用均值不等式求最值的方法和技巧
例说利用均值不等式求函数最值的几种技巧
![例说利用均值不等式求函数最值的几种技巧](https://img.taocdn.com/s3/m/042b5c566fdb6f1aff00bed5b9f3f90f76c64d0c.png)
例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。
本文将介绍几种利用均值不等式求函数最值的常用技巧。
1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。
例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。
2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。
如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。
如果是,那么函数值将成为该区间的最大值。
对于凹函数来说,与凸函数类似,只是方向相反。
3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。
例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。
我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。
同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。
4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。
当函数的导数为0时,函数可能取得最大值或最小值。
我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。
5.多元函数:均值不等式也可以应用于多元函数的情况。
在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。
综上所述,利用均值不等式求函数最值是一个实用的方法。
通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。
利用均值不等式求最值的方法
![利用均值不等式求最值的方法](https://img.taocdn.com/s3/m/2af5329277eeaeaad1f34693daef5ef7ba0d121b.png)
利用均值不等式求最值的方法均值不等式是数学中常见的一种不等式形式,可以用于求解各种最值问题。
该不等式提供了一种有效的方法来估算函数的最大值和最小值。
均值不等式最常见的形式是算术平均数和几何平均数之间的关系,即对于任意一组非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$\sqrt[n]{x_1x_2...x_n} \leq \frac{x_1+x_2+...+x_n}{n}$其中,算术平均数是$x_1,x_2,...,x_n$的和除以$n$,而几何平均数是$x_1,x_2,...,x_n$的乘积开$n$次方。
均值不等式的证明可以通过数学归纳法和对数函数的单调性来完成,具体证明过程超出本文篇幅,不过可以查阅相关数学教材进行学习。
步骤1:确定题目要求求解的最值问题,明确自变量和因变量。
一般来说,最值问题都是求解一些函数的最大值或最小值。
步骤2:将问题转化为均值不等式的形式。
利用均值不等式,可以将函数中的一些项转化为均值的形式,进而简化问题求解过程。
步骤3:确定均值的形式。
根据函数中的项,可以选择合适的均值形式,如算术平均数、几何平均数、调和平均数等。
步骤4:利用均值不等式进行变换。
将问题中的需要求解的部分,利用均值不等式进行变换,得到简化后的表达式。
步骤5:求解均值不等式中的最值问题。
根据均值不等式,可以得到简化后的表达式的最值。
具体求解方法,根据实际问题采取不同的手段,如求导法、取等法等。
步骤6:将最值结果回代到原始问题中。
将得到的最值结果回代到原始问题中,得到最终的结果。
下面通过一个简单的例子来说明利用均值不等式求最值的方法。
例题:已知$a,b,c$满足$a^2+b^2+c^2=1$,求$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。
解答:步骤1:确定题目要求求解的最值问题。
题目要求求解函数$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。
高考数学利用均值不等式求圆锥曲线中的最值(解析版)
![高考数学利用均值不等式求圆锥曲线中的最值(解析版)](https://img.taocdn.com/s3/m/9638c9e3ab00b52acfc789eb172ded630a1c984d.png)
利用均值不等式求圆锥曲线中的最值一、考情分析与圆锥曲线有关的最值问题,在高考中常以解答题形式考查,且难度较大,它能综合应用函数、三角、不等式等有关知识,因而备受命题者青睐,其中利用均值不等式求圆锥曲线中的最值是一类常见问题,求解时常涉及函数与方程、化归转化等数学思想.二、解题秘籍(一)利用均值不等式求圆锥曲线中最值的方法与策略利用均值不等式求圆锥曲线中的最值,一是直接根据圆锥曲线中的和(积)为定值的性质求积(和)的最大(小)值,如根据椭圆中PF 1 +PF 2 为定值,可求PF 1 PF 2 的最大值,二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用基本不等式求最值,求解这类问题的核心是建立参数之间的等量关系.【例1】(2023届湖北省荆荆宜三校高三上学期9月联考)设椭圆Γ:x 2a 2+y 2b2=1a >b >0 ,F 1,F 2是椭圆Γ的左、右焦点,点A 1,32 在椭圆Γ上,点P 4,0 在椭圆Γ外,且PF 2 =4-3.(1)求椭圆Γ的方程;(2)若B 1,-32,点C 为椭圆Γ上横坐标大于1的一点,过点C 的直线l 与椭圆有且仅有一个交点,并与直线PA ,PB 交于M ,N 两点,O 为坐标原点,记△OMN ,△PMN 的面积分别为S 1,S 2,求S 21-S 1S 2+S 22的最小值.【解析】(1)因为点A 1,32 在椭圆Γ上,所以1a 2+34b 2=1,①因为点P 4,0 在椭圆Γ外,且PF 2 =4-3,所以c =3,即a 2-b 2=c 2=3,②由①②解得a 2=4,b 2=1,故椭圆Γ的方程为x 24+y 2=1.(2)设点M x 1,y 1 ,N x 2,y 2 ,设直线MN :x =my +t ,由椭圆性质以及点C 的横坐标大于1可知,t >2,将直线MN 代入方程x 24+y 2=1并化简可得,my +t 2+4y 2-4=0,即m 2+4 y 2+2mty +t 2-4=0,因为直线l 与椭圆有且仅有一个交点,所以Δ=4m 2t 2-4m 2+4 t 2-4 =0,即t 2=m 2+4.直线AP 的方程为:x =4-23y ;直线BP 的方程为l BP :x =4+23y ,联立方程x =my +t ,x =4-23y ,得y 1=4-t 23+m ,同理得y 2=t -423-m,所以y 1-y 2=4-t -43 m 2-12=43t +4,所以S 1=12t y 1-y 2 ,S 2=124-t y 1-y 2 ,所以S 21-S 1S 2+S 22=14t 2y 1-y 2 2-t 4-t 4y 1-y 2 2+14(4-t )2y 1-y 22=14y 1-y 2 2t 2-4t +t 2+16-8t +t 2 =14×48t +4 23t 2-12t +16 =36-489t +8 t 2+8t +16,令9t +8=λλ>26 ,则S 21-S 1S 2+S 22=36-48×81λ+282λ+56≥97,当且仅当λ=28,即t =209时,不等式取等号,故当t =209时,S 21-S 1S 2+S 22取得最小值97.【例2】已知椭圆C :y 2a 2+x 2b2=1a >b >0 的离心率为32,且过点1,2 .(1)求椭圆C 的方程;(2)若直线l 被圆x 2+y 2=a 2截得的弦长为26,设直线l 与椭圆C 交于A ,B 两点,O 为坐标原点,求△OAB 面积的最大值.【解析】(1)e =32,b a =a 2-c 2a =1-e 2=12,由椭圆过点1,2 得4a 2+1b 2=1,解得a 2=8,b 2=2,∴椭圆C 的方程为y 28+x 22=1.(2)直线l 被圆x 2+y 2=8截得的弦长为26,则圆心到直线l 的距离d 满足6 2=22 2-d 2,解得d =2,当l 的斜率存在时,设l :y =kx +m ,A x 1,y 1 ,B x 2,y 2 ,圆心为原点则有d =m 1+k 2=2,∴m 2=2k 2+1.将l 方程代入椭圆方程中整理得:k 2+4 x 2+2mkx +m 2-8=0,∴x 1+x 2=-2mk k 2+4,x 1x 2=m 2-8k 2+4,AB =k 2+1⋅x 1+x 2 2-4x 1x 2=k 2+1⋅42k 2+8-m 2k 2+4=46⋅k 2+1k 2+4,∴S △OAB =12AB d =43×1k 2+1+3k 2+1≤2,当且仅当k 2+1=3k 2+1,即k =±2时取等号.当l 的斜率不存在时,则l :x =±2,过椭圆的左、右顶点,此时直线l 与椭圆只有一个交点,不符合题意.∴△OAB 面积的最大值为2.(二)把距离或长度用单变量表示,然后利用均值不等式求最值.此类问题通常利用两点间距离或弦长公式,把距离或长度表示成关于直线斜率、截距或点的横坐标(纵坐标)的函数,然后利用均值不等式求最值.【例3】已知圆C 过定点A (0,p )(p >0),圆心C 在抛物线x 2=2py 上运动,若MN 为圆C 在x 轴上截得的弦,设|AM |=m ,|AN |=n ,∠MAN =θ.(1)当点C 运动时,|MN |是否变化?试证明你的结论;(2)求m n +n m的最大值.【解析】(1)设C x 0,x 202p ,则AC =x 20+x 202p -p 2,故圆C 的方程x -x 0 2+y -x 202p2=x 20+x 202p -p2 ,令y =0有x -x 0 2+x 404p 2=x 20+x 404p 2-x 20+p 2,故x -x 0 2=p 2,解得x 1=x 0+p ,x 2=x 0-p ,故MN =x 1-x 2 =2p 不变化,为定值(2)由(1)不妨设M x 0-p ,0 ,N x 0+p ,0 ,故m =x 0-p 2+p 2,n =x 0+p 2+p 2,故m n +nm=m 2+n 2mn =x 0-p 2+p 2+x 0+p 2+p 2x 0-p 2+p 2x 0+p 2+p 2=2x 20+4p 2x 20+2p 2 2-4p 2x 2=2x 20+2p 2 x 40+4p 4=21+4x 20p 2x 40+4p 4=21+4p 2x 20+4p 4x 2≤21+4p 22x 20⋅4p 4x 20=22,当且仅当x 2=4p 4x 20,即x 0=±2p 时取等号.故m n +nm 的最大值为22(三)把面积表示为单变量函数,然后利用基本不等式求值该类问题求解的基本思路是把三角形面积表示成关于直线斜率与截距的函数,然后利用均值不等式求最值.【例4】(2022届陕西省汉中市高三上学期质量检测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1(-3,0),F 2(3,0)且经过点P (3,2).(1)求椭圆C 的标准方程;(2)若斜率为1的直线与椭圆C 交于A ,B 两点,求△AOB 面积的最大值(O 为坐标原点)【解析】(1)由椭圆的定义,可知2a =PF 1 +PF 2 =(23)2+4+2=4+2=6解得a =3,又b 2=a 2-(3)2=6.∴椭圆C 的标准方程为x 29+y 26=1.(2)设直线l 的方程为y =x +m ,联立椭圆方程,得5x 2+6mx +3m 2-18=0,△=36m 2-60m 2+360>0,得-15<m <15设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=-6m 5,x 1⋅x 2=3m 2-185,∴|AB |=2⋅x 1+x 2 2-4x 1⋅x 2=2⋅36m 225-12m 2-725=435⋅15-m 2,点O (0,0)到直线l :x +y -m =0的距离d =|m |2,∴S △AOB =12|AB |⋅d =12×435×15-m 2×|m |2=6515-m 2 ⋅m2≤6515-m 2+m 22 2=65×152=362.当且仅当15-m 2=m 2,(-15<m <15),即m 2=152,m =±302时取等号;∴△AOB 面积的最大值为362.(四)把面积用双变量表示,然后利用均值不等式求最值求解该类问题通常先建立两个变量之间的等量关系,然后利用和或积为定值,借助均值不等式求最值.【例5】(2022届湖南省长沙市高三上学期11月月考)已知椭圆x 2a 2+y 2b2=1的离心率为e =32,Q 2,22 为椭圆上一点.直线l 不经过原点O ,且与椭圆交于A x 1,y 1 ,B x 2,y 2 两点.(1)求椭圆的方程;(2)求△OAB 面积的最大值,并求当△OAB 面积最大时AB 的取值范围.【解析】(1)∵e =c a =32,a 2=b 2+c 2,∴a 2=43c 2,b 2=c 23,∴3x 24c 2+3y 2c 2=1.将Q 2,22 代入得32c 2+32c2=1⇒c =3⇒a 2=4,b 2=1,∴椭圆方程为x24+y 2=1.(2)设l :x =ty +m m ≠0 ,与椭圆联立得:t 2+4 y 2+2tmy +m 2-4=0,所以y 1+y 2=-2tm t 2+4,y 1y 2=m 2-4t 2+4,Δ=16t 2+4-m 2 >0.则S △OAB =12m ⋅y 1-y 2 =2m t 2+4-m 2t 2+4=2m 2t 2+41-m 2t 2+4 ,因为t 2+4-m 2>0,故0<m 2t 2+4<1,所以2m 2t 2+41-m 2t 2+4 ≤m 2t 2+4+1-m 2t 2+4 =1当且仅当m 2t 2+4=12时取等号,此时Δ=16m 2>0,符合题意.所以S △OAB ≤1,即△OAB 面积的最大值为1.当t 不存在时,设l :y =h h ≠0 ,则S △OAB =21-h 2⋅h ≤1,当h =22时取等号.综上,△OAB 面积的最大值为1当△OAB 面积最大时:若t 存在,则此时t 2=2m 2-4≥0⇒m 2≥2,则AB =1+t 2⋅4t 2+4-m 2t 2+4=22-3m 2∈2,22 ,若t 不存在,则此时AB =41-h 2=22.综上,AB ∈2,22 ..(五)与斜率有关的最值问题与斜率有关的最值问题的思路一是设出动点.是利用斜率定义表示出斜率,然后利用函数或不等式知识求解,二是设出直线的点斜式或斜截式方程,利用根与系数之间的关系或题中条件整理关于斜率的等式或不等式求解.【例6】(2022届福建省福州第十八中学高三上学期考试)已知抛物线C :y 2=2px (p >0)的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足PQ =9QF,求直线OQ 斜率的最大值.【解析】(1)抛物线C :y 2=2px (p >0)的焦点F p 2,0 ,准线方程为x =-p2,由题意,该抛物线焦点到准线的距离为p 2--p2=p =2,所以该抛物线的方程为y 2=4x ;(2)设Q x 0,y 0 ,则PQ =9QF=9-9x 0,-9y 0 ,所以P 10x 0-9,10y 0 ,由P 在抛物线上可得10y 0 2=410x 0-9 ,即x 0=25y 20+910,据此整理可得点Q 的轨迹方程为y 2=25x -925,所以直线OQ 的斜率k OQ =y 0x 0=y 025y 20+910=10y 025y 20+9,当y 0=0时,k OQ =0;当y 0≠0时,k OQ =1025y 0+9y 0,当y 0>0时,因为25y 0+9y 0≥225y 0⋅9y 0=30,此时0<k OQ ≤13,当且仅当25y 0=9y 0,即y 0=35时,等号成立;当y 0<0时,k OQ <0;综上,直线OQ 的斜率的最大值为13.(六)与数量积有关的最值问题求解与数量积有关的最值问题,通常利用数量积的定义或坐标运算,把数量积表示成某个变量的函数,然后再利用均值不等式求最值.【例7】设椭圆x 25+y 24=1的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA ⋅PB的最小值.【解析】设椭圆的两切线为l 1,l 2.①当l 1⊥x 轴或l 1⎳x 轴时,对应l 2⎳x 轴或l 2⊥x 轴,可知切点为;②当l 1与x 轴不垂直且不平行时,x ≠±5,设l 1的斜率为k ,则k ≠0,l 2的斜率为-1k,并设l 1,l 2 的交点为x 0,y 0 ,则l 1的方程为y -y 0=k x -x 0 ,联立x 25+y 24=1,得:5k 2+4 x 2+10y 0-kx 0 kx +5y 0-k 0x 0 2-20=0 ,∵直线与椭圆相切,∴Δ=0,得5y 0-kx 0 2k 2-5k 2+4 y 0-kx 0 2-4 =0,∴x 20-5 k 2-2x 0y 0k +y 20-4=0,∴k 是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的一个根,同理-1k是方程x 20-5 k 2-2x 0y 0k +y 20-4=0的另一个根,∴k ⋅-1k =y 20-4x 20-5得x 20+y 20=9,其中x ≠±5,∴交点的轨迹方程为:x 2+y 2=9x ≠±5 ,∵±5,±2 也满足上式;综上知:轨迹C 方程为x 2+y 2=9;设PA =PB =x ,∠APB =θ,则在△AOB 与△APB 中应用余弦定理知,AB 2=OA 2+OB 2-2OA ⋅OB ⋅cos ∠AOB =PA 2+PB 2-2PA ⋅PB ⋅cos ∠APB ,即32+32-2⋅3⋅3cos 180°-θ =x 2+x 2-2x ⋅x ⋅cos θ ,即x 2=91+cos θ1-cos θ,PA ⋅PB =PA ⋅PB cos ∠APB =x ⋅x cos θ=91+cos θ cos θ1-cos θ,令t =1-cos θ∈0,2 ,则cos θ=1-t ,PA ⋅PB =92-t 1-t t =9t 2-3t +2 t =9⋅t +2t-3 ≥9⋅2t ⋅2t -3 =922-3 ,当且仅当t =2t,即t =2时,PA ⋅PB 取得最小922-3 ;综上,PA ⋅PB 的最小为922-3 .三、跟踪检测1.(2023届山东省青岛市高三上学期检测)在平面直角坐标系Oxy 中,动圆P 与圆C 1:x 2+y 2+2x -454=0内切,且与圆C 2:x 2+y 2-2x +34=0外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;(2)不过圆心C 2且与x 轴垂直的直线交轨迹E 于A ,M 两个不同的点,连接AC 2交轨迹E 于点B .(i )若直线MB 交x 轴于点N ,证明:N 为一个定点;(ii )若过圆心C 1的直线交轨迹E 于D ,G 两个不同的点,且AB ⊥DG ,求四边形ADBG 面积的最小值.【解析】(1)设动圆P 的半径为R ,圆心P 的坐标为x ,y由题意可知:圆C 1的圆心为C 1-1,0 ,半径为72;圆C 2的圆心为C 21,0 ,半径为12.∵动圆P 与圆C 1内切,且与圆C 2外切,∴PC 1 =72-RPC 2 =12+R⇒PC 1 +PC 2 =4>C 1C 2 =2∴动圆P 的圆心的轨迹E 是以C 1,C 2为焦点的椭圆,设其方程为:x 2a 2+y 2b2=1(a >b >0),其中2a =4,2c =2,∴a =2,b 2=3从而轨迹E 的方程为:x 24+y 23=1(2)(i )设直线AB 的方程为y =k x -1 k ≠0 ,A x 1,y 1 ,B x 2,y 2 ,则M x 1,-y 1 由y =k x -1x 24+y 23=1可得:4k 2+3 x 2-8k 2x +4k 2-12=0∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3直线BM 的方程为y +y 1=y 2+y 1x 2-x 1x -x 1 ,令y =0可得N 点的横坐标为:x N =x 2-x 1y 2+y 1y 1+x 1=k x 2-x 1 x 1-1 k x 1+x 2-2+x 1=2x 1x 2-x 1+x 2 x 1+x 2-2=2×4k 2-124k 2+3-8k 24k 2+38k 24k 2+3-2=4∴N 为一个定点,其坐标为4,0(ii )根据(i )可进一步求得:AB =1+k 2x 2-x 1 =1+k 2×x 2+x 12-4x 1x 2=1+k 2×8k 24k 2+3 2-4×4k 2-124k 2+3=12k 2+1 4k 2+3.∵AB ⊥DG ,∴k DG =-1k,则DG =12k 2+13k 2+4∵AB ⊥DG ,∴四边形ADBG面积S=12AB×DG=12×12k2+14k2+3×12k2+13k2+4=72k2+124k2+33k2+4(法一)S=72k2+124k2+33k2+4≥72k2+124k2+3+3k2+422=28849等号当且仅当4k2+3=3k2+4时取,即k=±1时,S min=288 49(法二)令k2+1=t,∵k≠0,∴t>1,则S=72t212t2+t-1=72-1t2+1t+12=72-1t-122+494当1t=12,即k=±1时,S min=288492.已知椭圆x2a2+y2b2=1(a>b>0)经过点3,-32,且椭圆的离心率e=12,过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,B及C、D.(1)求椭圆的方程;(2)求证:1|AB|+1|CD|为定值;(3)求|AB|+916|CD|的最小值.【解析】(1)由e=ca=12,得c2a2=14,∴a2=4c2=4(a2-b2),∴3a2=4b2.①,由椭圆过点3,-3 2知,3a2+34b2=1②.联立①②式解得a2=4,b2=3.故椭圆的方程是x24+y23=1.(2)1|AB|+1|CD|为定值712.证明:椭圆的右焦点为F(1,0),分两种情况.1°不妨设当AB的斜率不存在时,AB:x=1,则CD:y=0.此时|AB|=2b2a=3,|CD|=2a=4,1|AB|+1|CD|=712;2°当直线AB的斜率存在时,设AB:y=k(x-1)(k≠0),则CD:y=-1k(x-1).又设点A(x1,y1),B(x2,y2).联立方程组y=k(x-1)3x2+4y2=12 ,消去y并化简得(4k2+3)x2-8k2x+4k2-12=0,∴x1+x2=8k24k2+3,x1∙x2=4k2-124k2+3,∴|AB|=(x1-x2)2+(y1-y2)2=1+k2|x1-x2|=1+k2∙(x1+x2)2-4x1x2=1+k2∙64k4-16(k2-3)(4k2+3)(4k2+3)2=12(k2+1)4k2+3,由题知,直线CD的斜率为-1 k,同理可得|CD |=12(1+k 2)4+3k 2所以1|AB |+1|CD |=7k 2+712(k 2+1)=712为定值.(3)解:由(2)知1|AB |+1|CD |=712,∴|AB |+916|CD |=127|AB |+916|CD | 1|AB |+1|CD |=1272516+916|CD ||AB |+|AB ||CD |≥1272516+2916|CD ||AB |×|AB ||CD |=214,当且仅当916|CD ||AB |=|AB ||CD |,即|AB |=34|CD |,即|AB |=3,|CD |=4时取等号,∴|AB |+916|CD |的最小值为214.3.(2023届四川省隆昌市第一中学高三上学期考试)已知离心率为12的椭圆C 1:x 2a 2+y 2b2=1a >b >0 过点1,32,抛物线C 2:y 2=2px p >0 .(1)若抛物线C 2的焦点恰为椭圆C 1的右顶点,求抛物线方程;(2)若椭圆C 1与抛物线C 2在第一象限的交点为A ,过A 但不经过原点的直线l 交椭圆C 1于B ,交抛物线C 2于M ,且AM =MB,求p 的最大值,并求出此时直线l 的斜率.【解析】(1)由c a =12设a 2=4c 2,b 2=3c 2,所以将点1,32 代入椭圆C 1:x 24c 2+y 23c 2=1得:椭圆C 1:x 24+y 23=1,所以C 1的右顶点为2,0 ,依题意p 2=2,所以抛物线C 2方程为y 2=8x ;(2)设直线l 的方程为x =my +t t ≠0 ,A x 1,y 1 ,B x 2,y 2 ,M x 0,y 0 ,联立x =my +t x 24+y 23=1,消去x 整理得3m 2+4 y 2+6mty +3t 2-12=0,显然Δ>0则y 1+y 2=-6km 3m 2+4,所以y 0=y 1+y 22=-3km 3m 2+4,x 0=my 0+t =4t3m 2+4;联立x =my +t y 2=2px,消去x 整理得y 2-2pmy -2pt =0,∴Δ>0,且y 1y 0=-2pt∴y 1=-2pty 0=2p 3m 2+4 3m由抛物线方程得x 1=y 212p =2p 3m 2+4 29m 2,所以点坐标为A 2p 3m 2+4 29m 2,2p 3m 2+4 3m,将点A 代入椭圆方程3x 2+4y 2=12有:32p 3m 2+429m 22+42p 3m 2+4 3m 2=12整理得:27p2=133m +4m 4+43m +4m 2,令t =3m +4m2,则t ≥23m ⋅4m 2=48,当且仅当3m =4m即m =43,即直线l 的斜率k =32时t ≥48取等号,所以27p2=13t 2+4t ≥20×48,∴p 2≤9320,∴p ≤3540,即p 的最大值为3540,此时直线l 的斜率为32.4.平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为26,过焦点的最短弦长为 2.(1)求椭圆的标准方程;(2)斜率为12的直线与椭圆交于A ,B 两点,P 为椭圆上异于A ,B 的点,求△PAB 的面积的最大值.【解析】(1)由题意得2c =26,2b 2a =2a 2-b 2=c 2⇒a 2=8,b 2=2,故椭圆的标准方程为x 28+y 22=1;(2)设直线AB 的方程为y =12x +m ,则x 28+y 22=1y =12x +m⇒x 2+2mx +2m 2-4=0,,Δ=16-4m 2>0⇒-2<m <2,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=-2m x 1x 2=2m 2-4AB =16-4m 2×1+14=5×4-m 2,当-2<m ≤0时,当P 到AB 的距离最大时,点P 在第二象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n >0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =2,此时P (-2,1),P 到AB 的距离最大为d =m -21+14=2m -2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m -2 5=4-m 2×m -2 ,则S 2=(2+m )(2-m )3=13(6+3m )(2-m )3≤13×6+3m +6-3m 4 4=27,故S ≤33,当且仅当m =-1时取等号. 当0<m <2时,当P 到AB 的距离最大时,点P 在第四象限且过P 点的切线正好与AB 平行,设切线方程为y =12x +n ,n <0,x 28+y 22=1y =12x +n⇒x 2+2nx +2n 2-4=0,由Δ=16-4n 2=0得n =-2,此时P (2,-1),P 到AB 的距离最大为d =m +21+14=2m +2 5,故△PAB 的面积S =12×AB ×d =12×5×4-m 2×2m +2 5=4-m 2×m +2 ,则S 2=(2-m )(2+m )3=13(6-3m )(2+m )3≤13×6-3m +6+3m 4 4=27,故S ≤33,当且仅当m =1时取等号. 所以△PAB 的面积的最大值为33.5.平面直角坐标系中,过点(1,0)的圆C 与直线x =-1相切.圆心C 的轨迹记为曲线Γ.(1)求曲线Γ的方程;(2)设A ,B 为曲线Γ上的两点,记AB 中点为M ,过M 作AB 的垂线交x 轴于N .①求x N -x M ;②当AB =10时,求x N 的最大值.【解析】(1)设C (x ,y ),由题意,则C 到(1,0)的距离等于C 到x =-1的距离,故C 的轨迹为抛物线y 2=4x ;(2)设A y 124,y 1 ,B y 224,y 2 ,则M y 12+y 228,y 1+y 22,①k AB =y 1-y 2y 124-y 224=4y 1+y 2故k MN=-y 1+y 24,MN :y -y 1+y 22=-y 1+y 24x -y 12+y 228,令y =0,得0-y 1+y 22=-y 1+y 24x -y 12+y 228,故x N =y 12+y 228+2,即xN -x M =2,②由题意y 124-y 2242+(y 1-y 2)2=10,即40=(y 1-y 2)2[(y 1+y 2)2+16]≤(y 1-y 2)2+(y 1+y 2)2+162=y 12+y 22+8,故x N =y 12+y 228+2≥6.6.已知点F 1、F 2分别为椭圆Γ:x 22+y 2=1的左、右焦点,直线l :y =kx +t 与椭圆Γ有且仅有一个公共点,直线F 1M ⊥l ,F 2N ⊥l ,垂足分别为点M 、N .(1)求证:t 2=2k 2+1;(2)求证:F 1M ⋅F 2N为定值,并求出该定值;(3)求OM +ON ⋅ OM -ON的最大值.【解析】(1)联立l :y =kx +t 与Γ:x 22+y 2=1得:2k 2+1 x 2+4ktx +2t 2-2=0,由直线与椭圆有一个公共点可知:Δ=4kt 2-42k 2+1 2t 2-2 =0,化简得:t 2=2k 2+1;(2)由题意得:F 1-1,0 ,F 21,0 ,因为F 1M ⊥l ,F 2N ⊥l ,所以F 1M ∥F 2N ,故F 1M ⋅F 2N =F 1M ⋅F 2N ,其中F 1M =-k +tk 2+1,F 2N =k +tk 2+1,所以F 1M ⋅F 2N =F 1M ⋅F 2N =-k +t k 2+1⋅k +t k 2+1=t 2-k 2 k 2+1=2k 2+1-k 2k 2+1=1,F 1M ⋅F 2N为定值,该定值为1;(3)OM +ON =OF 1 +F 1M +OF 2 +F 2N =F 1M +F 2N =F 1M +F 2N ,由题意得:点F 1,F 2在直线l 的同侧,所以F 1M +F 2N =-k +t k 2+1+k +t k 2+1=2t k 2+1,OM -ON =NM =F 1F 2 ⋅MNMN=F 1F 2 cos α=2k 2+1,(其中α为F 1F 2 ,MN 的夹角),由此可知:OM +ON ⋅ OM -ON =4t k 2+1=8t t 2+1=8t +1t ≤82t ⋅1t=4,当且仅当t =1t即t =1,k =0时,等号成立,所以OM +ON ⋅ OM -ON 的最大值为4.7.(2022届广东省佛山市高三上学期12月模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e =22,且点P 2,1 在椭圆C 上.(1)求椭圆C 的方程;(2)若点A ,B 都在椭圆C 上,且AB 中点M 在线段OP (不包括端点)上.求△AOB 面积的最大值.【解析】(1)离心率e =c a =22,将P 代入椭圆方程,可得4a 2+1b2=1,又a 2-b 2=c 2 ,∴联立上述方程,可得:a =6, b =c =3,∴椭圆方程为x 26+y 23=1;(2)设A x 1,y 1 ,B x 2,y 2 可得:x 21+2y 21=6,x 22+2y 22=6,相减可得:x 1-x 2 x 1+x 2 +2y 1-y 2 y 1+y 2 =0,由题意,k OM =k OP =12,即y 1+y 2x 1+x 2=12,∴直线AB 的斜率y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12×2=-1,故可设直线AB 为y =-x +t ,代入椭圆方程可得:3x 2-4tx +2t 2-6=0,由Δ=16t 2-12(2t 2-6)>0,解得-3<t <3,∴x 1+x 2=4t 3,x 1x 2=2t 2-63,AB =2⋅(x 1+x 2)2-4x 1x 2=2⋅16t 29-8t 2-243=439-t 2,又O 到AB 的距离为d =t2,∴△AOB 面积为S =12AB d =23t 29-t 2≤23⋅t 2+9-t 22=322,当且仅当t 2=9-t 2,即t =±322时,S 取得最大值322.8.(2022届衡水金卷高三一轮复习摸底测试)已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的上顶点为B 0,1 ,过点2,0 且与x 轴垂直的直线被截得的线段长为233.(1)求椭圆Γ的标准方程﹔(2)设直线l 1交椭圆Γ于异于点B 的P ,Q 两点,以PQ 为直径的圆经过点B ,线段PQ 的中垂线l 2与x 轴的交点为(x 0,0),求x 0的取值范围.【解析】(1)由已知条件得:b =1,令x =2,得y =±1-2a2,由题意知:21-2a 2=233,解得a =3,∴椭圆的标准方程为x 23+y 2=1,(2)①当直线PQ 的斜率不存在时,显然不合题意;②当直线PQ 斜率存在时,设PQ :y =kx +m ,当k =0时,此时P ,Q 关于y 轴对称,令P (x ,y ),Q (-x ,y ),∴BP =(x ,y -1),BQ =(-x ,y -1)且BP ⋅BQ=0,则(y -1)2=x 2,又x 2=3-3y 2,∴2y 2-y -1=0,解得y =-12或y =1(舍),则P 32,-12 ,Q -32,-12符合题设.∴此时有x 0=0;当k ≠0时,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,设P x 1,y 1 ,Q x 2,y 2 ,则y =kx +mx 2+3y 2=3,得1+3k 2 x 2+6km x +3m 2-3=0,Δ=36k 2+12-12m 2>0,且x 1+x 2=-6km 1+3k2x 1x 2=3m 2-31+3k 2,由BP ⋅BQ=x 1x 2+y 1-1 y 2-1 =0,即1+k 2 x 1x 2+k m -1 x 1+x 2 +m -1 2=0,∴1+k 2 ⋅3m 2-31+3k 2-k m -1 ⋅6km 1+3k 2+m -1 2=0,整理得2m 2-m -1=0,解得m =-12,m =1(舍去),代入Δ=36k 2+12-12m 2>0得:k ∈R ,∴PQ 为y =kx -12,得:x M =x 1+x 22=3k 21+3k 2 ,y M =-121+3k 2 ,则线段的PQ 中垂线l 2为y +121+3k 2 =-1k x -3k 21+3k 2,∴在x 轴上截距x 0=k 1+3k 2,而x 0=k 1+3k 2≤k 2×3k=36,∴-36≤x 0≤36且x 0≠0,综合①②:线段PQ 的中垂线l 2在x 轴上的截距的取值范围是-36,36.9.(2022届河北省高三上学期12月教学质量监测)在平面直角坐标系xOy 中,已知点F 1-1,0 ,F 21,0 ,点P 满足PF 1 +PF 2 =22,点P 的轨迹为C .(1)求C 的方程;(2)不过F 1的直线l 与C 交于A 、B 两点,若直线l 的斜率是直线AF 1、BF 1斜率的等差中项,直线AB 和线段AB 的垂直平分线与y 轴分别交于P 、Q ,求PQ 的最小值.【解析】(1)由椭圆的定义知,点P 在以F 1,F 2为焦点且a =2的椭圆上,所以其方程为:x 22+y 2=1(2)由题意得直线l 的斜率存在且不为0.直线l 的方程为y =kx +b ,A x 1,y 1 ,B x 2,y 2 ,直线方程与椭圆方程联立得x 2+2y 2=2y =kx +b得1+2k 2 x 2+4kb x +2b 2-2=0,所以Δ=4kb 2-41+2k 2 2b 2-2 >0得k 2+1>b 2x 1+x 2=-4kb 1+2k 2,x 1x 2=2b 2-21+2k 2由题意得2k =y 1x 1+1+y 2x 2+1,即2k x 1+1 x 2+1 =kx 1+b x 2+1 +kx 2+b x 1+1整理得b -k x 1+x 2 =2k -b∵直线l 不过F 1,∴b ≠k ,x 1+x 2=-2∴-4kb 1+2k 2=-2,∴b =1+2k 22k ∵b 2<k 2+1,∴1+2k 22k 2<k 2+1,解得k >22或k <-22线段AB 的中点为-1,b -k ,线段AB 中垂线方程为y -b -k =-1kx +1 当x =0时,y Q =-1k-k +b ,直线AB 与y 轴交点的纵坐标y P =b PQ =y P -y Q =k +1k,k >22或k <-22当k =±1时,PQ 最小,最小值为2.10.已知两圆C 1:(x -2)2+y 2=54,C 2:(x +2)2+y 2=6,动圆M 在圆C 1内部且和圆C 1内切,和圆C 2外切.(1)求动圆圆心M 的轨迹C 的方程;(2)过点A 3,0 的直线与曲线C 交于P ,Q 两点.P 关于x 轴的对称点为R ,求△ARQ 面积的最大值.【解析】(1)依题意,圆C 1的圆心C 12,0 ,半径r 1=36,圆C 2的圆心C 2-2,0 ,半径r 2=6,设圆M 的半径为r ,则有MC 1 =r 1-r ,MC 2 =r 2+r ,因此,MC 1 +MC 2 =r 1+r 2=46>4=C 1C 2 ,于是得点M 的轨迹是以C 1,C 2为焦点,长轴长2a =46的椭圆,此时,焦距2c =4,短半轴长b 有:b 2=a 2-c 2=20,所以动圆圆心M 的轨迹C 的方程为:x 224+y 220=1.(2)显然直线PQ 不垂直于坐标轴,设直线PQ 的方程为x =my +3(m ≠0),P (x 1,y 1),Q (x 2,y 2),由x =my +35x 2+6y 2=120消去x 得:(5m 2+6)x 2+30my -75=0,则y 1+y 2=-30m 5m 2+6,y 1y 2=-755m 2+6,点P 关于x 轴的对称点R (x 1,-y 1),S △PQR =12⋅|2y 1|⋅|x 2-x 1|,S △APR =12⋅2y 1⋅ 3-x 1 ,如图,显然x 1与x 2在3的两侧,即x 2-x 1与3-x 1同号,于是得S △AQR =S △PQR -S △APR =y 1 x 2-x 1- 3-x 1 =y 1⋅ x 2-x 1 -3-x 1=|y 1|⋅|x 2-3|=|y 1|⋅|my 2|=|my 1y 2|=75|m |5m 2+6=755|m |+6|m |≤7525|m |⋅6|m |=5304,当且仅当5|m |=6|m |,即m =±305时取“=”,因此,当m =±305时,(S △AQR )max =5304,所以△ARQ 面积的最大值5304.11.已知椭圆C :x 2a2+y 2=1(a >0)的离心率为22,分别过左、右焦点F 1,F 2作两条平行直线l 1和l 2.(1)求l 1和l 2之间距离的最大值;(2)设l 1与C 的一个交点为A ,l 2与C 的一个交点为B ,且A ,B 位于x 轴同侧,求四边形AF 1F 2B 面积的最大值.【解析】(1)∵椭圆C :x 2a2+y 2=1(a >0)的离心率为22,且b =1,∴a =2,b =1,c =1,∴x 22+y 2=1,设直线l 1:x =ty -1;直线l 2:x =ty +1.∴l 1和l 2之间距离d =21+t 2≤2,当t =0时,d max =2;(2)根据题意,不妨设直线l 1与椭圆C 交于A 、D 两点,直线l 2与椭圆C 交于B 、N 两点,则AD ∥BN ,且AD =BN ,即四边形ABND 为平行四边形,∴四边形AF 1F 2B 面积为四边形ABND 面积的一半,由(1)知,d =21+t 2,联立方程x =ty -1x 2+2y 2=2 ,则2+t 2 y 2-2ty -1=0,∴Δ=8t 2+1 >0,y 1+y 2=2t 2+t 2,y 1y 2=-12+t 2,∴AD =1+t 2y 1-y 2 =22t 2+1 2+t 2,∴12S ▱ABND =12d ⋅AD =12×21+t 2×22t 2+1 2+t 2=221+t 22+t 22,令u =1+t 2≥1,12S ▱ABND =22u u +1 2=221u +1u+2,∵u ≥1,∴u +1u+2≥4,∴12S ▱ABND ≤2,当且仅当t =0时,取等号.故四边形AF 1F 2B 面积的最大值2.12.(2022届广西玉林市、贵港市高三12月模拟)设椭圆E :x 2a 2+y 2b2=1(a >b >0)过M 1,32 ,N 3,12 两点,O 为坐标原点.(1)求椭圆E 的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A ,B ,且OA ⊥OB若存在,写出该圆的方程,并求|AB |的取值范围;若不存在,说明理由.【解析】(1)将M ,N 的坐标代入椭圆E 的方程得1a 2+34b 2=13a 2+14b 2=1 ,解得a 2=4,b 2=1.所以椭圆E 的方程为x 24+y 2=1.(2)假设满足题意的圆存在,其方程为x 2+y 2=R 2,其中0<R <1,设该圆的任意一条切线AB 和椭圆E 交于A x 1,y 1 ,B x 2,y 2 两点,当直线AB 的斜率存在时,令直线AB 的方程为y =kx +m ,①将其代入椭圆E 的方程并整理得4k 2+1 x 2+8km x +4m 2-4=0,由韦达定理得x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1,②因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,③将①代入③并整理得1+k 2 x 1x 2+km x 1+x 2 +m 2=0,联立②得m 2=451+k 2 ,④因为直线AB 和圆相切,因此R =|m |1+k 2,由④得R =255,所以存在圆x 2+y 2=45满足题意.当切线AB 的斜率不存在时,易得x 12=x 22=45,由椭圆方程得y 12=y 22=45,显然OA ⊥OB ,综上所述,存在圆x 2+y 2=45满足题意.当切线AB 的斜率存在时,由①②④得AB =x 1-x 22+y 1-y 2 2=1+k 2x 1-x 2 2=1+k 2x 1+x 2 2-4x 1x 2=1+k 2-8km 4k 2+1 2-4×4m 2-44k 2+1=1+k216+64k 2-16m 21+4k 22=4551+k 21+16k 21+4k 22=45516k 4+17k 2+116k 4+8k 2+1=4551+9k 216k 4+8k 2+1=4551+916k 2+1k2+8,由16k 2+1k 2≥8,得1<1+916k 2+1k2+8≤54,即455≤AB ≤5.当切线AB 的斜率不存在时,易得AB =455,所以455≤AB ≤5.综上所述,存在圆心在原点的圆x 2+y 2=45满足题意,且455≤AB ≤5.13.(2022届上海市青浦区高三一模)已知抛物线y 2=x .(1)过抛物线焦点F 的直线交抛物线于A 、B 两点,求OA ∙OB 的值(其中O 为坐标原点);(2)过抛物线上一点C x 0,y 0 ,分别作两条直线交抛物线于另外两点P x p ,y p 、Q x Q ,y Q ,交直线x =-1于A 1-1,1 、B 1-1,-1 两点,求证:y p ⋅y Q 为常数(3)已知点D 1,1 ,在抛物线上是否存在异于点D 的两个不同点M 、N ,使得DM ⏊MN ?若存在,求N 点纵坐标的取值范围,若不存在,请说明理由.【解析】(1)由题知,直线斜率不为0,故可设过焦点F 的直线为x =my +14,联立y 2=xx =my +14得y 2-my -14=0,y 1+y 2=my 1⋅y 2=-14,设A x 1,y 1 ,B x 2,y 2 ,则OA ∙OB =x 1x 2+y 1y 2=y 21⋅y 22+y 1y 2=-316;(2)由题可设过点C x 0,y 0 的一条直线交抛物线于P x p ,y p ,交直线x =-1于A 1-1,1 ,另一条直线交抛物线于Q x Q ,y Q ,交直线x =-1于B 1-1,-1 ,则k A 1C ≠0,k B 1C ≠0,k A 1C =y 0-1x 0+1,k B 1C =y 0+1x 0+1,直线A 1C 方程可表示为:y =y 0-1x 0+1x +1 +1,直线B 1C 方程可表示为:y =y 0+1x 0+1x +1 +1,联立直线A 1C 与抛物线方程y 2=xy =y 0-1x 0+1x +1+1可得y 2-x 0+1y 0-1y +x 0+1y 0-1+1 ,故y 0+y p =x 0+1y 0-1,即y p =x 0+1y 0-1-y 0,同理联立直线B 1C 和抛物线方程化简可得y 2-x 0+1y 0-1y +1-x 0+1y 0-1=0,故y 0+y Q =x 0+1y 0+1,y Q =x 0+1y 0+1-y 0,即y p ⋅y Q =x 0+1y 0-1-y 0 x 0+1y 0+1-y 0 =y 20+1y 0-1-y 0 y 20+1y 0+1-y 0=y 0+1y 0-1⋅1-y 0y 0+1=-1(3)假设存在点D 满足DM ⏊MN ,设M y 23,y 3 ,N y 24,y 4 ,DM =y 23-1,y 3-1 ,MN =y 24-y 23,y 4-y 3 ,则DM ⋅MN =y 23-1 ⋅y 24-y 23 +y 3-1 y 4-y 3 =0,易知y 3≠1,y 4≠y 3,化简得y 3+1 y 4+y 3 +1=0,即y 4=-1y 3+1+y 3 =-1y 3+1+y 3+1 -1,当y 3+1<0时,y 4=-1y 3+1-y 3+1 +1≥2-1y 3+1⋅-y 3+1 +1=3,当且仅当y 3=-2时取到等号,故y 4≥3;当y 3+1>0时,y 4=-1y 3+1+y 3+1 -1 ≤-21y 3+1⋅y 3+1 -1 =-1,当且仅当y 3=0时取到等号,因为y 3≠1,故y 3+1≠2,令t =y 3+1,则t +1t ≠52,但t =y 3+1=12能取到,此时t +1t =52,故y 4∈-∞,-1 ;故y 4∈-∞,-1 ⋃3,+∞ .。
用均值不等式最值的方法和技巧
![用均值不等式最值的方法和技巧](https://img.taocdn.com/s3/m/288c0ea6e109581b6bd97f19227916888586b949.png)
用均值不等式最值的方法和技巧均值不等式是数学中的一种重要的不等式关系,用于描述一组数据的平均值与其他性质之间的关系。
它可以应用于各种问题,如最值问题、优化问题等。
使用均值不等式来求解最值问题的方法和技巧有以下几个方面。
1.确定使用哪种均值不等式:均值不等式有许多种,如算术均值不等式、几何均值不等式、平方均值不等式等。
不同的均值不等式适用于不同的情况。
在解题时,要根据具体情况选择适合的均值不等式。
通常,当问题中涉及到平方和、乘积、根号等运算时,选择平方均值不等式;当问题中涉及到和、平均数等运算时,选择算术均值不等式;当问题中涉及到几何平均数、平方根等运算时,选择几何均值不等式。
2.清晰确定问题的条件和目标:在解决最值问题时,首先要清晰地确定问题的条件和目标。
条件是指问题中已知的信息,目标是指要求解的最值。
只有明确了条件和目标,才能有针对性地选择适合的均值不等式,并通过变换和推导进行求解。
3.运用不等式性质进行变换:在使用均值不等式进行求解时,可以根据题目中给出的条件进行变换,使得问题更容易求解。
如将含有平方和的表达式进行整理,将含有乘积的表达式进行拆分等。
变换后可利用不等式的性质,如对称性、单调性、对数性质等来推导和求解。
4.找到合适的等号成立条件:根据均值不等式的性质,等号成立的条件通常与数据的性质相关。
找到合适的等号成立条件不仅是验证结果的正确性,还可以通过这些条件求解最值问题。
例如,在求解两个数的平方和的最小值时,可通过设等号成立条件来求解。
5.结合其他方法进行求解:在使用均值不等式解决最值问题时,有时候也需要结合其他方法和技巧进行求解。
例如,可以结合求导、代数方法、几何方法等来解决一些复杂的最值问题。
这样可以提高问题的求解效率和准确性。
综上所述,运用均值不等式求解最值问题需要根据题目的条件和目标选择合适的不等式,进行变换和推导,并找到合适的等号成立条件。
同时,也可以结合其他方法和技巧进行求解。
用均值不等式求最值的方法和技巧
![用均值不等式求最值的方法和技巧](https://img.taocdn.com/s3/m/fb2e43fd3169a4517623a34d.png)
用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a= b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b +≤≤≤222b a +。
二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
2、求几个正数积的最大值。
例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<->∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。
巧用均值不等式及其条件求最值
![巧用均值不等式及其条件求最值](https://img.taocdn.com/s3/m/be49870a2e3f5727a5e962c0.png)
巧用均值不等式及其条件求最值(南京师范大学数学与计算机科学学院 张逸洁)均值不等式是高中阶段初等数学中最重要的基本不等式之一,在许多问题的解决中往往能发挥出它的独特功能,对于它及它各种变式的掌握和熟练运用也是求解很多与不等式有关的最值问题的重要方法。
本文将归纳介绍均值不等式在最值问题中的一些巧妙运用,希望能够开拓学生的思维,对高中生不等式的学习有所帮助。
一、均值不等式1.22,2,a b R ab ab ∈+≥、(当且仅当a=b 时取“=”)。
推论:,a b R a b +∈+≥、,(当且仅当a=b 时取“=”)。
2.变形,对a b R ∈、积向平方和转化:222a b a b +⋅≤。
对a b R ∈、积向和转化:2()2a b a b +⋅≤。
注:这里有“最值定理”: 若,,,x y R x y s xy p +⋅∈+==2()2x y xy +≥⇔≤则x+y 运用此定理求最值时必须具备“一正,二定,三相等”这三个条件。
3.333,3a b c Ra b c abc +∈++≥、、,(当且仅当a=b=c 时取“=”)推论:,a b c R a b c +∈++≥、、,(当且仅当a=b=c 时取“=”)4.变形:对3,()3a b c a b c R abc +++∈≤、、 方法小结:在运用均值不等式求正数和的最小值时,凑积为定值;求正数积的最大值时,凑和为定值。
二、巧用均值不等式求解最值问题在求解函数最值问题的过程中,我们通常运用不等式,函数单调性,数形结合等方法分析解答。
本文着重介绍均值不等式在求解此类问题中的妙用,旨在帮助读者系统归纳,拓展思维,灵活解题。
1. 连用例1:已知3222160,a b a b a b ab b-+>>-求的最小值。
解:32222222222161616166416()2a b a b a a a a b a b ab b ab b b a b a -+=+=+≥+=+≥+----()216.64a b a ⎧⎧=⎪⎪∴⎨⎨==⎪⎪⎩⎩2b=a-b 当且仅当即a分析:有时利用均值不等式求最值时只用一次并不能解决问题,通常需要连用来巧求最值。
高考知识点归纳总结:利用均值不等式求最值
![高考知识点归纳总结:利用均值不等式求最值](https://img.taocdn.com/s3/m/ff796751581b6bd97f19eae9.png)
高考知识点归纳总结:利用均值不等式求最值均值不等式设12,,0n a a a >是实数222333121212312111+nnnna a a a a a a a a nna a a +++++++++≤≤≤≤++(其中0,1,2,i a i n >=.当且仅当12n a a a ===时,等号成立)(1)12111+nna a a ++:调和平均,(2)(3) 12na a a n+++:算术平均(4:平方平均, (5高考应用:(1) 和(可以是算术和、平方和、立方和等)定,积最大:若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab , 222b a ab +≤ (当且仅当b a =时取“=”) 若*,,a b c R ∈,则33a b c abc ++⎛⎫≤ ⎪⎝⎭, 32222()3a b c abc ++≤ (当且仅当a b c ==时取“=”)(2) 积定和(可以是算术和、平方和、立方和等)最小.若*,R b a ∈,则ab b a 2≥+,ab b a 222≥+,33322()ab ab +≥(当且仅当b a =时取“=”)若*,,a b c R ∈,则a bc++≥222233()a b c abc++≥,3333a b c abc ++≥(当且仅当=c a b ==时取“=”)(3)平方和定,算术和最大 若*,,a b c R ∈,则ab +≤a bc ++≤(当且仅当=c a b ==时取“=”) (4)算术和定,平方和最小。
若*,,a b c R ∈,则222()2a b a b ++≥,2222()3a b c a b c ++++≥(当且仅当=c a b ==时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”解题技巧:技巧一:调整项的符号、凑项、拆项、凑系数、拆系数。
均值不等式求最值的十种方法
![均值不等式求最值的十种方法](https://img.taocdn.com/s3/m/4b32225c680203d8cf2f24af.png)
用均值不等式求最值的方法和技巧一、几个重要的均值不等式2 . 2®a2 +b2> lab <^> ab < ° +(a. b e /?),当且仅当a = b时,号成立:2S + ZP)注:①注意运用均值不等式求最值时的条件:②熟悉一个重要的不等式链:-A-<v^<—<丄+丄2a b一、拼凑定和通过因式分解、纳入根号、升慕等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点, 均分系数,拼凑定和,求积的最大值。
例1⑴当0 <4时,求y = x(8-2x)的最大值。
(2)已知0vxvl,求函数y = -疋一/+兀+1的最大值。
解:y = -x2(x + l) + (x + l) = (x + l)(l-x2) = (x + l)2(l-x)当且仅当¥ = l — x,即x = |时,上式取“二”。
故儿琢°评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系, 求“积”的最大值。
例2 求函数y = x2>J\-x2 (0<x<\)的最大值。
27当且仅当斗=(1 —/),即x = £时,上式取“二”。
故儿瘁=半。
2 3 9② a + b> 2y[cib <=> ab <(a、beRJ当且仅当&二b时,“日号成立:③ / + + c' »3abc 0 abc < -_"十"3/ d+/? + C、< 3 >(A)a + b + c>3y/abc <^> abc<(a、b、cer),当且仅当a二b二c时,“才号成立:(a、b、cwRT•当且仅当a = b = c时,“〜‘号成立.一“正”、二“定”、三“等”;=4•凹・斗1_归2 2x+i A+i 厶x y〒+〒+(宀)33227评注:将函数式中根号外的正变量移进根号的目的是集中变元,为“拼凑定和”创造条件例3已知0vx<2,求函数y = 6x(4-x2)的最大值。
用均值不等式最值的方法和技巧
![用均值不等式最值的方法和技巧](https://img.taocdn.com/s3/m/2c88ad996e1aff00bed5b9f3f90f76c661374c8d.png)
用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。
它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。
下面,我将详细介绍均值不等式的方法和技巧。
1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。
这个不等式常常被用于证明其他数学结论的基础。
2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。
对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。
使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。
3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。
对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。
4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。
对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。
用均值不等式求最值的方法和技巧
![用均值不等式求最值的方法和技巧](https://img.taocdn.com/s3/m/20adca37f56527d3240c844769eae009581ba2d5.png)
用均值不等式求最值的方法和技巧均值不等式(Mean Inequality)是数学中常用的一种方法和技巧,用于求解包含均值的不等式问题。
它的核心思想是通过求解众多数据的平均值来确定问题的最值范围。
1.均值不等式的基本形式均值不等式分为均值-均值不等式和均值-次方均值不等式两种基本形式。
均值-均值不等式:对于任意给定的两个非负实数a和b,以及两个实数λ和μ满足λ+μ≠0,有:√(λa^2+μb^2)≥,λa+μb,/√(λ+μ)均值-次方均值不等式:对于任意给定的n个非负实数x₁,x₂,…,xₙ,以及实数p≥q>0,有:((x₁^p+x₂^p+…+xₙ^p)/n)^(1/p)≥((x₁^q+x₂^q+…+xₙ^q)/n)^(1/q)2.求解最值的一般步骤步骤1:根据不等式问题的具体情况,确定合适的均值不等式形式,即选择均值-均值不等式还是均值-次方均值不等式。
步骤2:根据题目给出的条件,选取合适的数据进行计算和代入,找到不等式中的系数和指数。
步骤3:应用均值不等式,将不等式转化为计算均值的形式。
步骤4:通过简化计算和代入数值,利用均值不等式得到最终的结果。
3.常见应用场景和例题分析均值不等式常用于求解最值问题,特别是在高中数学中的函数极值和数列极限中经常用到。
例如,求解非负整数a,b,c的最小值问题,已知条件是ab+bc+ca=8,可以利用均值不等式进行求解。
解题思路:设S=a+b+c,则利用均值-均值不等式可得:(S^2 + S^2 + S^2) / 3 ≥ (ab+bc+ca+a^2+b^2+c^2) / 6代入条件ab+bc+ca=8,化简后可得:S^2≥(8+a^2+b^2+c^2)/4而根据平方平均不等式可得:(a^2+b^2+c^2)/3≥((a+b+c)^2)/9将其代入上式化简,可得:S^2≥20/3同时,由于a,b,c都是非负整数,所以可以得到S=√(a^2+b^2+c^2)的最小整数部分为4因此,a+b+c的最小整数部分为44.注意事项和常见误区在应用均值不等式求解最值问题时,需要注意一些常见的误区和陷阱。
均值不等式求值的十种方法
![均值不等式求值的十种方法](https://img.taocdn.com/s3/m/01374a9f10a6f524cdbf8561.png)
均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。
一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 (1) 当时,求(82)y x x =-的最大值。
(2) 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2 求函数()22101y xx x =-<<的最大值。
用均值不等式求最值的方法和技巧
![用均值不等式求最值的方法和技巧](https://img.taocdn.com/s3/m/00238af1970590c69ec3d5bbfd0a79563c1ed40b.png)
用均值不等式求最值的方法和技巧均值不等式是数学中常用的一种求最值的方法和技巧,它通过将数列中各个数的和与它们的平均值相比较,从而得到最值的估计。
本文将详细介绍均值不等式的定义、性质、应用以及解题步骤,以帮助读者更好地理解和运用这一重要的不等式求解问题。
一、均值不等式的定义均值不等式是数学中一类关于平均值的不等式,通常用来对一组具有其中一种关系的数值进行比较。
假设有n个非负实数a1、a2、…、an,则它们的平均值和它们的几何平均值之间存在以下关系:(a1+a2+…+an)/n ≥ √(a1*a2*…*an) 或(a1+a2+…+an)/n ≥(a1+a2+…+an)/n ≥ ∛(a1*a2*…*an)其中,等号当且仅当a1=a2=…=an时成立。
二、均值不等式的性质1.单变量均值不等式:对于任意n个非负实数a1、a2、…、an,有(a1^p+a2^p+…+an^p)/n ≥ [(a1+a2+…+an)/n]^p其中,p为实数且p≥12.双变量均值不等式:对于任意两个非负实数a和b以及实数p≥1,有[(a^p+b^p)/2]^1/p≥[(a^q+b^q)/2]^1/q其中,p≥q且p、q均不等于0。
3.形式化均值不等式:设f(x)是定义在[a,b]上的连续函数,则对于任意无穷个非负实数a1、a2、…,有f(∫(a1→∞)f(x)dx) ≤ ∫(a1→∞)f(x)dx/lna1其中,a1为自然对数的底数。
三、均值不等式的应用均值不等式在数学中有着广泛的应用,特别是在求最值、证明不等式和优化问题中。
以下是几个常见的应用场景:1.证明不等式:通过应用均值不等式,可以证明很多重要的不等式,如柯西不等式、霍尔德不等式和克劳斯不等式等。
2.求极值:通过应用均值不等式,可以求解一些极值问题,如求最大面积、最小周长和最优化问题等。
3.优化设计:在工程和经济学中,均值不等式可以帮助优化设计,如在材料使用、成本控制和资源分配等方面。
用均值不等式求最值的方法和技巧
![用均值不等式求最值的方法和技巧](https://img.taocdn.com/s3/m/f305eda30b4e767f5acfcefb.png)
评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为
常数。通常要通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进
行构造。
3、用均值不等式求最值等号不成立。
4(0x1)的最小值。
X
证明:
任取
X1,X
2(0,1]且0
X1
X21,
则f (X1) f (X2) (X1X2)
X2)
4
X2X1/
(X1
X2)
x1x24
X-|X2
x1x2
0,
x-|X24
0,
X1
X2
1,…X,x2
T0
X-|X2
(Xi
—是减函数。
X
-—)
X-Ix2
值5。
般性,配方法及拆分法也是较为简洁实用得方法。
4、条件最值问题。
例4、已知正数x、y满足8丄1,求x 2y的最小值x y
解法一:(利用均值不等式)
3
3
abc,
(a、
3
b、c R ),当且仅当a = b = c时,“=”
R),当且仅当
a = b = c时,“=”
注:① 注意运用均值不等式求最值时的条件:
② 熟悉一个重要的不等式链: 占 不 —占■ ^2b
a b
三“等”.
、用均值不等式求最值的常见
的方法和技巧
1、求几个正数和的最小值。
1
2(x
2(x1)
2、求几个正数积的最大值。
例2、
求下列函数的最大值:
32x)(0 x)
2
x2
(3
sin2x cosx(0 x —)
2
解析:
均值不等式的应用技巧
![均值不等式的应用技巧](https://img.taocdn.com/s3/m/cf29d5bf0740be1e650e9ae3.png)
均值不等式的应用技巧均值不等式:当且仅当a=b时等号成立)是一个重要的不等式。
用“均值不等式”求最值是求最值问题中的一个重要方法,也是高考考查的一项重要内容。
应用该不等式求最值时,要把握不等式成立的三个条件“一正、二定、三相等”。
在此过程中往往需要采用“变系数、凑项、分离、取倒数、平方”等变形技巧构造定值,下面是笔者总结归纳的一些变形方法和技巧。
一、凑系数例1、求函数的最大值。
分析:由于不是常数,所以需将x的系数1变为2,使和为定值。
解:由,知所以:当且仅当:,即时取等号,所以的最大值是二、凑项例2、已知,求函数的最大值。
解:因为,所以,故所以=0当且仅当:,即或时,等号成立,但不合条件,舍去,故当时,。
三、分离例3、求函数的最大值分析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+2)的项,再将其分离。
解:因为,所以,所以由及得即当时,。
四、取倒数例4、若,求函数的最大值。
分析:此题形式上无法直接用均值不等式,但通过取倒数则可解:因为,所以故五、平方法例5、求函数的最大值。
解析:注意到的和为定值,所以又,所以当且仅当,即时取等号。
故。
评注:本题将解析式两边平方构造出摵臀ㄖ禂,为利用均值不等式创造了条件。
六、整体代换例6、已知,且,求的最小值。
解:不妨将乘以1,而1用代换。
=16当且仅当,且时取等号所以时,的最小值是16。
七、换元例7、求函数的最大值。
解析:变量代换,令,则当t=0时,y=0当时,当且仅当:,即时取等号,此时故。
八、化归转化,例8、设,求的最小值。
解:因为当且仅当,即时取等号所以点评:若与分别利用平均值不等式,再相乘求最值,会出现前后取等号条件不一致。
总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。
用均值不等式求最值的方法和技巧
![用均值不等式求最值的方法和技巧](https://img.taocdn.com/s3/m/3cef4cd650e2524de5187ef8.png)
用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a= b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、用均值不等式求最值的常见的方法和技巧 1、求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。
通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。
2、求几个正数积的最大值。
例2、求下列函数的最大值:①23(32)(0)2y x x x =-<< ②2sin cos (0)2y x x x π=<<解析:①30,3202x x <<-> ∴,∴23(32)(0)(32)2y x x x x x x =-<<=⋅⋅-3(32)[]13x x x ++-≤=,当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。
均值不等式在求最值中的运用
![均值不等式在求最值中的运用](https://img.taocdn.com/s3/m/9f18c51b5b8102d276a20029bd64783e09127df7.png)
均值不等式在求最值中的运用
关于均值不等式在求最值中的运用,首先应该了解它是对一个变量约束范围内
的最大最小值的确定方法。
它利用最值性质来断定一个未知点的值,即一个变量既有最大值又有最小值。
下面我们就来看一看均值不等式在求最值过程中具体是如何运用的。
首先,要求解变量的最值,需要先把变量有限之内的约束条件都明确出来,这些约束条件可以包含于均值不等式中。
当已经得出变量的约束条件时,我们可以将其放入到均值不等式中,得出均值不等式的表达式的两端的数值之差,称为“差值”。
然后,我们便可以判断出变量的最值,差值越大,则变量的最值越大,反之,则变量的最值越小,从而有效解决变量最值问题。
总之,均值不等式在求最值中的运用是一种有效的方法,其目的是为了找出一
个变量的最值,从而实现该变量的有效解决。
均值不等式可以根据变量的约束条件,求出变量的最值,使得变量的最值处于最佳状态,从而达到其求最值的目的。
用均值不等式求值的方法和技巧
![用均值不等式求值的方法和技巧](https://img.taocdn.com/s3/m/3d7ca5a4aeaad1f346933fff.png)
用均值不等式求值的方法和技巧————————————————————————————————作者:————————————————————————————————日期:几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。
三、用均值不等式求最值的常见的技巧 1、 添、减项(配常数项) 例1 求函数221632y x x =++的最小值.2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值.5、 平方例5 已知0,0x y >>且22283y x +=求262x y +的最大值.6、 换元(整体思想) 例6 求函数225x y x +=+的最大值.7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .8、 巧组合例8 若,,0a b c >且()423a a b c bc +++=-,求2a b c ++的最小值 .9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab ab +≤≤≤222b a +。
均值不等式求最值的常用技巧及习题(含解答:经典)
![均值不等式求最值的常用技巧及习题(含解答:经典)](https://img.taocdn.com/s3/m/9d44cc12cd1755270722192e453610661ed95a83.png)
,则12x x +³ ( (当且仅当当且仅当1x =时取“时取“==”);若0x <,则12x x+£- ( (当且仅当当且仅当当且仅当 _____________ _____________时取“时取“时取“==”) 若0x ¹,则11122-2x x x x x x +³+³+£即或 ( (当且仅当当且仅当当且仅当____________________________________时取“时取“时取“==”) 2.2.若若0>ab ,则2³+ab b a ( (当且仅当当且仅当当且仅当____________________________________时取“时取“时取“==”) 若若0ab ¹________。
解:因为x >0,y>0,所以234343xy x yxy +³=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy £, 3.xy \£,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值的值解:∵44log log 2x y += 2log 4=\xy 即xy=16 21211211==³+\xy y x y x 当且仅当x=y 时等号成立时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。
的最大值。
解:5,5404x x <\->,11425434554y x x x x æö\=-+=--++ç÷--èø231£-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y=。
例3. 3. 当当时,求(82)y x x =-的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用均值不等式求最值的方法和技巧
几个重要的均值不等式 ①,、)(222
22
2R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭
⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;
② 熟悉一个重要的不等式链:b
a 112+2a
b ab +≤≤≤22
2b a +。
三、用均值不等式求最值的常见的技巧
1、 添、减项(配常数项)
例1 求函数2216
32y x x =++的最小值.
2、 配系数(乘、除项)
例2 已知0,0x y >>,且满足3212x y +=,求
lg lg x y +的最大值.
3、 裂项
例3 已知1x >-,求函数()()
521x x y x ++=+的最小值.
4、 取倒数
例4 已知1
02x <<,求函数2
(1)(12)x
y x x +=-的最小值.
5、 平方
例5 已知0,0x y >>且2
2283y x +=求262x y +的最大值.
6、 换元(整体思想)
例6 求函数
2x y +=的最大值.
7、 逆用条件
例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .
8、 巧组合
例8 若,,0a b c >且()423a a b c bc +++=-求2a b c ++的最小值 .
9、 消元
例9、设,,x y z 为正实数,230x y z -+=,则2
y xz 的最小值是.
几个重要的均值不等式 ①,、)(222
22
2R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222
+∈⎪⎭
⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;
② 熟悉一个重要的不等式链:b a 112+2a b ab +≤≤≤22
2b a +。
三、用均值不等式求最值的常见的技巧
1、 添、减项(配常数项)
例1 求函数2216
32y x x =++的最小值.
22222
2216
20,32163(2)621623(2)62836
x y x x x x x x +>=+
+=++
-+≥+⋅+=解: 当且仅当22163(2)2x x +=+,即24323x =-时,等号成立. 所以y 的最小值是836.
2、 配系数(乘、除项)
例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值. 220,0
32lg lg lg()lg
6
132112lg lg 6262lg 6x y x y
x y xy x y >>⋅+==⎡⎤⎡⎤+⎛⎫⎛⎫≤=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
=解: 当且仅当32x y =,即2,3x y ==时,等号成立. 所以lg lg x y +的最大值是lg 6.
3、 裂项
例3 已知1x >-,求函数()()
521x x y x ++=+的最小值.
()()141110,1
44(1)52(1)511
9
x x x y x x x x x ++++⎡⎤⎡⎤⎣
⎦⎣⎦+>=+=+++≥+⋅++=解: 当且仅当4
11x x +=+,即1x =时,取等号. 所以min 9y =.
4、 取倒数
例4 已知
102x <<,求函数2(1)(12)x y x x +=-的最小值. 解 由1
02x <<,得10x +>,120x ->.
取倒数,得 221(12)1312(1)31131211113212
x x x x y x x x
x x x x --==⋅⋅+++-⎡⎤+⎢⎥++≤=⎢⎥⎢⎥⎣⎦
当且仅当31211x x x x -=++,即15x =时,取等号. 故y 的最小值是12.
5、 平方
例5 已知0,0x y >>且2
2
283y x +=求262x y +的最大值. 2
22222
2222(62)(62)32(1)32(1)9333()22y x y x y x y x +=+=⋅+⎡⎤++⎢⎥≤=⎢⎥⎢⎥⎢⎥⎣⎦解:
当且仅当22
2(1)3y x =+,即32x =,42y =时,等号成立. 故2
62x y +932 6、 换元(整体思想)
例6 求函数2
25x y x +=+的最大值.
222,0,2,(0)21
00;
1
201
4
1
222122=.32,24x t t x t t y t t t y t y t t t t t t t x +=≥=-=≥+==>=≤=+⋅==-则
当时,当时,当且仅当,即所以时
7、 逆用条件
例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .
190,0,1199()()109210169,4,12.16.x y x y
y x x y x y x y x y
y x x y
y x x y x y x y >>+=+=++=++≥⋅====+解:由,得当且仅当
即时,等号成立故的最小值是
8、 巧组合
例8 若,,0a b c >且()423a a b c bc +++=-求2a b c ++的最小值 .
2,,0,2()()
()()242332,,
31.
23 2.a b c a b c a b a c a b a c a ab ac bc
b c b c a a b c >++=+++≥++=+++=-====-++解:由知当且仅当即时,等号成立故的最小值为
9、 消元
例9、设,,x y z 为正实数,230x y z -+=,则
2y xz 的最小值是. 2222
3,0,,29666=3,
443,,=33.
x z
x z y y x z xz xz xz
xz xz xz y
x z x y z y xz +>=+++≥====解:由可得
当且仅当即时,取“”.
故的最小值为。