存储管理请求分页系统
16存储管理5请求页式管理请求段式管理2
7
0
采用最佳置换算法,只发生了6次页面 置换,发生了9次缺页中断。缺页率=9/21
17
2、先进先出页面置换算法(FIFO) 这是最早出现的置换算法,这种算 法总是淘汰最先进入内存的页面,选 择在内存中驻留时间最久的页面予以淘 汰。
18
采用FIFO算法进行页面置换时的情况。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 1 7 0 1 7 7 0 7 2× 2 2 4× 4 4 0× 0 0 7× 7 7 0 0 3× 3 3 2× 2 2 1× 1 1 0× 0 1 1 1 0× 0 0 3× 3 3 2× 2 2 1× 3 4 5 6 7 8 9 10 11-13 14 15-18 19 20 21
次数减少;不同的计算机系统,有不同页面大小;
11
(3)程序的编制方法
例:程序要把128×128的数组初值置“0”,数组 中每一个元素为一个字,假定页面大小为128个字, 数组中的每一行元素存放一页,能供该程序使用 的主存块只有1块。初始时第一页在内存; 程序编制方法1: 程序编制方法2: For j:=1 to 128 For i:=1 to 128 For i:=1 to 128 For j:=1 to 128 A[i][j]:=0; A[i][j]:=0; 按列:缺页中断次数: 按行:缺页中断次数 128-1 128×128-1
21
D A D A C D B C + +
B B A D +
E E B A +
A B C D E E E C D D B B E C C A A B E E + +
《计算机操作系统》虚拟存储管理
7.2 请求分页存储管理
7.2.1 工作原理 7.2.2 驻留集管理 7.2.3 调页策略 7.2.4 页面置换算法
7.2.1工作原理
♦ 若内存中没有可用的物理块,则还需根据页面置 换算法淘汰一些页,若淘汰的页曾做过改动,还 需将此页重写回外存,最后将缺页调入内存指定 的物理块。
开始
根据页表记录的外 存始址找到缺页
内存有可用 Y 物理块吗?
N 由页面置换算法选
择一页换出 Y
N 该页被改动 过吗? Y
将该页写回外存
启动磁盘I/O,从外 存读入缺页
►显然,一方面,内存中存在一些不用或暂时不用的程序占据了大量的内存 空间;另一方面,一些需要运行的程序因没有足够的内存空间而无法装入 内存运行。
►人们不禁考虑,“一次性”和“驻留性”在程序运行时是否是必要的?
7.1.1 引入背景
2.局部性原理
►程序在执行时,在一段时间内,CPU总是集中地访问程序中的某一个部分 而不是随机地对程序所有部分具有平均访问概率,这种现象称为局部性原 理。局部性表现在下述两个方面:
7.2.3 调页策略
►调页策略用于确定何时将进程所需的页调入内存。常用的调页策略有: ♦ 预调页策略 ● 系统预测进程接下来要访问的页,将一个或多个页提前调入内存。 ● 常用的预测原理是局部性原理,即每次调页时,将相邻的若干个页 一并调入内存。 ♦ 请求调页策略 ● 发生缺页时,再将其调入内存的方法。 ● 实现简单,增加磁盘I/O开销。
♦ 状态位:用于表示该页是否已调入内存。若没有调入内存,则产生一个 缺页中断。
操作系统——页式存储管理
操作系统——页式存储管理分区式存储管理最⼤的缺点是碎⽚问题严重,内存利⽤率低。
究其原因,主要在于连续分配的限制,即它要求每个作⽤在内存中必须占⼀个连续的分区。
如果允许将⼀个进程分散地装⼊到许多不相邻的分区中,便可充分地利⽤内存,⽽⽆需再进⾏“紧凑”。
基于这⼀思想,产⽣了“⾮连续分配⽅式”,或者称为“离散分配⽅式”。
连续分配:为⽤户进程分配的必须是⼀个连续的内存空间。
⾮连续分配:为⽤户进程分配的可以是⼀些分散的内存空间。
分页存储管理的思想:把内存分为⼀个个相等的⼩分区,再按照分区⼤⼩把进程拆分成⼀个个⼩部分。
分页存储管理分为:实分页存储管理和虚分页存储管理⼀、实分页式存储管理实分页式存储最⼤的优点是内存利⽤率⾼,与⽬前流⾏的虚分页存储管理相⽐,具有实现简单,程序运⾏快的优点。
⽬前,飞速发展的硬件制造技术使得物理内存越来越⼤,因此我们认为,实分页式存储管理将是⼀种最有发展前途的存储管理⽅式。
1.1、基本原理假设⼀个⼤型饭店,所有的客房都是标准的双⼈间,部分客房已经住进客⼈,现在⼜有⼀个旅游团要求⼊住。
接待员统计了⼀下,对旅游团领队说:“贵团全体成员都能住下,两⼈⼀个房间,但是不能住在同⼀楼层了,因为每层空着的客房不够,更没有⼏个挨着的。
请原谅!”。
对于这样的安排,⼀般⼈不会感到奇怪。
因为旅游团本来就是由⼀位位个⼈或夫妻等组成的,⽽饭店的客房本来也是两⼈⼀间的,两⼈⼀组正好可住在⼀个客房⾥;另外,饭店⼏乎每天都有⼊住的和退房的客⼈,想在同⼀楼层找⼏间挨着的客房实在不容易。
①将整个系统的内存空间划分成⼀系列⼤⼩相等的块,每⼀块称为⼀个物理块、物理页或实页,页架或页帧(frame),可简称为块(block)。
所有的块按物理地址递增顺序连续编号为0、1、2、……。
这⾥的块相当于饭店的客房,系统对内存分块相当于饭店把⼤楼所有的客房都设计成标准的双⼈间。
②每个作业的地址空间也划分成⼀系列与内存块⼀样⼤⼩的块,每⼀块称为⼀个逻辑页或虚页,也有⼈叫页⾯,可简称为页(page)。
请求分页式存储管理课程设计java
请求分页式存储管理课程设计java在Java中实现分页式存储管理,可以设计一个简单的模拟系统,如下面的概念框架。
假设我们有一组固定大小的页和一组固定大小的内存帧。
分页算法的任务是当请求来时,找到一个空闲的内存帧并分配给请求的页。
下面是一个简单的课程设计方案:定义页面和帧的概念:使用类来表示页和帧。
class Page {// ...}class Frame {// ...}创建页表和帧池:使用集合来表示页表和帧池Map<Page, Frame> pageTable = new HashMap<>();List<Frame> framePool = new ArrayList<>();实现分页算法:当请求到来时,找到一个空闲的帧并分配给请求的页。
如果没有空闲的帧,那么就需要使用某种页面替换算法(如最少使用算法或最近最久未使用算法)来选择一个帧进行替换。
public Frame allocateFrame(Page page) {// ...}处理页错误:如果请求的页不在内存中,那么就会产生页错误。
在这种情况下,需要将页面从磁盘加载到内存中。
public void handlePageFault(Page page) {// ...}这只是一个非常基础的框架,你可能需要添加更多的功能,比如模拟从磁盘读取页面的延迟,或者记录并显示内存的使用情况等。
记住,这个项目是一个模拟的分页存储管理系统,所以实际的实现细节可能会有所不同。
在实际的操作系统中,分页存储管理涉及到很多复杂的问题,比如虚拟内存管理、页面替换算法、页表管理等。
操作系统实验4-请求分页存储管理模拟实验
实验四请求分页存储管理模拟实验一:实验目的通过对页面、页表、地址转换和页面置换过程的模拟,加深对请求分页存储管理系统的原理和实现技术的理解。
二:实验容假设每个页面可以存放10条指令,分配给进程的存储块数为4。
用C语言或Pascal语言模拟一进程的执行过程。
设该进程共有320条指令,地址空间为32个页面,运行前所有页面均没有调入存。
模拟运行时,如果所访问的指令已经在存,则显示其物理地址,并转下一条指令;如果所访问的指令还未装入存,则发生缺页,此时需要记录缺页产生次数,并将相应页面调入存,如果4个存块已满,则需要进行页面置换。
最后显示其物理地址,并转下一条指令。
在所有指令执行完毕后,显示进程运行过程中的缺页次数和缺页率。
页面置换算法:分别采用OPT、FIFO、LRU三种算法。
进程中的指令访问次序按如下原则生成:50%的指令是顺序执行的。
25%的指令是均匀分布在低地址部分。
25%的指令是均匀分布在高地址部分。
三:实验类别分页存储管理四:实验类型模拟实验五:主要仪器计算机六:结果OPT:LRU:FIFO:七:程序# include<stdio.h># include<stdlib.h># include<conio.h># define blocknum 4//页面尺寸大小int m; //程序计数器,用来记录按次序执行的指令对应的页号static int num[320]; //用来存储320条指令typedef struct BLOCK //声明一种新类型--物理块类型{int pagenum; //页号int accessed; //访问量,其值表示多久未被访问}BLOCK;BLOCK block[blocknum]; //定义一大小为8的物理块数组void init() //程序初始化函数,对block初始化{for(int i=0;i<blocknum;i++){block[i].pagenum=-1;block[i].accessed=0;m=0;}}int pageExist(int curpage)//查找物理块中页面是否存在,寻找该页面curpage是否在存块block中,若在,返回块号{for(int i=0; i<blocknum; i++){if(block[i].pagenum == curpage )return i; //在存块block中,返回块号}return -1;}int findSpace()//查找是否有空闲物理块,寻找空闲块block,返回其块号{for(int i=0;i<blocknum;i++){if(block[i].pagenum==-1)return i; //找到了空闲的block,返回块号}return -1;}int findReplace()//查找应予置换的页面{int pos = 0;for(int i=0;i<blocknum;i++){if(block[i].accessed > block[pos].accessed)pos = i; //找到应该置换页面,返回BLOCK中位置}return pos;void display()//显示物理块中的页面号{for(int i=0; i<blocknum; i++){if(block[i].pagenum != -1){printf(" %02d ",block[i].pagenum);printf("%p |",&block[i].pagenum);}}printf("\n");}void randam()//产生320条随机数,显示并存储到num[320]{int flag=0;printf("请为一进程输入起始执行指令的序号(0~320):\n");scanf("%d",&m);//用户决定的起始执行指令printf("******进程中指令访问次序如下:(由随机数产生)*******\n");for(int i=0;i<320;i++){//进程中的320条指令访问次序的生成num[i]=m;//当前执行的指令数,if(flag%2==0)m=++m%320;//顺序执行下一条指令if(flag==1)m=rand()%(m-1);//通过随机数,跳转到低地址部分[0,m-1]的一条指令处,设其序号为m1if(flag==3)m=m+1+(rand()%(320-(m+1)));//通过随机数,跳转到高地址部分[m1+2,319]的一条指令处,设其序号为m2flag=++flag%4;printf(" %03d",num[i]);//输出格式:3位数if((i+1)%10==0) //控制换行,每个页面可以存放10条指令,共32个页面printf("\n");}}void pagestring() //显示调用的页面序列,求出此进程按次序执行的各指令所在的页面号并显示输出{for(int i=0;i<320;i++){printf(" %02d",num[i]/10);//输出格式:2位数if((i+1)%10==0)//控制换行,每个页面可以存放10条指令,共32个页面printf("\n");}}void OPT() //最佳替换算法{int n=0;//记录缺页次数int exist,space,position;int curpage;//当前指令的页面号for(int i=0;i<320;i++){m=num[i];curpage=m/10;exist=pageExist(curpage);if(exist==-1){ //当前指令的页面号不在物理块中space=findSpace();if(space != -1){ //当前存在空闲的物理块block[space].pagenum = curpage; //将此页面调入存display();//显示物理块中的页面号n++;//缺页次数+1}else{ //当前不存在空闲的物理块,需要进行页面置换for(int k=0;k<blocknum;k++){for(int j=i;j<320;j++){//找到在最长(未来)时间不再被访问的页面if(block[k].pagenum!= num[j]/10){block[k].accessed = 1000;} //将来不会被访问,设置为一个很大数else{ //将来会被访问,访问量设为jblock[k].accessed = j;break;}}}position = findReplace();//找到被置换的页面 ,淘汰block[position].pagenum = curpage;// 将新页面调入display();n++; //缺页次数+1}}}printf("缺页次数:%d\n",n);printf("缺页率:%f%%\n",(n/320.0)*100);}void LRU() //最近最久未使用算法{int n=0;//记录缺页次数int exist,space,position ;int curpage;//当前指令的页面号for(int i=0;i<320;i++){m=num[i];curpage=m/10;exist = pageExist(curpage);if(exist==-1){ //当前指令的页面号不在物理块中space = findSpace();if(space != -1){ //当前存在空闲的物理块block[space].pagenum = curpage; //将此页面调入存display();//显示物理块中的页面号n++;//缺页次数+1}else{ //当前不存在空闲的物理块,需要进行页面置换position = findReplace();block[position].pagenum = curpage;display();n++; //缺页次数+1}}elseblock[exist].accessed = -1;//恢复存在的并刚访问过的BLOCK中页面accessed为-1for(int j=0; j<blocknum; j++){//其余的accessed++block[j].accessed++;}}printf("缺页次数:%d\n",n);printf("缺页率:%f%%\n",(n/320.0)*100);}void FIFO(){int n=0;//记录缺页次数int exist,space,position ;int curpage;//当前指令的页面号int blockpointer=-1;for(int i=0;i<320;i++){m=num[i];curpage=m/10;exist = pageExist(curpage);if(exist==-1){ //当前指令的页面号不在物理块中space = findSpace();if(space != -1){ //当前存在空闲的物理块blockpointer++;block[space].pagenum=curpage; //将此页面调入存n++;//缺页次数+1display();//显示物理块中的页面号}else{ // 没有空闲物理块,进行置换position = (++blockpointer)%4;block[position].pagenum = curpage; //将此页面调入存n++;display();}}}printf("缺页次数:%d\n",n);printf("缺页率:%f%%\n",(n/320.0)*100);}void main(){int choice;printf("************请求分页存储管理模拟系统*************\n");randam();printf("************此进程的页面调用序列如下**************\n");pagestring();while(choice != 4){printf("********1:OPT 2:LRU 3:FIFO 4:退出*********\n");printf("请选择一种页面置换算法:");scanf("%d",&choice);init();switch(choice){case 1:printf("最佳置换算法OPT:\n");printf("页面号物理地址页面号物理地址页面号物理地址页面号物理地址\n");OPT();break;case 2:printf("最近最久未使用置换算法LRU:\n");printf("页面号物理地址页面号物理地址页面号物理地址页面号物理地址\n");LRU();break;case 3:printf("先进先出置换算法FIFO:\n");printf("页面号物理地址页面号物理地址页面号物理地址页面号物理地址\n");FIFO();break;}}}。
第16讲 存储器管理之请求分页存储管理方式
第十六讲存储器管理之请求分页存储管理方式1 基本概述请求分页管理是建立在基本分页基础上的,为了能支持虚拟存储器而增加了请求调页功能和页面置换功能。
基本原理:地址空间的划分同页式;装入页时,可装入作业的一部分(运行所需)页即可运行。
2 请求分页的硬件支持为实现请求分页,需要一定的硬件支持,包括:页表机制、缺页中断机构、地址变换机构。
2.1 页表机制作用:将用户地址空间的逻辑地址转换为内存空间的物理地址。
因为请求分页的特殊性,即程序的一部分调入内存,一部分仍在外存,因此页表结构有所不同。
如图:说明:(1)状态位P:指示该页是否已调入内存。
(2)访问字段A:记录本页在一段时间内被访问的次数或最近未被访问的时间。
(3)修改位M:表示该页在调入内存后是否被修改过。
若修改过,则换出时需重写至外存。
(4)外存地址:指出该页在外存上的地址。
2.2 缺页中断机构在请求分页系统中,每当所要访问的页面不在内存时,便产生缺页中断,请求OS将所缺的页调入内存。
缺页中断与一般中断的区别:(1)在指令执行期间产生和处理中断信号(2)一条指令在执行期间,可能产生多次缺页中断2.3 地址变换机构请求分页系统的地址变换机构。
是在分页系统地址变换机构的基础上,又增加了一些功能。
例:某虚拟存储器的用户空间共有32个页面,每页1KB,主存16KB。
假定某时刻系统为用户的第0、1、2、3页分别分配的物理块号为5、10、4、7,试将虚拟地址0A5C和093C 变换为物理地址。
解:虚拟地址为:页号(2^5=32)5位页内位移(1K =2^10=1024)10位物理地址为物理块号(2^4=16)4位因为页内是10 位,块内位移(1K =2^10=1024)10位虚拟地址OA5C对应的二进制为:00010 1001011100即虚拟地址OA5C的页号为2,页内位移为1001011100,由题意知对应的物理地址为:0100 1001011100即125C同理求093C。
简述请求分页存储管理方式
简述请求分页存储管理方式请求分页存储管理方式是一种非常实用的存储管理方式,它可以将大量数据分成多页存储,从而增加系统的可扩展性和可维护性。
本文将分步骤阐述请求分页存储管理方式的实现过程。
1. 设计数据库表结构首先,我们需要设计出适合分页存储的数据库表结构。
通常,我们需要将数据表按照某种规则分成多个页面,每个页面中包含相同数量的数据。
例如,如果需要将1000条数据分成10页,那么每个页面应该包含100条数据。
2. 编写查询语句在设计好数据库结构之后,我们需要编写查询语句来查询数据并将其分页。
我们可以使用LIMIT关键字来限制查询结果的数量,并使用OFFSET关键字来指定从哪个位置开始查询。
例如,如果需要查询第2页的数据,那么我们可以使用以下SQL语句:SELECT * FROM table_name LIMIT 100 OFFSET 100;这将返回第101到第200条数据。
3. 编写分页控件分页控件是实现分页存储的重要组成部分。
它通常包含一个页面选择器和一个数据显示区域。
我们可以使用JavaScript和CSS来创建翻页效果和样式。
例如,我们可以使用以下代码创建一个简单的页面选择器:```<div class="pagination"><a href="#">1</a><a href="#">2</a><a href="#">3</a><a href="#">4</a><a href="#">5</a></div>```4. 实现异步加载异步加载是将页面动态加载到用户界面中的一种技术。
它可以大大提高页面加载速度和用户体验。
我们可以使用AJAX等技术来实现异步加载。
操作系统原理-第五章 存储管理习题
5.3 习题5.3.1 选择最合适的答案1.分页存储管理的存储保护是通过( )完成的.A.页表(页表寄存器)B.快表C.存储键D.索引动态重定2.把作业地址空间中使用的逻辑地址变成内存中物理地址称为()。
A、加载B、重定位C、物理化D、逻辑化3.在可变分区存储管理中的紧凑技术可以()。
A.集中空闲区B.增加主存容量C.缩短访问时间D.加速地址转换4.在存储管理中,采用覆盖与交换技术的目的是( )。
A.减少程序占用的主存空间B.物理上扩充主存容量C.提高CPU效率D.代码在主存中共享5.存储管理方法中,( )中用户可采用覆盖技术。
A.单一连续区 B. 可变分区存储管理C.段式存储管理 D. 段页式存储管理6.把逻辑地址转换成物理地址称为()。
A.地址分配B.地址映射C.地址保护D.地址越界7.在内存分配的“最佳适应法”中,空闲块是按()。
A.始地址从小到大排序B.始地址从大到小排序C.块的大小从小到大排序D.块的大小从大到小排序8.下面最有可能使得高地址空间成为大的空闲区的分配算法是()。
A.首次适应法B.最佳适应法C.最坏适应法D.循环首次适应法9.那么虚拟存储器最大实际容量可能是( ) 。
A.1024KB.1024MC.10GD.10G+1M10.用空白链记录内存空白块的主要缺点是()。
A.链指针占用了大量的空间B.分配空间时可能需要一定的拉链时间C.不好实现“首次适应法”D.不好实现“最佳适应法”11.一般而言计算机中()容量(个数)最多.A.ROMB.RAMC.CPUD.虚拟存储器12.分区管理和分页管理的主要区别是()。
A.分区管理中的块比分页管理中的页要小B.分页管理有地址映射而分区管理没有C.分页管理有存储保护而分区管理没有D.分区管理要求一道程序存放在连续的空间内而分页管理没有这种要求。
13.静态重定位的时机是()。
A.程序编译时B.程序链接时C.程序装入时D.程序运行时14.通常所说的“存储保护”的基本含义是()A.防止存储器硬件受损B.防止程序在内存丢失C.防止程序间相互越界访问D.防止程序被人偷看15.能够装入内存任何位置的代码程序必须是( )。
实验六请求分页存储管理
实验六:请求分页存储管理一.实验目的深入理解请求页式存储管理的基本概念和实现方法,重点认识其中的地址变换、缺页中断、置换算法等实现思想。
二.实验属性该实验为综合性、设计性实验。
三.实验仪器设备及器材普通PC386以上微机四.实验要求本实验要求2学时完成。
本实验要求完成如下任务:(1)建立相关的数据结构:页表、页表寄存器、存储块表等;(2)指定分配给进程的内存物理块数,设定进程的页面访问顺序;(3)设计页面置换算法,可以选择OPT、FIFO、LRU等,并计算相应的缺页率,以比较它们的优劣;(4)编写地址转换函数,实现通过查找页表完成逻辑地址到物理地址的转换;若发生缺页则选择某种置换算法(OPT、FIFO、LRU等)完成页面的交换;(5)将整个过程可视化显示出来。
实验前应复习实验中所涉及的理论知识和算法,针对实验要求完成基本代码编写并完成预习报告、实验中认真调试所编代码并进行必要的测试、记录并分析实验结果。
实验后认真书写符合规范格式的实验报告(参见附录A),并要求用正规的实验报告纸和封面装订整齐,按时上交。
三、设计过程3.1算法原理分析OPT算法是未来最远出现,当当前内存中没有正要访问的页面时,置换出当前页面中在未来的访问页中最远出现的页面或再也不出现的页面。
FIFO算法是先进先出,当当前内存中没有正要访问的页面时,置换出最先进来的页面。
LRU算法是最近最久未使用,当当前内存中没有正要访问的页面时,置换出在当前页面中最近最久没有使用的页面。
3.2数据定义int length,num_page,count,seed; //length记录访问串的长度,num_page页面数,count记录缺页次数int result[20][30],order[30],a[10]; //result记录结果,order存储访问串,a存储当前页面中的值int pos1,flag1,flag2,flag3; //pos1位置变量,flag1等为标志变量 char result1[30]; //记录缺页数组 void opt() //最佳void fifo() //先进先出bool search(int n) //查找当前内存中是否已存在该页3.3流程图与运行截图图6.1 FIFO ()函数流程图;否是 是否 开始得到执行的指令指令是否在内存中最先存入指令被淘汰下面是否还有指令 结束得出命中率图2.2 OPT算法流程图四、小结本次课程设计目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。
请求分页存储管理设计
实验八请求分页存储管理设计一、虚拟存储器的相关知识:1.概述:虚拟存储器(Virtual Memory):在具有层次结构存储器的计算机系统中,自动实现部分装入和部分替换功能,能从逻辑上为用户提供一个比物理贮存容量大得多,可寻址的“主存储器”。
虚拟存储区的容量与物理主存大小无关,而受限于计算机的地址结构和可用磁盘容量。
作用:虚拟内存的作用内存在计算机中的作用很大,电脑中所有运行的程序都需要经过内存来执行,如果执行的程序很大或很多,就会导致内存消耗殆尽。
为了解决这个问题,Windows中运用了虚拟内存技术,即拿出一部分硬盘空间来充当内存使用,当内存占用完时,电脑就会自动调用硬盘来充当内存,以缓解内存的紧张。
举一个例子来说,如果电脑只有128MB物理内存的话,当读取一个容量为200MB的文件时,就必须要用到比较大的虚拟内存,文件被内存读取之后就会先储存到虚拟内存,等待内存把文件全部储存到虚拟内存之后,跟着就会把虚拟内存里储存的文件释放到原来的安装目录里了。
下面,就让我们一起来看看如何对虚拟内存进行设置吧。
2.请求分页虚拟存储系统是将作业信息的副本存放在磁盘这一类辅助存储器中,当作业被调度投入运行时,并不把作业的程序和数据全部装入主存,而仅仅装入立即使用的那些页面,至少要将作业的第一页信息装入主存,在执行过程中访问到不在主存的页面时,再把它们动态地装入。
用得较多的分页式虚拟存储管理是请求分页(demand paging),当需要执行某条指令或使用某个数据,而发现它们并不在主存时,产生一个缺页中断,系统从辅存中把该指令或数据所在的页面调入内存。
3.替换算法:替换规则用来确定替换主存中哪一部分,以便腾空部分主存,存放来自辅存要调入的那部分内容。
常见的替换算法有4种。
随机算法用软件或硬件随机数产生器确定替换的页面。
先进先出先调入主存的页面先替换。
近期最少使用算法替换最长时间不用的页面。
最优算法替换最长时间以后才使用的页面。
14存储管理3分段段页式管理
段号 状态 页表大小 页表始址 0 1 1 1 2 1 3 0 4 1 段表
页表 主存
图4-22 利用段表和页表实现地址映射
2.地址变换过程
在段页式系统中,为了便于实现地址变换,须配 置一个段表寄存器,其中存放段表始址和段表长TL。 进行地址变换时,首先利用段号S,将它与段表长TL进 行比较。若S<TL,表示未越界,于是利用段表始址和 段号来求出该段所对应的段表项在段表中的位置,从 中得到该段的页表始址,并利用逻辑地址中的段内页 号P来获得对应页的页表项位置,从中读出该页所在的 物理块号b,再利用块号b和页内地址来构成物理地址。 图4-23示出了段页式系统中的地址变换机构。
2.页表
列出了作业的逻辑地址与其在主存中的 物理地址间的对应关系。 一个页表中包含若干个表目,表目的自 然序号对应于用户程序中的页号,表目 中的块号是该页对应的物理块号。 页表的每一个表目除了包含指向页框的 指针外,还包括一个存取控制字段。 表目也称为页描述子。
分页管理中页与页框的对应 关系示意图
段表寄存器 段表始址 + 段表 0 1 2 3 页表长度 + 0 1 2 3 b 块号 b 块内地址 页表 段表长度 > 段超长 段号S 页号P 页内地址
页表始址
图4-23
段页式系统中的地址变换机构
在段页式系统中,为了获得一条指令或数据,须 三次访问内存。第一次访问是访问内存中的段表,从 中取得页表始址;第二次访问是访问内存中的页表, 从中取出该页所在的物理块号,并将该块号与页内地 址一起形成指令或数据的物理地址;第三次访问才是 真正从第二次访问所得的地址中,取出指令或数据。 显然,这使访问内存的次数增加了近两倍。为了 提高执行速度,在地址变换机构中增设一个高速缓冲 寄存器。每次访问它时,都须同时利用段号和页号去 检索高速缓存,若找到匹配的表项,便可从中得到相 应页的物理块号,用来与页内地址一起形成物理地址; 若未找到匹配表项,则仍须再三次访问内存。
操作系统学习资料-第五章 存储管理习题
第五章存储管理一. 选择最合适的答案1.分页存储管理的存储保护是通过( )完成的.A.页表(页表寄存器)B.快表C.存储键D.索引动态重定2.把作业地址空间中使用的逻辑地址变成内存中物理地址称为()。
A、加载B、重定位C、物理化D、逻辑化3.在可变分区存储管理中的紧凑技术可以()。
A.集中空闲区B.增加主存容量C.缩短访问时间D.加速地址转换4.在存储管理中,采用覆盖与交换技术的目的是( )。
A.减少程序占用的主存空间B.物理上扩充主存容量C.提高CPU效率D.代码在主存中共享5.存储管理方法中,( )中用户可采用覆盖技术。
A.单一连续区 B. 可变分区存储管理C.段式存储管理 D. 段页式存储管理6.把逻辑地址转换成物理地址称为()。
A.地址分配B.地址映射C.地址保护D.地址越界7.在内存分配的“最佳适应法”中,空闲块是按()。
A.始地址从小到大排序B.始地址从大到小排序C.块的大小从小到大排序D.块的大小从大到小排序8.下面最有可能使得高地址空间成为大的空闲区的分配算法是()。
A.首次适应法B.最佳适应法C.最坏适应法D.循环首次适应法9.硬盘容量1G,内存容量为1024k,那么虚拟存储器最大实际容量可能是( ) 。
A.1024KB.1024MC.10GD.10G+1M10.用空白链记录内存空白块的主要缺点是()。
A.链指针占用了大量的空间B.分配空间时可能需要一定的拉链时间C.不好实现“首次适应法”D.不好实现“最佳适应法”11.一般而言计算机中()容量(个数)最多.A.ROMB.RAMC.CPUD.虚拟存储器12.分区管理和分页管理的主要区别是()。
A.分区管理中的块比分页管理中的页要小B.分页管理有地址映射而分区管理没有C.分页管理有存储保护而分区管理没有D.分区管理要求一道程序存放在连续的空间内而分页管理没有这种要求。
13.静态重定位的时机是()。
A.程序编译时B.程序链接时C.程序装入时D.程序运行时14.通常所说的“存储保护”的基本含义是()A.防止存储器硬件受损B.防止程序在内存丢失C.防止程序间相互越界访问D.防止程序被人偷看15.能够装入内存任何位置的代码程序必须是( )。
8存储器管理之请求分段存储管理方式
第十八讲存储器管理之请求分段存储管理方式1引言概述:请求分段存储管理系统也与请求分页存储管理系统一样,为用户提供了一个比内存空间大得多的虚拟存储器。
虚拟存储器的实际容量由运算机的地址结构肯定。
思想:在请求分段存储管理系统中,作业运行之前,只要求将当前需要的若干个分段装入内存,即可启动作业运行。
在作业运行进程中,若是要访问的分段不在内存中,则通过调段功能将其调入,同时还能够通过置换功能将暂时不用的分段换出到外存,以便腾出内存空间。
2请求分段中的硬件支持请求分段需要的硬件支持有:段表机制、缺页中断机构、地址变换机构。
2.1段名段长段的基址存取方式访问字段A修改位M存在位P增补位外存始址说明:存取方式:存取属性(执行、只读、允许读/写)访问字段A:记录该段被访问的频繁程度修改位M:表示该段在进入内存后,是不是被修悔改。
存在位P:表示该段是不是在内存中。
增补位:表示在运行进程中,该段是不是做过动态增加。
外存地址:表示该段在外存中的起始地址。
2.2缺段中断机构当被访问的段不在内存中时,将产生一缺段中断信号。
其缺段中断的处置进程如图:2.3地址变换机构3 分段的共享和保护为了实现分段共享,设置一个数据结构——共享段表,和对共享段进行操作的进程。
3.1 共享段表说明:所有的共享段都在共享段表中对应一个表项。
其中:共享进程计数器count :记录有多少个进程需要共享该分段,设置一个整型变量count 。
存取控制字段:设定存取权限。
段号:对于一个共享段,不同的进程能够各用不同的段号去共享该段。
3.2 共享段的分派和回收 3.2.1 共享段的分派大体进程:在为共享段分派内存时,对第一个请求利用该共享段的进程,由系统为该共享段分派一物理区,再把共享段调入该区,同时将该区的始址填入请求进程的段表的相应项中,还须在共享段表中增加一表项,填写有关数据,把count 置为1;以后,当又有其它进程需段名段长内存始址状态外存始址共享进程计数count 状态进程名进程号段号存取控制………………要挪用该共享段时,由于该共享段已被调入内存,故现在不必再为该段分派内存,而只需在挪用进程的段表中,增加一表项,填写该共享段的物理地址;在共享段的段表中,填上挪用进程的进程名、存取控制等,再执行count∶=count+1操作,以表明有两个进程共享该段。
操作系统实验3--请求分页式存储管理
请求分页式存储管理一、问题描述设计一个请求页式存储管理方案,为简单起见。
页面淘汰算法采用FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中修改状态位。
而不再判断它是否被改写过,也不将它写回到辅存。
二、基本要求页面尺寸1K,输入进程大小(例如5300bytes),对页表进行初始化页表结构如下:系统为进程分配:任意输入一个需要访问的指令地址流(例如:3635、3642、1140、0087、1700、5200、4355,输入负数结束),打印页表情况。
每访问一个地址时,首先要计算该地址所在的页的页号,然后查页表,判断该页是否在主存——如果该页已在主存,则打印页表情况;如果该页不在主存且页框未满(查空闲块表,找到空闲块),则调入该页并修改页表,打印页表情况;如果该页不在主存且页框已满,则按FIFO页面淘汰算法淘汰一页后调入所需的页,修改页表,打印页表情况。
存储管理算法的流程图见下页。
三、实验要求完成实验内容并写出实验报告,报告应具有以下内容:1、实验目的。
2、实验内容。
3、程序及运行情况。
4、实验过程中出现的问题及解决方法。
#include<stdio.h>#include<stdlib.h>int PUB[20][3];int ABC[3][2]={{0,1},{1,1},{2,1}};//物理块int key=0;void output(int size){//打印int i,j;printf("页号\t\t物理块号\t\t状态位\n\n");for(i=0;i<size;i++){printf(" %d\t\t%d\t\t\t%d\n\n",PUB[i][0],PUB[i][1],PUB[i][2]);}printf("物理块号\t\t是否空闲\n\n");for(i=0;i<3;i++){printf(" %d\t\t\t%d\n\n",ABC[i][0],ABC[i][1]);}}void main(){int size;int i,j;int address=0;int select=0;printf("请输入进程大小\n");scanf("%d",&size);if(size<=0 || size>20000){printf("进程大小超出范围\n");exit(0);}size%1000==0 ? size=size/1000 : size=size/1000+1;for(i=0;i<size;i++){PUB[i][0]=i; //页号PUB[i][1]=0; //物理块号PUB[i][2]=0; //状态位}output(size);while(1){printf("输入指令地址\n");scanf("%d",&address);if(address<0 || address>20000){printf("地址超出范围\n");exit(0);}address%1000==0 ? address=address/1000 : address=address/1000;if(PUB[address][2]==0) //不在主存{if(ABC[2][1]==0) //满了{printf("满了\n");if(select!=address) key++;for(i=0;i<size;i++){if(PUB[i][1]==key){PUB[i][1]=0;PUB[i][2]=0;}}PUB[address][1]=key;PUB[address][2]=1;key++;if(key>3) key=1;}if(ABC[2][1]==1) //没满{printf("没满\n");for(i=0;i<3;i++){if(ABC[i][1]==1){ABC[i][1]=0;PUB[address][1]=i+1;PUB[address][2]=1;break;}}}output(size);}else{printf("该页已在内存\n");output(size);}select=address;}}。
操作系统原理第五章 存储管理习题
5.3 习题5.3.1选择最合适的答案1.分页存储管理的存储保护是通过( )完成的.A.页表(页表寄存器)B.快表C.存储键D.索引动态重定2.把作业地址空间中使用的逻辑地址变成内存中物理地址称为()。
A、加载B、重定位C、物理化D、逻辑化3.在可变分区存储管理中的紧凑技术可以()。
A.集中空闲区B.增加主存容量C.缩短访问时间D.加速地址转换4.在存储管理中,采用覆盖与交换技术的目的是( )。
A.减少程序占用的主存空间B.物理上扩充主存容量C.提高CPU效率D.代码在主存中共享5.存储管理方法中,( )中用户可采用覆盖技术。
A.单一连续区 B. 可变分区存储管理C.段式存储管理 D. 段页式存储管理6.把逻辑地址转换成物理地址称为()。
A.地址分配B.地址映射C.地址保护D.地址越界7.在内存分配的“最佳适应法”中,空闲块是按()。
A.始地址从小到大排序B.始地址从大到小排序C.块的大小从小到大排序D.块的大小从大到小排序8.下面最有可能使得高地址空间成为大的空闲区的分配算法是()。
A.首次适应法B.最佳适应法C.最坏适应法D.循环首次适应法9.硬盘容量1G,内存容量为1024k,那么虚拟存储器最大实际容量可能是( ) 。
A.1024KB.1024MC.10GD.10G+1M10.用空白链记录内存空白块的主要缺点是()。
A.链指针占用了大量的空间B.分配空间时可能需要一定的拉链时间C.不好实现“首次适应法”D.不好实现“最佳适应法”11.一般而言计算机中()容量(个数)最多.A.ROMB.RAMC.CPUD.虚拟存储器12.分区管理和分页管理的主要区别是()。
A.分区管理中的块比分页管理中的页要小B.分页管理有地址映射而分区管理没有C.分页管理有存储保护而分区管理没有D.分区管理要求一道程序存放在连续的空间内而分页管理没有这种要求。
13.静态重定位的时机是()。
A.程序编译时B.程序链接时C.程序装入时D.程序运行时14.通常所说的“存储保护”的基本含义是()A.防止存储器硬件受损B.防止程序在内存丢失C.防止程序间相互越界访问D.防止程序被人偷看15.能够装入内存任何位置的代码程序必须是( )。
存储管理的页面置换算法详解
存储管理的页面置换算法存储管理的页面置换算法在考试中常常会考到,操作系统教材中主要介绍了3种常用的页面置换算法,分别是:先进先出法(FIFO)、最佳置换法(OPT)和最近最少使用置换法(LRU)。
大家要理解3种置换算法的含义,然后能熟练地运用在具体的练习中就可以了。
1.为什么要进行页面置换在请求分页存储管理系统中,由于使用了虚拟存储管理技术,使得所有的进程页面不是一次性地全部调入内存,而是部分页面装入。
这就有可能出现下面的情况:要访问的页面不在内存,这时系统产生缺页中断。
操作系统在处理缺页中断时,要把所需页面从外存调入到内存中。
如果这时内存中有空闲块,就可以直接调入该页面;如果这时内存中没有空闲块,就必须先淘汰一个已经在内存中的页面,腾出空间,再把所需的页面装入,即进行页面置换。
有助于理解的关键词有:请求分页、虚拟存储、缺页中断、页面置换。
2.常用的页面置换算法教材中介绍的常用页面置换算法有:先进先出法(FIFO)、最佳置换法(OPT)和最近最少使用置换法(LRU)。
(1)先进先出法(FIFO)算法描述:由于认为最早调入内存的页不再被使用的可能性要大于刚调入内存的页,因此,先进先出法总是淘汰在内存中停留时间最长的一页,即先进入内存的页,先被换出。
先进先出法把一个进程所有在内存中的页按进入内存的次序排队,淘汰页面总是在队首进行。
如果一个页面刚被放入内存,就把它插在队尾。
【例1】教材第4章课后习题。
考虑下述页面走向:1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6。
当内存块数量分别为3,5时,试问先进先出置换算法(FIFO)的缺页次数是多少?(注意,所有内存块最初都是空的,凡第一次用到的页面都产生一次缺页。
)解打叉的表示发生了缺页,共缺页16次。
提示:当FIFO算法执行到蓝色的4号页面时,这时内存中有三个页面,分别是1,2,3。
按照FIFO算法,在内存中停留时间最长的页面被淘汰。
简述请求分页存储管理方式
简述请求分页存储管理方式
请求分页存储管理方式是一种将主存储器划分为等大小的块,每个块称为一页的管理方式。
在此方式下,每个进程所需的存储空间被划分为多个大小相等的页,每一页都有一个唯一的页号。
当进程请求存储空间时,操作系统会根据其空间需求来分配一页或多页的空间。
此管理方式的主要优点是可有效地利用主存储器,因为在这种情况下,内存中只有进程所需的部分被加载。
这意味着,对于较大的程序,它们不需要一次性将整个程序加载到内存中,而只需要加载所需的部分。
因此,更多的程序可以同时运行,从而提高了系统的效率。
此外,请求分页存储管理方式还可以提高系统的灵活性。
进程可以根据其存储需求请求不同数量的页面,这意味着,系统可以动态地分配存储空间,以满足进程的需求。
总的来说,请求分页存储管理方式是一种高效、可扩展的管理方式,它可以提高系统的效率和灵活性,使多个进程可以同时运行,从而提高系统的性能。
- 1 -。
计算机操作系统第七章 - 存 储 管 理
分页系统中的地址映射
图5-16 分页系统的地址转换机构 每个进程平均有半个页面的内部碎 片
页面尺寸
设进程的平均大小为s字节,页面尺寸为p字节 ,每个页表项占e字节。那么,每个进程需要的 页数大约为s/p,占用 s . e /p 字节的页表空间。 每个进程的内部碎片平均为p/2。 因此,由页表和内部碎片带来的总开销是: s . e /p+p/2
• • •
虚拟存储器的特征
① ② ③ ④
虚拟扩充。 部分装入。 离散分配。 多次对换。
地址重定位( 地址重定位(地址映射)
• • • • • • • • • • • •
MOV AX,1234 ;立即数寻址 MOV [1000],AX 存储器直接寻址 MOV BX,1002 ;立即数寻址 MOV BYTE PTR[BX],20 ;基址寻址 MOV DL,39 ;立即数寻址 INC BX ;寄存器寻址 MOV [BX],DL ;基址寻址 DEC DL ;寄存器寻址 MOV SI,3 ;立即数寻址 MOV [BX+SI],DL ;基址加变址寻址 MOV [BX+SI+1],DL ;基址+变址+立即数寻址 ;基址+变址+ MOV WORD PTR[BX+SI+2],2846 ;基址+变址+立即数寻址 ;基址+变址+
页面置换算法
页面置换
1.页面置换过程
图5-35 页面置换
需要解决的问题
• 系统抖动 • 缺页中断
•
在学汇编时,很多初学者对PC的寻址方式和很 在学汇编时,很多初学者对PC的寻址方式和很 不理解,甚至是很难理解。的确,这方面的知识 是很抽象的,需要比较强的空间想象能力。尤其 是我们在输入字符串时,那这些字符是如何进行 排列的呢?对于,这个问题,我相信很多初学者 也是很难想象是如何排列。但是,我可以这样比 喻:内存就是有很多栋“楼房” 喻:内存就是有很多栋“楼房”,“楼房”又是 楼房” 由“单元号”,“门户号”组成,那“楼房”就 单元号” 门户号”组成,那“楼房” 相当于内存地址的段地址,“单元号” 相当于内存地址的段地址,“单元号”就相当于 内存的的 偏移地址,“门户号(家)”就相当于“变 偏移地址,“门户号( 就相当于“ 地址”,而每个单元有16个 门户号( )",又当我 地址”,而每个单元有16个"门户号(家)",又当我 们找到"门户号( )"后 走进这个"门户号( )"就会 们找到"门户号(家)"后,走进这个"门户号(家)"就会 见到里面会有" ",而我们所说的人就是寄存器所 见到里面会有"人",而我们所说的人就是寄存器所 指的"内容" 指的"内容"了,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 按比例分配算法
这是根据进程的大小按比例分配物理块的算法。如果系
统中共有n个进程,每个进程的页面数为Si,则系统中各进程
页面数的总和为:
n
S Si
i 1
又假定系统中可用的物理块总数为m,则每个进程所能分
到的物理块数为bi,将有:
bi
Hale Waihona Puke Si Sm
b应该取整,它必须大于最小物理块数。
3) 考虑优先权的分配算法
在实际应用中,为了照顾到重要的、紧迫的作业能尽快 地完成,应为它分配较多的内存空间。通常采取的方法是把 内存中可供分配的所有物理块分成两部分:一部分按比例地 分配给各进程;另一部分则根据各进程的优先权,适当地增 加其相应份额后,分配给各进程。在有的系统中,如重要的 实时控制系统,则可能是完全按优先权来为各进程分配其物 理块的。
4.7.3 调页策略
个内存地址,这些地址在不同的页中)。 相应的中断处理程序把控制转向缺页中断子程序。执行此子 程序,即把所缺页面装入主存。然后处理机重新执行缺页 时打断的指令。这时,就将顺利形成物理地址。缺页中断 的处理过程是由硬件和软件共同实现的。
页面 6 B:
5 4 A:
3
指令 2
copy A
1
TO B
缺页中断引发的连续中断
2.物理块的分配策略
1) 固 定 分 配 局 部 置 换 (Fixed Allocation , Local Replacement)
这是指基于进程的类型(交互型或批处理型等),或根据程 序员、程序管理员的建议,为每个进程分配一定数目的物理 块,在整个运行期间都不再改变。采用该策略时,如果进程 在运行中发现缺页,则只能从该进程在内存的n个页面中选出 一个页换出,然后再调入一页,以保证分配给该进程的内存 空间不变。实现这种策略的困难在于:应为每个进程分配多 少个物理块难以确定。若太少,会频繁地出现缺页中断,降 低了系统的吞吐量;若太多,又必然使内存中驻留的进程数 目减少,进而可能造成CPU空闲或其它资源空闲的情况,而 且在实现进程对换时,会花费更多的时间。
4.7.1 请求分页的硬件支持
1、页表机制
页号 状态位 物理块号 外存地址 访问位 修改位
状态位(中断位):标识该页是否在内存(0或1); 访问位:标识该页面的近来的访问次数或时间(换出); 修改位:标识此页是否在内存中被修改过; 外存地址:记录该页面在外存上的地址,即(外存而非内
4.7.2 内存分配策略和分配算法
1.最小物理块数的确定
这里所说的最小物理块数,是指能保证进程正常运行所 需的最小物理块数。当系统为进程分配的物理块数少于此值 时,进程将无法运行。进程应获得的最少物理块数与计算机 的硬件结构有关,取决于指令的格式、功能和寻址方式。对 于某些简单的机器,若是单地址指令且采用直接寻址方式, 则所需的最少物理块数为2。其中,一块是用于存放指令的页 面,另一块则是用于存放数据的页面。
3) 可 变 分 配 局部置换 (Variable Allocation ,Local Replacement)
这同样是基于进程的类型或根据程序员的要求,为每个 进程分配一定数目的物理块,但当某进程发现缺页时,只允 许从该进程在内存的页面中选出一页换出,这样就不会影响 其它进程的运行。如果进程在运行中频繁地发生缺页中断, 则系统须再为该进程分配若干附加的物理块,直至该进程的 缺页率减少到适当程度为止;反之,若一个进程在运行过程 中的缺页率特别低,则此时可适当减少分配给该进程的物理 块数,但不应引起其缺页率的明显增加。
2) 可变分配全局置换(Variable Allocation,Global Replacement)
这可能是最易于实现的一种物理块分配和置换策略,已 用于若干个OS中。在采用这种策略时,先为系统中的每个进 程分配一定数目的物理块,而OS自身也保持一个空闲物理块 队列。当某进程发现缺页时,由系统从空闲物理块队列中取 出一个物理块分配给该进程,并将欲调入的(缺)页装入其中。 这样,凡产生缺页(中断)的进程,都将获得新的物理块。仅 当空闲物理块队列中的物理块用完时,OS才能从内存中选择 一页调出,该页可能是系统中任一进程的页,这样,自然又 会使那个进程的物理块减少,进而使其缺页率增加。
学习目标
理解并掌握请求分页存储管理系统中的硬件支持 理解请求分页存储管理系统中的内存分配策略和
分配算法 掌握主要页面置换算法
§4.7 请求分页存储管理方式
请求分页存储管理的基本思想
请求分页存储管理方式是实现虚拟存储器的一种常用技术; 基本思想:在进程开始运行之前,仅装入当前要执行的部分页面即可
3.物理块分配算法
1) 平均分配算法
这是将系统中所有可供分配的物理块平均分配给各个进 程。例如,当系统中有100个物理块,有5个进程在运行时, 每个进程可分得20个物理块。这种方式貌似公平,但实际上 是不公平的,因为它未考虑到各进程本身的大小。如有一个 进程其大小为200页,只分配给它20个块,这样,它必然会 有很高的缺页率;而另一个进程只有10页,却有10个物理块 闲置未用。
存的)物理块号。
2.缺页中断机构
程序在执行时,首先检查页表,当状态位指示该页不在主存 时,则引起一个缺页中断发生,其中断执行过程与一般中 断相同: 保护现场(CPU环境); 中断处理(中断处理程序装入页面); 恢复现场,返回断点继续执行。
缺页中断与一般中断的不同点: 一般中断是一条指令完成后检查是否有中断 缺页中断是在指令执行期间产生和处理中断, 一条指令执行时可能产生多个缺页中断(如指令可能访问多