高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

合集下载

高中物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

高考物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,在x 轴上方有一匀强磁场,磁感应强度为B 。

x 轴下方有一匀强电场,电场强度为E 。

屏MN 与y 轴平行且相距L ,一质量为m ,电荷量为e 的电子,在y 轴上某点A 自静止释放,如果要使电子垂直打在屏MN 上,那么: (1)电子释放位置与原点O 点之间的距离s 需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?【答案】(1)()222s 221eL B Em n =+ (n =0,1,2,3…);(2)()212BL m t n E eBπ=++ (n =0,1,2,3…) 【解析】 【分析】 【详解】(1)在电场中电子从A →O 过程,由动能定理可得2012eEs mv =在磁场中电子偏转,洛伦兹力提供向心力,有200v qv B m r=可得mv r qB=根据题意有(2n +1)r =L所以解得()222221eL B s Em n =+ (n =0,1,2,3…)(2)电子在电场中做匀变速直线运动的时间与在磁场中做部分圆周运动的时间之和为电子运动的总时间,即2(214T T t n n +⋅=+ 由公式 eE ma =可得eEa m=由公式 20v qvB m r = 和 02r T v π=可得2mT eBπ=综上整理可得()212BL m t n E eBπ=++ (n =0,1,2,3…)2.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =2.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧分析及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P (33L,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,根据运动的独立性和矢量性,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

本题中可将带电粒子的运动等效为沿x 轴负方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

请尝试用该思路求解粒子3的最大速率v m 。

【答案】(1)123qBL v m =,14π3m t qB =;(2)289qLB E m =,2219qLBv m=;(3)2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭【解析】 【分析】 【详解】(1)粒子1在第一、二、三象限做圆周运动,轨迹如图:设半径为1r ,由几何知识得()222113r L r ⎫=-+⎪⎪⎝⎭可得123L r =由向心力公式,根据牛顿第二定律2111v qv B m r =可得123qBLv m =设粒子做圆周运动的周期为1T1112r T v π=由几何知识可知60θ︒=粒子第一次从P 到Q 的时间112433m t T qBπ==(2)粒子2在二、三象限的运动与粒子1完全相同,粒子2在第一象限做类斜抛运动,并且垂直经E 过y 轴,可以逆向思考,由牛顿第二定律得qEa m=x 轴方向123L v t =y 轴方向212122r L at -=可得289qLB E m=根据()22212v v at =+可得22219qLBv m=(3)根据提示,可将粒子的初速度分解,如图:根据平衡条件40qv B qE =可得4E v B=根据运动的合成,可知22543v v v =+ 粒子的运动可视为水平向左的速率为4v 的匀速直线运动和初速度为5v 的逆时针的圆周运动的合运动,所以粒子的最大速率为m 45v v v =+可得2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R=解得0cos qBdv mθ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P (3L,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,根据运动的独立性和矢量性,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

本题中可将带电粒子的运动等效为沿x 轴负方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

请尝试用该思路求解粒子3的最大速率v m 。

【答案】(1)123qBL v m =,14π3m t qB =;(2)289qLB E m =,2219qLBv m=;(3)2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭【解析】 【分析】 【详解】(1)粒子1在第一、二、三象限做圆周运动,轨迹如图:设半径为1r ,由几何知识得()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭可得123L r =由向心力公式,根据牛顿第二定律2111v qv B m r =可得123qBLv m =设粒子做圆周运动的周期为1T1112r T v π=由几何知识可知60θ︒=粒子第一次从P 到Q 的时间112433m t T qBπ==(2)粒子2在二、三象限的运动与粒子1完全相同,粒子2在第一象限做类斜抛运动,并且垂直经E 过y 轴,可以逆向思考,由牛顿第二定律得qEa m=x 轴方向1233L v t = y 轴方向212122r L at -=可得289qLB E m=根据()22212v v at =+可得22219qLBv m=(3)根据提示,可将粒子的初速度分解,如图:根据平衡条件40qv B qE =可得4E v B=根据运动的合成,可知22543v v v =+ 粒子的运动可视为水平向左的速率为4v 的匀速直线运动和初速度为5v 的逆时针的圆周运动的合运动,所以粒子的最大速率为m 45v v v =+可得2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭2.如图所示,在足够长的绝缘板MN 上方存在方向垂直纸面向外、磁感应强度为B 的匀强磁场(图中未标出),在绝缘板上方的P 点有一个粒子发射源,它在同一时间内沿纸面向各个方向发射数目相等的带正电粒子,粒子的速度大小相等。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点3,0P L⎛⎫⎪⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;(3)若在xOy平面内加沿y轴正向的匀强电场E o,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动.请尝试用该思路求解.【答案】(1)23BLqm(2221BLq32203BE EvB+⎛⎫⎪⎝⎭【解析】【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111vqv B mr=由几何憨可知:()22211r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子21L v t =,212qE h t m =在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =2.在磁感应强度为B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变.放射出α粒子(42He )在与磁场垂直的平面内做圆周运动,其轨道半径为R .以m 、q 分别表示α粒子的质量和电荷量.(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,写出该α衰变的核反应方程.(2)α粒子的圆周运动可以等效成一个环形电流,求圆周运动的周期和环形电流大小. (3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,求衰变过程的质量亏损△m .【答案】(1)放射性原子核用 A Z X 表示,新核的元素符号用Y 表示,则该α衰变的核反应方程为4422AA Z Z X Y H --→+ ;(2)α粒子的圆周运动可以等效成一个环形电流,则圆周运动的周期为 2m Bq π ,环形电流大小为 22Bq mπ ;(3)设该衰变过程释放的核能都转为为α粒子和新核的动能,新核的质量为M ,则衰变过程的质量亏损△m 为损2211()()2BqR m M c + . 【解析】(1)根据核反应中质量数与电荷数守恒可知,该α衰变的核反应方程为4422X Y He A A ZZ --→+(2)设α粒子在磁场中做圆周运动的速度大小为v ,由洛伦兹力提供向心力有2v qvB m R=根据圆周运动的参量关系有2πRT v=得α粒子在磁场中运动的周期2πmT qB=根据电流强度定义式,可得环形电流大小为22πq q BI T m==(3)由2v qvB m R =,得qBR v m=设衰变后新核Y 的速度大小为v ′,核反应前后系统动量守恒,有Mv ′–mv =0 可得mv qBR v M M='=根据爱因斯坦质能方程和能量守恒定律有2221122mc Mv mv '∆=+ 解得22()()2M m qBR m mMc+∆= 说明:若利用44A M m -=解答,亦可. 【名师点睛】(1)无论哪种核反应方程,都必须遵循质量数、电荷数守恒.(2)α衰变的生成物是两种带电荷量不同的“带电粒子”,反应前后系统动量守恒,因此反应后的两产物向相反方向运动,在匀强磁场中,受洛伦兹力作用将各自做匀速圆周运动,且两轨迹圆相外切,应用洛伦兹力计算公式和向心力公式即可求解运动周期,根据电流强度的定义式可求解电流大小.(3)核反应中释放的核能应利用爱因斯坦质能方程求解,在结合动量守恒定律与能量守恒定律即可解得质量亏损.3.在以坐标原点 O 为圆心、半径为 r 的圆形区域内,存在磁感应强度大小为 B 、方向垂直于纸面向里的匀强磁场,如图所示。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题含解析

一、带电粒子在无边界匀强磁场中运动1专项训练1.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L mL qUπ+()【解析】 【详解】(1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B : 水平方向:0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角 有:2tan 21LLθ=⨯=……………④粒子在磁场中做匀速圆周运动 由几何关系可得:22R L =……………⑤ 又:2vqvB m R=……………⑥联解①②③④⑤⑥得:2L mUB q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mT v qBππ== 在磁场中运动时间:2t T απ'=在水平电场中运动时间:00v v t qU a mL==''……………⑧总的时间:22t t t t '='++'总……………⑨联解得:344L mt L qUπ=+总()……………⑩2.某种回旋加速器的设计方案如俯视图甲所示,图中粗黑线段为两个正对的极板,两个极板的板面中部各有一极窄狭缝(沿OP 方向的狭长区域,),带电粒子可通过狭缝穿越极板(见图乙),极板A 、B 之间加如图丙所示的电压,极板间无磁场,仅有的电场可视为匀强电场;两细虚线间(除两极板之间的区域)既无电场也无磁场;其它部分存在垂直纸面向外的匀强磁场.在离子源S 中产生的质量为m 、带电荷量为q 的正离子,飘入电场,由电场加速后,经狭缝中的O 点进入磁场区域,O 点到极板右端的距离为0.99D ,到出射孔P 的距离为5D .已知磁感应强度大小可调,离子从离子源上方的O 点射入磁场区域,最终只能从出射孔P 射出.假设离子打到器壁即被吸收,离子可以无阻碍的通过离子源装置.忽略相对论效应,不计离子重力,0.992≈1.求: (1)磁感应强度B 的最小值; (2)若磁感应强度62mUB D q=,则离子从P 点射出时的动能和离子在磁场中运动的时间;(3)若磁感应强度62mUB D q=,如果从离子源S 飘出的离子电荷量不变,质量变为原来的K 倍(K 大于1的整数),为了使离子仍从P 点射出,则K 可能取哪些值.【答案】(1)225mU D q (2)33962D m qUπ (3) K =9,n =25;K =15,n =15;K =25,n=9;K =45,n =5;K =75,n =3;K =225,n =1 【解析】 【详解】(1)设离子从O 点射入磁场时的速率为v ,有2102qU mv =-设离子在磁场中做匀速圆周运动的轨迹半径为r ,2v qvB m r=若离子从O 点射出后只运动半个圆周即从孔P 射出,有2r =5D 此时磁感应强度取得最小值,且最小值为225mUD q(2)若磁感应强度62mUB D q=,正离子在磁场中的轨道半径16r D =,经分析可知离子在磁场中运动半圈后将穿过上极板进入电场区域做减速运动,速度减小到零后又重新反向加速到进入时的速度,从进入处到再次回到磁场区域,因为16r D=,这样的过程将进行2次,然后第3次从极板右边界进入虚线下方磁场并进入电场区域被加速,如图所示,若离子绕过两极板右端后被加速了n 次,则此时离子运动的半径为被加速了(n+1)次对应的半径11n n mv r qB++=.离子从孔P 射出满足的条件 11425n r r D ++=解得n +1=132,即离子从静止开始被加速169次后从P 点离开,最大动能2max 13169k E qU qU == 在磁场中的总时间t =169.5T , 因为32DmT qUπ=可得33962D mt qUπ=;(3)若离子电荷量为q ,质量变为Km ,设在电场中被加速一次后直接进入磁场的半径为r K ,在电场中被加速n 次进入磁场的半径为r n ,则1K r Kr =,1n r Knr =,其中16r D=,由上面1K r Kr =知,K 越大,离子被加速一次后直接进入磁场半径越大,由(2)问知,分三种情况讨论:情况一:在电场中被加速三次后(即第三个半圆)越过极板右侧:如图,此时,要满足的条件为:2×2r K <0.99D ①同时2×2r K +2r n =5D ②由①知:K <2.2,因为K >1的整数,故K =2,代入②知:22158602n =+-,由于n 要求取整数,情况一中n 不存在.情况二:在电场中被加速二次后(即第二个半圆)越过极板右侧:如图,此时,要满足的条件为2r K <0.99D ①2×2r K ≥0.99D ② 2r K +2r n =5D ③由①②知2.2≤K <9,由③知:21530Kn K K =-,当K 分别取3、4、…8时,n 不可能取整数,情况二也不存在. 情况三:在电场中被加速一次后(即第一个半圆)直接越过极板右侧:如图,此时,要满足的条件2r K ≥0.99D ①2r n =5D ②由①知:K ≥9,由②知:Kn =152=3×5×3×5,故K 可能有6组取值,分别为:K =9,n =25;K =15,n =15;K =25,n =9;K =45,n =5;K =75,n =3;K =225,n =1.3.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得2022mvqv Br=联立解得21.6B B=2.如图所示,在竖直分界线MN的左侧有垂直纸面的匀强磁场,竖直屏与MN之间有方向向上的匀强电场。

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

点P (33L,0)处有一粒子源,向各个方向发射速率不同、质量为m 、电荷量为-q 的带电粒子。

粒子1以某速率v 1发射,先后经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L )。

不计粒子的重力。

(1)求粒子1的速率v 1和第一次从P 到Q 的时间t 1;(2)若只撤去第一象限的磁场,另在第一象限加y 轴正向的匀强电场,粒子2以某速率v 2发射,先后经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度大小E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加上沿y 轴负向的匀强电场,场强大小为 E 0,粒子3以速率 v 3 沿 y 轴正向发射,粒子将做复杂的曲线运动,求粒子3在运动过程中的最大速率 v m 。

某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,根据运动的独立性和矢量性,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

本题中可将带电粒子的运动等效为沿x 轴负方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动。

请尝试用该思路求解粒子3的最大速率v m 。

【答案】(1)123qBL v m =,14π3m t qB =;(2)289qLB E m =,2219qLBv m=;(3)2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭【解析】 【分析】 【详解】(1)粒子1在第一、二、三象限做圆周运动,轨迹如图:设半径为1r ,由几何知识得()222113r L r ⎫=-+⎪⎪⎝⎭可得123L r =由向心力公式,根据牛顿第二定律2111v qv B m r =可得123qBLv m =设粒子做圆周运动的周期为1T1112r T v π=由几何知识可知60θ︒=粒子第一次从P 到Q 的时间112433m t T qBπ==(2)粒子2在二、三象限的运动与粒子1完全相同,粒子2在第一象限做类斜抛运动,并且垂直经E 过y 轴,可以逆向思考,由牛顿第二定律得qEa m=x 轴方向123L v t =y 轴方向212122r L at -=可得289qLB E m=根据()22212v v at =+可得22219qLBv m=(3)根据提示,可将粒子的初速度分解,如图:根据平衡条件40qv B qE =可得4E v B=根据运动的合成,可知22543v v v =+ 粒子的运动可视为水平向左的速率为4v 的匀速直线运动和初速度为5v 的逆时针的圆周运动的合运动,所以粒子的最大速率为m 45v v v =+可得2200m 3E E v v B B ⎛⎫=+ ⎪⎝⎭2.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

高中物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高中物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,两个边长均为l的正方形区域ABCD和EFGH内有竖直向上的匀强电场,DH 上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m,电荷量为q,以速度v从B点沿BC方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH;(2)所加磁场的磁感应强度大小;(3)粒子从B点射入到从EFGH区域电场射出所经历的总时间.【答案】(1) (2) (3)【解析】(1)粒子在ABCD区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v速度偏向角为tanθ==1解得θ=粒子从DH中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v′=v由洛伦兹力提供向心力qv′B=m解得B=(3)粒子在左侧电场中偏转的运动时间t1=粒子在磁场中向上偏转运动时间t2=T其中T=在上方电场中运动减速到零的时间为t3=粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为t=2(t1+t2+t3)得或t=点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.2.如图1所示,在ABCD矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规t 时刻,一质量为定垂直纸面向里为磁场正方向,磁感应强度B如图2所示的变化。

0m,带电量为q的带正电粒子从B点以速度0v沿BC方向射入磁场,其中0B已知,0T未知,不计重力。

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.在xOy 坐标中,有随时间周期性变化的电场和磁场(磁场持续t 1后消失;紧接着电场出现,持续t 2时间后消失,接着磁场......如此反复),如图所示,磁感应强度方向垂直纸面向里,电场强度方向沿y 轴向下,有一质量为m ,带电量为+q 的带电粒子,在t =0时刻,以初速v 0从0点沿x 轴正方向出发,在t 1时刻第一次到达y 轴上的M (0,L )点,t 1+t 2时刻第一次回到x 轴上的 N (-2L ,0)点,不计粒子重力,t 1、t 2均未知。

求: (1)磁感应强度B 和电场强度E 的大小;(2)粒子从0点出发到第二次回到x 轴所用的时间; (3)粒子第n 次回到x 轴的坐标。

【答案】(1) E =202mv qL (2) t 总=04L v π+()(3) (-2L+12n -L ,0) 【解析】 【详解】(1)粒子从O 到M 做圆周运动,半径:R 0=2LqBv 0=20mv RB =2mv qLM 到N 粒子在电场中运动:2L =v 0t 2 L =2212at a =Eq m202mv E qL=(2)粒子从N 做圆周运动,在N 点v Ny =at 2,v Ny =v 0,速度方向与—x 轴夹角为45°,v N =02v ,所以做圆周运动的半径为:R 1=22L 而粒子在磁场中运动周期:T =122mt qBπ=与粒子速度无关,故经过时间t 1粒子做半圆到P 点,接下来只在电场力的作用下运动,P 点速度方向与N 点相反,所以从P 到Q 是M 到N 的逆运动,有2NP MQ L ==,得Q 点刚好在x 轴上(L ,0)则从O 点出发到第二次回到轴所需时间:t 总= 2(t 1+t 2)又t 1=02L v π t 2=2L v 得:t 总=04L v π+()(3)如图所示,粒子接下来做有规律的运动,到达x 轴的横坐标依次为:第一次:-2L 第二次:-2L +3L 第三次:-2L +3L-2L …………若n 取偶数2,4,6......有:-2322n n L L L +=(), 坐标为(2nL ,0) 若n 取奇数1,3,5........有:-2L +12n -(-2L +3L )=-2L +12n -L ,坐标为(-2L +12n -L ,0)2.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)13Blv E d=(3)21v v =(4)32d S l =-【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30E v v v ==︒11113q E d v m v =⋅ 又 21111v q v B m l= 所以111q v m Bl = 13Blv E =(3)粒子2经过区域Ⅱ电场加速获得的速度大小为224E 3tan 603v v v ==︒ 对粒子2在电场中运动有222233q E d v m v =⋅ 又 222223v q v B m l= 所以2223Blq vm = 所以 21v v =(4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为22423cos30v v v ==︒有 2424242v Bq v m R = 43R l =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d dR R v v +︒=⋅+⋅︒︒ 32d S l =-点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.3.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B 的大小; (2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mv qR(2) 31(,)22R R - (3)0(5)R v π+ 【解析】(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R =由洛伦兹力等于向心力:200v qv B m r=,得到:0mv B qR =.(2)由图几何关系可以得到:3sin 602x R R==,1cos602y R R =-=- N 点坐标为:31,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt=,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.3.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,33外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(03点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d 3处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中2v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102d t v π=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:400233d dt ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''=得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.4.如图所示,容器A 中装有大量的质量不同、电荷量均为+q 的粒子,粒子从容器下方的小孔S 1不断飘入加速电场(初速度可视为零)做直线运动,通过小孔S 2后从两平行板中央垂直电场方向射入偏转电场。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析

高考物理带电粒子在无边界匀强磁场中运动解题技巧及练习题及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O、半径为R的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O为坐标原点建立坐标系,在y=-3R 处有一垂直y轴的固定绝缘挡板,一质量为m、带电量为+q的粒子,与x轴成 60°角从M点(-R,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N点离开磁场(N点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B的大小;(2)N点的坐标;(3)粒子从M点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mvqR (2)31(,)2R R- (3)(5)Rvπ+【解析】(1)设粒子在磁场中运动半径为r,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R=由洛伦兹力等于向心力:2vqv B mr=,得到:0mvBqR=.(2)由图几何关系可以得到:3sin60x R R==o,1cos602y R Ro=-=-N点坐标为:31,22R R⎛⎫-⎪ ⎪⎝⎭.(3)粒子在磁场中运动的周期2mTqBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o ,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L mL qUπ+()【解析】 【详解】(1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B : 水平方向:0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角 有:2tan 21LLθ=⨯=……………④粒子在磁场中做匀速圆周运动 由几何关系可得:22RL =……………⑤ 又:2v qvB m R=……………⑥联解①②③④⑤⑥得:2L mUB q=……………⑦(2)粒子在磁场中运动的圆心角32πα=22R mT v qBππ== 在磁场中运动时间:2t T απ'=在水平电场中运动时间:00v v t qU a mL==''……………⑧总的时间:22t t t t '='++'总……………⑨联解得:344L mt L qUπ=+总() ……………⑩3.如图所示,在0y >区域存在方向垂直xoy 平面向里、大小为B 的匀强磁场.坐标原点处有一电子发射源,单位时间发射n 个速率均为v 的电子,这些电子均匀分布于xoy 平面y 轴两侧角度各为60°的范围内.在x 轴的正下方放置平行于y 轴、足够长的金属板M 和N(极板厚度不计),两板分别位于 1.2x D =和2x D =处,N 板接地,两板间通过导线连接有电动势U 在20.25m m m mv U U U e ⎛⎫= ⎪⎝⎭:范围内可调节的电源E 和灵敏电流计G .沿y轴正方向入射的电子,恰好能从2x D =处进入极板间.整个装置处于真空中,不计重力,忽略电子间的相互作用. (1)求电子的比荷;(2)求电子在磁场中飞行的时间与发射角度θ(速度方向与y 轴的角度)的关系; (3)通过计算,定性画出流过灵敏电流计G 的电流i 和电动势U 的关系曲线.【答案】(1)v BD (2)(1802)180Dt vθπ±=o (3)见解析 【解析】 【详解】(1)根据洛伦兹力提供向心力:2v evB m r=根据其中题意可知半径为:r =D联立可得:e v m BD= (2)粒子的运动周期为:2mT eBπ=根据几何关系可知,当粒子从y 轴的右侧射入时,对应的圆心角为:2απθ=- 对应的时间为:()()22r D s t v v vπθπθ--=== 当粒子从y 轴的左侧射入时,对应的圆心角为:2απθ=+ 对应的时间为:()()22r D s t v v vπθπθ++=== (3)设进入M N 、极板电子所对应的最大发射角为m a ,则有2cos 1/2m D a D =.53m a =o左侧电子单位时间内能打到M 极板的电子数为:535360120L n n n z == 对右侧电子:5360θ≤≤o o 均能达到M 板上,053θ≤<o 以θ角射出恰好不能到达N 板.则有:2212(1cos )sin 0.82U eD mv D θθ⨯-= 电压为:211(1cos )(1cos )55m mv U U e θθ=+=+最大值为:max 25m U U =最小值为:min 0.32m U U = 当25m U U ≥,右侧所有电子均到达M 板,饱和电流为: 531113()1202120i ne ne =+=当0.32m U U <右侧角度小于53o 电子均不能到达M 板,此时到达极板M 的电子数为2n. 灵敏电流计G 的电流i 和电动势U 的关系曲线为:4.如图所示,边长为L 的正三角形ABC 区域内有垂直于纸面向外的匀强磁场,D 为AB 边的中点,一个质量为m 、电荷量为q 的带正电的粒子平行BC 边射入磁场,粒子的速度大小为v 0,结果刚好垂直BC 边射出磁场,不计粒子的重力,求:(1)匀强磁场的磁感应强度大小;(2)若要使粒子在磁场中的运动轨迹刚好与BC相切,粒子的速度大小为多少?粒子在磁场中运动的时间为多少?(3)增大粒子的速度,试分析粒子能不能从C点射出磁场。

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动解题技巧讲解及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得20022mvqv B r =联立解得2 1.6B B =2.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中20v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.3.如图所示,两个边长均为l的正方形区域ABCD和EFGH内有竖直向上的匀强电场,DH 上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m,电荷量为q,以速度v从B点沿BC方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH;(2)所加磁场的磁感应强度大小;(3)粒子从B点射入到从EFGH区域电场射出所经历的总时间.【答案】(1) (2) (3)【解析】(1)粒子在ABCD区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v速度偏向角为tanθ==1解得θ=粒子从DH中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v′=v由洛伦兹力提供向心力qv′B=m解得B=(3)粒子在左侧电场中偏转的运动时间t1=粒子在磁场中向上偏转运动时间t2=T其中T=在上方电场中运动减速到零的时间为t3=粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为t=2(t1+t2+t3)得或t=点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.4.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C 垂直于MN 进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在无边界匀强磁场中运动解题技巧及经典题型及练习题(含答案)一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,虚线为两磁场的边界,虚线左侧存在着半径为R 的半圆形匀强磁场,磁感应强度为B ,方向垂直纸面向里,圆心O 为虚线上的一点,虚线右侧存在着宽度为R 的匀强磁场,方向垂直纸面向外。

质量为m 、电荷量为q 的带负电的粒子,从圆周上的A 点以某一初速度沿半径方向射入半圆形磁场区域,恰好从D 点射出,AO 垂直OD 。

若将带电粒子从圆周上的C 点,以相同的初速度射入磁场,已知∠AOC =53°,粒子刚好能从虚线右侧磁场区域射出,不计粒子重力,sin53°=0.8,cos53°=0.6,求: (1)带电粒子的初速度及其从A 到D 的运动时间;(2)粒子从C 点入射,第一次运动到两磁场的边界时速度的方向及其离O 点的距离; (3)虚线右侧磁场的磁感应强度。

【答案】(1)0qBRv m=,2m t qB π=;(2)速度的方向与磁场边界的夹角为53°,0.6R ;(3)2 1.6B B = 【解析】 【分析】 【详解】(1)粒子从A 点进磁场D 点出磁场,作出轨迹如图由几何关系得轨道半径1r R =洛伦兹力提供匀速圆周运动的向心力,有200mv qv Bm= 解得0qBRv m =粒子在磁场中运动的圆心角为90°,有4T t =而周期为12r T v π=解得2mt qBπ=(2)粒子从C 点入射,作出轨迹如图由几何知识得EF 的长度L EF =R cos53°在三角形EFO 1中,有sin 0.6EFL Rθ== 即粒子转过的圆心角37θ=︒,则速度的方向与磁场边界的夹角为53° 而CE 的长度cos37CE L R R =-︒OF 的长度为sin 53OF CE L R L =︒-联立解得0.6OF L R =(3)粒子在右侧磁场的半径为2r ,由几何关系有22sin 37r r R ︒+=由向心力公式得20022mvqv B r =联立解得2 1.6B B =2.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区. (1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d dv π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】 【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同; 【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中20v qvB m R=,得到:0mv B qd =;(2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102dt vπ=粒子在无场区运动时间:2043dt = 粒子再次回到P 点时间:12t t t =+ 得到:00243d dt v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323dd t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d dt v v ==①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3… 粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3… ②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3… 粒子运动距离为:02s v t ''= 得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.3.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧及解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧及解析

高考物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧及解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图所示,两个边长均为l 的正方形区域ABCD 和EFGH 内有竖直向上的匀强电场,DH 上方有足够长的竖直向下的匀强电场.一带正电的粒子,质量为m ,电荷量为q ,以速度v从B 点沿BC 方向射入匀强电场,已知三个区域内的场强大小相等,且,今在CDHE 区域内加上合适的垂直纸面向里的匀强磁场,粒子经过该磁场后恰能从DH 的中点竖直向上射入电场,粒子的重力不计,求:(1)所加磁场的宽度DH ; (2)所加磁场的磁感应强度大小;(3)粒子从B 点射入到从EFGH 区域电场射出所经历的总时间. 【答案】(1)(2)(3)【解析】(1)粒子在ABCD 区域电场中做类平抛运动,射出该电场时沿电场方向偏转距离为d由Eq=ma得a=由l=vt得t=故d=at2=l粒子射出ABCD区域电场时沿场强方向速度为v y=at=v 速度偏向角为tanθ==1解得θ=粒子从DH中点竖直向上射入电场,由几何关系知得得(2)射入磁场的速度大小为v′=v由洛伦兹力提供向心力qv′B=m解得B=(3)粒子在左侧电场中偏转的运动时间t1=粒子在磁场中向上偏转运动时间t2=T其中T=在上方电场中运动减速到零的时间为t3=粒子运动轨迹如图所示,根据对称性可知粒子运动总时间为 t =2(t 1+t 2+t 3) 得或t =点睛:本题考查了粒子在电场与磁场中的运动,粒子运动过程复杂,分析清楚粒子运动过程、作出粒子运动轨迹是解题的前提,作出粒子运动轨迹后,应用类平抛运动规律与牛顿第二定律可以解题,解题时注意几何知识的应用.3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x EqqEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)13Blv E =(3)21v v =(4)32d S l =-【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30E v v v ==︒11113q E d v m v =⋅ 又 21111v q v B m l= 所以111q v m Bl = 13Blv E =(3)粒子2经过区域Ⅱ电场加速获得的速度大小为224E 3tan 603v v v ==︒ 对粒子2在电场中运动有222233q E d v m v =⋅ 又 222223v q v B m l= 所以2223Blq vm = 所以 21v v =(4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为22423cos30v v v ==︒有 2424242v Bq v m R = 43R l =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d dR R v v +︒=⋅+⋅︒︒ 32d S l =-点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.5.如图,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动及其解题技巧及练习题含解析

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()222113r L r ⎫=-+⎪⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:13L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2v =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'=而v ''=所以,运动过程中粒子的最小速率为v v v =''-'即:0E v B =2.如图,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外。

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧及解析

高中物理带电粒子在无边界匀强磁场中运动试题类型及其解题技巧及解析

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,有一磁感强度39.110B T -=⨯的匀强磁场,C 、D 为垂直于磁场方向的同一平面内的两点,它们之间的距离l =0.1m ,今有一电子在此磁场中运动,它经过C 点的速度v 的方向和磁场垂直,且与CD 之间的夹角θ=30°。

(电子的质量319.110kg m -=⨯,电量191.610C q -=⨯)(1)电子在C 点时所受的磁场力的方向如何?(2)若此电子在运动后来又经过D 点,则它的速度应是多大? (3)电子从C 点到D 点所用的时间是多少?【答案】(1)见解析;(2)81.610m/s ⨯;(3)106.510s t -=⨯。

【解析】 【分析】 【详解】(1) 电子以垂直磁场方向的速度在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据左手定则可判断电子在C 点所受磁场力的方向如图所示,垂直于速度方向。

(2)电子在洛伦兹力作用下作匀速圆周运动,夹角θ=30°为弦切角,圆弧CD 所对的圆心角为60°,即∠DOC =60°,△CDO 为等边三角形,由此可知轨道半径R =l由牛顿第二定律可得2mv evB R= 代入数值解得81.610m/s eBlv m==⨯ (3)将R =l 和eBl v m =代入周期公式2RT vπ=中得2mT eBπ=设电子从C 点到D 点所用时间为t ,由于电子做匀速圆周运动,所以1326t T ==ππ 由上两式得163m t T eBπ== 代入数据得106.510s t -=⨯2.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B 如图2所示的变化。

0t =时刻,一质量为m ,带电量为q 的带正电粒子从B 点以速度0v 沿BC 方向射入磁场,其中0B 已知,0T 未知,不计重力。

(1)若AB BC =,粒子从D 点射出磁场,求AB 边长度的可能值及粒子运动的可能时间;(2)若3:1AB BC =:,粒子仍从D 点射出,求AB 边长度的可能值及粒子运动的可能时间;(3)若AB BC =,求磁场周期0T 需满足什么条件粒子不从AB 边射出,并求恰好不射出时0T 时刻粒子距BC 边的距离。

高中物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析

高中物理带电粒子在无边界匀强磁场中运动常见题型及答题技巧及练习题含解析一、带电粒子在无边界匀强磁场中运动1专项训练1.在科学研究中,可以通过施加适当的磁场来实现对带电粒子运动的控制.在如图所示的平面坐标系x0y 内,矩形区域(-3d<x<d ,-3d<y<3d)外存在范围足够大的匀强磁场.一质量为m 、电奇量为+q 的粒子从P(0,3d)点沿y 轴正方向射入磁场.当入射速度为0v 时,粒子从(-2d ,3d)处进入无场区.(1)求磁场的磁感应强度B 的大小.(2)求粒了离开P 点后经多长时间第一次回到P 点.(3)若仅将入射速度变为20v ,其它条件不变,求粒于离开P 点后运动多少路程经过P 点.【答案】(1)0mv qd(2)00243d d v v π+ (3)2(433)s k d d π=+,其中k =1、2、3… 或()8'234333d s d k d d ππ⎡⎤=+++⎢⎥⎣⎦,其中k =0、1、2、3 【解析】【分析】(1)找出半径,根据洛伦兹力提供向心力进行求解即可;(2)画出粒子运动轨迹,求出在磁场中运动时间和在无磁场中运动的时间; (3)画出粒子运动轨迹,注意讨论粒子运动的方向不同;【详解】(1)由题条件可判断粒子做圆周运动半径为:R d =粒子在磁场中20v qvB m R =,得到:0mv B qd =; (2)粒子运动轨迹如图所示:粒子在磁场中运动时间:102d t vπ= 粒子在无场区运动时间:2043 d t = 粒子再次回到P 点时间:12t t t =+得到:00243d d t v π=+ (3)粒子运动轨迹如图所示:粒子速度变为02v ,则在磁场中运动半径为:2R d '=由P 点沿圆弧运动到C 点时间:3002224323d d t v v ππ⨯⨯== 由C 点沿直线运动到D 点时间:4002332d d t v v == ①粒子以2v 0沿y 轴正向经过P则粒子运动时间:34(33)t k t t =+,其中k =1、2、3…粒子运动距离:02s v t =得到:2(433)s k d d π=+,其中k =1、2、3…②粒子以02v 大小与-y 方向成60°经过P则:34342(33)t t t k t t '=+++,其中k =0、1、2、3…粒子运动距离为:02s v t ''=得到:()8'234333d s d k d d ππ⎡⎤=++⎢⎥⎣⎦,其中k =0、1、2、3… 【点睛】带电粒子在磁场中的运动,关键是找出半径和圆心,利用洛伦兹力提供向心力进行求解即可,同时还要准确地画出轨迹.2.相距为L 的平行金属板 M 、N ,板长也为L ,板间可视为匀强电场,两板的左端与虚线 EF 对齐,EF 左侧有水平匀强电场,M 、N 两板间所加偏转电压为 U ,PQ 是两板间的中轴线.一质量为 m 、电量大小为+q 的带电粒子在水平匀强电场中 PQ 上 A 点由静止释放,水平电场强度与M 、N 之间的电场强度大小相等,结果粒子恰好从 N 板的右边緣飞出,立即进入垂直直面向里的足够大匀强磁场中 ,A 点离 EF 的距离为 L /2;不计粒子的重力,求: (1)磁感应强度B 大小(2)当带电粒子运动到 M 点后,MN 板间偏转电压立即变为−U ,(忽略电场变化带来的影响)带电粒子最终回到 A 点,求带电粒子从出发至回到 A 点所需总时间.【答案】(12mU L q 2)344L m L qUπ+()【解析】【详解】 (1)由题意知:对粒子在水平电场中从点A 到点O :有:21022U l qmv L =-……………① 在竖直向下的电场中从点O 到N 右侧边缘点B :水平方向: 0L v t =……………②竖直方向:2122L qU t mL=……………③ 在B 点设速度v 与水平初速度成θ角有:2tan 21LLθ=⨯=……………④ 粒子在磁场中做匀速圆周运动由几何关系可得:22R L =……………⑤ 又:2vqvB m R=……………⑥ 联解①②③④⑤⑥得:2L mU B q=……………⑦(2)粒子在磁场中运动的圆心角32πα= 22R m T v qBππ== 在磁场中运动时间: 2t T απ'=在水平电场中运动时间: 00v v t qU a mL==''……………⑧ 总的时间: 22t t t t '='++'总……………⑨联解得:344L m t L qUπ=+总() ……………⑩3.如图所示,某同学没计了一个屏蔽高能粒子辐射的装置,圆环形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B 的大小; (2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mv qR(2) 31(,)22R R - (3)0(5)R v π+ 【解析】(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R =由洛伦兹力等于向心力:200v qv B m r=,得到:0mv B qR =.(2)由图几何关系可以得到:3sin 602x R R==o ,1cos602y R R o=-=- N 点坐标为:31,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180o ,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.如图所示,在竖直分界线MN 的左侧有垂直纸面的匀强磁场,竖直屏与MN 之间有方向向上的匀强电场。

在O 处有两个带正电的小球A 和B ,两小球间不发生电荷转移。

若在两小球间放置一个被压缩且锁定的小型弹簧(不计弹簧长度),解锁弹簧后,两小球均获得沿水平方向的速度。

已知小球B 的质量是小球A 的1n 倍,电荷量是小球A 的2n 倍。

若测得小球A 在磁场中运动的半径为r ,小球B 击中屏的位置的竖直偏转位移也等于r 。

两小球重力均不计。

(1)将两球位置互换,解锁弹簧后,小球B 在磁场中运动,求两球在磁场中运动半径之比、时间之比;(2)若A 小球向左运动求A 、B 两小球打在屏上的位置之间的距离。

【答案】(1)2n ,21n n ;(2)123rr n n -【解析】 【详解】(1)两小球静止反向弹开过程,系统动量守恒有A 1B mv n mv =①小球A 、B 在磁场中做圆周运动,分别有2A A A mv qv B r =,21B2B Bn mv n qv B r =②解①②式得A2Br n r = 磁场运动周期分别为A 2πmT qB=,1B 22πn m T n qB =解得运动时间之比为AA 2B B 122T t n T t n == (2)如图所示,小球A 经圆周运动后,在电场中做类平抛运动。

水平方向有A A L v t =③竖直方向有2A A A 12y a t =④ 由牛顿第二定律得A qE ma =⑤解③④⑤式得2A A()2qE L y m v =⑥ 小球B 在电场中做类平抛运动,同理有22B 1B()2n qE L y n m v =⑦ 由题意知B y r =⑧应用几何关系得B A 2y y r y ∆=+-⑨解①⑥⑦⑧⑨式得123r y r n n ∆=-3.“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O ,外圆弧面AB 的电势为2L()o ϕ>,内圆弧面CD 的电势为φ,足够长的收集板MN 平行边界ACDB ,ACDB 与MN 板的距离为L .假设太空中漂浮着质量为m ,电量为q 的带正电粒子,它们能均匀地吸附到AB 圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB 的粒子再次返回.(1)求粒子到达O 点时速度的大小;(2)如图2所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB 圆弧面的粒子经O 点进入磁场后最多有23能打到MN 板上,求所加磁感应强度的大小;(3)如图3所示,在PQ (与ACDB 重合且足够长)和收集板MN 之间区域加一个垂直MN 的匀强电场,电场强度的方向如图所示,大小4E Lφ=,若从AB 圆弧面收集到的某粒子经O 点进入电场后到达收集板MN 离O 点最远,求该粒子到达O 点的速度的方向和它在PQ 与MN 间运动的时间. 【答案】(1)2q v mϕ=2)12m B L q ϕ=3)060α∴= ;22m L q ϕ【解析】 【分析】 【详解】试题分析:解:(1)带电粒子在电场中加速时,电场力做功,得:2102qU mv =-2U ϕϕϕ=-=2q v mϕ=(2)从AB 圆弧面收集到的粒子有23能打到MN 板上,则上端刚好能打到MN 上的粒子与MN 相切,则入射的方向与OA 之间的夹角是60︒,在磁场中运动的轨迹如图甲,轨迹圆心角060θ=.根据几何关系,粒子圆周运动的半径:2R L =由洛伦兹力提供向心力得:2v qBv m R=联合解得:12m B L qϕ=(3)如图粒子在电场中运动的轨迹与MN 相切时,切点到O 点的距离最远, 这是一个类平抛运动的逆过程. 建立如图坐标.212qE L t m=222mL mt L qE q ϕ==22x Eq qEL q v t m m m ϕ===若速度与x 轴方向的夹角为α角 cos xv v α=1cos 2α=060α∴=4.如图1所示,在ABCD 矩形区域里存在垂直于纸面方向的磁场(磁场边界有磁场),规定垂直纸面向里为磁场正方向,磁感应强度B如图2所示的变化。

0t=时刻,一质量为m,带电量为q的带正电粒子从B点以速度0v沿BC方向射入磁场,其中0B已知,0T未知,不计重力。

(1)若AB BC=,粒子从D点射出磁场,求AB边长度的可能值及粒子运动的可能时间;(2)若3:1AB BC=:,粒子仍从D点射出,求AB边长度的可能值及粒子运动的可能时间;(3)若AB BC=,求磁场周期T需满足什么条件粒子不从AB边射出,并求恰好不射出时0T时刻粒子距BC边的距离。

【答案】(1)0nmvABqB=,2n mtqBπ=1,n=(2,3...);(2)033n mvABqB=,043n mtqBπ=1,n=(2,3...);(3)053mTqBπ≤,()032mvdqB+=【解析】【详解】(1)若粒子通过D点,其运动轨迹如图所示,则必须满足:则必须满足:2vqvB mr=22AB n r=1,n=(2,3...)4Tt n=1,n=(2,3...)2mTqBπ=由以上各式解得:nmvABqB=,2n mtqBπ=1,n=(2,3...)(2)若粒子通过D点,其运动轨迹如图所示:则必须满足:2vqvB mr=23BD nr=1,n=(2,3...)23Tt n=1,n=(2,3...)又因为2mTqBπ=由以上各式解得:33n mvABqB=,43n mtqBπ=1,n=(2,3...)(3)如图3所示:粒子恰不从AB边射出时,02TT-时的轨迹与AB边相切,故需满足sin()2rrπθ-=, 解得粒子在002T -时间内转过的角度不超过150°,则有: 01502360T T ≤ 0T 时刻粒子离AB 的距离为2cos30d r r =+︒由以上方程解得:0053mT qB π≤, ()0032mv d qB +=。

5.如图所示,地面某处有一粒子发射器A ,发射器尺寸忽略不计,可以竖直向上发射速度介于v 0~2v 0的电子。

发射器右侧距离A 为L 的O 处,有一足够长突光板OD ,可绕O 点 转动,使其与水平方向的夹角θ可调,且AOD 在同一平面内,其中OC 段长度也为L , 电子打到荧光板上时,可使荧光板发光。

在电子运动的范围内,加上垂直纸面向里的匀 强磁场。

设电子质量为m ,电荷量为e ,重力忽略不计。

初始θ=45°,若速度为2v 0的电子恰好垂直打在荧光板上C 点,求: (1)磁场的磁感应强度大小B ;(2)此时速率为1.5v 0的电子打到荧光板上的位置到0点的距离x ;(3)在单位时间内发射器A 发射N 个电子,保持磁感应强度B 不变,若打在荧光板上的电子数随速率均匀分布,且50%被板吸收,50%被反向弹回,弹回速率大小为打板前速率大小的0.5倍,求荧光板受到的平均作用力大小(只考虑电子与收集板的一次碰撞); (4)若磁感应强度在(B -△B )到(B +△B )之间小幅波动,将荧光板θ角调整到90°,要在探测板上完全分辨出速度为v 0和2v 0的两类电子,则BB∆的最大值为多少?【答案】(1) 02mv eL 34-2L (3) 0158Nmv (4)13 【解析】 【详解】(1)由洛伦兹力提供向心力:qvB =m 2v r2v 0对应半径为L ,得B=2mv eL(2) 1.5v 0对应运动半径为0.75Lcosl35°=2220.25(0.75)20.25L x L L x+-⨯⨯()221042x x L L +-= 解得:L 取(3)F 吸=0002350%24P mv m v N Nmv t ∆+⋅==∆吸F 反=0002950% 1.528P mv m v N Nmv t ∆+⋅=⨯=∆反() F 总=F 吸+F 反=0158Nmv (4)x 1x 2r 1=0()mv e B B -∆ r 2=2()m v e B B +∆x 2>x 1得B B ∆ 最大值为136.如图所示,平面直角坐标系xoy 被三条平行的分界线分为I 、II 、III 、IV 四个区域,每条分界线与x 轴所夹30º角,区域I 、II 分界线与y 轴的交点坐标(0,l ),区域I 中有方向垂直纸面向里、大小为B 的匀强磁场;区域 II 宽度为d ,其中有方向平行于分界线的匀强电场;区域III 为真空区域;区域IV 中有方向垂直纸面向外、大小为2B 的匀强磁场.现有不计重力的两粒子,粒子l 带正电,以速度大小v 1从原点沿x 轴正方向运动;粒子2带负电,以一定大小的速度从x 轴正半轴一点A 沿x 轴负向与粒子1同时开始运动,两粒子恰在同一点垂直分界线进入区域II ;随后粒子1以平行于x 轴的方向进入区域III ;粒子2以平行于y 轴的方向进入区域III ,最后两粒子均在第二次经过区城III 、IV 分界线时被引出.(1)求A 点与原点距离;(2)求区域II 内电场强度E 的大小和方向; (3)求粒子2在A 的速度大小;(4)若两粒子在同一位置处被引出,区城III 宽度应设计为多少? 【答案】(1)23OA l =(2)13Blv E =(3)21v v =(4)32d S l =-【解析】(1)因为粒子1和粒子2在同一点垂直分界线进入区域Ⅱ,所以粒子1在区域Ⅰ运动半径为R 1=l粒子2在区域Ⅰ运动半径为R 2由几何关系知22132R R l =+ 23R l =33323OA l l l =-=(2)要满足题设条件,区域Ⅱ中电场方向必须平行于分界线斜向左下方 两粒子进入电场中都做类平抛运动,区域Ⅱ的宽度为d ,出电场时,对粒子1沿电场方向的运动有 1313tan 30Ev v v ==︒11113q E d v m v =⋅ 又 21111v q v B m l= 所以111q v m Bl = 13Blv E =(3)粒子2经过区域Ⅱ电场加速获得的速度大小为224E 3tan 60v v v ==︒对粒子2在电场中运动有22223q E d m v =⋅ 又 222223v q v B m l= 所以2223Blq vm = 所以 21v v =(4)粒子1经过区域Ⅲ时的速度大小为1312sin 30v v v ==︒有 2313132v Bq v m R = 3R l = 粒子2经过区域Ⅲ时的速度大小为2243cos303v v v ==︒ 有 2424242v Bq v m R = 43R l =两粒子要在区域IV 运动后到达同一点引出,O 3圆对应的圆心角为60゜,O 4圆对应的圆心角为120゜3E 4E 34122cos30++tan 30tan 6022v v S S d dR R v v +︒=⋅+⋅︒︒ 32d S l =-点睛:带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径.7.如图所示,xOy 平面内存在垂直纸面向里的匀强磁场,磁感应强度B =0. 1T ,在原点O 有一粒子源,它可以在xOy 平面内向各个方向发射出质量276.410m -=⨯kg 电荷量193.210q -=⨯C 、速度61.010v =⨯m/s 的带正电的粒子。

相关文档
最新文档