半导体功率器件的散热计算
散热器散热量计算
散热器散热量计算散热器散热量计算00散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。
但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。
现介绍几种简单的计算方法:(一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。
在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是:Q=5.8259×△T (十柱)1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃十柱散热量:Q=5.8259×64.5 =1221.4W每柱散热量1224.4 W÷10柱=122 W/柱2.当进水温度80℃,出水温度60℃,室内温度18℃时:△T =(80℃+60℃)/2-18℃=52℃十柱散热量:Q=5.8259×52 =926W每柱散热量926 W÷10柱=92.6W/柱3.当进水温度70℃,出水温度50℃,室内温度18℃时:△T =(70℃+50℃)/2-18℃=42℃十柱散热量:Q=5.8259×42 =704.4W每柱散热量704.4W ÷10柱=70.4W/柱(二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量:我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。
(三)利用传热系数Q=K·F·△T一般来说△T已经计算出来,F是散热面积,传热系数K,可通过类似散热器中计算出来或者从经验得到的,这种计算方法一般用在还没有经过热工检验,正在试制的散热器中。
可控硅散热能力的大小对技术参数的影响
可控硅散热能力的大小对技术参数的影响一、发热因素1、可控硅管芯发热半导体器件在工作时都有一定的损耗,大部分的损耗变成热量。
可控硅发热源是它的管芯PN结。
小功率半导体器件损耗小,发热量也很小,不需要外加散热装置。
而大功率半导体器件损耗大,发热量也很大,若不采取特殊散热措施,则管芯的温度可达到或超过允许的结温,半导体器件将受到损坏。
最常用的散热措施就是将半导体功率器件安装在散热器上,利用散热器将热量散到周围空间,必要时再加上散热风扇,以一定的风速加强冷却散热。
2.环境温度由于电热恒温干燥箱工作温度往往比较高,一般都工作在80°℃-250°℃之间。
虽然控制箱与发热工作室之间有隔热层分隔,但在长时间的工作过程中部分热能会传递到控制箱侧,使其大功率可控硅环境温度亦会升高,达到40°℃-60℃,甚至更高。
二.散热计算散热计算就是在给定的工作条件下,通过计算来选择合适的散热措施及散热器。
半导体功率器件安装在散热器上,它的主要热传导方向是由管芯传导到器件的底部,底部再传导到散热器,散热器将热量传导到周围空间。
若没有风扇以一定风速冷却,这称为自然风冷却或自然对流冷却。
电热恒温干燥箱温度控制用的大功率可控硅散热方式主要选择自然风冷散热系统。
自然风冷散热系统主要由大功率可控硅与散热器组成。
它主要的功能是把可控硅管芯中因功耗而产生的热量传导出来,传到相对温度较低的散热器翅片上;流动的空气与散热片充分接触,把散热器中的热量传到空气中带走,起到降温作用。
在自然风冷状态下,空气与散热器之间的热交换依靠空气对流的形式来完成的。
无论在何种情况下,辐射传热是同样存在。
为了提高热辐射能力常把散热器表面做黑,可提高散热效率1%-2%左右。
但由于所占热能比重较小在计算中往往忽略。
MOSFET功率开关器件的散热计算
MOSFET功率开关器件的散热计算MOSFET(金属-氧化物-半导体场效应晶体管)是一种常用的功率开关器件,用于调节和控制电子电路中的功率输出。
在工作过程中,MOSFET 会产生一定的功耗,这会导致器件升温,为了保证器件的正常工作,需要进行散热计算。
散热计算的目的是确定器件的热阻和最大工作温度,以便选择适当的散热方式,以及确定散热器的大小和材料。
首先,我们需要了解MOSFET的功耗,计算器件的热阻和最大工作温度。
1.功耗计算:-静态功耗是指器件处于稳态工作时的功耗,主要是由电流引起的导通压降和漏极电流引起的静态功耗。
-动态功耗是指在开关过程中,由于MOSFET开关速度造成的功耗。
静态功耗可以通过电流和导通压降计算得出,动态功耗则需要根据MOSFET的开关速度和应用场景来进行估算。
一般来说,静态功耗较小,可以忽略不计,因此我们主要关注动态功耗。
2.热阻计算:热阻由两个组成部分构成:导热阻(junction-to-case thermal resistance)和散热阻(case-to-ambient thermal resistance)。
-导热阻是指热量从MOSFET结到器件封装外壳的传导阻力。
-散热阻是指热量从器件封装外壳传递到周围环境的散热阻力。
导热阻可以通过器件手册或厂商提供的数据手册来获得,散热阻可以通过热量传导理论和计算公式来估算。
3.最大工作温度:最大工作温度可以通过器件手册或厂商提供的数据手册来获得。
有了以上的基础知识,我们可以按照以下步骤进行MOSFET的散热计算:1.根据应用场景和数据手册提供的参数,计算出MOSFET的功耗。
2.根据功耗计算出MOSFET的热阻(包括导热阻和散热阻)。
3.确定最大工作温度,通常根据数据手册提供的温度参数来确定。
4.根据最大工作温度和热阻,计算出器件离开环境的温度差。
5.根据热耗的温度差和功耗,计算出散热器的尺寸和材料。
需要注意的是,散热计算是一个非常复杂的过程,涉及到多方面的因素,包括器件的封装类型、散热器的设计和材料选择等。
功率半导体元件的损耗计算分析方法
功率半导体元件的损耗计算分析方法导通损耗:导通损耗是在功率器件导通状态下消耗的功率,主要由导通电阻和开关元件的导通电压引起。
导通电流越大、导通压降越大,导通损耗也就越大。
关断损耗:关断损耗是在开关管和二极管关断时消耗的功率,主要由开关过程中的存储电荷和关断电压引起。
关断电流越大、关断压降越大,关断损耗也就越大。
2.导通损耗计算方法导通损耗的计算方法主要有两种:基于静态条件的方法和基于动态条件的方法。
基于静态条件的方法:即根据功率半导体元件的静态参数来计算导通损耗。
主要考虑的静态参数有导通电阻和导通电流。
导通损耗可以通过下式计算得到:Pcon = Rcon * Icon^2其中,Pcon为导通损耗,Rcon为导通电阻,Icon为导通电流。
基于动态条件的方法:即根据功率半导体元件的开关特性来计算导通损耗。
主要考虑的动态参数有开关时间和导通电压。
导通损耗可以通过下式计算得到:Pcon = Ucon * Icon * tsw其中,Pcon为导通损耗,Ucon为导通电压,Icon为导通电流,tsw 为开关时间。
3.关断损耗计算方法关断损耗的计算方法主要有两种:基于静态条件的方法和基于动态条件的方法。
基于静态条件的方法:即根据功率半导体元件的静态参数来计算关断损耗。
主要考虑的静态参数有关断电流和关断电压。
关断损耗可以通过下式计算得到:Psw = Isw * Vsw其中,Psw为关断损耗,Isw为关断电流,Vsw为关断电压。
基于动态条件的方法:即根据功率半导体元件的开关特性来计算关断损耗。
主要考虑的动态参数有开关时间和存储电荷。
关断损耗可以通过下式计算得到:Psw = Qrr * Urr * fsw其中,Psw为关断损耗,Qrr为存储电荷,Urr为反向恢复电压,fsw 为开关频率。
4.总损耗计算方法总损耗为导通损耗和关断损耗之和。
根据上述导通损耗和关断损耗的计算方法,可以得到总损耗的计算方法:Ptotal = Pcon + Psw其中,Ptotal为总损耗,Pcon为导通损耗,Psw为关断损耗。
半导体功率计算
半导体功率器件的散热计算晨怡热管2006-12-31 0:58:06【摘要】本文通过对半导体功率器件发热及传热机理的讨论,导出了半导体功率器件的散热计算方法。
【关键词】半导体功率器件功耗发热热阻散热器强制冷却一、半导体功率器件的类型和功耗特点一般地说,半导体功率器件是指耗散功率在1瓦或以上的半导体器件。
按照半导体功率器件的运用方式,可分为半导体功率放大器件和半导体功率开关器件。
1、半导体功率放大器件半导体功率放大器又因其放大电路的类型分为甲类放大器、乙类推挽放大器、甲乙类推挽放大器和丙类放大器。
甲类放大器的理论效率只有50%,实际运用时则只有30%左右;乙类推挽放大器的理论效率也只有78.5%,实际运用时则只有60%左右;甲乙类推挽放大器和丙类放大器的效率介乎甲类放大器和乙类推挽放大器之间。
也就是说,半导体功率放大器件从电源中取用的功率只有一部分作为有用功率输送到负载上去,其余的功率则消耗在半导体功率放大器件上,半导体功率放大器在工作时消耗在半导体功率放大器件上的功率称为半导体功率放大器件的功耗。
半导体功率放大器件的功耗为其集电极—发射极之间的电压降乘以集电极电流:P D=U ce·I c(式1—1)式中P D为半导体功率放大器件的功耗(单位W)。
U ce为半导体功率放大器件集电极—发射极之间的电压降(单位V)。
I c为半导体功率放大器件的集电极电流(单位A)。
线性调整型直流稳压电源中的调整管是工作在放大状态的半导体功率放大器件,所以其功耗的计算和半导体功率放大器件的功耗计算是相似的。
例如一个集成三端稳压器,其功耗就是:输入端—输出端电压差乘以输出电流。
2、半导体功率开关器件半导体功率开关器件例如晶体闸流管、开关三极管等。
它们的工作状态只有两个:关断(截止)或导通(饱和)。
理想的开关器件在关断(截止)时,其两端的电压较高,但电流为零,所以功耗为零;导通(饱和)时流过它的电流较大,但其两端的电压降为零,所以功耗也为零。
(完整版)晶体管(或半导体)的热阻与温度、功耗之间的关系
晶体管(或半导体)的热阻与温度、功耗之间的关系为:Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja下图是等效热路图:公式中,Ta表示环境温度,Tj表示晶体管的结温, P表示功耗,Rjc表示结壳间的热阻,Rcs表示晶体管外壳与散热器间的热阻,Rsa表示散热器与环境间的热阻。
Rja表示结与环境间的热阻。
当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta,晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。
此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式Ta=Tc=Tj-P*Rjc。
厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。
一般Pcm是指在Tc=25℃或Ta=25℃时的最大允许功耗。
当使用温度大于25℃时,会有一个降额指标。
以ON公司的为例三级管2N5551举个实例:2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。
代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj 为150度。
一般芯片最大允许结温是确定的。
所以,2N5551的允许壳温与允许功耗之间的关系为:Tc=150-P*83.3。
比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。
注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。
规格书中给出的降额为12mW/度(0.012W/度)。
我们可以用公式来验证这个结论。
假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。
则此时最大总功耗为1.5-0.012*(Tc-25)。
把此时的条件代入公式Tc=Tj- P*Rjc得出:Tc=150-(1.5-0.012*(Tc-25))*83.3,公式成立。
一般情况下没办法测Tj,可以经过测Tc的方法来估算Tj。
公式变为:Tj=Tc+P*Rjc同样以2N5551为例。
功率器件的散热计算及散热器选择详细说明
功率器件的散热计算及散热器选择H e a t D i s p e r s i o n C a l c u l a t i o n F o r P o w e r D e v i c e s a n d R a d i a t o r s S e l e c t i o n功率管的散热基础理论功率管是电路中最容易受到损坏的器件.损坏的大部分原因是由于管子的实际耗散功率超过了额定数值.那么它的额定功耗值是怎样确定的,还有没有潜力可挖呢?让我们来分析一下.晶体管耗散功率的大小取决于管子内部结温Tj. 当Tj 超过允许值后,电流将急剧增大而使晶体管烧毁.硅管允许结温一般是125~200℃,锗管为85℃左右(具体标准在产品手册中给出).耗散功率是指在一定条件下使结温不超过最大允许值时的电流与电压乘积.管子消耗的功率越大,结温越高.要保证结温不超过允许值,就必须将产生热散发出去.散热条件越好,则对应于相同结温允许的管耗越大,输出也就越大.因此功率管的散热问题是至关重要的.热阻为了描述器件的散热情况,引入热阻的概念.电流流过电阻R ,电阻消耗功率RI 2[W](每秒RI 2焦耳能量),导致电阻温度上升。
用隔热材料覆盖电阻,电阻产生的热量不能散发时,则电阻温度随着时间增加而上升,直至电阻烧坏。
一般而言,二物体间的温差越大,温度高的物体向低的物体移动量增多。
某电阻置于空气中(如图6.33所示),由于流过电流向电阻提供功率,这功率变为热能。
在使电阻温度生高的同时,部分热能散发于空气中。
开始有电流流过电阻时,电阻温度不高,因此散发的热也小,电阻温度逐渐上升,散发的热量也上升与用电阻表示对电流的阻力类似.热阻表示热传输时所受的阻力.即由U1-U2=I ×R 可有类似的关系T1-T2=P ×R T (1-1)其中T1-T2为两点温度之差,P 为传输的热功率,R T 是传输单位功率时温度变化度数,单位是℃/W.RT 越大表明相同温差下散发的热能越小.于是结温Tj,环境温度Ta,管耗PCM 及管子的等效热阻R T 之间有以下的关系 Tj-Ta=P CM ×RT (1-2)若环境温度一定(常以25℃为基准), Tj 已定,则管子等效热阻越小,管耗P CM 就越可以提高.下面我们来看看管子的散热途径及等效热阻的情况.以晶体管为例.图1-1(a)是晶体管散热的示意图.从管芯(J-Junction)到环境(A-Ambient)之间有几条散热途径: 管芯(J)到外壳(C-Case),通过外壳直接向环境(A)散热;或通过散热器(S)(中间有界面)向环境散热.不同的管芯(指材料、工艺不同)本身的散热情况不同,或者说热阻不同.外壳、散热器等的热阻也各不相同.我们可用一个等效电路来模拟这个散热情况,如图1-1(b)所示.散发的热能Pc 表示为电流的形式;两点的温度分别为结温Tj,和环境温度Ta;结到外壳的热租用Rjc 表示,外壳到环境用Rca 表示,外壳到散热器用Rcs 表示,散热器到环境用Rsa 表示,加散热器后有两条并存的散热途径.图1-1 晶体管散热情况分析(a)晶体管散热示意图 (b)散热等效电路对于小功率管,一般不用散热器,则管子的等效热阻为R T = Rjc+ Rca (1-3)而大功率管加散热器后,一般总有Rcs+ Rsa<<Rca,则R T ≈ Rjc+ Rcs+ Rsa (1-4) 不同的管子Rjc 不同,比如MJ21195的Rjc=0.7℃/W,而MJE15034的Rjc=2.5℃/W. Rca 与管壳的材料和几何尺寸有关. Rsa 与散热器的材料(铝、铜等)及散热面积等有关.并且发现将它垂直放置比水平放置散热效果好,表面钝化涂黑又可改进热外壳C 散热器S (a)Pc (b) 易腾科技有限公司w w w s r p .c o mRcs 是管壳与散热器界面的热阻.可分为接触热阻和绝缘层热阻.接触热阻取决于接触面的情况,如面积大小、压紧程度等.若在界面涂导热性能较好的硅脂可减少热阻.当需要与散热器绝缘时(如利用外壳、底座进行散热的情况),垫入绝缘层也会形成热阻.绝缘层可以是0.05~0.1mm 厚的云母片或采用阳极氧化法在表面形成的绝缘层.若已知管子的总热阻为R T ,则在环境温度为T A 时允许的最大耗散功率可由式(1-2)得出.在产品手册上给出的管耗只在指定散热器(材料、尺寸一定)及一定环境温度下的最大允许值.若散热条件发生变化,则允许的管耗也应随之改变.对于其它类型的器件(包括集成功放等),耗散功率和散热的关系均与此类似.因此在使用中必须注意环境温度及合适的散热器(同时要注意器件与散热器的压紧情况等),才能获得所需的功率.图1-2 铝散热板的热阻实际产品设计的散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。
功率MOSFET的功率损耗公式
功率MOSFET的功率损耗公式
MOSFET(金属氧化物半导体场效应管)是一种常用的功率器件,广泛
应用于各种电子设备中。
在工作过程中,MOSFET会产生一定的功率损耗,这些损耗大部分转化为热量,需要通过适当的散热手段进行散热,以保持
器件的正常工作温度。
因此,对功率损耗的准确计算和估算是至关重要的。
首先是导通损耗。
当MOSFET处于导通状态时,导通电流通过MOSFET
的导通电阻,导致功率损耗。
导通损耗可以使用以下公式进行计算:P_cond = I^2 * R_ds_on
其中,P_cond是导通损耗,单位为瓦特(W),I是MOSFET的导通电流,单位为安培(A),R_ds_on是MOSFET的导通电阻,单位为欧姆(Ω)。
其次是开关损耗。
当MOSFET从导通状态转为截止状态(或从截止状
态转为导通状态)时,会有一定的开关过程,这会产生开关损耗。
开关损
耗可以使用以下公式进行计算:
P_sw = 0.5 * V_ds * I * f_sw * (t_r + t_f)
其中,P_sw是开关损耗,单位为瓦特(W),V_ds是MOSFET的漏极-
源极电压,单位为伏特(V),I是MOSFET的导通电流,单位为安培(A),f_sw是开关频率,单位为赫兹(Hz),t_r是MOSFET的上升时间,单位为秒(s),t_f是MOSFET的下降时间,单位为秒(s)。
综上所述,功率MOSFET的功率损耗公式包括导通损耗和开关损耗两
个主要部分,分别计算了MOSFET在导通状态和开关状态时的功率损耗。
通过准确计算和估算功率损耗,我们可以更好地设计和优化电路,确保MOSFET的正常工作和可靠性。
晶体管(或半导体)的热阻与温度、功耗之间的关系
晶体管(或半导体)的热阻与温度、功耗之间的关系为:Ta=Tj-*P(Rjc+Rcs+Rsa)=Tj-P*Rja下图是等效热路图:公式中,Ta表示环境温度,Tj表示晶体管的结温, P表示功耗,Rjc表示结壳间的热阻,Rcs表示晶体管外壳与散热器间的热阻,Rsa表示散热器与环境间的热阻。
Rja表示结与环境间的热阻。
当功率晶体管的散热片足够大而且接触足够良好时,壳温Tc=Ta,晶体管外壳与环境间的热阻Rca=Rcs+Rsa=0。
此时Ta=Tj-*P(Rjc+Rcs+Rsa)演化成公式Ta=Tc=Tj-P*Rjc。
厂家规格书一般会给出,最大允许功耗Pcm、Rjc及(或) Rja等参数。
一般Pcm是指在Tc=25℃或Ta=25℃时的最大允许功耗。
当使用温度大于25℃时,会有一个降额指标。
以ON公司的为例三级管2N5551举个实例:2N5551规格书中给出壳温Tc=25℃时的最大允许功耗是1.5W,Rjc是83.3度/W。
代入公式Tc=Tj- P*Rjc有:25=Tj-1.5*83.3可以从中推出最大允许结温Tj 为150度。
一般芯片最大允许结温是确定的。
所以,2N5551的允许壳温与允许功耗之间的关系为:Tc=150-P*83.3。
比如,假设管子的功耗为1W,那么,允许的壳温Tc=150-1*83.3=66.7度。
注意,此管子Tc =25℃时的最大允许功耗是1.5W,如果壳温高于25℃,功率就要降额使用。
规格书中给出的降额为12mW/度(0.012W/度)。
我们可以用公式来验证这个结论。
假设壳温为Tc,那么,功率降额为0.012*(Tc-25)。
则此时最大总功耗为1.5-0.012*(Tc-25)。
把此时的条件代入公式Tc=Tj- P*Rjc得出:Tc=150-(1.5-0.012*(Tc-25))*83.3,公式成立。
一般情况下没办法测Tj,可以经过测Tc的方法来估算Tj。
公式变为:Tj=Tc+P*Rjc同样以2N5551为例。
半导体消耗功率计算公式
半导体消耗功率计算公式在半导体器件的设计和应用中,消耗功率是一个非常重要的参数。
消耗功率不仅直接影响着器件的工作温度和稳定性,还关系着整个系统的能耗和散热设计。
因此,准确计算半导体器件的消耗功率是至关重要的。
半导体器件的消耗功率可以通过以下公式来计算:P = I^2 R。
其中,P 为消耗功率,单位为瓦特(W);I 为器件的电流,单位为安培(A);R 为器件的电阻,单位为欧姆(Ω)。
这个公式简单明了地表达了消耗功率与电流和电阻的关系。
当器件的电流增大或者电阻减小时,消耗功率也会相应增大。
因此,在设计和选择半导体器件时,需要特别关注器件的电流和电阻参数,以便合理评估器件的消耗功率。
在实际应用中,半导体器件的消耗功率还受到一些其他因素的影响,比如器件的工作频率、工作温度等。
这些因素也需要考虑进去,才能更准确地计算出器件的消耗功率。
除了静态消耗功率的计算,动态消耗功率也是需要重点考虑的。
动态消耗功率是指器件在工作过程中由于信号传输、开关等操作而产生的功耗。
动态消耗功率的计算相对复杂一些,需要考虑到器件的工作频率、信号幅度、开关速度等因素。
通常可以通过模拟仿真或者实际测试来获取动态消耗功率的数据。
对于集成电路(IC)等复杂器件,消耗功率的计算更加复杂。
因为这些器件通常包含了大量的晶体管、电阻、电容等元件,而且工作模式也非常多样化。
因此,需要借助专业的仿真软件和测试设备来进行消耗功率的准确计算。
在实际工程中,消耗功率的准确计算对于系统的能耗和散热设计至关重要。
过高的消耗功率会导致系统的工作温度过高,影响系统的稳定性和寿命,同时也会增加系统的散热设计难度和成本。
因此,合理评估和控制器件的消耗功率是非常重要的工作。
总之,半导体器件的消耗功率计算是一个复杂而重要的工作。
通过合理的公式和方法,结合实际的测试和仿真,可以准确地评估器件的消耗功率,为系统的设计和应用提供重要的参考依据。
希望在未来的工程实践中,能够进一步完善消耗功率的计算方法,为半导体器件的设计和应用提供更好的支持。
散热器散热计算公式:
(一)散热器选择通用原则 散热器热阻Rsa 是选择散热器的主要依据。
Rsa=c ajm P TT−-(R jc+R cs)式中:R sa────散热器热阻,℃/W;R jc────半导体器件结壳热阻,℃/W;R cs────接触热阻,℃/W;T jm ────半导体器件最高工作结温,℃;T a────环境温度,℃;P c ────半导体器件耗散功率,W;T jm,P c,R jc可以从器件技术参数表中查到,或计算得到;T a是实际工作环境温度;R cs与接触材料的种类和接触压力有关,可以根据接触材料(如硅脂)的热阻参数估算得到。
所选择的散热器,其热阻值应小于以上的计算值,就可满足散热的要求。
散热器的热阻与材质,结构,表面状态,表面颜色,几何尺寸及冷却条件等有关;应该按照有关的标准用实验的方法测试得到,常用的散热器热阻曲线有3种,(1)热阻——长度曲线,(2)热阻——风速曲线,(3)功耗——温升曲线。
用CFD技术模拟仿真运算可以得到散热器的热阻值,风压及温度分布状况,为散热器选择提供参考依据。
(二)电力半导体用散热器的选择和使用原则 摘自JB/T9684-2000一﹑散热器选择的基本原则电力半导体器件用散热器选择要根据器件的耗散功率,器件结壳热阻,接触热阻,以及器件最高工作结温和冷却介质温度来综合考虑。
选用散热器时要了解散热器的散热能力范围,冷却方式,技术参数和结构特点,一种器件仅从热阻参数看,可能有多种散热器均能满足散热要求,但应结合冷却,安装,通用互换和经济性来综合考虑。
二﹑器件与散热器紧固力的要求为使器件与散热器组装后又良好的热接触,必须采用合适的安装力或安装力矩,其值由器件制造厂或器件标准给出,具有较小的范围,组装时应严格遵守不要超出范围,当器件厂未给出紧固力时,按照器件管壳与散热器接触的面积,可采用1~1.5KN/cm2的紧固力。
为了改善散热器与器件的接触,增加有效接触面积,提高散热效果,在散热器和器件之间可涂一薄层导电导热性物质如硅脂。
散热片怎么计算
散热片怎么计算有个朋友曾问到78XX散热片怎么计算。
我找不到那地方了,在这里说说看法,供参考。
散热片计算很麻烦的,而且是半经验性的,或说是人家的实测结果。
基本的计算方法是:1, 最大总热阻θja=(器件芯的最高允许温度TJ -最高环境温度TA )/ 最大耗散功率对硅半导体,TJ可高到125℃,但一般不应取那么高,温度太高会降低可靠性和寿命最高环境温度TA 是使用中机箱内的温度,比气温会高。
最大耗散功率见器件手册。
2. 总热阻θj a=芯到壳的热阻θjc +壳到散热片的θcs +散热片到环境的θsa其中,θjc在大功率器件的DateSheet中都有,例如3---5θcs对TO220封装,用2左右,对TO3封装,用3左右,加导热硅脂后,该值会小一点,加云母绝缘后,该值会大一点。
(续)散热片到环境的热阻θsa跟散热片的材料、表面积、厚度都有关系,作为参考,给出一组数据例子。
对于厚2mm的铝板,表面积(平方厘米)和热阻(℃/W)的对应关系是:500 ~~ 2.0, 250 ~~ 2.9, 100 ~~ 4.0, 50 ~~ 5.2, 25 ~~ 6.5中间的数据可以估计了。
对于TO220,不加散热片时,热阻θsa约60--70 ℃/W。
可以看出,当表面积够大到一定程度后,一味的增大表面积,作用已经不大了。
据称,厚度从2 mm 加到4 mm后,热阻只降到0.9倍,而不是0.5倍。
可见一味的加厚作用不大。
表面黑化,θsa会小一点,注意,表面积是指的铝板二面的面积之和,但紧贴电路板的面积不应该计入。
对于型材做的散热片,按表面积算出的θsa应该打点折扣……说到底,散热片的计算没有很严格的方法,也不必要严格计算。
实际中,是按理论做个估算,然后满功率试试看,试验时间足够长后,根据器件表面温度,再对散热片做必要的更改。
半导体器件的散热器设计
半导体器件的散热器设计半导体开关器件所产生的热量,在开关电源中占主导地位,其热量主要来源于半导体开关器件的开通、关断及导通损耗。
采用软开关方式(ZCS或ZVS)可以使电路中的电压或电流在过零时开通或关断,可以最大限度地减少开关损耗,但是也无法彻底消除开关管的损耗,故利用散热器是常用的主要方法之一。
1 散热器的热阻模型散热器是开关电源的重要组成元件,它的散热效果的好与坏关系到开关电源的工作性能。
散热器通常采用铜或铝,虽然铜的热导率比铝高两倍,但其价格比铝高得多,故目前普遍采用铝型材做散热器。
铝型材的表面积越大,其散热效果越好。
散热器的热阻模型及其等效电路如图1(a)、(b)所示。
图1 散热器的热阻模型及其等效电路半导体结温公式如下:式中PC——功率开关管工作时的损耗;PC max——功率开关管的额定最大损耗;Tj——功率开关管的结温;Tj max——功率开关管的最大允许结温;Ta——环境温度;Tc——预定的工作环境温度;Rs——绝垫热阻;Rc——接触热阻(半导体管和散热器的接触部分);Rf——散热器的热阻(散热器与空气);Ri——内部热阻(PN结接合部与外壳封装);Rb——外部热阻(夕卜壳封装与空气)。
根据图(b)所示的热阻等效电路,全热阻可以写成为R j-a=R i+[R b.(R s+R c+R f)]/(R b+R s+R c+R f)因为R b》(R s+R c+R f),故可以近似认为R j-a=R i+R s+R c+R f(1)PN结与外部封装之间的热阻抗(又叫内部热阻抗)R i与半导体PN结构造、所用材料、外部封装内的填充物直接相关,每种半导体都有自身圃有的热阻抗。
(2)接触热阻抗Rc是由半导体、封装形式和散热器的接触面状态所决定的。
接触面的平坦度、粗糙度、接触面积、安装方式等,都会对它产生影响。
当接触面不平整、不光滑或接触面紧固力不足时,就会增大接触热阻抗Rc。
在半导体管和散热器之间涂上硅油时,可以增大接触面积,排除接触面之间的空气,硅油本身又具有良好的导热性,可以大大降低接触热阻抗Rc。
mos管的温度降额计算
mos管的温度降额计算摘要:一、MOS 管的功耗计算方法二、MOS 管发热严重解决方法三、MOS 管选型四、元器件降额规范五、总结正文:一、MOS 管的功耗计算方法MOS 管(MOSFET,金属- 氧化物- 半导体场效应晶体管)是一种常见的半导体器件,广泛应用于放大、开关、调制等电路。
在设计和使用MOS 管时,了解其功耗计算方法至关重要。
MOS 管的功耗主要包括导通损耗、开关损耗和漏损耗。
对于NMOS 管,其导通损耗可以由以下公式计算:P_ON = (U_DS - U_GS) * I_D * R_DSON其中,U_DS 为漏极源极电压,U_GS 为栅源电压,I_D 为漏极电流,R_DSON 为导通电阻。
开关损耗和漏损耗的计算公式分别为:P_SW = (U_DS - U_GS) * I_D * R_SWP_L = I_L * I_D * R_L其中,P_SW 为开关损耗,R_SW 为开关电阻;P_L 为漏损耗,I_L 为漏极电流,R_L 为漏极电阻。
二、MOS 管发热严重解决方法当MOS 管工作在高功率状态下时,可能会出现发热严重的问题。
为解决这一问题,可以采取以下措施:1.选择合适的散热器:根据MOS 管的额定功率选择合适的散热器,以确保足够的散热能力。
2.优化电路设计:调整电路参数,如降低工作电压、降低工作频率等,以减少MOS 管的功耗。
3.采用负温度系数热敏电阻:负温度系数热敏电阻可以在温度升高时增大电阻值,从而限制电流,降低功耗。
4.强制风冷:通过强制风冷方式,提高散热效率,降低MOS 管温度。
三、MOS 管选型在MOS 管选型过程中,需要考虑以下几个方面:1.额定电压和电流:根据电路需求选择合适的额定电压和电流。
2.导通电阻:选择合适的导通电阻,以降低功耗。
3.开关速度:根据电路需求选择合适的开关速度。
4.耗散功率:根据电路需求选择合适的耗散功率,以确保MOS 管在正常工作范围内。
四、元器件降额规范在电子设备设计中,为了保证元器件的可靠性和稳定性,需要对元器件进行降额处理。
大功率半导体器件用散热器风冷热阻计算公式和应用软件
大功率半导体器件用散热器风冷热阻计算公式和应用软件-CAL-FENGHAI.-(YICAI)-Company One1大功率半导体器件用散热器风冷热阻计算公式和应用软件2012-03-12 14:17:31作者:来源:中国电力电子产业网文章概要如下:一、计算公式为了推导风冷散热器热阻计算公式作如下设定:1,散热器是由很多块金属平板组成,平板一端连在一起成一块有一定厚度的基板,平板之间存在间隙,散热器的基本单元是一块平板;2,平板本身具有一定的长度、宽度和厚度(L×l×b)。
平板的横截面积A =L × b;3,由n个平板(齿片)组成的散热器如图一所示,平板(齿片)数为n ;4,由此可见,参数L即为散热器长,或称“截长”;5,设散热器端面周长为“S”。
大功率半导体器件安装在基板上,工作时产生的热通过接触面传到散热器的过程属于固体导热。
散热器平板周围是空气。
风冷条件下平板上的热要传到空气中属于固体与流体间的传热。
所以风冷散热器总热阻等于两部分热阻之和:Rzo(总热阻)= Rth(散热器内固体传热)+ Rthk(散热器与空气间的传热热阻)引用埃克尔特和..德雷克着的“传热与传质”中的基本原理和公式。
推导出如下实用公式:Ks 为散热器金属材料的导热系数。
20℃时,纯铝:KS = 千卡/ 小时米℃;纯铜:Ks = 332 千卡/ 小时米℃;参数L、l、b、S的单位:米;风速us 单位:米/秒如散热器端面的周边长为S 、散热器的长为L,忽略两端面的面积,散热器的总表面积为: A = S L 。
代入上式后,强迫风冷条件下散热器总热阻公式也可写成:对某一型号的散热器来说参数 Ks、b、n、S 都是常数。
用此公式即可求出不同长度L、不同风速us条件下的总热阻,并可作出相应曲线。
本公式的精确性受到多种因素的影响存在一定误差。
主要有:ⅰ,受到环境空气的温度、湿度、气压等自然因素的影响。
如散热器金属的热导系数“Ks”与金属成分及散热器工作时温度有关,本文选用的是20℃时的纯铝。
功率半导体器件风冷散热器热阻计算
3.1 利用推导出的散热器热阻公式计算散热器热阻值实例
(1)DXC-661散热器热阻计算
已知条件:散热器工作环境温度 T=40℃,L=0.3m;l=0.030m;b=0.003m;n=30;S=2.25m;
铝散热器KS=175.6千卡/小时 米 ℃;u∞=6m/s;
a.散热器自身传热热阻
功率半导体器件风冷散热器热阻计算
周涛;陆晓东;李媛
【摘 要】By an analysis of the operation of heat sink, a new method is proposed for the calculation of thermal resistance for air - cooling heat sink of power semiconductor parts. For the calculation, there are 2 steps : internal heat transmission and the surface heat diffusion. The basic formulae for each step are provided, and the results are verified by using the heat sink thermal resistance curve provided by the manufacturer. The calculation result shows that this method is easy and accurate.%基于散热器工作过程分析,提出一种新型的计算功率器件用散热器热阻的计算方法。计算过程中,先将散热器的传热过程分为体内传热过程和表面散热两部分,然后详细分析了每一过程,并给出描述每一散热过程的基本公式。最后利用散热器厂家给出的实测热阻曲线进行验证。计算结果表明,这种计算散热器热阻的方法具有简单、快捷、准确的特点。
半导体器件的热阻和散热器设计
Rtd =
T jm − Ta Pd
− Rt1 =
125 − 35 − 3 = 4.2°C / W 12.5
ΔT fa = T jm − Ta − Pd Rt1 = 125 − 35 − 12.5 X 3 = 52.5°C
可选用 SRZ105 型叉指式散热器。
注:散热片制成圆形或正方形时散热效果比较理想,若制成长方形则长宽比不要超过 2:1 器件尽量安装在散热板中心处, 如要求绝缘需加云母衬垫和绝缘套管, 也可选聚酯薄膜作绝 缘衬垫。散热片应尽量远离工频变压器、功率管等热源。 (本文主要摘自《新型单片开关电源的设计与应用》沙占友等编著 电子工业出版社 2001 年版 dwenzhao 整理)
图中给出铝板和铁板的曲线,板厚均为 2mm,散热板垂直放置,自然冷却,器件装在散热板中心位置。可 见,散热板的面积越大热阻越小,二者近似成反比,在相同表面积和厚度情况下,铝板的热阻较小,且其
密度仅为铁板的 1/3,又不易生锈,所以铝板性能优于铁板。紫铜板的散热性能更好,但密度大,价格高。
五、散热板的设计步骤:
=
T jm − Tam Pdd
− Rta
根据 Rtd 值查曲线确定散热板表面积:实际面积应留出 1/3 余量,并由面积确定外形尺寸 计算效率:总功率 P 为器件消耗 Pd 功率和输出功率 Po 之和 P=Pd+Po 效率:k=Po/P
六、成品散热器的选择:常见成品散热器有筋片式、叉指式两种
基本计算公式: Rtd
TO-220 S-7 3 10 62.5 7 1 1.8 7800 7900
TO-3 F-2 3 20 40 6 1 1.8 7800 7900
TO-66 F-1 3 10 50 6.5 1 1.8 78M00 79M00
MOSFET的设计与损耗计算
MOSFET的设计与损耗计算MOSFET(金属-氧化物-半导体场效应晶体管)是一种最常用的功率开关器件,广泛应用于电子设备和电力电子系统中。
MOSFET的设计和损耗计算是确保器件正常工作和提高系统效率的重要步骤。
本文将详细介绍MOSFET的设计和损耗计算。
一、MOSFET的设计1.选择合适的MOSFET型号:根据应用需求,选择具有合适电压和电流能力的MOSFET。
常见的参数包括漏源电压VDS、漏流电流ID、开关时间等。
此外,还应考虑MOSFET的导通电阻和关断电压等参数。
2. 确定工作温度:MOSFET的温度特性会影响其性能和可靠性。
因此,需要确定MOSFET在实际工作条件下的最大温度。
通常,MOSFET的最大结温(Tjmax)是一个关键参数。
3.选择散热器:根据MOSFET的功率损耗和最大结温,选择合适的散热器来保持器件温度在安全范围内。
散热器的选择应考虑散热能力、尺寸和成本等因素。
4.确定驱动电路:MOSFET需要驱动电路来控制其导通和关断。
驱动电路应具有足够的电流和电压能力,并能提供适当的信号波形。
常见的驱动电路包括晶体管驱动器和集成电路驱动器。
5.进行电流和功率计算:根据应用需求,计算MOSFET的电流和功率。
电流计算需要考虑导通电阻和开关时间,而功率计算则需要考虑导通和关断过程中的损耗。
二、MOSFET的损耗计算1.导通损耗:MOSFET在导通状态下会有导通电阻的损耗。
导通损耗可以通过以下公式计算:Pcond = I^2 * RDS(on)其中,Pcond为导通损耗,I为电流,RDS(on)为导通电阻。
2.关断损耗:MOSFET在关断状态下会有开关过程中的损耗。
关断损耗可以通过以下公式计算:Psw = 0.5 * VDS * ID * f其中,Psw为关断损耗,VDS为漏源电压,ID为漏流电流,f为开关频率。
3.开关损耗:开关损耗是指MOSFET在开关过程中由于导通和关断之间的过渡所引起的能量损耗。
功率半导体器件的热阻介绍
功率半导体器件的热阻介绍功率半导体器件的故障率随结温的升高按照指数函数增加。
因此,使用功率半导体器件时,必须特别注意器件的温度。
为使器件正常工作,在设计电路时,应注意配置适当的散热器,保持器件的结温不超过允许值。
这样,不仅使器件能正常工作,也有利提高器件的使用效率和延长其寿命。
器件承受的最大结温,因材料而异。
对于锗半导体器件,一般为80~100℃;硅半导体器件,一般为150~200℃。
我国半导体器件厂目前的规定为:锗管最大允许结温Tjm=90℃,硅管最大允许结温Tjm=175℃。
如果偏置电路的热稳定性是够高,那么器件的允许耗散功率为:式中Pc—环境温度为Ta时的耗散功率;Rθj-a—管的结至环境的热阻(总热阻)。
在热稳定状态下,器件散热回路的热等效回路如下图所示。
图中,Rθj-c是结至壳热阻,Rθc-a是壳至环境热阻,Rθc-s是壳至散热器热阻(接触热阻);Tj表示结温度,Tc表示管壳温度,Ts表示散热器温度,Ta表示环境温度。
从上图的热等效回路,很容易求出器件结至环境的总热阻为:由于Rθc-a比Rθj-c、Rθc-s和Rθs-a大得多,故热阻Rθc-a可略去,即认为全部热量都经散热器扩散出去,于是上式简化为:对于耗散功率小于1W的器件,可不安装散热器,这样总热阻为:器件结至壳热阻Rθj-c与芯片结构设计、材料、芯片和管座连接系统的组成及连接方法和几何参数有关。
在测量Rθj-c时,要设法使管壳温度保持恒定。
Rθj-c可由下式决定:接触热阻Rθc-s由管壳和散热器之间的接触状况决定。
当接触面不不整或接触面不光滑时,管壳和散热器之间就有缝隙,Rθc-s就会变大。
为了减小接触热阻,一般要求散热器表面的不平整度要小于0.025mm,表面的粗糙度要求较高。
为了解决由于散热器表面的不平整和不光滑所引起接触热阻增大问题,可以在接触面上涂以硅油,这样就可以使接触不上的地方由硅油来填平。
接触面上的硅油不仅能增大接触面,而且还能排除接触面之间的空气,再加上硅油本身又具有良好的导热性能,这样就可以大大地减小接触热阻Rθc-s。
mos管损耗计算和三角形面积公式
一、概述MOS管损耗计算和三角形面积公式是电子工程领域中的两个重要概念。
MOS管损耗计算涉及到半导体器件的能量损耗和热量产生问题,是电路设计和功率管理的关键环节;而三角形面积公式则是数学中的基础知识,常用于计算三角形的面积,是几何学中的重要内容。
二、MOS管损耗计算1. MOS管的工作原理MOS管是一种重要的半导体器件,常用于电子电路中的开关和放大器。
其工作原理是利用电场控制载流子在介质中的流动,从而实现对电流的控制。
2. MOS管的损耗机制在MOS管工作过程中,会产生一定的能量损耗,主要包括导通过程中的导通损耗和开关过程中的开关损耗。
导通损耗主要是由于电流流动时产生的电阻损耗和通道的导通损耗;而开关损耗则是由于开关过程中产生的电荷积累和耦合损耗。
3. MOS管损耗的计算方法MOS管的损耗可以通过电路分析和仿真计算来获取,也可以利用功率损耗公式进行估算。
常用的功率损耗公式包括静态损耗和动态损耗的计算公式,通过这些公式可以快速有效地进行MOS管损耗的估算和分析。
三、三角形面积公式1. 三角形的面积计算三角形是几何学中最基本的图形之一,其面积计算是几何学中的基础知识。
三角形的面积可以通过多种方法进行计算,其中最常用的方法就是利用三角形的底和高来计算其面积。
2. 三角形面积公式常用的三角形面积公式有多种,最常见的是利用三角形的底和高进行计算的公式:S=1/2*底*高。
还有利用三边长进行计算的海伦公式、利用三个顶点坐标进行计算的海伦公式等多种计算方法。
3. 三角形面积的应用三角形面积公式在日常生活和工程领域中有着广泛的应用,如在建筑设计、地图测绘、图像处理等领域均有三角形面积的计算需求。
掌握三角形面积公式是非常重要的。
四、结论MOS管损耗计算和三角形面积公式是电子工程和数学中的两个重要内容,它们对于电路设计和几何学计算有着重要的意义。
通过深入学习和掌握这两个概念,可以更好地应用于工程实践和学术研究中,促进相关领域的发展与进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体功率器件的散热计算佛山职业技术学院陈荣光【摘要】本文通过对半导体功率器件发热及传热机理的讨论,导出了半导体功率器件的散热计算方法。
【关键词】半导体功率器件功耗发热热阻散热器强制冷却一、半导体功率器件的类型和功耗特点一般地说,半导体功率器件是指耗散功率在1瓦或以上的半导体器件。
按照半导体功率器件的运用方式,可分为半导体功率放大器件和半导体功率开关器件。
1、半导体功率放大器件半导体功率放大器又因其放大电路的类型分为甲类放大器、乙类推挽放大器、甲乙类推挽放大器和丙类放大器。
甲类放大器的理论效率只有50%,实际运用时则只有30%左右;乙类推挽放大器的理论效率也只有78.5%,实际运用时则只有60%左右;甲乙类推挽放大器和丙类放大器的效率介乎甲类放大器和乙类推挽放大器之间。
也就是说,半导体功率放大器件从电源中取用的功率只有一部分作为有用功率输送到负载上去,其余的功率则消耗在半导体功率放大器件上,半导体功率放大器在工作时消耗在半导体功率放大器件上的功率称为半导体功率放大器件的功耗。
半导体功率放大器件的功耗为其集电极—发射极之间的电压降乘以集电极电流:PD =Uce·Ic(式1—1)式中PD为半导体功率放大器件的功耗(单位W)。
Uce为半导体功率放大器件集电极—发射极之间的电压降(单位V)。
Ic为半导体功率放大器件的集电极电流(单位A)。
线性调整型直流稳压电源中的调整管是工作在放大状态的半导体功率放大器件,所以其功耗的计算和半导体功率放大器件的功耗计算是相似的。
例如一个集成三端稳压器,其功耗就是:输入端—输出端电压差乘以输出电流。
2、半导体功率开关器件半导体功率开关器件例如晶体闸流管、开关三极管等。
它们的工作状态只有两个:关断(截止)或导通(饱和)。
理想的开关器件在关断(截止)时,其两端的电压较高,但电流为零,所以功耗为零;导通(饱和)时流过它的电流较大,但其两端的电压降为零,所以功耗也为零。
也就是说,理想的开关器件的理论效率为100%(无损耗)。
但实际的半导体功率开关器件在关断(截止)时,其两端的电压最高,但电流不为零,总有一定的反向穿透电流IO,则其关断(截止)时的功耗为:POFF = Uce·IO(式1—2)式中:POFF为半导体功率开关器件在关断时的功耗(单位W)。
Uce为半导体功率开关器件集电极—发射极之间或阳极—阴极之间的的电压(单位V)。
IO为半导体功率开关器件的反向穿透电流(单位A)。
由于目前常用的半导体功率开关器件大多数是使用硅材料制造的,其反向穿透电流一般为微安级,所以半导体功率开关器件在关断时的功耗实际上是很小的,一般为毫瓦级。
实际的半导体功率开关器件在导通(饱和)时,其两端的电压很低,称为导通压降(饱和压降),对于常用的硅器件大约为0.3伏,但由于导通电流一般很大,约为几安到几十安,甚至几百安,所以其导通(饱和)时的功耗一般为几瓦到几十瓦。
实际的半导体功率开关器件在导通(饱和)时,其功耗为:Pon = US·IS(式1—3)式中:Pon为半导体功率开关器件在导通(饱和)时的功耗(单位W)。
US为半导体功率开关器件导通压降或饱和压降(单位V)。
IS为半导体功率开关器件的导通电流或饱和电流(单位A)。
另外,实际的半导体功率开关器件在导通(饱和)和关断(截止)状态之间转换时必然要经过一个中间过程,这个过程的电压和电流均较大,如果开关器件的开关特性良好,则这个过程时间很短,功耗较小;如果开关器件的开关特性较差,则这个过程时间较长,功耗较大。
以上三个过程的功耗之和,就是实际的半导体功率开关器件在一个工作周期内的功耗。
综上所述,无论是半导体功率放大器件还是半导体功率开关器件在工作时都不可避免地产生功率损耗,功耗的能量将以热量的形式散发出来,使半导体器件的温度升高。
二、功耗、热阻和温升如前所述,半导体功率器件的管耗将会使半导体器件的温度升高。
当半导体器件的温度升高到一定值时,其内部结构,即PN结将破坏而使器件失效。
例如,对于锗材料器件,结温度达到约90℃时PN结将会破坏,而对于硅材料器件,这个温度大约是200℃。
为了使半导体功率器件能正常工作,锗材料器件的极限工作温度一般规定为80℃,而硅材料器件的极限工作温度一般规定为150℃。
如果能把半导体功率器件工作时发出的热量及时散发到周围环境中去,则其工作温度就可能维持在极限工作温度以下,器件就可以处于安全的温度环境之中。
对于不同散热条件的器件,消耗同样功率时的温升是不同的。
我们把每单位功耗下器件系统的温升定义为热阻,一般用符号R θ表示,其单位是W/℃。
器件系统的热阻等于其管芯的热量传递到周围环境的传热途径上所有环节的热阻的总和,即:R jA θ=R jC θ+R CS θ+R SA θ (式2—1)式中:R jA θ— 器件外壳的总热阻 R jC θ— 管芯到外壳的热阻 R CS θ— 外壳到器件表面的热阻 R SA θ— 器件表面到周围环境的热阻 图2 — 1为半导体功率器件安装的示意图图2 — 1 半导体功率器件安装示意图图2 — 2为半导体功率器件的传热途径和热阻示意图图2 — 2 半导体功率器件的传热途径和热阻示意图在热传导过程中,功耗温升与热阻之间有以下关系: P D = ∑∆θR T(式2—2) 式中:P D — 半导体器件的功耗,单位:W ΔT — 芯片与环境的温度差,单位:℃∑ R θ—在ΔT 的温差下,传热系统各环节热阻的总和,单位:℃/W下面把(式2—1)中的各项热阻作如下说明: 1、R jA θ— 器件外壳的总热阻该项热阻主要由整个器件(包括管芯、底板、管壳)的材料、结构所决定。
表2 — 1给出了几种不同封装的半导体功率器件的R jA θ值。
表2 — 1几种主要外壳封装的半导体功率器件的R jA θ值。
2、R jC θ— 管芯到外壳的热阻该项热阻主要与器件的底座的材料和尺寸有关,铜底座和厚板结构者热阻较小。
表2 — 2给出了几种不同封装的半导体功率器件的R jC θ值。
表2 — 2几种主要外壳封装的半导体功率器件的R jC θ值。
3、R CS θ— 外壳到器件表面的热阻该项热阻主要由器件外壳的材质和厚度和封装方式决定。
铜质厚板的器件热阻最小,铁质薄板的次之,塑料封装的热阻最大。
该项热阻也和是否装有散热板以及管壳与散热板之间的导热介质有关。
表2 — 3给出了几种不同封装和不同导热介质的半导体功率器件的R CS θ值。
表2 — 3几种主要外壳封装的半导体功率器件的R CS θ值。
4、散热器的热阻R Tf该项热阻主要由器件的散热系统的材料和结构有关。
铜质的散热器热阻最小,铝质散热器热阻也较小,铁质散热器的热阻较大,而不外加散热器时热阻最大;采用自然空气冷却时的热阻较大,采用强制风冷时的热阻较小。
散热器的的表面积,即散热器与空气直接接触的面积是决定散热器热阻的主要参数。
此外,散热器的安装位置对热阻也有影响。
例如水平放置的平板散热器的热阻比垂直放置的要大。
铝质平板散热器的热阻可参考表2 — 4铝质平板散热器的热阻也可参考图2 — 3选取图2 — 3 铝质平板散热器的热阻三、计算实例现有一只S — 7封装的硅功率半导体器件,查器件手册得知其极限运用温度T jM =150℃,现根据其工作条件决定工作环境温度T A =70℃。
1、求它在不带散热器时的极限功耗。
2、若它在实际工作时的功耗为750mw ,极限运用温度T jM 为125℃,求它在不带散热器时的极限环境温度。
3、若要求它的实际功耗为5.5W ,允许的最高器件工作温度为100℃,允许最高工作环境温度为40℃。
问该器件正常工作时是否需要加装散热器?如果要加装平板散热器,又要求散热器垂直放置,求所需的散热器面积。
解:1、查表表2 — 1,得S — 7封装的器件的热阻R jC =63 ℃/W 代入式2 — 2:P D =∑∆θR T =jA A jM R T T θ-=6370150-=1.27(W) 也就是说,S — 7封装的硅功率半导体器件不带散热器在极限运用温度为T jM =150℃,工作环境温度T A =70℃时的允许功耗不得超过1.27W 。
2、若它在实际工作时的功耗为750mw ,极限运用温度T jM 仍为150℃,据式2 — 2:P D =∑∆θR T=jAA jM R T T θ- 则: T A =T jM — R jA θ·P D=125 — 63×0.75 =77.75℃3、若要求它的实际功耗为5.5W ,这已经超出了它在不带散热器时的极限功耗,所以器件必须加装散热器。
加装了散热器之后,总热阻为管芯到外壳的热阻R jC θ、外壳到器件表面,即到散热器的热阻R CS θ及散热器热阻R Tf 之和,则式2 — 2应改写为:P D =TfCS jC A j R R R T T ++-θθ由表2 — 2、表2 — 3、分别查得S —7封装的器件的R jC θ=4 ℃/W 、 R CS θ=3 ℃/W ,把P D =5.5W 、R jC θ=4 ℃/W 、R CS θ=3 ℃/W 代入上式得: 散热器热阻R Tf 应为:R Tf =DAj P T T - — R jC θ — R CS θ=5.540100- — 4 — 3=3.9℃/W查表2 —4或图2 —3均可得铝平板散热器的面积S=200cm2(厚1.5mm)。
四、工艺问题在安装散热器时还应注意以下几点工艺问题::1、散热器与器件的接触面应平整,在整个接触面内测量,平面度误差不大于0.1mm。
2、在器件与散热器接触面之间最好涂一层硅脂或凡士林,以增加导热性能,减少热阻。
3、一般用M3或M4的螺拴将器件紧固在散热器上,相应的紧固扭矩大约是3 —4N·m。
扭矩太小会增加热阻,扭矩太大则会使螺拴—螺母系统产生非弹性变形,反而减小紧固力,甚至使螺拴—螺母系统滑扣而失效。
4、散热器经表面电氧化处理后表面呈黑色,可提高散热效果。
5、大部分的功率半导体器件的金属外壳同时作为一个电极使用,当器件的金属外壳对应的电极要求对散热器有电绝缘要求时,应使用专用的云母或聚脂绝缘垫片和绝缘垫圈紧固器件,并应在安装后检查确保绝缘良好。
6、如果设备的结构紧凑,空间位置不允许安装足够尺寸的散热器,或器件周围的空间较小,不能保证足够的空气对流,则应考虑使用强制冷却的方法,即在设备内安装冷却风扇。
使用体积较小而面积较大的翅式散热器可得到比平板散热器更好的散热效果。
一种内部充有优良导热液体的热管散热器,散热性能更为优良,已经逐步应用在高挡的音频功率放大器上。
—全文完—二00三年五月参考文献:1、清华大学电子工程系、工业自动化系编:《晶体管电路》。