照等几乎所有室内环境参数分别进行自动控制。

随着计算机的发展使得一切自动控制变成可能。

温室环境控制技术是随自动化检测技术、过程控制技术、通讯技术及计算机技术的发展而发展起来的。

近几年来,温室栽培作为蔬菜生产发展的方面,近十几年来在我国得到了较快的发展。

但是目前我国温室的环境控制水平仍较低,不能满足作物全年高产栽培的要求。

因此,宜通过对温室的结构与材料、环境控制技术及自动控制的计算机软件系统等方面进行进一步研究和开发,以期尽快提高我国温室生产的现代化水平。

相关文档
最新文档