单相电机中电容的作用

单相电机中电容的作用
单相电机中电容的作用

目前单相异步电容式电动机主要有三大类

第一类,则是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的

第二类,则是有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在。

第三类,即是有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。

首先简单说,

第一类,由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。

第二类,这种是以前设计的为主,启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。

第三类的,他的原理就是,他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过离心开关,这种开关是一种双掷开关了,这样启动时候,串一个大容量的电容[俗称启动电容](我们也知道,电容容量越大,移相电流越大,启动性能越好,但太大绕组则会发热)所以,这种电动机,就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高钮矩输出转动起来。

但启动之后,为了可以避免第二类电动机的缺点,沿用第一类的优点,离心开关离心接到另一个触点上,然后并入一个容量比较小的电容[俗称运转电容],这样辅绕组依然在工作,但电流比启动时候小了

这样,电动机就同时具有了第一类以及第二类的优点,这种电动机目前被广泛应用在单相动力系统中,他的确很优秀。

你可以到一些卖切割机以及空气压缩机(但缸的似乎现在很多为了造价低廉还是用第二类电动机,而双缸以上的,几乎都是这种电动机了)的地方看看,电动机上都有2个金属盒,圆柱体的,每个就是装一个电容器,而他们一个是启动电容(容量大)另一个则为运转电容(容量小)

大概就是这样,离心开关在第二类中,只起到连接和分断辅绕组(也称启动绕组)以及电容器与电路之间的连接,,而在第三类电动机中,则起到控制辅绕组使用的电容器是大容量的还是小容量的

[例1]一台金龙牌300mm台扇,在中、低挡位不能启动运转,电机发出“哼哼”声;在高挡位时,扇叶运转很慢。

打开风扇前罩,用手拨动扇叶感觉很吃力,扇叶不能靠惯性转动。拆开机头外壳,发现电机轴承中润滑油已干涸,用注射器在前后轴承中滴进少许润滑油后,拨动扇叶转动自如。

通电试机,发现电机运转仍很不理想,在中、低挡位扇叶只是很缓慢地运转,在高挡位上转速也远达不到要求,吹出来的风很弱。再次拆开电机外壳,发现有部分线圈烧焦变色。再检查电扇机座底板,发现所配用的电容容量为3uF/500V,根据经验容量显然过大。

经询问用户得知,去年自己曾修过这台风扇,因嫌启动性能不好,就向邻居电工要了一只吊扇用的电容器装了上去,结果风扇越用越坏,最后导致启动线圈发热严重而烧毁。

[例2]一台得康牌家用保健摇摆机,空载时电机带动的搁架摇摆10多分钟即自动停止,而将双腿放上搁架后,只能摇摆几分钟就停了下来。

用户告知:此机因摇摆无力曾送出修理,换了一只电容器后,虽然运转很有力,但运转几分钟就会停下来。

打开摇摆机底板,发现新换上去的电容规格为3uF/400V。通电观察,电机运转10分钟后即停止转动,摸电机外壳很烫,手根本不能在上面停放。这说明控制电路已经处于过热保护状态,电机因保护电路切断电流而停转。换用一只规格为1.5uF/500V的电容,通电试机,电机连续运转了30分钟,机壳只有微热,温度升高正常,并且运转也很有力。

有的人在维修单相电容运转式电机时,为了提高电动机的启动转矩,常随意选大容量的电容换上,误认为电容容量越大越好。其实,这种做法虽能提高启动转矩,但电机的启动电流也会以更大的比率增加,这对电机是极为不利的。一般情况,在单相电容启动式电机中,启动绕组中串联的电容容量增加1倍,启动转矩只能增加50%,而启动电流却要增加200%。在单相电容运转式电机中,当电容容量增加2倍时,启动转矩虽可增加近2倍,但电机的效率将降低50%。这会使电机几乎不能驱动原来的负载,如继续通电,电机长时间处于过负载状态,将烧坏绕组。

可见,维修电机时,如果对配用的电容器选择不当,会给电机带来严重后果。更换启动、运转电容时,最好选用与原配置参数相同的电容。如果电容器损坏,又不知道或看不清标注参数,可按下面公式计算选配:

C=8JS(uF)

式中,C-配用的电容量,单位为微法(uF);J-电机启动绕组电流密度,一般选5~7A/平方mm;s-启动绕组导线截面积(平方mm)。

此文例1中金龙台扇电机启动绕组线圈重新绕制后,测出启动绕组线径为

0.17mm,则截面积S=0.0226平方mm,选J=7A/平方mm,所以

C=8×7×0.0226≈1.26uF

实际选配参数为1.2uF±5%,耐压500V的电容。另外应注意电容的耐压值一

定要高于400V,以防击穿。

单相电机各种接法

单相双值电容电机接线 1.电源接在主绕组两端,副绕组串联电容组之后,与主绕组并联。 2.电容组与主绕组首端相接正转,电容组与主绕组尾端相接反转。 3.启动电容串接离心开关,然后和运转电容并联,组成电容组。启动电容大,运行电容小。主绕组阻值小,副绕组阻值大。

220V交流单相电机起动方式大概分一下几种: 第一种,电容运转式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。 图1 电容运转型接线电路 第二种,电容启动式:电机静止时离心开关是接通的,给电后起动参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 图2 电容起动型接线电路

第三种,电容启动运转式(双值电容电机):电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3 图3 电容启动运转型接线电路(双值电容器) 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。启动绕组阻值大,运转绕组阻值小。 正反转控制: 图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。

单相双值电容电动机

单相双值电容加离心开关电动机 传宝专用: 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。接线图 第二种,电机静止时离心开关就是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关就是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 正反转控制: 图4就是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值就是一样的,就就是说电机的起动绕组与运行绕组就是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。 以后我会陆续告诉大家倒顺开关实物的接线图

单相电动机电容选择

单相电机电容 2011年06月27日17:02:31 单相电机电容 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。Y5e838 电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 正反转控制:Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号 以后我们会陆续告诉大家倒顺开关实物的接线图Y5e838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号

电容启动三种单相电动机正反转接线(图)

电容启动三种单相电动机正反转接线(图) 江苏省泗阳县李口中学沈正中 单相电容启动电动机有两个绕组,分别是主绕组(又叫工作绕组、运行绕组),另一个是副绕组(又叫起动绕组)。两个绕组的线径和匝数一般是不同的,主绕组线径比粗些,匝数略少些。副绕组电阻大些,用万用表量下就知了,但也有少数主绕组和副绕组完全相同(倒顺电动机)。多数电动机的副绕组和主绕组在电路中是同时工作的。接线方法是:副绕组和电容电路串联后与主绕组并联,再接到220V 电路中。 单相电容启动电动机可分为三种,即电容运转式、电容起动式和电容运转兼起动式(双电容电动机)。其正反转比起三相电动机(任意交换两相接线即可)正反转的接线稍复杂些,因为单相电动机有启动电容、运行电容、离心开关等辅助装置,且运行绕组和启动绕组也不同,接错线有可能损坏电动机。 单相电机从绕组上看有两种:一种是正反转电动机(也叫倒顺电动机),主绕组和副绕组完全相同;另一种是单向电机,主绕组和副绕组不同,反转时,它的输出功率将变小,有可能损坏电动机。 一、电容运转式电动机 电容运转式电动机是在副绕组上串接有一个电容器,然后与主绕组并联,电动机在工作时或起动时,电容器都参与主绕组共同工作。其接线如图1、图2、图3所示。

二、电容起动式电动机 电容起动式电动机是在副绕组上串接一个电容器和离心开关后,再与主绕组并联。电容器在电动机起动时有电流通过,待电动机转速达到其额定转速的70%左右,由于转子在运转时产生离心力作用,把离心开关断开,切断了通过电容器的电源,单独由主绕组工作。其接线如图4、图5、图6所示。

三、电容运转兼起动式电动机 电容运转兼起动式电动机是采用双电容连接形式,多用在功率1 KW以上的单相电动机中。其中的起动电容C2容量比运转电容C1容量大一些,接线时不得接错。其接线如图7、图8、图9、图10所示。

单相电机电容接线图

单相电机电容接线图 220V交流单相电机起动方式大概分一下几种:第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。运转速率大致保持定值。主要应用于电风扇,空调风扇电动机,洗衣机等电机。接线图 第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。 第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。如图3。838电子 带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。 电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般都大于400V。 正反转控制: 图4是带正反转倒顺开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。一般洗衣机用得到这种电机。这种正反转控制方法简单,不用复杂的转换开关。 图1,图2,图3,图5 正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。 以后我们会陆续告诉大家倒顺开关实物的接线图 一般单相电机是起动绕组比运行绕组的电阻大. 一般如果要调速抽头的话,调速抽头一般是在运行绕组的情况多 如果调速抽头在运行绕组。火线接调速抽头时和接公共点时一样大.

单相电容式电机

电容分相式单相电机正反转电路图 加一个起动电容,使主绕组和副绕组中的电流在空间上相差90度,从而产生一个(单相)旋转磁场。在这个旋转磁场的作用下,电机转子就可以自动启动,起动后,待转速升到一定时,借助一个安装在转子上的离心开关或其他自动控制装置将启动绕组断开,正常工作时只有主绕组工作。因此,起动绕组可以做成短时工作方式。但有很多时候,起动绕组并不断开,我们称这种电动机为电容式单相电动机,要改变这种电机的转向,可由改变电容器串接的位置来实现。

单相异步电容式电动机 第一类 是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的。由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。 第二类 有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在;这种启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。 第三类 有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。原理就是:他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过使用离心开关来解决(注:离心开关是一种双掷开关,其作用是(1)单相电机:用于启动绕组的通断(启动绕组为短时工作制),当转速到达某一值时,离心开关断开;(2)三相电机需要反接制动时,常用离心开关,当反接时转速降到很低时,离心开关断开,反接运转结束。)。这样启动时,会串一个大容量的电容,即启动电容(我们也知道,电容容量越大,移相电流越大,启动性能越好,但容量太大绕组则会发热)也就是说就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高扭矩输出转动。但启动之后,为了避免第二类电动机的缺点,沿用第一类的优点,离心开关离心接到另一个触点上,然后并入一个容量比较小的电容[俗称运转电容],这样辅绕组依然在工作,但电流比启动时候小了。这样,电动机就同时具有了第一类以及第二类的优点,这种电动机目前被广泛应用在单相动力系统中。 离心开关在第二类中,只起到连接和分断辅绕组(也称启动绕组)以及电容器与电路之间的连接,,而在第三类电动机中,则起到控制辅绕组使用的电容器是大容量的还是小容量的作用。

单相电机中电容的作用

目前单相异步电容式电动机主要有三大类 第一类,则是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的 第二类,则是有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在。 第三类,即是有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。 首先简单说, 第一类,由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。 第二类,这种是以前设计的为主,启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。 第三类的,他的原理就是,他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过离心开关,这种开关是一种双掷开关了,这样启动时候,串一个大容量的电容[俗称启动电容](我们也知道,电容容量越大,移相电流越大,启动性能越好,但太大绕组则会发热)所以,这种电动机,就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高钮矩输出转动起来。 但启动之后,为了可以避免第二类电动机的缺点,沿用第一类的优点,离心开关离心接到另一个触点上,然后并入一个容量比较小的电容[俗称运转电容],这样辅绕组依然在工作,但电流比启动时候小了 这样,电动机就同时具有了第一类以及第二类的优点,这种电动机目前被广泛应用在单相动力系统中,他的确很优秀。 你可以到一些卖切割机以及空气压缩机(但缸的似乎现在很多为了造价低廉还是用第二类电动机,而双缸以上的,几乎都是这种电动机了)的地方看看,电动机上都有2个金属盒,圆柱体的,每个就是装一个电容器,而他们一个是启动电容(容量大)另一个则为运转电容(容量小)

单相电动机电容接线及接反转方法

单相电动机电容接线方法 单相电动机有三个抽头,首先用万用表电阻挡测量三个线头之间的电阻值,电阻最大的两个线头之间并联电容,另一个线头(公共端)接电源的一端。然后用万用表的电阻挡测量公共端与接电容两端的线头之间的电阻,阻值稍大的一端接电源的另一端,绝对一次性接正转,若要想改变方向,将接电容一端的电源线改接为另一端即可 三个出线的单相电机主绕组、副绕组容易判断: 1、先两两测出三条线的阻值,记住最大值的两条线及其阻值,第三条线就是主、副的连接点; 2、分别测出接点与两端的阻值(这两个阻值之和必须等于上述的最大值)。其中阻值较小的是主绕组,阻值较大的是副绕组。 一般对于单相电容启动交流电机,与电容串联的那个绕组接头就是副绕组。 设副绕组电阻为R1,主绕组电阻为R2,则 R1>R2。(主绕组功率大,电阻小) 用万用表测量比较三个端子中每次两个端子之间的电阻值,先寻找火线通过电容连接的副绕组接头端子:其和另外两个端子之间电阻有最大值(R1串联R2),和第二大值R1)剩下二个端子中找到有最小阻值R2和第二小阻值R1的那个即为接零线的端子,也就是主绕组和副绕组的公共端子。 如果电机没有毛病,那您可以用万用电表(如果是指针式万用表就将其调到R*1档,并且将表笔短路,调节万用表的“欧姆调零”钮使表针0欧姆处;如果是数字万用表,则把表调到R档的200处)来测量这三根线,其中有一根线和其它两根线是是都通的并且通时的电阻值有一个比较大些一个比较小些,这根线应该接线路上的零线;测量得出电阻比较小的那根线应该接线路上的火线(经过开关出来的那个接头)电阻比较大的那个线头应该接电容的一个头,而电容的另一个头则接到火线(就是和电阻比较小的那根线并在一起后接火线);因为,电阻比较大的那根线和接零线的那根线在电机里是电机的启动线圈,而电阻比较小的那根线和接零线的那根线在电机里是电机的运行线圈。按照这样接法后,再按正确的其它接线把线路接好,通电就应该会正常运转了。

单相电动机电容选配

单相电动机电容选配 江苏省泗阳县李口中学沈正中 一、耐压 耐压必须大于交流输入电压最大峰值:220V×≈311V,可取400V 耐压或更高的耐压。 耐压公式:U C≥(V)。 二、电容选配 涉及物理量及单位、常数: C为电容值,单位μF;I为电流值,单位A;U为电压值,单位V;P为功率值,单位W;cosφ为功率因数,一般在~。通常取。 1、只用一只电容的单相电动机 用一个电容,既是启动电容又是运行电容,电风扇、洗衣机等小容量电动机常用。 电容计算公式:C=1950I cosφ/U=1950Pcosφ/U2 =1950×P×2202≈。 2、用一只电容只是启动时投入,正常运行时断开,用转换开关或离心开关切换 启动电容器容量公式:C Q=3500I cosφ/U=3500Pcosφ/U2=3500×P×2202≈。 3、用2个电容,一个负责运行,一个负责启动 运转电容容量公式:C Y=1200I cosφ/U=1200Pcosφ/U2 =1200×P×2202≈。 起动电容容量公式:C Q=(一般取为运转电容值的2~3倍, 通常取)

一般如果不用计算,按每100W配运行电容2~3μF,通常取μF /W,起动电容是运行电容的2~3倍,通常倍。 电动机的电容选择对电压要求严格,一定要等于或大于于电动机额定电压的倍以上。额定电压220V电源的,电容额定电压通常不能低于400V。电容值有一定的宽泛性,大点小点短时间内没有太大关系,特别是启动电容,可以在工作电容的2~5倍选取。但不能为了提高电动机的启动转矩,常随意选大容量的电容换上,误认为电容容量越大越好。其实,这种做法虽能提高启动转矩,但电机的启动电流也会以更大的比率增加,这对电机是极为不利的。一般情况,在单相电容启动式电机中,启动绕组中串联的电容容量增加1倍,启动转矩只能增加50%,而启动电流却要增加200%。在单相电容运转式电机中,当电容容量增加2倍时,启动转矩虽可增加近2倍,但电机的效率将降低50%。这会使电机几乎不能驱动原来的负载,如继续通电,电机长时间处于过负载状态,将烧坏绕组。 可见,如果对配用的电容器选择不当,会给电机带来严重后果。更换启动、运转电容时,最好选用与原配置参数相同的电容。如果电容器损坏,又不知道或看不清标注参数,可按上面的方法进行计算。 下图是单电容单相电动机接线图,cosφ取~时,运行电容公式。

220v单相电机知识

什么有的离心开关电机是两个电容而有的离心开关电机的却是一个? 两个电容的电机,一个是启动电容一个是运行电容,启动电容接在离心开关上 目前单相异步电容式电动机主要有三大类 第一类,则是无离心开关,单电容移相式的,比如电风扇那些,通常都是小电动机上用的 第二类,则是有离心开关,单电容移相启动式的,比如一些风机等设备,但目前由于各种原因,这种电动机似乎越来越少。但在一些特殊地方,的确他还存在。 第三类,即是有离心开关,双电容双值移相式的,目前在很多地方最常见,比如空气压缩机,切割机,台式电钻等地方。 首先简单说, 第一类,由于这种设计,启动钮矩不大,所以不适合高载荷设备,特别是比如空气压缩机这些的启动需要很大钮矩的,这种无法胜任。 第二类,这种是以前设计的为主,启动性能比前者大,但是他只适合启动后稳定运行的,因为他的辅助绕组是作为启动使用,启动后就完全依靠主绕组的旋转磁场,已经没有所谓的换相了,因为电容器以及辅绕组在电动机转速到达一个速度后,通过离心开关以及分离,他们已经不工作,这种电动机致命的缺点就是,一旦带一些高载荷设备,比如空气压缩机,经常会转转就慢下来,然后又再次通过辅绕组启动,所以实在不适合很多地方,通常只有用在风机等地方才有一些用,但已经被第三类所说的那种电动机取代。 第三类的,他的原理就是,他既有主绕组,也有辅绕组,也有离心开关,辅绕组和主绕组一同工作,和第一类所说的那种差不多,但这样启动性能下降了怎么办?他们就通过离心开关,这种开关是一种双掷开关了,这样启动时候,串一个大容量的电容[俗称启动电容](我们也知道,电容容量越大,移相电流越大,启动性能越好,但太大绕组则会发热)所以,这种电动机,就是在电动机低速时候,并入使用大的电容,这个大电容所提供的电流通常都超过绕组的额定电流,这样的高电流驱动下,旋转磁场非常强烈,从而驱动转子高钮矩输出转动起来。

单相电容异步电动机原理_单相异步电动机接线图

单相电容异步电动机原理_单相异步电动 机接线图 单相电机一般是指用单相沟通电源(AC220V)供电的小功率单相异步电动机。这种电机一般在定子上有两相绕组,转子是一般鼠笼型的。两相绕组在定子上的散布以及供电状况的纷歧样,能够发作纷歧样的起动特性和作业特性。当单相正弦电流转过定子绕组时,电机就会发作一个交变磁场,这个磁场的强弱和方向随时刻作正弦规则改动,但在空间方位上是固定的,所以又称这个磁场是交变脉动磁场。这个交变脉动磁场可分解为两个以相同转速、旋转方向互为相反的旋转磁场,当转子接连时,这两个旋转磁场在转子中发作两个巨细持平、方向相反的转矩,使得构成转矩为零,所以电机无法旋转。当咱们用外力使电动机向某一方向旋转时(如顺时针方向旋转),这时转子与顺时针旋转方向的旋转磁场间的切开磁力线运动变小;转子与逆时针旋转方向的旋转磁场间的切开磁力线运动变大。这么平衡就打破了,转子所发作的总的电磁转矩将不再是零,转子将顺着推进方向旋转起来。要使单相异步电动机能主动旋转起来,咱们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个适合的电容,使得与主绕组

的电流在相位上近似相差90度,即所谓的分相原理。这么两个在时刻上相差90度的电流转入两个在空间上相差90度的绕组,将会在空间上发作(两相)旋转磁场,图1电容分相电动机接线图及向量图在这个旋转磁场效果下,转子就能主动起动,起动后,待转速升到必守时,仰仗于一个设备在转子上的离心开关或别的主动操控设备将起动绕组断开,正常作业时只需主绕组作业。因而,起动绕组能够做成短时作业办法。但有许多时分,起动绕组并不断开,咱们称这种电机为单相电机,要改动这种电机的转向,只需把辅佐绕组的接线端头沟通一下即可。在单相异步电动机中,发作旋转磁场的另一种办法称为罩极法,又称单相罩极式电动机。此种电动机定子做成凸极式的,有南北极和四极两种。每个磁极在1/3--1/4全极面处开有小槽,把磁极分红两个有些,在小的有些上套装上一个短路铜环,好象把这有些磁极罩起来相同,所以叫罩极式电动机。单相绕组套装在悉数磁极上,每个极的线圈是串联的,联接时有必要使其发作的极性顺次按N、S、N、S摆放。当定子绕组通电后,在磁极中发作主磁通,依据楞次规则,其间穿过短路铜环的主磁通在铜环内发作一个在相位上滞后90度的感应电流,此电流发作的磁通在相位上也滞后于主磁通,它的效果与电容式电动机的起动绕组恰当,然后发作旋转磁场使电动机翻滚起来。

单相电机的启动电容和运转电容

单相电机的启动电容和运转电容 2011/07/20 8:03 来自:网络整理:nemoium 单相双电容电动机接线示意图 一。 220V单相双电容电动机有一个启动电容和一个运行电容。容量较大的是启动电容,容量较小的是运行电容。电动机启动后离心开关将启动电容从电路中断开。 如果缺少启动电容,电动机启动困难或无法启动(常表现为空载启动正常,加载后无法启动);如果缺少运行电容,电动机可以启动,但输出功率变小(常表现为带负载能力降低)。 二。接法 一般启动电容是串接在单相电机的启动绕组上,与工作绕组并联。

三。启动电容和运行电容容量计算 运行电容容量 C=120000 * I / 2.4*f*U*cosφ 式中:I为电流;f为频率;U为电压;cosφ为功率因数取0.5~0.7。 运行电容工作电压大于或等于(2~2.3)U。 起动电容容量=(1.5~2.5)运行电容容量。 起动电容工作电压大于或等于1.42 U。 (工作时电容两端电压为311V时为最佳) 工作电容按每100W1-4UF.启动电容是工作电容4-10倍(电动机要求启动转距大取大值). 经验数据,如果你的电机不超过200W,启动电容不会超过100uF,如果运转电容,你可以选择几个数值通电试验,看哪一个电容的容量下整机电流最小,则该电容的容量就是最佳数值.) 单相分相电机电容器的容量可以用经验公式C=35000I/2PUfcos&算出 如;I=250W/220V=1.2A C=35000x1.2/2x1x50x220X0.8=24uf

可以选择350V30uf的电容 关于所配电容易损.首先应考虑电容器的耐压是否大于1.5倍(包括1.5倍)以上的额定电压:其次是容量是否太小(因为启动电流较大),这要由试验决定。实际中还没有总结出计算启动、工作电容的简便公式。表1给出上述《教材》中的“单相电动机启动电容和工作电容范围参考表”供参考。 四。离心开关 装有离心开关的单相电机,也就是双电容的电机,一般都是重负荷启动,需要一个大的启动力矩,离心开关上面串接一个启动电容,当转速达到一定转数时轴套离心器靠离心力顶开离心开关,切断启动电容,完成了启动任务后这个时候还剩一个运行电容持续工作。 离心开关固定电机端盖里面,轴套离心器装在电机转子轴上,旋转时靠离心力顶开开关触点五。故障实例 单相异步电动机常用的有:电容运转,电容启动,电容启动,电容运转,电阻(分相)启动四种,原理图如图1、2、3,4所示。电容损坏会导致电机不启动,运转无力,烧副烧组等故障。 笔者以实例谈谈在电机无机械故障的前提下.电容损坏引起的故障检修。 例1:武汉产XXD一120洗衣机电机.嗡嗡响不转。 该机为单相电容运转式4极电机,电容和副绕组串联后再和主绕组并联接入电路,如图1所示。电机嗡嗡响不转,可能是运转电容坏、副烧组开路或短路引起。首先取下电容,用万用表R×1k挡测,发现已无充放电能力。用万用表R×1挡测电机引出的三根线,红线和蓝线阻值为27n,黄线和蓝线阻值为27n,红线和黄线阻值为54n,说

单相电机选配运行电容公式

单相电机选配运行电容公式 一、选配公式1: C=8JS(uF) 式中,C-配用的电容量,单位为微法(uF);J-电机启动绕组电流密度,一般选5~7A/mm2 ;S-启动绕组导线截面积(mm2 )。 例如:金龙台扇电机启动绕组线圈重新绕制后,测出启动绕组线径为0.17mm2 ,则截面积S=0.0226mm2 ,选J=7A/mm2 ,所以C=8×7×0.0226≈1.26uF 实际选配参数为1.2uF±5%,耐压500V的电容。另外应注意电容的耐压值一定要高于400V,以防击穿。 二、选配公式2: 单相运行电容公式:C=1950×I/U×cosφ(I-电机额定电流,U-电源电压,cosφ-功率因数为0.7~0.8间) 例如:一台单相电机,额定电流为4.8A 功率为750W 如何选择它的电容值?C=1950×I/U×COSφ=1950×4.8/220×0.8≈34(μF) 例如:求140W电机额定电流:I=P/U×cosφ(正常运行经电容补偿提高了功率因数,cosφ为0.9) I=140/220×0.9≈0.7(A) 求运行电容量:C=1950×0.7/220×0.75≈4.7(μF) 单相电动机工作电容按每100W 1-4uf选用 三、选配公式3:三相电动机,分相电容器容量公式:C=350000*I/2p*f*U*cosφ 耐压公式:U(电容)大于或等于1.42*U C为容量;I为电流;f为频率;U 为电压;功率因数高2p=2,功率因数低2p=4;cosφ为功率因数取0.55~0.75。 四、选配公式4:双值电容的运转电容容量公式:C=120000×I/2p×f×U× cosφ2p=2.4 耐压公式:U(电容)大于或等于(2~2.3)×U 起动电容容量公式:C=(1.5~2.5)×C(运转)耐压公式:U(电容)大

交流单相电动机(电容)及正反转接线(图)

交流单相电动机(电容)及 正反转接线(图) 江苏省泗阳县李口中学沈正中 220V交流单相电机一般都有两个绕组,其中阻值大的是启动绕组(也叫副绕组),阻值小的是运行绕组(也叫主绕组),如果两绕组阻值相同,则不用区分启动绕组和运行绕组,任一组都可作启动绕组或运行绕组。用万用表找到引出端测量电阻就可以发现了:对于起动绕组与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。电阻最大的是两线圈的串联阻值,最小的是运行绕组,连接电源,阻值在中间的就是启动绕组,串联电容后连接电源。 起动方式一般都是分相起动式,可分为 以下几种: 第一种,系由辅助起动绕组来辅助启 动,其起动转矩不大。运转速率大致保持定 值。主要应用于电风扇,空调风扇电动机, 洗衣机等电动机,如图1所示。图1电容运转型接线电路第二种,电机静止时离心开 关是接通的,给电后起动电容参 与起动工作,当转子转速达到额 定值的70%至80%时离心开关便 会自动跳开,起动电容完成任务, 并被断开,不参与运行工作,而 电动机以运行绕组线圈继续动作,图2电容起动型接线电路 如图2所示。

第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。而运行电容串接到起动绕组参与运行工作。这种接法一般用在空气压缩机,切割机,木工机床 等负载大而不稳定的地方,如 图3所示。带有离心开关的电 机,如果电机不能在很短时间 内启动成功,那么绕组线圈将 会很快烧毁。 电容值:双值电容电机, 起动电容容量大,运行电容图3电容启动运转型接线电路(双值电容器) 容量小,耐压一般大于400V。 正反转控制: 图4是带正反转开关的接线 图,通常这种电机的起动绕组与运 行绕组的电阻值是一样的,就是说 电机的起动绕组与运行绕组是线径 与线圈数完全一致的。一般洗衣机 用得到这种电机。这种正反转控制 方法简单,不用复杂的转换开关。图4开关控制正反转接线图1、图2、图3正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。 另对于推拒式电动机,我们通常移动电刷在换相器的位置就可以改变电动机的旋转方向;罩极式电动机,这中电动机只有将电动机的定子铁芯取出到个方向就可以使电动机反转;普通串激电动机变幻电怄或磁场的电源线头就可以了。

单相电容式异步电动机

单相电容式异步电动机绕组的结构与接线单相电容式异步电动机定子绕组,多见于同心式绕组,双层结构。常见主绕组嵌在定子线槽下层,副绕组嵌在上层,下图为2级24槽电机,正弦绕组排列和接线展开图。一般情况下,节距大的绕组匝数多,节距小的绕组匝数少。主绕组线径粗,副绕组线径细。但也采用相同线径相同匝数的,比如,洗衣机中需要正转、反转的电动机,它的主副绕组径匝数都相同。 图中实线线圈表示主绕组,虚线线圈表示副绕组。有点标记的是单相绕组的同名端,也可以称作头,另一端为尾。同心式绕组为串联,其中主副绕组各有两个绕组,最大节距1~12,设主绕组1槽为头,8槽为尾,13槽为头,20槽为尾,为显极性接线。 1槽头和13槽头接电源,通电后在圆周内形成一个N极和一个S极的磁场。2极电机的机械角与电工角相同,副绕组在头在7槽,与主绕组槽相隔90°电角度,副绕组也是尾接尾,它所形成的一对磁极与主绕组磁极相差90°电角度。 下图为单相24槽4极电机定子展开图,图为4极电动机电工角是机械角的2倍,机械角一个圆周360°电工角为720°.绕组的最大节距为1-6.绕组的接线也为显极性接法,即尾接尾,头接头。设1槽为头,5槽为尾。7槽为头,11槽为尾,13槽为头,17槽为尾,19槽为头,23槽为尾。主绕组第一组线圈尾与第二组线圈尾相接,第二组头与第三组头相接,第三组尾与第四组线圈尾相接,引出线为 1槽和19槽。这两个头接电源,通电后在定子中形成两对磁极(N S

N S )。4极电动机,在交流电一个周期,同步时旋转360°电角度,2个周期为720°电角度(机械角一周360°)。故4极电动机转速为2极电动机转速的1/2 。 副绕组与主绕组线圈节距相同,接线也相同,不同的是嵌线时与主绕组相隔90°电角度,这样单相电动机就有了两相绕组。

相关主题
相关文档
最新文档