初中九年级上册数学 《二次函数图象和性质》二次函数优质课件PPT
合集下载
人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件
课堂检测
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P34:例2+达标训练
课堂检测
基础巩固题
第二十二章 二次函数
1.函数y=2x2的图象的开口向上 , 对称轴y轴
是 (0,0) ; 在对称轴的左侧,y随x的增大而 减小 ,
,顶点 y
在对称轴的右侧, y随x的增大而 增大 .
O
x
2.函数y=-3x2的图象的开口 向下 ,对称 y轴
2
口大小与a的大小有什么关系?
的图象开
当a<0时,a越小(即a的绝对 值越大),开口越小.
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
知识探究 归纳
y=ax2 图象
位置开 口方向
对称性 顶点最值
增减性
第二十二章 二次函数
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
y y=x2
o
x
知识探究
第二十二章 二次函数
说说二次函数y=-x2的图象有哪些性质,并与同伴交
流.
1.y=-x2的图象是一条 抛物线;
y
o
x
2.图象开口向下;
3.图象关于y轴对称;
画出函数y=-x2的图象.
x … -3 -2 -1 0 1 2 3 …
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
y -4 -2 0 2 4 x
-3
-6 -9
二次函数图像与性质ppt课件
D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标
人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:
…
-2
-1
0
1
2
…
…
4
1
0
1
2
…
新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?
二次函数的图像和性质PPT课件(共21张PPT)
相同点
相同点:开口都向下,顶点是
原点而且是抛物线的最高点,
对称轴是 y 轴.
不同点
不同点:|a|越大,抛物线的
开口越小.
x
O
y
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
尝试应用
1、函数y=2x2的图象的开向口上 ,对称轴y轴 ,顶点是(0,0;)
2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点是(0,0;) 3、已知抛物线y=ax2经过点A(-2,-8).
不在此抛物线上。
小结
1. 二次函数的图像都是什么图形?
2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物 线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物 线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
得到y=-x2的图像.
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
-3 -4
-5
-6
y=-x2
-7
-8 -9
-10
二次函数的图像
从图像可以看出,二次函数y=x2和y=-x2的图像都是一条
曲线,它的形状类似于投篮球或投掷ห้องสมุดไป่ตู้球时球在空中所经过
的路线.
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
解:分别填表,再画出它们的图象,如图 当a<0时,抛物线的开口向下,顶点是抛物线的最高点;
在同一直角坐标系中画出函数y=-x2、y=-2x2、y=- x2的图象,有什么共同点和不同点? -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)
(3) 二次函数的图象是什么 形 状呢?
结合图象讨论
性质是数形结合
的研究函数的重要 方法.我们得从最 简单的二次函数开 始逐步深入地讨论 一般二次函数的图 象和性质.
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
2 0.5
0 0.5 2 4.5
···
8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
·
y 2x2 ·· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
·
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 的图象相比 ,有什么共同2 点和不同点?
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象
.
6
y = x2
数学沪科版九年级(上册)21.2二次函数的图象和性质课件(共17张PPT)
04:09
17
14
小
结 回味无穷
二次函数y=ax2+bx+c(a≠0)与y=ax²的关系
1.相同点:
(1)形状相同(图像都是抛物线,开口方向相同).
(2)都是轴对称图形.
(3)都有最(大或小)值.
(4)a>0时, 开口向上,
在对称轴左侧,y都随x的增大而减小,
在对称轴右侧,y都随 x的增大而增大.
a<0时,开口向下,
y=ax2+bx+c(a>0)
顶点坐标 对称轴 开口方向
b 2a
,
4ac 4a
b2
直线x b
2a
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
向下
增减性 最值
04:09
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x b 时,最小值为 4ac b2
2(x2 4x 4) 7 8
a x
b
2
c
b2
2a
4a
a x
b
2
4ac
b2
.
2(x 2)2 1
2a
4a
一半的平 方
整理:前三项 化为平方形 式
化简
9
04:09
函数y=ax²+bx+c的对称轴、顶点
坐标是什么?
例1.y写出a下x2列函b数x 的c开的口对方向称、轴对是称轴:x、顶点b坐标:
04:09
13
达标测评
1、若二次函数y =ax2-4x-6的图象的顶点横坐标 是 2__、-_2抛_,_物_则平线a移=_y______12__x_2_个_3_单x_位25是,由再抛向物_线__y平移- 12_x_2 先_个向 单位得到的。 3、已知抛物线y=x2-4x+h的顶点在直线y =4x-1 上,求抛物线的顶点坐标。
二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
人教版九年级数学上册《二次函数的图象和性质》PPT
22.1.4二次函数y=ax2+bx+c 图象和性质
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
y
o
x
一般地,抛物线y=a(x-h)2 +k与 y=ax2的 形状 相同, 位置 不同
y=ax2 上加下减 y=a(x-h)2 +k 左加右减
抛物线y=a(x-h)2+k有如下特点:
1.当a﹥0时,开口向上 , 当a﹤0时,开口 向下 ,
2.对称轴是直线X=h ;
例1:指出抛物线:y x2 5x 4
的开口方向,求出它的对称轴、顶点坐 标、与y轴的交点坐标、与x轴的交点坐 标。并画出草图。
方∵9对向/a4于=,)-1y,求<=与a出0x,y2它∴轴+开b的交x口+点对c向我坐称下标们轴,为可、顶以顶点确坐点定标坐(它标2的、.5开,与口y 轴的交点坐标、与x轴的交点坐标(有交 点(时0),,- 4这),样与就x可轴以交画点为出(它1的,0)大、致(4,图0)象,。
a
x
b 2a
2
4ac b2 4a2
a x
b
2
4ac
b2
.
2a 4a
函数y=ax2+bx+c的顶点式
y a x
b
2
4ac
b2
.
2a
4a
(- b ,4ac - b2 ) 2a 4a
快速反应:火箭被竖直向上发射时,它的高度 h (m) 与 时间 t (s) 的关系为h = - 5 t ²+ 150 t +10 经过多长时 间,火箭到达它的最高点?最高点的高度是多少?
的顶点都在
( B)
A.直线y = x上 B.直线y = - x上
C.x轴上
二次函数的图像和性质ppt课件
二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件
目
CONTENCT
录
• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答
人教版九年级数学上册《二次函数y=a(x-h)2+k 的图象和性质》二次函数PPT精品教学课件
2
2
轴和顶点坐标、顶点高低、函数最值、函数增减性.
根据图象回答下列问题:
(1)图象的形状都是 抛物线 ;
(2)三条抛物线的开口方向__向__下___;
(3)对称轴分别是__x=_-_1_,_x_=_1__;
(4) 从左到右顶点坐标分别是(_-_1_,_0_)___(_1_,_0_)_;
y 1 x+12
y y = 2x2+1 y = 2x2 -1
把抛物线y=2x2 向上 平移 1 个单位就得到
8 y = 2x2
抛物线y=2x2+1;把抛物线y=2x2向下平移 1 个单
6
位就得到抛物线y=2x2-1.
4
2
所以,y = 2x2 -1的图象还可以由抛物线
y = 2x2+1 向下 平移 2 个单位得到.
-4 -2 O 2 4 x -1
2
y 1 (x 1)2 2
画出二次函数 y 1 x 12 , y 1 x 12 的图象,并考虑它们的开口方向、对称
2
2
轴和顶点坐标、顶点高低、函数最值、函数增减性.
(5)顶点都是最__高__点,函数都有最__大__值,最 _大___值均为__y_=_0_; (6)函数的增减性都相同: 对称轴左边时_y_随__x_增__大__而__增__大_, 对称轴右边时_y_随__x_增__大__而__减__小__.
y 3x2
顶点 (0,0)
y 3x2 2
y 3x2 3
向下平移
向上平移
两个单位长度
5个单位长度
(0, -2)
(0, 3)
巩固练习
1.下列抛物线的顶点坐标为(0,1)的是( A )
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y x2
8
y 2x2
···
6
y 1 x2
4
2
2
2021/02/20
-4 -2
24
9
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 2
a<0
x 12345
y 1 x2 2
2021/02/20
y 2x2 y x2
18
3、试说出函数y=ax2(a是常数,a≠0)的图象 的开口方向、对称轴和顶点坐标,并填写下 表.
y=ax2
向上 y轴 (0,0) 向下 y轴 (0,0)
2021/02/20
实际上,每条抛物线都有对称轴,抛物线与对称轴的交 点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.
2021/02/20
8
例解1:在分同别一填直表角,坐再标画系出中它,们画的出图函象数,如y 图12 x2, y 2x2 的图象.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
y 1 x2 ··· 2
y 2x2 · -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8
··
···
·
对比抛物线, y=x2和y=-x2.它 们关于x轴对称吗? 一般地,抛物线 y=ax2和y=-ax2呢?
2021/02/20
-4 -2 -2 -4
-6
-8
y x2
24
y 1 x2 2
y 2x2 12
练习: 函数 y ( 2x)2的图象是 ,顶点坐标是 ,
对称轴是 ,开口方向是 .
2021/02/20
13
3、试说出函数y=ax2(a是常数,a≠0)的图象 的开口方向、对称轴和顶点坐标,并填写下 表.
y=ax2
向上 y轴 (0,0) 向下 y轴 (0,0)
|a|越大开口越小, |a|越小开口越大。
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
二次函数 y = x2的图象是一条曲线,它的 形状类似于投篮球时球在空中所经过的路线, 只是这条曲线开口向上,这条曲线叫做抛物 线 y = x2 ,
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y
一般地,抛物线 y=ax2 的对称轴是_y_轴___,顶点是_原__点___.
当a>0时,抛物线的开口_向__上___,顶点是抛物线的最__低____点, a越大,抛物线的开口越_小______;
当a<0时,抛物线的开口_向__下____,顶点是抛物线的最__高______点, a越大,抛物线的开口越______大___.
2021/02/20
4
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x
-2
2021/02/20
5
二次函数 y=x2的图象 形如物体抛 射时所经过 的路线,我们 把它叫做抛 物线
y x2
2021/02/20
6
思考:这个二次函数图象有什么特征?
9
(1)形状是开口向上的抛物线
线有什么共同点和不同点.
的图象,并考虑这些抛物
你画出的图象与图中相同吗?
2021/02/20
11
x ··· -4 -3 -2 -1 0 1 2 3
y
1 2
x2
···
-8
-4.5
-2 -0.5
0
-0.5
-2 -4.5
4 ··· ···
-8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
2021/02/20
14
反馈测试
1. 抛物线y=4x2中的开口方向是
,顶点坐标是 ,对
称轴是
.
2. 抛物线 y= -1 x2 的开口方向是 对称轴是 4 .
,顶点坐标是 ,
3. 二次函数y=ax2与y=2x2,开口大小,形状一样,开口
方向相反,则a= .
2021/02/20
15
课前复习
1.二次函数y=2x2的图象是____,它的开口 向_____,顶点坐标是_____;对称轴是 ______,在对称轴的左侧,y随x的增大而 ______,在对称轴的右侧,y随x的增大而 ______,函数y=2x2当x=______时, y有最 ______值,其最______值是______。
有什么共同点和不同点?
的图象相比,
相同点:开口都向上,顶点是原 点而且是抛物线的最低点,对称 轴是 y 轴
不同点:a 要越大,抛物线的开 口越小.
2021/02/20
y x2
8 6
4 2
y 2x2 y 1 x2 2
-4 -2
24
10
探究
画出函数 y x2, y 1 x2, y 2x2 2
= a2x0221+/02b/2x0 + c
7
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
当 k<0 时,图像在 二、四 象限,在每个象
2限021/内02/20y随x的增大而 增大 。
2
3、画函数图像的基本步骤是: 列表 、 描点 、 连线 。
2021/02/20
3
1、画函数y=x2的图像; 观察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
2021/02/20
16
2、二次函数
y=2x² 、
y
1 2
x2
的图象
与二次函数 y=x²的图象有什么相同和
不同?
y 2x 3.5
2
y x2
3
2.5
y 1 x2
ห้องสมุดไป่ตู้
2
2
1.5
1
a>0
2021/02/20
-2
0.5 -1
17
1
2
y
5 4 3 2
1
–5 –4 –3 –2 –1–O1 –2 –3 –4 –5
2021/02/20
1
1、一次函数的图像有何特征?
一次函数的图像是一条直线 。 当 k>0 时,y随x的增大而增大; 当 k<0 时,y随x的增大而减小。
2、反比例函数的图像有何特征?
反比例函数的图像是 双曲线 ,共有 两支,
且关于 原点 对称。
当 k>0 时,图像在 一、三 象限,在每个象
限内y随x的增大而减小;