最新2017-2018年高考高三数学第一次模拟试题精选:数列07 Word版含答案
贵州省贵阳市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析
贵州省贵阳市2017-2018学年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.33.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心D.相交且直线过圆心4.下列正确的是( )A.∂x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b25.已知sin2α=,则cos2()=( )A.B.C.D.6.若等差数列{a n}的前n项和为S n,a4=4,S4=10则数列{}的前2015项和为( ) A.B.C.D.7.航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.16种C.24种D.36种8.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:9.已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件:的事件为A,则事件A发生的概率为( )A.B.C.D.10.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项式( )A.﹣20 B.﹣540 C.20 D.54011.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( ) A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且当0≤x≤2时,f(x)=min{2x﹣1,2﹣x},若方程f(x)﹣mx=0恰有4个零点,则m的取值范围是( )A.(﹣,)B.(﹣,)C.(,)D.(﹣.)∪(,)二、填空题(本大题共4小题,每小题5分,共20分.)13.若点(a,25)在函数y=5x的图象上,则tan的值为__________.14.若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N),则log2a4=__________.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为__________.16.如图,已知圆M:(x﹣3)2+(y﹣3)2=4,四边形ABCD为圆M的内接正方形,E、F 分别为AB、AD的中点,当正方形ABCD绕圆心M转动时,的最大值是__________.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.18.甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且=λ(0≤λ≤1),N为AD的中点(1)求证:BC⊥平面PNB(2)若平面PAD⊥平面ABCD,且二面角M﹣BN﹣D为60°,求λ的值.20.定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.21.已知函数f(x)=(1)求函数f(x)的极值(2)设g(x)=[xf(x)﹣1],若对任意x∈(0,1)恒有g(x)<﹣2求实数a的取值范围.四、选做题(请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.【选修4-5:不等式选讲】24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.贵州省贵阳市2015届高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合U={1,2,3,4},A={1,2},B={2,4},则∁U(A∪B)=( )A.{2} B.{3} C.{1,2,4} D.{1,4}考点:交、并、补集的混合运算.专题:集合.分析:根据并集的含义先求A∪B,注意2只能写一个,再根据补集的含义求解.解答:解:集合A∪B={1,2,4},则C U(A∪B)={3},故选B.点评:本题考查集合的基本运算,较简单.2.已知为虚数单位,复数z=i(2﹣i),则|z|=( )A.B.C.1 D.3考点:复数求模.专题:数系的扩充和复数.分析:利用复数的运算法则、模的计算公式即可得出.解答:解:复数z=i(2﹣i)=2i+1,则|z|=.故选:A.点评:本题考查了复数的运算法则、模的计算公式,属于基础题.3.对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是( )A.相离B.相切C.相交但直线不过圆心 D.相交且直线过圆心考点:直线与圆的位置关系.专题:探究型.分析:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在,(0,1)在圆x2+y2=2内,故可得结论.解答:解:对任意的实数k,直线y=kx+1恒过点(0,1),且斜率存在∵(0,1)在圆x2+y2=2内∴对任意的实数k,直线y=kx+1与圆x2+y2=2的位置关系一定是相交但直线不过圆心故选C.点评:本题考查直线与圆的位置关系,解题的关键是确定直线y=kx+1恒过点(0,1),且斜率存在.4.下列正确的是( )A.∂x0∈R,x02+2x0+3=0B.∀x∈N,x3>x2C.x>1是x2>1的充分不必要条件D.若a>b,则a2>b2考点:特称;充要条件;全称.专题:计算题.分析:A和B选项按全称和特称的真假判断来看;C选项看从条件能否推出推结论,再看结论能否推出条件,从而做出最后的判断;D选项看从条件能否推出推结论.解答:解:A错,∵方程的根的判别式△=4﹣4×3<0,此方程没有实数解:B错,∵当x=1时,x3=x2;C对,∵x2>1⇔(x﹣1)(x﹣1)>0⇔x<﹣1或x>1∴x>1⇒x2>1成立,但x2>1⇒x>1不成立,∴x>1是x2>1的充分不必要条件;D错,∵若a>b,则a2﹣b2=(a+b)(a﹣b)不一定大于0.故选C.点评:本题主要考查了、条件、特称等的有关知识,与其它部分的知识联系密切,所以综合性较强.5.已知sin2α=,则cos2()=( )A.B.C.D.考点:二倍角的余弦;三角函数的化简求值.专题:三角函数的求值.分析:利用二倍角的余弦公式化简后,由诱导公式化简即可求值.解答:解:∵sin2α=,∴cos2()====.故选:B.点评:本题主要考查了二倍角的余弦公式,诱导公式的应用,属于基本知识的考查.6.若等差数列{a n}的前n项和为S n,a4=4,S4=10则数列{}的前2015项和为( )A.B.C.D.考点:数列的求和.专题:等差数列与等比数列.分析:利用等差数列通项公式与前n项和公式可得:a n=n.再利用“裂项求和”即可得出.解答:解:设等差数列{a n}的公差为d,∵a4=4,S4=10,∴a1+3d=4,=10,解得a1=d=1,∴a n=1+(n﹣1)×1=n.∴==,∴数列{}的前n项和S n=+…+=1﹣=.∴数列{}的前2015项和=.故选:B.点评:本题考查了等差数列通项公式与前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.7.航空母舰“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而甲、丁两机不能相邻着舰,那么不同的着舰方法有( )A.12种B.16种C.24种D.36种考点:排列、组合及简单计数问题.专题:计算题;排列组合.分析:先考虑甲、乙两机是12、23、34、45位置,再考虑甲、乙两机,位置交换,即可得出结论.解答:解:先考虑甲、乙两机,若甲、乙两机是12位置,则其余3架飞机有=6种方法;甲、乙两机是23位置,则丁有,其余2架飞机有种方法,共有=4种方法;同理,甲、乙两机是34、45位置,均分别有4种方法,若乙、甲两机是12位置,则其余3架飞机有=4种方法;乙、甲两机是23位置,则丁有,其余2架飞机有种方法,共有=4种方法;同理,乙、甲两机是34位置,有4种方法乙、甲是45位置,则其余3架飞机有=6种方法故共有2(6+4+4+4)=36种不同的着舰方法.故选:D.点评:本题考查排列、组合知识的运用,考查分类讨论的数学思想,考查学生的计算能力,属于基础题.8.如图三棱锥V﹣ABC,V A⊥VC,AB⊥BC,∠V AC=∠ACB=30°,若侧面V AC⊥底面ABC,则其主视图与左视图面积之比为( )A.4:B.4:C.:D.:考点:简单空间图形的三视图.专题:常规题型;空间位置关系与距离.分析:主视图为Rt△V AC,左视图为以△V AC中AC的高为一条直角边,△ABC中AC的高为另一条直角边的直角三角形.解答:解:主视图为Rt△V AC,左视图为以△V AC中AC的高VD为一条直角边,△ABC 中AC的高BE为另一条直角边的直角三角形.设AC=X,则V A=x,VC=,VD=x,BE=x,则S主视图:S左视图==4:.故选:A.点评:由直观图到三视图,要注意图形的变化和量的转化.属于基础题.9.已知函数:f(x)=x2+bx+c,其中:0≤b≤4,0≤c≤4,记函数f(x)满足条件:的事件为A,则事件A发生的概率为( )A.B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:根据二次函数解析式,可得事件A对应的不等式为,因此在同一坐标系内作出不等式组和对应的平面区域,分别得到正方形ODEF和四边形OHGF,如图所示.最后算出四边形OHGF与正方形ODEF的面积之比,即可得到事件A发生的概率.解答:解:∵f(x)=x2+bx+c,∴不等式,即,化简得以b为横坐标、a为纵坐标建立直角坐标系,将不等式组和对应的平面区域作出,如图所示不等式组对应图中的正方形ODEF,其中D(0.4),E(4,4),F(4,0),O为坐标原点,可得S正方形ODEF=4×4=16不等式组对应图中的四边形OHGF,可得S四边形OHGF=S正方形ODEF﹣S△DHG﹣S△EFG=16﹣2﹣4=10∵事件A=,∴事件A发生的概率为P(A)===故选:A点评:本题以二次函数与不等式的运算为载体,求事件A发生的概率.着重考查了二元一次不等式组表示的平面区域和几何概型计算公式等知识,属于中档题.10.已知b为如图所示的程序框图输出的结果,则二项式(﹣)6的展开式中的常数项式( )A.﹣20 B.﹣540 C.20 D.540考点:二项式定理.专题:综合题;二项式定理.分析:首先,根据程序框图的运算结果,得到参数b的值,然后根据二项式展开式,写出通项公式,然后,确定其展开式的常数项.解答:解:根据程序框图,得初始值:a=1,b=1,第一次循环:b=3,a=2第二次循环:b=5,a=3,第三次循环:b=7,a=4第四次循环:b=9,a=5,∵a=5>4,跳出循环,输出b=9,∴二项式(﹣)6的通项:T r+1=36﹣r(﹣1)r•x3﹣r令3﹣r=0,得r=3,∴展开式中的常数项是33••(﹣1)3=﹣540,故选:B.点评:本题重点考查了程序框图,二项式定理及其展开式等知识,属于中档题.解题关键是循环结构的程序框图的识图能力.11.已知抛物线C1:y=x2(p>0)的焦点与双曲线C2:﹣y2=1的右焦点的连线交C1于第一象限的点M,若C1在点M处的切线平行于C2的一条渐近线,则p=( )A.B.C.D.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数y=x2(p>0)在x取直线与抛物线交点M的横坐标时的导数值,由其等于双曲线渐近线的斜率得到交点横坐标与p的关系,把M点的坐标代入直线方程即可求得p的值.解答:解:由抛物线C1:y=x2(p>0)得x2=2py(p>0),所以抛物线的焦点坐标为F(0,).由﹣y2=1得a=,b=1,c=2.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为,即①.设该直线交抛物线于M(),则C1在点M处的切线的斜率为.由题意可知=,得x0=,代入M点得M(,)把M点代入①得:.解得p=.故选:D.点评:本题考查了双曲线的简单几何性质,考查了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f(x)满足f(x﹣4)=f(x),且当0≤x≤2时,f(x)=min{2x﹣1,2﹣x},若方程f(x)﹣mx=0恰有4个零点,则m的取值范围是( )A.(﹣,)B.(﹣,)C.(,)D.(﹣.)∪(,)考点:根的存在性及根的个数判断;函数奇偶性的性质.专题:计算题;作图题;函数的性质及应用;直线与圆.分析:由题意可得函数f(x)是周期函数,从而作出函数f(x)与y=mx的图象,再结合图象求出四个临界点所形成的直线的斜率,从而得到答案.解答:解:∵f(x﹣4)=f(x),∴f(x)的周期T=4,方程f(x)﹣mx=0恰有4个零点可化为函数f(x)与y=mx有4个不同的交点,作函数f(x)与y=mx的图象如下,k OA=﹣,k OB=﹣,k OC=,k OD=,综合函数的图象可得,﹣<m<﹣,或<m<;故选D.点评:本题考查了函数的图象的作法及方程的根与函数的图象的交点的关系应用,同时考查了直线的斜率的求法与应用,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分.)13.若点(a,25)在函数y=5x的图象上,则tan的值为.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:利用指数函数的图象与性质求出a,然后求解三角函数的值即可.解答:解:点(a,25)在函数y=5x的图象上,可得25=5a,解得a=2,tan=tan=tan=.故答案为:.点评:本题考查指数函数的应用,三角函数的化简求值,考查计算能力.14.若正项数列{a n}满足a2=,a6=,且=(n≥2,n∈N),则log2a4=﹣3.考点:等比关系的确定.专题:等差数列与等比数列.分析:根据数列的递推关系得到数列{a n}为等比数列,结合等比数列的性质求出a4的值即可.解答:解:∵=(n≥2,n∈N),∴数列{a n}为等比数列,∵a2=,a6=,∴a42=a2a6=×=,则a4=,则log2a4=log2=﹣3,故答案为:﹣3.点评:本题主要考查等比数列的通项公式的应用,根据条件判断数列是等比数列是解决本题的关键.15.已知正四棱锥的侧棱与底面的边长都为3,则这个四棱锥的外接球的表面积为36π.考点:球的体积和表面积.专题:空间位置关系与距离.分析:先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理解出球的半径,最后根据球的表面积公式解之即可.解答:解:如图,设正四棱锥底面的中心为O,则在直角三角形ABC中,AC=×AB=6,∴AO=CO=3,在直角三角形PAO中,PO===3,∴正四棱锥的各个顶点到它的底面的中心的距离都为3,∴正四棱锥外接球的球心在它的底面的中心,且球半径r=3,球的表面积S=4πr2=36π故答案为:36π点评:本题主要考查球的表面积,球的内接体问题,考查计算能力和空间想象能力,属于中档题.16.如图,已知圆M:(x﹣3)2+(y﹣3)2=4,四边形ABCD为圆M的内接正方形,E、F 分别为AB、AD的中点,当正方形ABCD绕圆心M转动时,的最大值是6.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意可得=+.由ME⊥MF,可得=0,从而=.求得=6cos<,>,从而求得的最大值.解答:解:由题意可得=,∴==+.∵ME⊥MF,∴=0,∴=.由题意可得,圆M的半径为2,故正方形ABCD的边长为2,故ME=,再由OM=3,可得=•3•cos<,>=6cos<,>,即=6cos<,>,故的最大值是大为6,故答案为6.点评:本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦函数的值域,属于中档题.三、解答题(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知A、B分别在射线CM、CN(不含端点C)上运动,∠MCN=π,在△ABC中,角A、B、C所对的边分别是a、b、c.(Ⅰ)若a、b、c依次成等差数列,且公差为2.求c的值;(Ⅱ)若c=,∠ABC=θ,试用θ表示△ABC的周长,并求周长的最大值.考点:余弦定理;正弦定理.专题:解三角形.分析:(Ⅰ)由题意可得a=c﹣4、b=c﹣2.又因,,可得,恒等变形得c2﹣9c+14=0,再结合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=2sinθ,.△ABC的周长f(θ)=|AC|+|BC|+|AB|=.再由,利用正弦函数的定义域和值域,求得f(θ)取得最大值.解答:解:(Ⅰ)∵a、b、c成等差,且公差为2,∴a=c﹣4、b=c﹣2.又∵,,∴,∴,恒等变形得c2﹣9c+14=0,解得c=7,或c=2.又∵c>4,∴c=7.…(Ⅱ)在△ABC中,由正弦定理可得,∴,AC=2sinθ,.∴△ABC的周长f(θ)=|AC|+|BC|+|AB|===,…又∵,∴,∴当,即时,f(θ)取得最大值.…点评:本题主要考查正弦定理、余弦定理的应用,正弦函数的定义域和值域,属于中档题.18.甲、乙、丙三位同学彼此独立地从A、B、C、D、E五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A高校,他除选A校外,在B、C、D、E中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(Ⅰ)求甲同学未选中E高校且乙、丙都选中E高校的概率;(Ⅱ)记X为甲、乙、丙三名同学中未参加E校自主招生考试的人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)由已知条件分别求出甲同学选中E高校的概率和乙、两同学选取中E高校的概率,由此能求出甲同学未选中E高校且乙、丙都选中E高校的概率.(Ⅱ)由题意知:X所有可能的取值为0,1,2,3,分另求出P(X=0),P(X=1),P(X=2),P(X=3),由此能求出X的分布列和EX.解答:解:(Ⅰ)由题意知:甲同学选中E高校的概率为,乙、两同学选取中E高校的概率为p乙=p丙==,∴甲同学未选中E高校且乙、丙都选中E高校的概率为:P(1﹣p甲)•p乙•p丙=(1﹣)••=.(Ⅱ)由题意知:X所有可能的取值为0,1,2,3,P(X=0)=p甲•p乙•p丙==,P(X=1)=(1﹣p甲)•p乙•p丙+p甲•(1﹣p乙)•p丙+p甲•p乙•(1﹣p丙)=++=,P(X=2)=(1﹣p甲)•(1﹣p乙)•p丙+(1﹣p甲)•p乙•(1﹣p丙)+p甲•(1﹣p乙)•(1﹣p丙)=++=,P(X=3)=(1﹣p甲)•(1﹣p乙)•(1﹣p丙)==,∴X的分布列为:X 0 1 2 3P∴EX=0×+1×+2×+3×=.点评:本题考查概率的计算,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年2015届高考中都是必考题型.19.如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,PA=PD=AD=2,点M在线段PC上,且=λ(0≤λ≤1),N为AD的中点(1)求证:BC⊥平面PNB(2)若平面PAD⊥平面ABCD,且二面角M﹣BN﹣D为60°,求λ的值.考点:用空间向量求平面间的夹角;二面角的平面角及求法.专题:空间位置关系与距离;空间角.分析:(1)由已知得PN⊥AD,△ABD为等边三角形,BN⊥AD,从而AD⊥平面PNB,由AD∥BC,能证明BC⊥平面PNB.(2)分别以NA,NB,NP为x,y,z轴,建立空间直角坐标系,求出平面BMN的一个法向量和平面BCD的一个法向量,由此结合已知条件利用向量法能求出λ的值.解答:解:(1)证明:∵PA=AD,N为AD的中点,∴PN⊥AD,又底面ABCD为菱形,∠BAD=60°,∴△ABD为等边三角形,又∴N为AD的中点,∴BN⊥AD,又PN∩BN=N,∴AD⊥平面PNB,∵AD∥BC,∴BC⊥平面PNB.(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PN⊥AD,如图,分别以NA,NB,NP为x,y,z轴,建立空间直角坐标系,则A(1,0,0),B(0,,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),设M(x,y,z),则=(x,y,z﹣),=(﹣2﹣x,,﹣z),∴=(﹣2λ,,﹣λz),由(0≤λ≤1),得,解得,y=,z=,∴M(,,),∴=(,﹣,),=(0,,0),设=(x,y,z)是平面BMN的一个法向量,则,取z=,得=(,0,),又平面BCD的一个法向量为=(0,0,),∵二面角M﹣BN﹣D为60°,∴cos<>===cos60°,解得.点评:本题考查直线与平面垂直的证明,考查满足条件的实数值的求法,解题时要认真审题,注意空间中线线、线面、面面间的位置关系和性质的合理运用,是中档题.20.定义:若两个椭圆的离心率相等,则称两个椭圆是“相似”的.如图,椭圆C1与椭圆C2是相似的两个椭圆,并且相交于上下两个顶点.椭圆C1:的长轴长是4,椭圆C2:短轴长是1,点F1,F2分别是椭圆C1的左焦点与右焦点,(Ⅰ)求椭圆C1,C2的方程;(Ⅱ)过F1的直线交椭圆C2于点M,N,求△F2MN面积的最大值.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c',易知a=2,b=m,n=,根据椭圆C1与椭圆C2的离心率相等,可得关于a,b,m,n的方程,解出即可;(Ⅱ)由题意可设直线的方程为:.与椭圆C2的方程联立消掉x得y的二次方程,则△>0,由弦长公式可表示出|MN|,由点到直线的距离公式可表示出△F2MN的高h,则△F2MN的面积S=,变形后运用基本不等式即可求得S的最大值;解答:解:(Ⅰ)设椭圆C1的半焦距为c,椭圆C2的半焦距为c'.由已知a=2,b=m,.∵椭圆C1与椭圆C2的离心率相等,即,∴,即∴,即bm=b2=an=1,∴b=m=1,∴椭圆C1的方程是,椭圆C2的方程是;(Ⅱ)显然直线的斜率不为0,故可设直线的方程为:.联立:,得,即,∴△=192m2﹣44(1+4m2)=16m2﹣44>0,设M(x1,y1),N(x2,y2),则,,∴,△F2MN的高即为点F2到直线的距离.∴△F2MN的面积,∵,等号成立当且仅当,即时,∴,即△F2MN的面积的最大值为.点评:本题考查椭圆方程及其性质、直线方程、直线与椭圆的位置关系,考查基本不等式求函数的最值,考查学生的运算能力、分析解决问题的能力.21.已知函数f(x)=(1)求函数f(x)的极值(2)设g(x)=[xf(x)﹣1],若对任意x∈(0,1)恒有g(x)<﹣2求实数a的取值范围.考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)求出原函数的导函数,得到导函数的零点,由导函数的零点把定义域分段,由导函数在各区间段内的符号判断原函数的单调性,从而求得原函数的极值;(2)由题意可知,a≠0,且,又x∈(0,1),得到.然后分a<0和a>0讨论当a>0时,构造函数,问题转化为h max (x)<0.然后根据a的范围利用导数分析其最大值是否小于0得答案.解答:解:(1)由f(x)=,得,当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,故f(x)在x=1处取得极大值,极大值为f(1)=;(2)由题意可知,a≠0,且,∵x∈(0,1),∴.当a<0时,g(x)>0,不合题意;当a>0时,由g(x)<﹣2,可得恒成立.设,则h max(x)<0.求导得:.设t(x)=x2+(2﹣4a)x+1,△=(2﹣4a)2﹣4=16a(a﹣1).①当0<a≤1时,△≤0,此时t(x)≥0,h′(x)≥0,∴h(x)在(0,1)内单调递增,又h(1)=0,∴h(x)<h(1)=0,此时0<a≤1符合条件;②当a>1时,△>0,注意到t(0)=1>0,t(1)=4(1﹣a)<0,∴存在x0∈(0,1),使得t(x0)=0,于是对任意x∈(x0,1),t(x)<0,h′(x)<0,则h(x)在(x0,1)内单调递减,又h(1)=0,∴当x∈(x0,1)时,h(x)>0,不合要求.综①②可得0<a≤1.点评:本题考查了利用导数研究函数的单调性,考查了利用导数求解函数的最值,体现了分类讨论的数学思想方法,解答此题的关键是对a>1时的分析,要求考生有敏锐的洞察力.四、选做题(请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分)【选修4-1:几何证明选讲】22.AB是⊙O的一条切线,切点为B,过⊙O外一点C作直线CE交⊙O于G,E,连接AE交⊙O于D,连接CD交⊙O于F,连接AC,FG,已知AC=AB(1)证明:AD•AE=AC2;(2)证明:FG∥AC.考点:与圆有关的比例线段.专题:直线与圆.分析:(1)由切割线定理得AB2=AD•AE,由此能证明AC2=AD•AE.(2)由,∠EAC=∠DAC,得△ADC∽△ACE,从而得到∠EGF=∠ACE,由此能证明GF∥AC.解答:证明:(1)∵AB是⊙O的一条切线,AE为割线,∴AB2=AD•AE,又∵AB=AC,∴AC2=AD•AE.(2)由(1)得,∵∠EAC=∠DAC,∴△ADC∽△ACE,∴∠ADC=∠ACE,∵∠ADC=∠EGF,∴∠EGF=∠ACE,∴GF∥AC.点评:本题考查AD•AE=AC2的证明,考查两直线平行的证明,是中档题,解题时要注意切割线定理和相似三角形的性质的合理运用.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xoy中,以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,已知直线l的参数方程为(t为参数),圆C的极坐标方程是ρ=1.(1)求直线l与圆C的公共点个数;(2)在平面直角坐标系中,圆C经过伸缩变换得到曲线C′,设M(x,y)为曲线C′上一点,求4x2+xy+y2的最大值,并求相应点M的坐标.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(Ⅰ)把直线l的参数方程、圆C的极坐标方程化为普通方程,根据圆心到直线的距离d与圆半径r的关系,判定直线l与圆C的公共点个数;(Ⅱ)由圆C的参数方程求出曲线C′的参数方程,代入4x2+xy+y2中,求出4x2+xy+y2取得最大值时对应的M点的坐标.解答:解:(Ⅰ)直线l的参数方程(t为参数)化为普通方程是x﹣y﹣=0,圆C的极坐标方程ρ=1化为普通方程是x2+y2=1;∵圆心(0,0)到直线l的距离为d==1,等于圆的半径r,∴直线l与圆C的公共点的个数是1;(Ⅱ)圆C的参数方程是,(0≤θ<2π);∴曲线C′的参数方程是,(0≤θ<2π);∴4x2+xy+y2=4cos2θ+cosθ•2sinθ+4sin2θ=4+sin2θ;当θ=或θ=时,4x2+xy+y2取得最大值5,此时M的坐标为(,)或(﹣,﹣).点评:本题考查了参数方程与极坐标方程的应用问题,解题时可以把参数方程、极坐标方程化为普通方程,以便正确解答问题,是基础题.【选修4-5:不等式选讲】24.(Ⅰ)已知a和b是任意非零实数.证明:≥4;(Ⅱ)若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,求实数k的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(Ⅰ)利用双绝对值不等式的性质|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|即可证得结论成立;(Ⅱ)构造函数h(x)=|2x+1|﹣|x+1|=,作出y=h(x)与过定点(1,﹣)的直线y=k(x﹣1)﹣的图象,数形结合即可求得实数k的取值范围.解答:证明:(Ⅰ)|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|∴.(Ⅱ)记h(x)=|2x+1|﹣|x+1|=若不等式|2x+1|﹣|x+1|>k(x﹣1)﹣恒成立,则函数h(x)的图象在直线y=k(x﹣1)﹣的上方,∵y=k(x﹣1)﹣经过定点(1,﹣),当x=﹣时,y=h(x)取得最小值﹣,显然,当y=k(x﹣1)﹣经过定点P(1,﹣)与M(﹣,﹣)时,k PM==,即k>;当y=k(x﹣1)﹣经过定点P(1,﹣)与直线y=x平行时,k得到最大值1,∴.点评:本题考查函数恒成立问题,着重考查绝对值不等式的性质,突出构造函数思想与数形结合思想的应用,考查转化思想与运算求解能力,属于难题.。
黑龙江省大庆市2017-2018学年高三第一次模拟考试数学(理科)试卷 Word版含解析
∴a≥2,
故选:D.
【点评】本题主要考查两个集合的交集的定义和求法,属于基础题.
2.若复数x满足x+i= ,则复数x的模为( )
A. B.10C.4D.
【分析】利用复数代数形式的乘除运算求得复数x,再求其模即可.
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
A.1B.2C.3D.4
【分析】由新定义计算定积分可将问题转化为g(x)=x3+2x﹣ 在x∈[﹣1,1]上的零点个数,由零点判定定理和函数单调性可得.
【解答】解:由题意可得 (x3+2x)dx=( x4+x2) = ,
∴函数f(x)=x3+2x在[﹣1,1]上“平均值点”的个数为方程x3+2x= 在[﹣1,1]上根的个数,
②若“p∧q”为假,则p、q均为假;
③“三个数a,b,c成等比数列”是“b= ”的既不充分也不必要条件.
A.OB.1C.2D.3
【分析】①根据含有量词的的否定判断.②根据复合与简单之间的关系判断.③根据充分条件和必要条件的定义判断.
【解答】解:①全称的否定是特称,∴“∀x∈R,x3﹣x2+1≤0”的否定是“∃x0∈R,x03﹣x02+1>0”正确.
∴其焦点在x轴,且实半轴的长a=2,
2018年高考第一次模拟考试理科数学仿真卷-含答案
2018年高考第一次模拟考试理科数学仿真卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 2i z -=+,则z 的共轭复数在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{}2=36M x x <,{}2,4,6,8N =,则M N = ( ) A .{}24,B .{}46,C .{}26,D .{}246,,3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )A .12B .13C .41-πD .42-π4.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .42种 B .48种 C .54种 D .60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为( )A .323π B .643π C .32π D .3π6.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知ABC △的顶点()2,0A ,()0,4B ,AC BC =,则ABC △的欧拉线方程为( )A .230x y +-=B .230x y -+=C .230x y --=D .230x y -+=7.执行如图所示的程序框图,则输出S 的值为( ) A .4097 B .9217 C .9729D .204818.已知函数()()sin f x A x ωϕ=+(其中,,A ωϕ为常数,且0A >,0ω>,2ϕπ<)的部分图象如图所示,若()32f α=,则sin 26απ⎛⎫+ ⎪⎝⎭的值为( )A .34-B .18-C .18D .139.已知实数ln22a =,ln33b =,ln55c =,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .c b a <<D .b a c <<10.如图所示,在正方体1111ABCD A B C D -中,,E F 分别为1111,B C C D 的中点,点P 是底面1111A B C D 内一点,且AP ∥平面EFDB ,则1tan APA ∠的最大值是( )A.2B .1 CD.11.已知双曲线2221y x b -=的左右焦点分别为12F F 、,过点2F 的直线交双曲线右支于A B 、两点,若1ABF △是等腰三角形,120A ∠=︒.则1ABF △的周长为( )A.)21B4+ C4 D8+ 12.已知函数()23e x f x -=,()1ln 42xg x =+,若()()f m g n =成立,则n m -的最小值为( )A .1ln22+B .ln2C .12ln22+D .2ln2第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知向量()12,a k = ,()1,14b k =- ,若a b ⊥,则实数k =__________.14.ABC △的内角,,A B C 的对边分别为,,a b c,已知)cos cos a C c A b -=,60B =︒,则A 的大小为__________.15.已知直线:l (0)x my n n =+>过点()A,若可行域0 0x my n x y +⎧⎪⎨⎪⎩≤≥≥的外接圆直径为20,则n =_____.16. “求方程34155x x ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭ 的解”有如下解题思路:设()3455x xf x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()f x 在R 上单调递减,且()21f =,所以原方程有唯一解2x =.类比上述解题思路,不等式()()63222x x x x -+>+-的解集是__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.已知数列{}n a 的前n 项和2n S n pn =+,且2a ,5a ,10a 成等比数列. (1)求数列{}n a 的通项公式; (2)若151n n n b a a +=+⋅,求数列{}n b 的前n 项和n T .18.某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的22⨯列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有X 人,超过210千卡的有Y 人,设X Y ξ=-,求ξ的分布列及数学期望. 附:()()()()()22n ad bc k a b c d a c b d -=++++,其中n a b c d =+++.参考数据:19.如图,已知AB BC ⊥,BE CD ∥,90DCB ∠=︒,平面B C D E ⊥平面ABC ,2AB BC BE ===,4CD =,F 为AD 中点. (1)证明:EF ⊥平面ACD ;(2)求直线CE 与平面ABD 所成角的余弦值.20.已知椭圆E :22221(0)x y a b a b +=>>经过点1,⎛ ⎝⎭,焦距为 (1)求椭圆E 的标准方程;(2)直线():l y m m =+∈R 与椭圆E 交于不同的两点A 、B ,线段AB 的垂直平分线交y 轴交于点M,若tan AMB ∠=-,求m 的值.21.已知函数()()223e x f x x ax a =+--.(1)若2x =是函数()f x 的一个极值点,求实数a 的值.(2)设0a <,当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =的上方,求实数a 的取值范围.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l的参数方程为1 (2x t y =⎪=⎧⎪⎨⎪⎪⎩为参数),曲线C 的极坐标方程为4cos ρθ=; (1)求直线l 的直角坐标方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交点分别为,A B ,点()1,0P ,求11PA PB+的值.23.已知函数()2121f x x x =-++. (1)求函数()f x 的最小值m ;(2)若正实数,a b 满足11a b +=2212m a b+≥.参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】 ()1i 2i z -=+,()()()()1i 1i 2+i 1i z ∴-+=+,213i z =+,13i 22z =+,13i 22z =-,z 的共轭复数在复平面内对应点坐标为13,22⎛⎫- ⎪⎝⎭,z 的共轭复数在复平面内对应的点在第四象限,故选D . 2.【答案】A【解析】()6,6M =-,故{}2,4M N = . 3.【答案】C【解析】令圆的半径为1,则()22'41S P S π-π-===-ππ,故选C . 4.【答案】A【解析】最左端排甲时,有44A 24=种排法;最左端排乙时,有333A 18= 种排法,所以共有241842+=种排法,选A . 5.【答案】D【解析】由已知中的三视图可得,该几何体是一个以正视图为底面的四棱锥,故该四棱锥的外接球,与以俯视图为底面,以4为高的直三棱柱的外接球相同. 由底面底边长为4,高为2,故底面为等腰直角三角形, 可得底面三角形外接圆的半径为2r =, 由棱柱高为4,可得22OO =,故外接球半径为R ==故外接球的体积为(3433V =π⨯=π.选D . 6.【答案】D【解析】线段AB 的中点为M (1,2),k AB =﹣2, ∴线段AB 的垂直平分线为:y ﹣2=12(x ﹣1),即x ﹣2y +3=0. ∵AC =BC ,∴△ABC 的外心、重心、垂心都位于线段AB 的垂直平分线上, 因此△ABC 的欧拉线的方程为:x ﹣2y +3=0.故选:D . 7.【答案】B【解析】阅读流程图可知,该流程图的功能是计算:0129122232102S =⨯+⨯+⨯++⨯ , 则123102122232102S =⨯+⨯+⨯++⨯ ,以上两式作差可得:10191012012222210210212S --=++++-⨯=-⨯- , 则:109219217S =⨯+=.本题选择B 选项. 8.【答案】B【解析】由函数图象可知:2A =,函数的最小正周期:724263T ππ⎛⎫=⨯-=π ⎪⎝⎭,则21T ωπ==,当23x π=时,()212,2326x k k k ωϕϕϕπππ+=⨯+=π+∴=π-∈Z , 令0k =可得6ϕπ=-,函数的解析式:()2sin 6f x x π⎛⎫=- ⎪⎝⎭. 由()32f α=可得:332sin ,sin 6264ααππ⎛⎫⎛⎫-=∴-= ⎪ ⎪⎝⎭⎝⎭,则: 2π91sin 2sin 2cos 212sin 1263236168ααααππππ⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-=--=-⨯=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.本题选择B 选项. 9.【答案】B【解析】∵ln3ln22ln33ln2ln9ln803266b a ---=-==>,∴b a >; 又ln2ln55ln22ln5ln32ln250251010a c ---=-==>,∴a c >, ∴b ac >>,即c a b <<.选B . 10.【答案】D【解析】由题意可得,点P 位于过点A 且与平面EFDB 平行的平面上, 如图所示,取1111,A D A B 的中点,G H ,连结,,,GH AH AG GE ,由正方形的性质可知:EF GH ∥,由ABEG 为平行四边形可知AG BE ∥, 由面面平行的判定定理可得:平面AGH ∥平面BEFD , 据此可得,点P 位于直线GH 上,如图所示,由1AA ⊥平面1111A B C D 可得11AA A P ⊥, 则111tan AA APA A P∠=,当1tan APA ∠有最大值时,1A P 取得最小值,即点P 是GH 的中点时满足题意,结合正方体的性质可得此时1tan APA ∠的值是本题选择D 选项.11.【答案】C【解析】双曲线的焦点在x 轴上,则1,22a a ==;设2AF m =,由双曲线的定义可知:1222AF AF a m =+=+, 由题意可得:1222AF AB AF BF m BF ==+=+, 据此可得:22BF =,又1212,4BF BF BF -=∴=,1ABF △由正弦定理有:11sin120sin30BF AF =︒︒,则11BF =,即:)42m =+,解得:2m =,则△ABF 1的周长为:()422424m ++=+=. 本题选择C 选项. 12.【答案】A【解析】设()()f m g n t ==,()23e x f x -= ,()1ln 42xg x =+, ()231e ln 042m xt t -∴=+=>, 1423ln e 2t n m t -∴-==,,ln 32t m +∴=,142e t n -=,()14ln 32e02t t n m t -+-=->, 令()()14ln 32e02t t h t t -+=->, 则()()1412e02t h t t t --'=>,()1'4212e 02t h t t-⎡⎤∴=+>⎣'⎦, ()h t ∴'在()0+∞,上为增函数,且104h ⎛⎫= ⎪⎭'⎝,当14t >时,()0h t '>,当104t <<时,()0h t '<, ()h t ∴在104⎛⎫ ⎪⎝⎭,上为减函数,在14⎛⎫+∞ ⎪⎝⎭,上为增函数,∴当14t =时,()h t 取得最小值, 此时11441ln 31142eln 2422h -+⎛⎫=⨯-=+ ⎪⎝⎭,即n m -的最小值为1ln 22+,故选A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】6-【解析】由题意,()121140k k -+=,则6k =-. 14.【答案】75︒)cos cos a C c A b -=)sin cos sin cos sin A C C A B -=,即()A C -=,()1sin 2A C -=,1306A C -=π=︒,又180120A CB ︒-=︒+= ,2150A ∴=︒,75A =︒,故答案为75︒.15.【答案】【解析】由题意知可行域为图中△OAB 及其内部,解得(),0,B n AB =,又tan AOB ∠=,则∠AOB =30°,由正弦定理得2sin 20sin3010AB R AOB =∠=⨯︒=,解得n =.故答案为:16.【答案】()(),12,-∞-⋃+∞【解析】不等式x 6﹣(x +2)>(x +2)3﹣x 2变形为,x 6+x 2>(x +2)3+(x +2); 令u =x 2,v =x+2,则x 6+x 2>(x +2)3+(x+2)⇔u 3+u >v 3+v ;考查函数f (x )=x 3+x ,知f (x )在R 上为增函数, ∴f (u )>f (v ),∴u >v ;不等式x 6+x 2>(x +2)3+(x +2)可化为x 2>x +2,解得x <﹣1或x >2; ∴不等式的解集为:(﹣∞,﹣1)∪(2,+∞). 故答案为:(﹣∞,﹣1)∪(2,+∞).三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17.【答案】(1)25n a n =+;(2)214541449n n nT n +=+.【解析】(1)当2n ≥时,121n n n a S S n p -=-=-+,当1n =时,111a S p ==+,也满足21n a n p =-+,故21n a n p =-+, ∵2510,,a a a 成等比数列,∴()()()23199p p p ++=+, ∴6p =.∴25n a n =+. (2)由(1)可得()()155511111252722527n n n b a a n n n n +⎛⎫=+=+=+- ⎪⋅++++⎝⎭,∴2511111151454279911252714491449n n n nT n n n n n n +⎛⎫=+-+-+⋯+-=+= ⎪++++⎝⎭. 18.【答案】(1)有99%以上把握认为“评定类型”与“性别”有关;(2)58.【解析】(1)由题意完成2×2列联表如下:则()224015155510>6.63520202020K ⨯-⨯==⨯⨯⨯,故有99%以上把握认为“评定类型”与“性别”有关.(2)任选一人,由题知:每日走路消耗卡路里不超过120千卡的概率为18,超过210千卡的概率为14,所以ξ的分布列为:则数学期望为:()2930550126464648E ξ=⨯+⨯+⨯=. 19.【答案】(1)证明见解析;(2. 【解析】(1)证明:设AC 中点为G ,连,FG BG , ∵F 为AD 中点,∴1,2FG DC FG DC =∥, 又由题意BE CD ∥,12BE CD = ∴EB FG ∥,且EB FG =,∴四边形BEFG 为平等四边形,∴,EF BG ∥ ∵90DCB ∠=︒ ∴DC BC ⊥,又∵平面BCDE ⊥平面ABC ,平面BCDE 平面ABC BC =,DC ⊂平面BCDE , ∴DC ⊥平面ABC .又BG ⊂平面ABC ,∴DC BG ⊥,∴DC EF ⊥, 又AB BC =,∴AC BG ⊥,∴AC EF ⊥,∵AC DC C = ,AC ⊂平面ACD ,DC ⊂平面ACD , ∴EF ⊥平面ACD .(2)以点B 为原点,以BA 方向为x 轴,以BC 方向为y 轴,以BE 方向为z 轴,建立如图所示坐标系()0,0,0B ,()0,0,2E ,()2,0,0A ,()0,2,0C ,()0,2,4D ,设平面ABD 的法向量(),,n x y z = ,则0n BA n BD ⋅=⋅⎧⎨⎩= ,∴20240x y z =+=⎧⎨⎩取1z =,()021n =- ,,,()0,2,2CE =- ,∴cos ,CE n CE n CE n ⋅〈〉===, 设直线CE 与平面ABD 所成角为θ,则sin θ=,∴cos θ=,即直线CE 与平面ABD所成角的余弦值10. 20.【答案】(1)2214x y +=;(2)1m =或1m =-.【解析】(1)由题意得2c =,所以c =又点1,⎛ ⎝⎭在椭圆上,所以:222231413a b b a +==-⎧⎪⎪⎨⎪⎪⎩, 整理得:42419120a a -+=,解得:24a =或234a =(舍),∴21b =, ∴椭圆的标准方程为:2214x y +=.(2)设()()1122,,,A x y B x y ,线段AB 中点坐标()()330,,0,C x y M y ,由221,4y m x y ⎧=++=⎪⎨⎪⎩整理得:229440x m ++-=,∴()()2224944144160m m ∆=-⨯⨯-=->, ∴29m <,又129x x +=-,212449m x x -⋅=,∴1232x x x +==∴339my m =+=, ∴线段AB 的中点C坐标为,99m ⎛⎫- ⎪ ⎪⎝⎭又12AB x =-=∴AC =,又0MCmy k -==,∴03m y =-, ∴点M 坐标为0,3m ⎛⎫- ⎪⎝⎭,∴MC=m =, ∵CM 垂直平分AB , ∴2AMB AMC ∠=∠, 又22tan tan 1tan AMCAMB AMC∠∠==--∠,解得tanAMC ∠=tan 2AMC ∠=-(舍), ∴在Rt AMC ∆中,AC AMC MC ∠====2298m m -=,∴1m =或1m =-. 21.【答案】(1)5a =-;(2)[)e 2,0--. 【解析】(1)由()()223e x f x x ax a =+--可得:()()()()222e 23e 23e x x xf x x a x ax a x a x a ⎡⎤=+++--=++--⎣⎦',∵2x =是函数()f x 的一个极值点,∴()20f '=,∴()25e 0a +=,计算得出5a =-.代入()()()()()31e 21e x x f x x a x x x =++=--'-, 当12x <<时,()0f x '<;当2x >时,()0f x '>, ∴2x =是()f x 的极值点.∴5a =-.(2)当[]1,2x ∈时,函数()f x 的图象恒不在直线2e y =上方, 等价于[]1,2x ∈,()2e f x ≤恒成立, 即[]1,2x ∈,()2max e f x ≤恒成立, 由(1)知,()()()31e x f x x a x =++-', 令()0f x '=,得13x a =--,21x =, ①当5a -≤时,32a --≥, ∴()f x 在[]1,2x ∈单调减,()()()2max 12e e f x f a ==--≤,e 2a --≥与5a -≤矛盾,舍去. ②当54a -<<-时,132a <--<,()f x 在()1,3x a ∈--上单调递减,在()3,2x a ∈--上单调递增,∴()max f x 在()1f 或()2f 处取到,()()12e f a =--,()22e f =,∴只要()()212e e f a =--≤, 计算得出e 24a --<-≤. ③当40a -<≤时,31a --≤,()f x 在[]1,2x ∈上单调增,()()2max 2e f x f ==,符合题意,∴实数a 的取值范围是[)e 2,0--.(二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.【答案】(1):10l x y +-=,曲线22:40C x y x +-=;(2)3. 【解析】(1):10l x y +-=,曲线22:40C x y x +-=;(2)将12 2x y ⎧⎪==⎨-⎪⎪⎪⎩(t为参数)代入曲线C的方程,得23=0t -,12t t ∴-==,121211t t PA PB t t -∴+==. 23.【答案】(1)2;(2)见解析.【解析】(1)()()212121212x x x x -++--+=≥当且仅当1122x -≤≤时,等式成立.(2)2221211112a b a b ⎛⎫⎛⎫⎛⎫+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭≥则22122a b +≥,当且仅当2b a =时取,等号成立.。
内蒙古呼和浩特市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析
内蒙古呼和浩特市2017-2018学年高考数学一模试卷(理科)一、选择题(本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2+x﹣2=0},B={x|﹣2<x<1},则A∩C R B=( )A.∅B.{﹣2} C.{1} D.{﹣2,1}2.复数z=的共轭复数是( )A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.设a∈R,则“a=1”是“直线11:ax+2y﹣6=0 与直线l2:x+(a+1)y+3=0”平行的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种5.若定义在(﹣1,0)内的函数f(x)=log2a(x+1)>0,则a的取值范围是( ) A.B.C.D.(0,+∞)6.已知tanθ=2,则2sin2θ+sinθcosθ﹣cos2θ=( )A.﹣B.﹣C.D.7.正项等比数列{a n}中,a n+1<a n,a2•a8=6,a4+a6=5,则=( )A.B.C.D.8.如图所示的程序框图的输出结果是( )A.512 B.510 C.254 D.10229.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.8 B.12 C.4 D.610.已知直线l:y=x+3与双曲线﹣=1相交于A,B两点,线段AB中点为M,则OM 的斜率为( )A.﹣B.﹣C.D.11.在曲线y=x2(x≥0)上某一点A处作一条切线使之与曲线以及x轴围成的面积为,则以A为切点的切线方程为( )A.y=x﹣B.y=2x﹣1 C.y=2x+1 D.y=x+12.若函数f(x)=lnx+kx﹣1有两个零点,则实数k的取值范围是( )A.(﹣,0)B.(﹣∞,﹣)C.(﹣,+∞)D.(﹣e2,﹣)二、填空题(本大题有4小题,每小题5分,共20分)13.若力,,达到平衡,且,大小均为1,夹角为60°,则||的大小为__________.14.实数x,y满足约束条件,若z=y+ax取得最大值的最优解不唯一,则实数a的值为__________.15.已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,则α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中真的序号是__________.16.等差数列{a n}其前n项和为S n.已知a3=6,S6=42,记b n=(﹣l)n a,设{b n}的前n项和为I n,则T2n+1=__________.三、解答题17.已知函数f(x)=sin2x﹣2sin2x﹣1(Ⅰ)求函数f(x)的单调减区间;(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c,且c=,f(C)=﹣l,若3sinA=sinB,求该三角形的面积S.18.如图,在三棱柱ABM﹣DCN中,侧面ADNM⊥侧面ABCD,且侧面ABCD是菱形,∠DAB=60°,AD=2,侧面ADNM是矩形,AM=1,E是AB的中点.(Ⅰ)求证:AN∥平面MEC;(Ⅱ)求平面AMN与平面BMC所成二面角.19.某电视台组织一科普竞赛,竞赛规则规定:答对第一,二,三个问题分别得100分,100分,200分,答错得零分.假设甲同学答对第一,二,三个问题的槪率分別为,,且各题答对与否之问无影响.求:(Ⅰ)甲同学得300分的槪率;(Ⅱ)记甲同学竞赛得分为ξ,求ξ的分布列;(Ⅲ)如果每得100分,即可获得1000元公益基金.依据甲同学得分的平均值预计其所得的得的公益基金数.20.若椭圆C:+=l(a>b>0)的离心率e=,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)设点M(2,0),点Q是椭圆上一点.当|MQ|最小时,试求点Q的坐标;(Ⅲ)设P(m,O)为椭圆C长轴(含端点)上的一个动点.过P点斜率为的直线l交椭圆于A,B两点,设λ=丨PA|2+|PB|2.试判断λ的取值是否与m有关,若有关,求出λ的取值范围;若无关,请说明理由.21.已知函数f(x)=lnx,g(x)=ax2﹣bx(a≠0).(Ⅰ)当b=0时,求函数h(x)=f(x)﹣g(x)的单调区间;(Ⅱ)当b=1时,回答下面两个问题:(i)若函数y=f(x)与函数y=g(x)的图象在公共点P处有相同的切线.求实数a的值;(ii)若函数y=f(x)与函数y=g(x)的图象有两个不同的交点M,N.过线段MN的中点作x轴的垂线,分别与f(x),g(x)的图象交于S,T两点.以S为切点作f(x)的切l1,以T为切点作g(x)的切线l2,是否存在实数a,使得l1∥l2,若存在.求出a的值;若不存在,请说明理由.四、选做题(请从下面所給的22、23、24三题中选定一题作答,不涂、多涂均按所答第一题评分:多答按所答第一题评分)【选修4-1:几何证明选讲】22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D 是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.【选修4-4:坐标系与參数方程】23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.己知直线l的参数方程为(t为參数),曲线C1的方程为ρ=4sinθ.若线段OQ的中点P始终在C1上.(Ⅰ)求动点Q的轨迹C2的极坐标方程:(Ⅱ)直线l与曲线C2交于A,B两点,若丨AB丨≥4,求实数a的取值范围.【选修4-5:不等式选讲】24.已知正实数a,b,c及函数f(x)=|x﹣a|+|x﹣1|.(I)当a=3时,解不等式f(x)<6;(Ⅱ)若a+b+c=1,且不等式f(x)≥对任意实数x都成立.求证:0<a≤﹣1.内蒙古呼和浩特市2015届高考数学一模试卷(理科)一、选择题(本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2+x﹣2=0},B={x|﹣2<x<1},则A∩C R B=( )A.∅B.{﹣2} C.{1} D.{﹣2,1}考点:交、并、补集的混合运算.专题:集合.分析:求出A中方程的解确定出A,找出A与B补集的交集即可.解答:解:由A中方程变形得:(x﹣1)(x+2)=0,解得:x=1或x=﹣2,即A={﹣2,1},∵全集为R,B={x|﹣2<x<1},∴∁R B={x|x≤﹣2或x≥1},则A∩∁R B={﹣2,1},故选:D.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.复数z=的共轭复数是( )A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:化简复数,即可得其共轭复数.解答:解:化简可得复数z====﹣1+i,∴复数z的共轭复数为:﹣1﹣i故选:B点评:本题考查复数的代数形式的乘除运算,涉及共轭复数,属基础题.3.设a∈R,则“a=1”是“直线11:ax+2y﹣6=0 与直线l2:x+(a+1)y+3=0”平行的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由直线11:ax+2y﹣6=0 与直线l2:x+(a+1)y+3=0”平行,可得,≠,解出即可判断出.解答:解:直线11:ax+2y﹣6=0 与直线l2:x+(a+1)y+3=0”平行,则,≠,解得a=1,因此“a=1”是“直线11:ax+2y﹣6=0 与直线l2:x+(a+1)y+3=0”平行的充要条件.故选:C.点评:本题考查了充要条件的判定、平行线与斜率截距直角的关系,考查了推理能力与计算能力,属于基础题.4.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种考点:分步乘法计数原理.分析:本题既有分类计数原理也有分步计数原理.解答:解:甲型1台与乙型电视机2台共有4•C52=40;甲型2台与乙型电视机1台共有C42•5=30;不同的取法共有70种故选C点评:注意分类计数原理和分步计数原理都存在时,一般先分类后分步.5.若定义在(﹣1,0)内的函数f(x)=log2a(x+1)>0,则a的取值范围是( ) A.B.C.D.(0,+∞)考点:对数函数的定义.专题:计算题.分析:由x的范围求出对数真数的范围,再根据对数值的符号,判断出底数的范围,列出不等式进行求解.解答:解:当x∈(﹣1,0)时,则x+1∈(0,1),因为函数f(x)=log2a(x+1)>0故0<2a<1,即.故选A.点评:本题考查了对数函数值的符号与底数的关系,即求出真数的范围,根据对数函数的性质求解.6.已知tanθ=2,则2sin2θ+sinθcosθ﹣cos2θ=( )A.﹣B.﹣C.D.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:原式分母看做“1”,利用同角三角函数间的基本关系化简,把tanθ的值代入计算即可求出值.解答:解:∵tanθ=2,∴原式====.故选:D.点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.7.正项等比数列{a n}中,a n+1<a n,a2•a8=6,a4+a6=5,则=( )A.B.C.D.考点:等比数列的性质.专题:计算题.分析:通过已知条件,求出a4,a6,通过等比数列的性质推出的值.解答:解:因为正项等比数列{a n}中,a n+1<a n,a2•a8=6,a4+a6=5,所以a4•a6=6,a4+a6=5,解得a4=3,a6=2,=.故选D.点评:本题考查等比数列的基本运算,性质的应用,考查计算能力.8.如图所示的程序框图的输出结果是( )A.512 B.510 C.254 D.1022考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序,依次写出每次循环得到的S,n的值,当n=9时,不满足条件n≤8,退出循环,输出S的值为510,从而得解.解答:解:模拟执行程序,可得n=1,S=0满足条件n≤8,S=2,n=2满足条件n≤8,S=6,n=3满足条件n≤8,S=14,n=4满足条件n≤8,S=30,n=5满足条件n≤8,S=62,n=6满足条件n≤8,S=126,n=7满足条件n≤8,S=254,n=8满足条件n≤8,S=510,n=9不满足条件n≤8,退出循环,输出S的值为510.故选:B.点评:本题主要考查了程序框图和算法,正确写出每次循环得到的S,n的值是解题的关键,属于基本知识的考查.9.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.8 B.12 C.4 D.6考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是由长方体截割去4个等体积的三棱锥所得到的几何体,由此求出几何体的体积.解答:解:根据几何体的三视图,得:该几何体是由长方体截割得到,如图中三棱锥A﹣BCD,由三视图中的网络纸上小正方形边长为1,得该长方体的长、宽、高分别为3、2、4,则三棱锥的体积为V三棱锥=3×2×4﹣4×××2×3×4=8.故选:A.点评:本题考查了利用空间几何体的三视图求几何体的体积的应用问题,是基础题目.10.已知直线l:y=x+3与双曲线﹣=1相交于A,B两点,线段AB中点为M,则OM的斜率为( )A.﹣B.﹣C.D.考点:双曲线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:联立直线y=x+3与双曲线﹣=1,消去y,可得x的方程,运用韦达定理和中点坐标公式,可得AB中点M的坐标,再由直线的斜率公式计算即可得到.解答:解:联立直线y=x+3与双曲线﹣=1,消去y,可得4x2﹣9(x+3)2=36,即为5x2+54x+117=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,即有AB的中点的横坐标为﹣,可得AB的中点M坐标为(﹣,﹣),即有OM的斜率为=.故选D.点评:本题考查双曲线方程的运用,主要考查直线方程和双曲线方程联立,运用韦达定理,由中点坐标公式和直线的斜率公式是解题的关键.11.在曲线y=x2(x≥0)上某一点A处作一条切线使之与曲线以及x轴围成的面积为,则以A为切点的切线方程为( )A.y=x﹣B.y=2x﹣1 C.y=2x+1 D.y=x+考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求切点A的坐标及过切点A的切线方程,先求切点A的坐标,设点A的坐标为(a,a2),只须在切点处的切线方程,故先利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率从而得到切线的方程进而求得面积的表达式.最后建立关于a的方程解之即得.最后求出其斜率的值即可,即导数值即可求出切线的斜率.从而问题解决.解答:解:如图所示,设切点A(x0,y0),由y′=2x,得过点A的切线方程为:y﹣y0=2x0(x﹣x0),即y=2x0x﹣x02.令y=0,得x=,即C(,0).设由曲线和过A点的切线及x轴所围成图形的面积为S.S曲边三角形AOB=x2dx=x3|=,S△ABC=|BC|•|AB|=(x0﹣)•x02=.∴S=﹣=.由=得x0=1,从而切点A的坐标为(1,1),切线方程为y=2x﹣1.故选B.点评:本题主要考查了导数的几何意义及定积分的简单应用,在用定积分求面积时注意被积函数的确定.12.若函数f(x)=lnx+kx﹣1有两个零点,则实数k的取值范围是( )A.(﹣,0)B.(﹣∞,﹣)C.(﹣,+∞)D.(﹣e2,﹣)考点:函数零点的判定定理.专题:计算题;作图题;函数的性质及应用;导数的概念及应用.分析:作函数y=lnx﹣1与y=﹣kx的图象,当直线与y=lnx﹣1相切时,设切点(x,lnx﹣1);从而利用导数及斜率定义分别求斜率,从而求出0<﹣k<;从而求k的取值范围.解答:解:作函数y=lnx﹣1与y=﹣kx的图象如下,当直线与y=lnx﹣1相切时,设切点(x,lnx﹣1);y′=,=;解得,x=e2;则﹣k=;故0<﹣k<;故﹣<k<0;故选:A.点评:本题考查了函数的图象的应用及函数零点的判定定理的应用,属于基础题.二、填空题(本大题有4小题,每小题5分,共20分)13.若力,,达到平衡,且,大小均为1,夹角为60°,则||的大小为.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的数量积的定义和性质:向量的平方即为模的平方,计算即可得到所求值.解答:解:•=1×1×cos60°=,由++=,可得=﹣(+),2=(+)2=++2=1+1+2×=3,即有||=.故答案为:.点评:本题考查向量的数量积的定义和性质,主要考查向量的平方即为模的平方,属于基础题.14.实数x,y满足约束条件,若z=y+ax取得最大值的最优解不唯一,则实数a的值为1或﹣2.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y+ax得y=﹣ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若﹣a>0,即a<0,目标函数y=﹣ax+z的斜率k=﹣a>0,要使z=y+ax取得最大值的最优解不唯一,则直线y=﹣ax+z与直线2x﹣y+2=0平行,此时a=﹣2,若﹣a<0,即a>0,目标函数y=﹣ax+z的斜率k=﹣a<0,要使z=y+ax取得最大值的最优解不唯一,则直线y=﹣ax+z与直线x+y﹣2=0,平行,此时﹣a=﹣1,解得a=1,综上a=1或a=﹣2,故答案为:1或﹣2点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.15.已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列:①若α⊥β,m∥α,则m⊥β;②若m⊥α,n⊥β,且m⊥n,则α⊥β;③若m⊥β,m∥α,则α⊥β;④若m∥α,n∥β,且m∥n,则α∥β.其中真的序号是②③.考点:平面与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系判断.解答:解:若α⊥β,m∥α,则m⊥β或m⊂β,故①不正确;若m⊥α,n⊥β,且m⊥n,则由平面与平面垂直的判定定理知α⊥β,故②正确;若m⊥β,m∥α,则由平面与平面垂直的判定定理知α⊥β,故③正确;若m∥α,n∥β,且m∥n,则α与β相交或平行,故④不正确.故答案为:②③.点评:本题考查真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.16.等差数列{a n}其前n项和为S n.已知a3=6,S6=42,记b n=(﹣l)n a,设{b n}的前n项和为I n,则T2n+1=﹣2n2﹣4n﹣2.考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:利用a3=6,S6=42,求出a1=d=2,可得数列的通项,再分组求和,即可得出结论.解答:解:由题意,,∴a1=d=2,∴a n=2n,∴a=n(n+1),∴b n=(﹣l)n a=(﹣l)n n(n+1),∴T2n+1=﹣1×2+2×3+…+2n(2n+1)﹣(2n+1)(2n+2)=2(2+4+…+2n)﹣(2n+1)(2n+2)=﹣2n2﹣4n﹣2.故答案为:﹣2n2﹣4n﹣2.点评:本题考查等差数列的通项与求和,考查学生的计算能力,确定数列的通项是关键.三、解答题17.已知函数f(x)=sin2x﹣2sin2x﹣1(Ⅰ)求函数f(x)的单调减区间;(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c,且c=,f(C)=﹣l,若3sinA=sinB,求该三角形的面积S.考点:三角函数中的恒等变换应用;正弦定理;余弦定理.专题:三角函数的图像与性质;解三角形.分析:(1)由三角函数中的恒等变换应用化简函数解析式可得:f(x)=2sin(2x+)﹣2,由2k≤2x+≤2k,k∈Z即可求得单调递减区间.(2)由(1)整理可得sin(2C+)=,结合C的范围,即可求得C,由3sinA=sinB,得3a=b,又由余弦定理即可解得a,b的值,从而由三角形面积公式即可得解.解答:解:(1)据题意f(x)=sin2x+cos2x﹣2=2sin(2x+)﹣2,由2k≤2x+≤2k,k∈Z,得k≤x≤kπ,k∈Z,故,单调递减区间为:[k,kπ],k∈Z.…(2)由(1)可知f(C)=2sin(2C+)﹣2=﹣1,整理可得sin(2C+)=,由C∈(0,π),可知2C+∈(,),进而可得C=…由3sinA=sinB,得3a=b,又由余弦定理可知:cosC===,解得a=1,b=3,故S△ABC=absinC=…点评:本题主要考查了三角函数中的恒等变换应用,考查了正弦定理,余弦定理,三角形面积公式的应用,属于基本知识的考查.18.如图,在三棱柱ABM﹣DCN中,侧面ADNM⊥侧面ABCD,且侧面ABCD是菱形,∠DAB=60°,AD=2,侧面ADNM是矩形,AM=1,E是AB的中点.(Ⅰ)求证:AN∥平面MEC;(Ⅱ)求平面AMN与平面BMC所成二面角.考点:二面角的平面角及求法;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(Ⅰ)连接NB交MC与点G,通过中位线定理及线面平行的判定定理即可;(Ⅱ)建立空间直角坐标系如图,则所求二面角的余弦值即为平面AMN的一个法向量与平面BMC的法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:如图连接NB交MC于点G,则EG是△ABN的一条中位线,故EG∥AN;∵EG⊂平面MEC,∴AN∥平面MEC;(Ⅱ)解:如图建立空间直角坐标系,其中F为BC中点;则N(0,0,1),M(2,0,1),A(2,0,0),E(,,0),B(1,,0),F(0,,0),C(﹣1,,0),所以,平面AMN的一个法向量为==(0,,0),设平面BMC的法向量为=(x,y,z),则可列方程为:且,即且﹣x=0,所以=(0,1,),设平面AMN与平面BMC所成二面角的平面角为θ,则|cosθ|==,故.点评:本题主要考查直线与平面之间的平行、垂直等位置关系,二面角的概念、求法等知识,以及空间想象能力和逻辑推理能力,属于中档题.19.某电视台组织一科普竞赛,竞赛规则规定:答对第一,二,三个问题分别得100分,100分,200分,答错得零分.假设甲同学答对第一,二,三个问题的槪率分別为,,且各题答对与否之问无影响.求:(Ⅰ)甲同学得300分的槪率;(Ⅱ)记甲同学竞赛得分为ξ,求ξ的分布列;(Ⅲ)如果每得100分,即可获得1000元公益基金.依据甲同学得分的平均值预计其所得的得的公益基金数.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)甲同学得300分,有两种情况,利用独立重复试验的概率求解即可.(Ⅱ)记甲同学竞赛得分为ξ,求出可能情况以及概率,即可得到ξ的分布列;(Ⅲ)求出甲同学得分的平均值预计即期望,然后求解所得的得的公益基金数.解答:解:(Ⅰ)P(ξ=300)=…(Ⅱ)甲同学竞赛得分为ξ,ξ可能情况:0,100,200,300,400.P(ξ=0)==,P(ξ=100)==,P(ξ=200)==,P(ξ=300)=,P(ξ=400)=.ξ的分布列如下:…ξ0 100 200 300 400P(Ⅲ)由分布列可知E(ξ)==275,所以公益基金数为275元…点评:本题主要考查离散型随机变量的分布列与数学期望,独立重复试验的应用,属于中档题.20.若椭圆C:+=l(a>b>0)的离心率e=,且椭圆C的一个焦点与抛物线y2=﹣12x的焦点重合.(Ⅰ)求椭圆C的方程;(Ⅱ)设点M(2,0),点Q是椭圆上一点.当|MQ|最小时,试求点Q的坐标;(Ⅲ)设P(m,O)为椭圆C长轴(含端点)上的一个动点.过P点斜率为的直线l交椭圆于A,B两点,设λ=丨PA|2+|PB|2.试判断λ的取值是否与m有关,若有关,求出λ的取值范围;若无关,请说明理由.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)先求出焦点的坐标,再由离心率求得半长轴的长,从而得到短半轴长,即可写出椭圆的标准方程;(2)用坐标表示出|MQ|2,利用二次函数的性质可得结论;(3)设出直线方程,代入椭圆方程,利用韦达定理,表示出|PA|2+|PB|2,根据|PA|2+|PB|2的值与m无关.解答:解:(1)由题意可得:抛物线y2=﹣12x的焦点(﹣3,0),由于离心率e=,则a=5,故b=4所以椭圆C的方程为;(2)设Q(x,y),﹣5≤x≤5则|MQ|2=(x﹣2)2+y2=x2﹣4x+4+16﹣x2=x2﹣4x+20.由于对称轴为x=>5,∴x=5时,|MQ|2取得最小值∴当|MQ|最小时,点Q的坐标为(5,0);(3)设A(x1,y1),B(x2,y2),直线l:y=(x﹣m)由于设P(m,O)为椭圆C长轴(含端点)上的一个动点,则﹣5≤m≤5,将直线代入椭圆方程,消去y可得2x2﹣2mx+m2﹣25=0则x1+x2=m,x1x2=(m2﹣25),∴|PA|2+|PB|2=(x1﹣m)2+y12+(x2﹣m)2+y22=[(x1﹣m)2+(x2﹣m)2]=[(x1+x2)2﹣2x1x2﹣2m(x1+x2)+2m2]=[m2﹣(m2﹣25)﹣2m2+2m2]=×25=41故|PA|2+|PB|2的值与m无关.点评:本题考查椭圆的标准方程,考查配方法的运用,考查直线与椭圆的位置关系,考查学生的计算能力,正确运用韦达定理是关键.21.已知函数f(x)=lnx,g(x)=ax2﹣bx(a≠0).(Ⅰ)当b=0时,求函数h(x)=f(x)﹣g(x)的单调区间;(Ⅱ)当b=1时,回答下面两个问题:(i)若函数y=f(x)与函数y=g(x)的图象在公共点P处有相同的切线.求实数a的值;(ii)若函数y=f(x)与函数y=g(x)的图象有两个不同的交点M,N.过线段MN的中点作x轴的垂线,分别与f(x),g(x)的图象交于S,T两点.以S为切点作f(x)的切l1,以T为切点作g(x)的切线l2,是否存在实数a,使得l1∥l2,若存在.求出a的值;若不存在,请说明理由.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:计算题;选作题;函数的性质及应用;导数的综合应用.分析:(Ⅰ)由题意,h(x)=f(x)﹣g(x)=lnx﹣ax2(x>0),求导可得h′(x)=﹣2ax=,从而由导数的讨论确定其单调性及单调区间;(Ⅱ)(i)设函数y=f(x)与函数y=g(x)的图象的公共点P(x0,y0),则有lnx0=ax02﹣x0,f′(x0)=g′(x0),从而可得lnx0=﹣x0;再令H(x)=lnx﹣+x,H′(x)=+>0;从而求a;(ii)不妨设M(x1,y1),N(x2,y2)且x1>x2,则MN中点的坐标为(,);从而写出切线的斜率k1=f′()=,k2=g′()=a(x1+x2)﹣1,从而如果存在a使得k1=k2,=a(x1+x2)﹣1,再结合lnx1=ax12﹣x1和lnx2=ax22﹣x2得ln=;设u=>1,则有lnu=,(u>1);从而可确定满足条件的实数a并不存在.解答:解:(Ⅰ)由题意,h(x)=f(x)﹣g(x)=lnx﹣ax2(x>0),所以,h′(x)=﹣2ax=,所以,当a≤0时,h′(x)>0,h(x)单调递增;当a>0时,f(x)的单调增区间为(0,),单调减区间为(,+∞).(Ⅱ)(i)设函数y=f(x)与函数y=g(x)的图象的公共点P(x0,y0),则有lnx0=ax02﹣x0,①又在点P有共同的切线,∴f′(x0)=g′(x0),即=2ax0﹣1,即a=代入①得lnx0=﹣x0;设H(x)=lnx﹣+x,H′(x)=+>0;所以函数H(x)最多只有1个零点,观察得x0=1是零点.∴a=1,此时P(1,0).(ii)不妨设M(x1,y1),N(x2,y2)且x1>x2,则MN中点的坐标为(,);以S为切点的切线l1的斜率k1=f′()=,以T为切点的切线l2的斜率k2=g′()=a(x1+x2)﹣1,如果存在a使得k1=k2,=a(x1+x2)﹣1,①而且有lnx1=ax12﹣x1和lnx2=ax22﹣x2,如果将①的两边乘x1﹣x2得并简可得,=ax12﹣x1﹣(ax22﹣x2)=lnx1﹣lnx2=ln,即,ln=;设u=>1,则有lnu=,(u>1);考察F(u)=lnu﹣,(u>1)的单调性不难发现,F(u)在[1,+∞)上单调递增,故F(u)>F(1)=0,所以,满足条件的实数a并不存在.点评:本题考查了导数的综合应用及化简及整体代换的应用,化简运算很困难,属于难题.四、选做题(请从下面所給的22、23、24三题中选定一题作答,不涂、多涂均按所答第一题评分:多答按所答第一题评分)【选修4-1:几何证明选讲】22.如图,△ABC是直角三角形,∠ABC=90°,以AB为直径的圆O交AC于点E,点D 是BC边的中点,连接OD交圆O于点M.(1)求证:O、B、D、E四点共圆;(2)求证:2DE2=DM•AC+DM•AB.考点:与圆有关的比例线段.专题:证明题;直线与圆.分析:(1)连接BE、OE,由直径所对的圆周角为直角,得到BE⊥EC,从而得出DE=BD=,由此证出△ODE≌△ODB,得∠OED=∠OBD=90°,利用圆内接四边形形的判定定理得到O、B、D、E四点共圆;(2)延长DO交圆O于点H,由(1)的结论证出DE为圆O的切线,从而得出DE2=DM•DH,再将DH分解为DO+OH,并利用OH=和DO=,化简即可得到等式2DE2=DM•AC+DM•AB成立.解答:解:(1)连接BE、OE,则∵AB为圆0的直径,∴∠AEB=90°,得BE⊥EC,又∵D是BC的中点,∴ED是Rt△BEC的中线,可得DE=BD.又∵OE=OB,OD=OD,∴△ODE≌△ODB.可得∠OED=∠OBD=90°,因此,O、B、D、E四点共圆;(2)延长DO交圆O于点H,∵DE⊥OE,OE是半径,∴DE为圆O的切线.可得DE2=DM•DH=DM•(DO+OH)=DM•DO+DM•OH.∵OH=,OD为△ABC的中位线,得DO=,∴,化简得2DE2=DM•AC+DM•AB.点评:本题着重考查了圆的切线的性质定理与判定、直径所对的圆周角、全等三角形的判定与性质等知识,属于中档题.【选修4-4:坐标系与參数方程】23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.己知直线l的参数方程为(t为參数),曲线C1的方程为ρ=4sinθ.若线段OQ的中点P始终在C1上.(Ⅰ)求动点Q的轨迹C2的极坐标方程:(Ⅱ)直线l与曲线C2交于A,B两点,若丨AB丨≥4,求实数a的取值范围.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)设点Q(ρ1,θ),则ρ1=2ρ=8sinθ,即可得出;(2)由题意,A,B两点中必有一个是极点,不妨设A为极点,则B(ρ,θ),可得,可得,|tanθ|≥1,解出即可.解答:解:(1)设点Q(ρ1,θ),则ρ1=2ρ=8sinθ,故点Q的轨迹C2的极坐标方程为ρ=8sinθ;(2)由题意,A,B两点中必有一个是极点,不妨设A为极点,则B(ρ,θ),由题,,即,∴,∴|tanθ|≥1,则a=tanθ∈(﹣∞,﹣1]∪[1,+∞).点评:本题考查了极坐标方程、中点坐标公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.【选修4-5:不等式选讲】24.已知正实数a,b,c及函数f(x)=|x﹣a|+|x﹣1|.(I)当a=3时,解不等式f(x)<6;(Ⅱ)若a+b+c=1,且不等式f(x)≥对任意实数x都成立.求证:0<a≤﹣1.考点:绝对值不等式的解法;二维形式的柯西不等式.专题:不等式的解法及应用.分析:(I)由条件利用绝对值的意义求得不等式f(x)<6的解集.(Ⅱ)由题意利用绝对值三角不等式求得f(x)≥1﹣a,化简可得(1﹣a)2≥a2+b2+c2①;再由已知可得b2+c2≥②;结合①②以及0<a<1,求得a的范围,即可证得结论.解答:解:(I)当a=3时,函数f(x)=|x﹣3|+|x﹣1|,表示数轴上的x对应点到1、3对应点的距离之和,而﹣1和5对应点到1、3对应点的距离之和正好等于6,故不等式f(x)<6的解集为(﹣1,5).(Ⅱ)证明:∵f(x)=|x﹣a|+|x﹣1|≥|a﹣1|=1﹣a,结合题意可得1﹣a≥,即1﹣a≥,即(1﹣a)2≥a2+b2+c2①.又∵a+b+c=1,a,b,c 为正实数,∴(1﹣a)2=(b+c)2≤2(b2+c2),∴b2+c2≥②.综合①②可得(a﹣1)2≥a2+,即a2+2a﹣1≤0.再结合0<a<1,求得0<a≤﹣1,故有0<a≤﹣1成立.点评:本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于中档题.。
广东省广州市普通高中2017高考高三数学第一次模拟试题精选:数列07 含答案
数列0714、数列{}n a 的前n 项和记为n S ,且满足21n n S a =-(1)求数列{}n a 的通项公式;(2)求和:0121231n n n n n nS C S C S C S C +++++ ;(3)设有m 项的数列{}n b 是连续的正整数数列,并且满足:()212111lg 2lg 1lg 1lg 1lg log m m a b b b ⎛⎫⎛⎫⎛⎫+++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭试问数列{}n b 最多有几项?并求这些项的和.【答案】解:(1)由12-=n n a S 得1211-=++n n a S ,相减得n n n a a a 2211-=++,即n n a a 21=+. 又1211-=a S ,得011≠=a ,∴数列{}n a 是以1为首项2为公比的等比数列,∴12-=n n a . ………………………………………………5分(2)由(1)知12-=n n S .∴n n n n n n n n n n n n C C C C C S C S C S C S ⋅-+⋅-+⋅-+⋅-=⋅++⋅+⋅+⋅++)12()12()12()12(12312011231201 n n n n n n n n n n n n n n n C C C C C C C C 2322)21(2)()222(22102210-⋅=-+=++++-++++=………………………………………………10分(3)由已知得111122211-=+⋅⋅+⋅+⋅m b b b b b b mm . 又{}n b 是连续的正整数数列,∴11+=-n n b b .∴上式化为1)1(21-=+m b b m .…… 又)1(1-+=m b b m ,消m b 得02311=--m b mb .26323111-+=-=b b b m ,由于*∈N m ,∴21>b ,∴31=b 时,m 的最大值为9. 此时数列的所有项的和为6311543=++++ ……………………16分15、已知数列{a n }满足761-=a ,12110n n a a a a +++++-λ= (其中λ≠0且λ≠–1,n ∈N*),n S 为数列{a n }的前n 项和.(1) 若3122a a a ⋅=,求λ的值;(2) 求数列{a n }的通项公式n a ;(3) 当13λ=时,数列{a n }中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,请说明理由.【答案】(1) 令1=n ,得到λ712=a ,令2=n ,得到237171λλ+=a 。
2018高考数学(理)(全国通用)大一轮复习2017高考试题汇编 第六章 数列(含解析)
第六章 数列第一节 等差数列与等比数列题型67 等差(等比)数列的公差(公比)1.(2017北京理10)若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =_______. 解析由11a =-,48a =,则21132a a d =+=-+=,由11b =-,48b =,则2q =-,则212b b q ==.故22212a b ==. 2.(2017全国1理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( ). A .1B .2C .4D .8解析 45113424a a a d a d +=+++=,61656482S a d ⨯=+=,联立112724 61548 a d a d +=⎧⎪⎨+=⎪⎩①② 3⨯-①②,得()211524-=d ,即624d =,所以4d =.故选C.3.(2017全国2理3)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ).A .1盏B .3盏C .5盏D .9盏 解析 设顶层灯数为1a ,2=q ,()7171238112-==-a S ,解得13a =.故选B.4.(2017全国3理14)设等比数列{}n a 满足12–1a a +=, 13––3a a =,则4a = ___________. 解析 因为{}n a 为等比数列,设公比为q .由题意得121313a a a a +=-⎧⎨-=-⎩,即112111 3 a a q a a q +=-⎧⎪⎨-=-⎪⎩①② 显然1q ≠,10a ≠,式式②①,得13q -=,即2q =-,代入①式可得11a =, 所以()3341128a a q ==⨯-=-.题型68 等差、等比数列求和问题的拓展1.(2017全国1理12)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是02,接下来的两项是02,12,再接下来的三项是02,12,22,依此类推.求满足如下条件的最小整数100N N >:且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ). A.440B.330C.220D.110解析 设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推. 设第n 组的项数为n ,则n 组的项数和为()12n n +,由题意得,100N >,令()11002n n +>,得14n ≥且*n ∈N ,即N 出现在第13组之后,第n 组的和为122112nn -=--,n 组总共的和为()12122212n n n n +--=---,若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数,即()*21214k n k n -=+∈N ,≥,()2log 3k n =+,得n 的最小值为295n k ==,, 则()2912954402N ⨯+=+=.故选A.2.2017山东理19)已知{}n x 是各项均为正数的等比数列,且123x x +=,322x x -=, (1)求数列{}n x 的通项公式;(2)如图所示,在平面直角坐标系xOy 中,依次联结点()111P x ,,()222P x ,,…,()11,1n n P x n +++得到折线121n PP P +,求由该折线与直线0y =,1x x =,1n x x +=所围成的区域的面积n T.解析 (1)设数列{}n x 的公比为q ,由已知0q >.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过1231,,,,n P P P P +向x 轴作垂线,垂足分别为1231,,,,n Q Q Q Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n n T b b b b =++++=10132325272(21)2(21)2n n n n ---⨯+⨯+⨯++-⨯++⨯ ①又012212325272(21)2(21)2n n n T n n --=⨯+⨯+⨯++-⨯++⨯ ②-①②,得121132(222)(21)2n n n T n ----=⨯++++-+⨯=1132(12)(21)2.212n n n ---+-+⨯- 所以(21)21.2n n n T -⨯+=题型69 等差、等比数列的性质及其应用1.(2017江苏09)等比数列{}n a 的各项均为实数,其前n 项的和为n S ,已知374S =,6634S =,则8a = .解析 解法一:由题意等比数列公比不为1,由()()313616171416314a q S q a q S q ⎧-==⎪-⎪⎨-⎪==⎪-⎩,因此36319S q S =+=,得2q =.又3123S a a a =++()2117174a q qa=++==,得114a =,所以78132a a q ==.故填32.解法二(由分段和关系):由题意3363374634S S S q S ⎧=⎪⎪⎨⎪=+=⎪⎩,所以38q =,即2q =.下同解法一.2.(2017全国2理15)等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑ .解析 设{}n a 首项为1a ,公差为d .由3123a a d =+=,414610S a d =+=,得11a =,1d =,所以n a n =,()12n n n S +=,()()112222122311nk kSn n n n ==++++=⨯⨯-+∑11111112122311n n n n ⎛⎫-+-++-+-= ⎪-+⎝⎭122111n n n ⎛⎫-=⎪++⎝⎭.题型70 判断或证明数列是等差、等比数列1.(2017江苏19)对于给定的正整数k ,若数列{}n a 满足111+n knk nnn k a aa a a --+-++-++⋅⋅⋅+++⋅⋅⋅+2n k na k a +=对任意正整数n ()n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“()3P 数列”;(2)若数列{}n a 既是“()2P 数列”,又是“()3P 数列”,证明:{}n a 是等差数列. 解析 (1)因为{}n a 是等差数列,设其公差为d ,则()11n a a n d =+-, 从而当4n …时,()()1111=n k n k a a a n k d a n k d -++=+--+++-()12212n a n d a +-=,1,2,3k =,所以321123+++6n n n n n n n a a a a a a a ---+++++=,因此等差数列{}n a 是“()3P 数列”. (2)由数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此,当3n …时,21124n n n n n a a a a a --+++++= ① 当4n …时,3211236n n n n n n n a a a a a a a ---++++++++= ② 由①知,()()321144n n n n n a a a a a n ---++=-+≥ ③()()231142n n n n n a a a a a n +++-+=-+≥ ④将③④代入②,得112n n n a a a -++=,其中4n …, 所以345,,,a a a ⋅⋅⋅是等差数列,设其公差为d '.在①中,取4n =,则235644a a a a a +++=,所以23a a d '=-, 在①中,取3n =,则124534a a a a a +++=,所以312a a d '=-,从而数列{}n a 是等差数列.评注 这是数列新定义的问题,其实类似的问题此前我们也研究过,给出仅供参考.(2015南通基地密卷7第20题)设数列{}n a 的各项均为正数,若对任意的*n ∈N ,存在*k ∈N , 使得22n k n n k a a a ++=成立,则称数列{}n a 为“k J 型”数列.(1)若数列{}n a 是“2J 型”数列,且28a =,81a =,求2n a ;(2)若数列{}n a 既是“3J 型”数列,又是“4J 型”数列,证明数列{}n a 是等比数列. 解析 (1)由题意得,2468,,,,a a a a ⋅⋅⋅成等比数列,且公比138212a q a ⎛⎫== ⎪⎝⎭,所以412212n n n a a q --⎛⎫== ⎪⎝⎭.(2)由{}n a 是“4J 型”数列得159131721,,,,,,a a a a a a ⋅⋅⋅成等比数列,设公比为t , 由{}n a 是“3J 型”数列得1471013,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为1α;2581114,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为2α; 3691215,,,,,a a a a a ⋅⋅⋅成等比数列,设公比为3α;则431311a t a α==,431725a t a α==,432139a t a α==, 所以123ααα==,不妨令123αααα===,则43t α=.所以()32113211k k k a a a α----==,()2311223315111k k k k k aa a t a a ααα------====,所以131323339111k k k k kaa a t a a ααα----====,综上11n n a a -=,从而{}n a 是等比数列.2.(2017北京理20)设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.解析 (1)111110c b a =-=-=,{}{}21122max 2,2max 121,3221c b a b a =--=-⨯-⨯=-,{}{}3112233max 3,3,3max 131,332,5332c b a b a b a =---=-⨯-⨯-⨯=-. 当3n …时,()()()()111120k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.从而{}112211max ,,,1n n n c b a n b a n b a n b a n n =---=-=-,将1,2,3n =代入,满足此式,所以对任意1n …,1n c n =-,于是11n n c c +-=-,得{}n c 是等差数 列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则()[]()()121111211(1)1k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以()()11212111211,,n b a n n d nd d nd c b a n d nd ⎧-+-->⎪=⎨-⎪⎩当时当时….①当10d >时,取正整数21d m d >,则当n m …时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n …,(){}(){}()11211211max ,01max ,0n c b a n n d b a n d a =-+-=-+--.此时,123,,,,,n c c c c 是等差数列.③当10d <时, 当21d n d >时,有12nd d <,所以()()()11211211121n b a n n d nd c b d n d d a d n n n-+---==-+-++… ()111212||n d d a d b d -+-+--.对任意正数M ,取正整数12112211||max ,M b d a d d d m d d ⎧⎫+-+-->⎨⎬-⎩⎭,故当n m …时,nc M n>. 题型71 等差数列与等比数列的交汇问题——暂无第二节 数列的通项公式与求和题型72 数列通项公式的求解 题型73 数列的求和1.(2017天津理18)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列{}221n n a b -的前n 项和()n *∈N .解析 (1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以2nn b =.由3412b a a =-,可得138d a -= ① 由114=11S b ,可得1516a d += ② 联立①②,解得11a =,3d =,由此可得32n a n =-.所以数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯=1112(14)4(31)4=(32)4814n n n n n ++⨯----⨯--⨯--,得1328433n n n T +-=⨯+. 所以数列{}221n n a b -的前n 项和为1328433n n +-⨯+. 2.(2017全国3理9)等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则数列{}n a 前6项的和为( ). A .24-B .3-C .3D .8解析 因为{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d ,则2326a a a =,即()()()211125a d a d a d +=++.因为11a =,代入上式可得220d d +=,又0d ≠,则2d =-,所以()61656561622422S a d ⨯⨯=+=⨯+⨯-=-.故选A.第三节 数列的综合题型74 数列与不等式的综合1.(2017浙江理22)已知数列{}n x 满足:11x =,()()*11ln 1n n n x x x n ++=++∈N .证明:当*n ∈N 时. (1)10n n x x +<<; (2)1122n n n n x x x x ++-…; (3)1-21122n n n x -剟. 解析 (1)用数学归纳法证明:0n x >.当1n =时,110x =>,假设n k =时,0k x >,那么1n k =+时,若10k x +…,则()110ln 10k k k x x x ++<=++…,矛盾,故10k x +>. 因此()*0n x n >∈N ,所以()111ln 1n n n n x x x x +++=++>. 因此()*10n n x x n +<<∈N.(2)由()111ln 1n n n n x x x x +++=++>,得()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++. 记函数()()()()222ln 10f x x x x x x =-+++….()()()()()222122222ln 1ln 1ln 10111x x x x xf x x x x x x x x -++++'=-+++=++=+++++…,知函数()f x 在[)0,+∞上单调递增,所以()()00f x f =…, 因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=…,即()*1122n n n n x x x x n ++-∈N ….(3)因为()()*11111ln 12n n n n n n x x x x x x n +++++=+++=∈N …,得112n n x x +…,以此类推,21111,,22n n x x x x -厖,所以112112112n n n n n n x xx x x x x x ----⎛⎫=⋅⋅⋅⋅ ⎪⎝⎭=x ?,故112n n x -…. 由(2)知,()*1122n n n n x x x x n ++-∈N …,即111112022n n x x +⎛⎫--> ⎪⎝⎭…, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫--⋅⋅⋅-= ⎪ ⎪⎝⎭⎝⎭厖?,故212n n x -….综上,()*121122n n n x n --∈N 剟.。
内蒙古呼伦贝尔市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析
内蒙古呼伦贝尔市2017-2018学年高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁U A)∩B=( )A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅2.在复平面内,复数(i是虚数单位)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.“a=﹣2”是“直线l1:ax﹣y+3=0与l2:2x﹣(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,则双曲线的离心率是( ) A.B.C.D.5.执行如图所示的程序框图,当输出值为4时,输入x的值为( )A.﹣2或﹣3 B.2或﹣3 C.±2 D.26.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于( )A.6B.3C.2D.7.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是( )A.35 B.﹣35 C.﹣56 D.568.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<),其部分图象如图所示,将f(x)的图象纵坐标不变,横坐标变成原来的2倍,再向右平移1个单位得到g(x)的图象,则函数g(x)的解析式为( )A.g(x)=sin(x+1) B.g(x)=sin(x+1)C.g(x)=sin(x+1)D.g(x)=sin(x+1)9.已知向量,,,若,则tan()的值为( )A.B.C.﹣D.﹣10.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为( ) A.B.1 C.D.211.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为( )A.8πB.12πC.16πD.32π12.若函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )A.(﹣) B.() C.()D.()二、填空题(共4小题,每小题5分,满分20分)13.实数x,y满足,则z=x﹣y的最大值是__________.14.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是__________.15.如图所示,在山腰测得山顶仰角∠CAB=45°沿倾斜角为30°的斜坡走1000米至S点,又测得山顶仰角∠DSB=75°,则山顶高BC为__________米.16.设F1,F2分别是椭圆(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为__________.三、解答题(共5小题,满分60分)17.设S n为数列{a n}的前n项和,且对任意n∈N*都有S n+(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+log3a3+…+log3a n,求数列的前n项和.18.如图,在三棱锥S﹣ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O 为BC中点.(Ⅰ)证明:SO⊥平面ABC;(Ⅱ)求二面角A﹣SC﹣B的余弦值.19.某教研机构准备举行一次数学新课程研讨会,共邀请了n位一线教师(n>8且n∈N*),其中有6位教师使用人教A版教材,其余使用北师大版教材.(Ⅰ)从这N位一线教师中随机选出2位,若他们使用不同版本教材的概率不小于,求N的最大值;(Ⅱ)当N=12时,设选出的2位教师中使用人教A版教材的人数为ζ,求ξ的分布列和均值.20.已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x﹣2)2+y2=1的两条切线,切点为A,B,|AB|=.(Ⅰ)求抛物线E的方程;(Ⅱ)过M点斜率为k的直线l与抛物线E交于H、G两点.是否存在这样的k,使得抛物线E上总存在点Q(x0,y0)满足QH⊥QG,若存在,求k的取值范围;若不存在,说明理由.21.已知f(x)=lnx﹣ax2﹣bx.(Ⅰ)若a=﹣1,函数f(x)在其定义域内是增函数,求b的取值范围;(Ⅱ)设f(x)的零点为x1,x2且x1<x2,x1+x2=2x0,求证:f′(x0)<0.四、解答题(共3小题,满分30分)选修4-1:几何证明选讲22.如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂足为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点(Ⅰ)求证:∠PFE=∠PAB;(Ⅱ)求证:CD2=CF•CP.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.选修4-5:不等式选讲24.已知函数f(x)=|x﹣1|,(1)解关于x的不等式f(x)+x2﹣1>0(2)若g(x)=﹣|x+3|+m,f(x)<g(x)的解集非空,求实数m的取值范围.内蒙古呼伦贝尔市2015届高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U={﹣1,﹣2,﹣3,﹣4,0},集合A={﹣1,﹣2,0},B={﹣3,﹣4,0},则(∁U A)∩B=( )A.{0} B.{﹣3,﹣4} C.{﹣1,﹣2} D.∅考点:交、并、补集的混合运算.分析:先计算集合C U A,再计算(C U A)∩B.解答:解:∵A={﹣1,﹣2,0},B={﹣3,﹣4,0},∴C U A={﹣3,﹣4},∴(C U A)∩B={﹣3,﹣4}.故答案选B.点评:本题主要考查了集合间的交,补混合运算,较为简单.2.在复平面内,复数(i是虚数单位)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的混合运算.分析:化简复数为a+bi (a、b∈R)的形式,可以确定z对应的点位于的象限.解答:解:复数=故选C.点评:本题考查复数代数形式的运算,复数和复平面内点的对应关系,是基础题.3.“a=﹣2”是“直线l1:ax﹣y+3=0与l2:2x﹣(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分必要条件的定义结合两直线平行的性质及判定得出答案.解答:解:当a=﹣2时,l1:2x+y﹣3=0,l2:2x+y+4=0,两直线平行,是充分条件;若直线l1:ax﹣y+3=0与l2:2x﹣(a+1)y+4=0互相平行,则a(a+1)=2,解得:a=﹣2,或a=1,不是必要条件,故选:A.点评:本题考查了充分必要条件,考查了两直线平行的性质及判定,是一道基础题.4.已知双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,则双曲线的离心率是( ) A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据题设条件知求出渐近线的斜率,利用a,b,c 的关系,求出双曲线的离心率.解答:解:∵双曲线kx2﹣y2=1的渐近线的一条渐近线与直线2x+y+1=0垂直,∴渐近线的斜率为,∴=,∴=,∴e=.故选A点评:本题考查双曲线的性质和应用,解题时要注意公式的合理运用.5.执行如图所示的程序框图,当输出值为4时,输入x的值为( )A.﹣2或﹣3 B.2或﹣3 C.±2 D.2考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序可得程序框图的功能是计算并输出分段函数y=的值,当y的值为4时,分情况讨论即可解得x的值.解答:解:模拟执行程序可得程序框图的功能是计算并输出分段函数y=的值,故当输出值为4时,有:当x<1时,1﹣x=4,可解得x=﹣3.当x≥1时,x2=4,可解得x=2,或﹣2(舍去)综上可得输入x的值为2或﹣3.故选:B.点评:本题主要考查了程序框图和算法,考查了分段函数的求解,模拟执行程序得到程序框图的功能是解题的关键,属于基本知识的考查.6.一个四棱锥的三视图如图所示,其左视图是等边三角形,该四棱锥的体积等于( )A.6B.3C.2D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,计算出几何体的底面面积和高,代入棱锥体积公式,可得答案.解答:解:由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,其底面面积S=×(1+2)×2=3,又∵左视图是等边三角形,∴高h=,故棱锥的体积V=×=,故选:D.点评:本题考查的知识点是由三视图求体积,其中分析出几何体的形状是解答的关键.7.在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,则展开式中含x2项的系数是( )A.35 B.﹣35 C.﹣56 D.56考点:二项式系数的性质.专题:二项式定理.分析:根据二项式展开式中恰好第5项的二项式系数最大,得出n的值,再利用展开式的通项公式求出展开式中含x2项的系数即可.解答:解:∵在二项式(x﹣)n的展开式中恰好第5项的二项式系数最大,∴展开式中第5项是中间项,共有9项,∴n=8;展开式的通项公式为T r+1=•x8﹣r•=(﹣1)r••x8﹣2r,令8﹣2r=2,得r=3,∴展开式中含x2项的系数是(﹣1)3•=﹣56.故选:C.点评:本题考查了二项式展开式的应用问题,解题时应熟记二项式系数以及通项公式的特点,是基础题目.8.已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<),其部分图象如图所示,将f(x)的图象纵坐标不变,横坐标变成原来的2倍,再向右平移1个单位得到g(x)的图象,则函数g(x)的解析式为( )A.g(x)=sin(x+1)B.g(x)=sin(x+1)C.g(x)=sin(x+1)D.g(x)=sin(x+1)考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律,得出结论.解答:解:由函数的图象可得A=1,T==1﹣(﹣1)=2,∴ω=.再由五点法作图可得,(﹣1)+φ=0,∴φ=,函数f(x)=sin(x+).将f(x)的图象纵坐标不变,横坐标变成原来的2倍,可得函数y=sin(x+)的图象;再向右平移1个单位得到g(x)=sin[(x﹣1)+]=sin(x+)的图象,故函数g(x)的解析式为g(x)=sin(x+1),故选:B.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.9.已知向量,,,若,则tan()的值为( )A.B.C.﹣D.﹣考点:平面向量数量积的运算.专题:三角函数的求值;平面向量及应用.分析:先进行数量积的坐标运算,并且用上二倍角的余弦公式,从而可求得sin,而根据即可求得cos,然后根据两角差的正切公式和切化弦公式即可求出tan().解答:解:由已知条件:sinα•(1﹣2sinα)﹣cos2α=sinα﹣1=;∴,;∴;∴=.故选D.点评:考查数量积的坐标运算,二倍角的余弦公式,正弦函数在各象限的符号情况,以及两角差的正切公式,切化弦公式.10.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为( ) A.B.1 C.D.2考点:点到直线的距离公式.专题:转化思想;导数的综合应用.分析:由题意知,当曲线上过点P的切线和直线y=x﹣2平行时,点P到直线y=x﹣2的距离最小.求出曲线对应的函数的导数,令导数值等于1,可得切点的坐标,此切点到直线y=x ﹣2的距离即为所求.解答:解:点P是曲线y=x2﹣lnx上任意一点,当过点P的切线和直线y=x﹣2平行时,点P到直线y=x﹣2的距离最小.直线y=x﹣2的斜率等于1,令y=x2﹣lnx,得y′=2x﹣=1,解得x=1,或x=﹣(舍去),故曲线y=x2﹣lnx上和直线y=x﹣2平行的切线经过的切点坐标为(1,1),点(1,1)到直线y=x﹣2的距离等于,∴点P到直线y=x﹣2的最小距离为,故选:C.点评:本题考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化的数学思想方法,是中档题.11.四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD是边长为3的等边三角形.若AB=2,则球O的表面积为( )A.8πB.12πC.16πD.32π考点:球的体积和表面积.专题:球.分析:取CD的中点E,连结AE,BE,作出外接球的球心,求出半径,即可求出表面积.解答:解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,R===2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.点评:本题考查球的内接体知识,考查空间想象能力,确定球的切线与半径是解题的关键.12.若函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )A.(﹣) B.() C.()D.()考点:函数的图象.专题:函数的性质及应用.分析:由题意可得e x0﹣﹣ln(﹣x0+a)=0有负根,函数h(x)=e x﹣﹣ln(﹣x+a)为增函数,由此能求出a的取值范围.解答:解:由题意可得:存在x0∈(﹣∞,0),满足x02+e x0﹣=(﹣x0)2+ln(﹣x0+a),即e x0﹣﹣ln(﹣x0+a)=0有负根,∵当x趋近于负无穷大时,e x0﹣﹣ln(﹣x0+a)也趋近于负无穷大,且函数h(x)=e x﹣﹣ln(﹣x+a)为增函数,∴h(0)=e0﹣﹣lna>0,∴lna<ln,∴a<,∴a的取值范围是(﹣∞,),故选:A点评:本题考查的知识点是函数的图象和性质,函数的零点,函数单调性的性质,函数的极限,是函数图象和性质较为综合的应用.二、填空题(共4小题,每小题5分,满分20分)13.实数x,y满足,则z=x﹣y的最大值是3.考点:简单线性规划.专题:不等式的解法及应用.分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.解答:解:由约束条件作出可行域如图,化目标函数z=x﹣y为直线方程斜截式y=x﹣z,由图可知,当直线y=x﹣z过A(3,0)时,直线在y轴上的截距最小,z最大,最大值为3﹣0=3.故答案为:3.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是.考点:条件概率与独立事件.专题:概率与统计.分析:由茎叶图,确定P(A)=,P(B)=,P(AB)=,再利用条件概率公式,即可求得结论.解答:从这20名学生中随机抽取一人,基本事件总数为20个.将“抽出的学生为甲小组学生”记为事件A,则事件A包含的基本事件有10,故P(A)=;“抽出学生的英语口语测试成绩不低于85分”记为事件B,则事件B包含的基本事件有9,P(B)=,故事件AB包含的基本事件有5,故P(AB)=,故P(A|B)==.故答案为:.点评:本题考查读茎叶图,考查概率的计算,考查条件概率,考查学生的计算能力,属于中档题.15.如图所示,在山腰测得山顶仰角∠CAB=45°沿倾斜角为30°的斜坡走1000米至S点,又测得山顶仰角∠DSB=75°,则山顶高BC为1000米.考点:正弦定理.专题:计算题.分析:作出图形,过点S作SE⊥AC于E,SH⊥AB于H,依题意可求得SE在△BDS中利用正弦定理可求BD的长,从而可得山顶高BC.解答:解:依题意,过S点作SE⊥AC于E,SH⊥AB于H,∵∠SAE=30°,AS=1000米,∴CD=SE=AS•sin30°=500米,依题意,在Rt△HAS中,∠HAS=45°﹣30°=15°,∴HS=AS•sin15°,在Rt△BHS中,∠HBS=30°,∴BS=2HS=2000sin15°,在Rt△BSD中,BD=BS•sin75°=2000sin15°•sin75°=2000sin15°•cos15°=1000×sin30°=500米.∴BC=BD+CD=1000米.故答案为:1000.点评:本题考查正弦定理的应用,考查作图与计算的能力,属于中档题.16.设F1,F2分别是椭圆(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:通过∠F1PQ=60°,|PF1|=|PQ|,可得直线PQ过右焦点F2且垂直于x轴,从而△F1PQ 为等边三角形,△F1PF2为直角三角形,计算即可•解答:解:∵过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,∴直线PQ过右焦点F2且垂直于x轴,即△F1PQ为等边三角形,△F1PF2为直角三角形,∵F1P+F1Q+PQ=4a,∴F1P+PF2=2a,又∵F1P=2PF2,F1F2=2c,∴F1P=,PF2=,由勾股定理,得,即a2=3c2,∴e=,故答案为:•点评:本题考查椭圆的简单性质,勾股定理,挖掘隐含信息“直线PQ过右焦点F2且垂直于x轴”是解决本题的关键,属于中档题.三、解答题(共5小题,满分60分)17.设S n为数列{a n}的前n项和,且对任意n∈N*都有S n+(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+log3a3+…+log3a n,求数列的前n项和.考点:数列的求和.专题:等差数列与等比数列.分析:(I)利用“a1=S1,当n≥2时,a n=S n﹣S n﹣1”及其等比数列的通项公式即可得出;求通项公式、“错位相减法”、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.(II)由于a n=,可得log3a n==﹣n.利用等差数列的前n项和公式可得=﹣.利用“裂项求和”即可得出.解答:解:(I)∵S n+,∴当n=1时,=,∴a1=.当n≥2时,,∴a n+﹣=0,∴.∴数列{a n}是等比数列,∴a n=.(II)∵a n=,∴log3a n==﹣n.∴b n=log3a1+log3a2+log3a3+…+log3a n=﹣(1+2+…+n)=﹣.∴=﹣.∴数列的前n项和=﹣2+…+==.点评:本题考查了利用“a1=S1,当n≥2时,a n=S n﹣S n﹣1”求通项公式、“裂项求和”、等比数列与等差数列的通项公式前n项和公式,考查了推理能力与计算能力,属于难题.18.如图,在三棱锥S﹣ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O 为BC中点.(Ⅰ)证明:SO⊥平面ABC;(Ⅱ)求二面角A﹣SC﹣B的余弦值.考点:直线与平面垂直的判定;与二面角有关的立体几何综合题.专题:计算题;证明题.分析:(1)欲证SO⊥平面ABC,根据直线与平面垂直的判定定理可知只需证SO与平面ABC内两相交直线垂直,而SO⊥BC,SO⊥AO,又AO∩BO=O,满足定理条件;(2)以O为坐标原点,射线OB,OA分别为x轴、y轴的正半轴,建立空间直角坐标系O ﹣xyz,求出两半平面的法向量,求出两法向量的夹角即可.解答:证明:(Ⅰ)由题设AB=AC=SB=SC=SA,连接OA,△ABC为等腰直角三角形,所以,且AO⊥BC,又△SBC为等腰三角形,故SO⊥BC,且,从而OA2+SO2=SA2.所以△SOA为直角三角形,SO⊥AO.又AO∩BO=O.所以SO⊥平面ABC.(Ⅱ)解:以O为坐标原点,射线OB,OA分别为x轴、y轴的正半轴,建立如图的空间直角坐标系O﹣xyz.设B(1,0,0),则C(﹣1,0,0),A(0,1,0),S(0,0,1).SC的中点,.∴.故等于二面角A﹣SC﹣B的平面角.,所以二面角A﹣SC﹣B的余弦值为.点评:本小题主要考查直线与平面垂直,以及二面角等基础知识,考查空间想象能力,运算能力和推理论证能力.19.某教研机构准备举行一次数学新课程研讨会,共邀请了n位一线教师(n>8且n∈N*),其中有6位教师使用人教A版教材,其余使用北师大版教材.(Ⅰ)从这N位一线教师中随机选出2位,若他们使用不同版本教材的概率不小于,求N的最大值;(Ⅱ)当N=12时,设选出的2位教师中使用人教A版教材的人数为ζ,求ξ的分布列和均值.考点:离散型随机变量及其分布列;古典概型及其概率计算公式.专题:概率与统计.分析:(Ⅰ)根据题意得出概率P==,列出不等式则,求解即可.(Ⅱ)确定随机变量得出ξ的可能取值为0,1,2,再根据题意分别得出概率P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,列出分布列即可.解答:解:(Ⅰ)由题可知,所选两人为“使用版本不同”的概率P==,则,化简得n2﹣25n+144≤0,解得9≤n≤16,故n的最大值为16;(Ⅱ)由题意得,ξ的可能取值为0,1,2,则P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,所以ξ的分布列为ξ0 1 2P∴Eξ=0×+1×=1.点评:本题考查了古典概率分布在实际问题中的应用,关键是确定随机变量以及相应的概率,列出分布列,不等式求解,难度较大,属于中档题.20.已知抛物线E:y2=2px(p>0)的准线与x轴交于点M,过点M作圆C:(x﹣2)2+y2=1的两条切线,切点为A,B,|AB|=.(Ⅰ)求抛物线E的方程;(Ⅱ)过M点斜率为k的直线l与抛物线E交于H、G两点.是否存在这样的k,使得抛物线E上总存在点Q(x0,y0)满足QH⊥QG,若存在,求k的取值范围;若不存在,说明理由.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由已知得M(﹣,0),C(2,0),由圆的对称性求出|CR|、|CM|,利用抛物线的定义求出p,得出抛物线方程;(Ⅱ)设Q(x0,y0),H(x1,y1),G(x2,y2),直线方程与抛物线方程联立,利用根与系数的关系求两根之和与两根之积,由斜率公式表示出QH与QG的斜率,由QH⊥QG,利用斜率之积是﹣1,得到关于y0的一元二次方程,利用△≥0求出k的范围.解答:解:(Ⅰ)由已知得M(﹣,0),C(2,0).设AB与x轴交于点R,由圆的对称性可知,|AR|=.于是|CR|==,所以|CM|===3,即2+=3,p=2.故抛物线E的方程为y2=4x.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)设Q(x0,y0),H(x1,y1),G(x2,y2)由得ky2﹣4y+4k=0,由得﹣1<k<1且k≠0.,y1y2=4,,同理由QH⊥QG得,即:,∴,,得且k≠0,由﹣1<k<1且k≠0得k的取值范围为[﹣)∪(0,]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题主要考查了抛物线的定义及直线与抛物线的位置关系,考查了考生的基础知识的综合运用和知识迁移的能力.21.已知f(x)=lnx﹣ax2﹣bx.(Ⅰ)若a=﹣1,函数f(x)在其定义域内是增函数,求b的取值范围;(Ⅱ)设f(x)的零点为x1,x2且x1<x2,x1+x2=2x0,求证:f′(x0)<0.考点:利用导数研究函数的单调性;导数的运算.专题:计算题;证明题;整体思想;导数的综合应用;不等式的解法及应用.分析:(Ⅰ)化简函数f(x)=lnx+x2﹣bx,从而可得f′(x)=+2x﹣b≥0在(0,+∞)上恒成立,即b≤+2x在(0,+∞)上恒成立,再由+2x≥2(当且仅当x=时,等号成立),从而求b的取值范围.(Ⅱ)由题意得,,即,从而可得ln=(x1﹣x2)[a(x1+x2)+b],再由f′(x)=﹣2ax﹣b及x1+x2=2x0得到f′(x0)=[﹣ln],令t=,m(t)=﹣lnt(0<t<1),从而求导可证明m(t)>m(1)=0;再由x1<x2证明f′(x0)<0.解答:解:(Ⅰ)若a=﹣1,则函数f(x)=lnx+x2﹣bx,∵函数f(x)在其定义域(0,+∞)上是增函数,∴f′(x)=+2x﹣b≥0在(0,+∞)上恒成立,即b≤+2x在(0,+∞)上恒成立,而+2x≥2(当且仅当x=时,等号成立)故b≤2,故b的取值范围为(﹣∞,2].(Ⅱ)证明:由题意得,,即,故ln=(x1﹣x2)[a(x1+x2)+b],由f′(x)=﹣2ax﹣b及x1+x2=2x0,得f′(x0)=﹣2ax0﹣b=﹣[a(x1+x2)+b]=﹣ln=[﹣ln],令t=,m(t)=﹣lnt(0<t<1),∵m′(t)=﹣<0,∴m(t)在(0,1)上递减,∴m(t)>m(1)=0;又∵x1<x2,∴f′(x0)<0.点评:本题考查了导数的综合应用及整体代换的思想应用,化简运算困难,要细心,属于难题.四、解答题(共3小题,满分30分)选修4-1:几何证明选讲22.如图AB为圆O直径,P为圆O外一点,过P点作PC⊥AB,垂足为C,PC交圆O于D点,PA交圆O于E点,BE交PC于F点(Ⅰ)求证:∠PFE=∠PAB;(Ⅱ)求证:CD2=CF•CP.考点:与圆有关的比例线段.专题:选作题;立体几何.分析:(Ⅰ)在Rt△ACP中,∠PAC=90°﹣∠P;在Rt△PEF中,∠PFE=90°﹣∠P,即可证明:∠PFE=∠PAB;(Ⅱ)证明△BCF∽△PCA,即可证明CD2=CF•CP.解答:证明:(Ⅰ)AB为直径,E在圆O上,BE⊥AE∵PC⊥AB,∴∠PAC=90°﹣∠P,∠PFE=90°﹣∠P,∴∠PAB=∠PFE﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)连结AD、BD则AD⊥BD Rt△ABD中CD2=AC•CB由(Ⅰ)得△BCF∽△PCA,∴,∴CD2=BC•AC=CF•CP,∴CD2=CF•CP﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣点评:本题考查与圆有关的比例线段,考查三角形相似的判定,属于中档题.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q的轨迹C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.选修4-5:不等式选讲24.已知函数f(x)=|x﹣1|,(1)解关于x的不等式f(x)+x2﹣1>0(2)若g(x)=﹣|x+3|+m,f(x)<g(x)的解集非空,求实数m的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)由不等式f(x)+x2﹣1>0可化为:|x﹣1|>1﹣x2,即:1﹣x2<0或或,解出即可;(2)g(x)=﹣|x+3|+m,f(x)<g(x)的解集非空⇔|x﹣1|+|x+3|<m的解集非空⇔(|x ﹣1|+|x+3|)min<m,利用绝对值不等式的性质即可得出.解答:解:(1)由不等式f(x)+x2﹣1>0可化为:|x﹣1|>1﹣x2即:1﹣x2<0或或,解得x>1或x<﹣1,或∅,或x>1或x<0.∴原不等式的解集为{x|x>1或x<0},综上原不等式的解为{x|x>1或x<0}.(2)∵g(x)=﹣|x+3|+m,f(x)<g(x),∴|x﹣1|+|x+3|<m.因此g(x)=﹣|x+3|+m,f(x)<g(x)的解集非空⇔|x﹣1|+|x+3|<m的解集非空.令h(x)=|x﹣1|+|x+3|,即h(x)=(|x﹣1|+|x+3|)min<m,由|x﹣1|+|x+3|≥|x﹣1﹣x﹣3|=4,∴h(x)min=4,∴m>4.点评:本题考查了含绝对值的不等式的解法、分类讨论、绝对值不等式的性质等基础知识与基本技能方法,属于难题.。
安徽省黄山市2017-2018学年高三上学期第一次模拟数学(理)试卷 Word版含解析
2017-2018学年安徽省黄山市高考数学一模试卷(理科)一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣2.函数f(x)=lgx﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ36.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1 B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a8.数列{a n}满足a n+1=,若a1=,则a2015=()A. B. C. D.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)10.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成立的是() A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.12.已知两点A(1,0),B(l,1),O为坐标原点,点C在第二象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m的取值范围是.14.执行如图所示的程序框图,则输出结果S的值为.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真的是(写出所有真的序号).三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin(θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC中,∠A=θ,BC=2+1,求边AC的最大值.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.18.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.19.已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).2015年安徽省黄山市高考数学一模试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z满足方程Z2+2=0,则z=()A.±i B.± C.﹣i D.﹣考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:设z=a+bi(a,b∈R),由于复数z满足方程Z2+2=0,可得a2﹣b2+2+2abi=0,利用复数相等即可得出.解答:解:设z=a+bi(a,b∈R),∵复数z满足方程Z2+2=0,∴(a+bi)2+2=0,∴a2﹣b2+2+2abi=0,∴,解得,∴z=.故选:A.点评:本题考查了复数的运算法则、复数相等,属于基础题.2.函数f(x)=lgx﹣的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,10)考点:函数零点的判定定理.专题:计算题;函数的性质及应用.分析:由函数的连续性及f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;从而判断.解答:解:函数f(x)=lgx﹣在定义域上连续,f(2)=lg2﹣=lg2﹣lg<0,f(3)=lg3﹣lg>0;故f(2)f(3)<0;从而可知,函数f(x)=lgx﹣的零点所在的区间是(2,3);故选C.点评:本题考查了函数的零点的判定定理的应用,属于基础题.3.“tanx=”是“x=2kπ+(k∈Z)”成立的()A.充分不必要条件 B.必要不充分条件C.充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的求值;简易逻辑.分析:根据三角函数的性质结合充分条件和必要条件的定义进行判断即可.解答:解:若tanx=,则x=kπ+,k∈Z,则“tanx=”是“x=2kπ+(k∈Z)”成立的必要不充分条件,故选:B点评:本题主要考查充分条件和必要条件的判断,比较基础.4.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点之间的距离不小于该正方形边长的概率为()A. B. C. D.考点:几何概型.专题:概率与统计.分析:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为,两条长度为,即可得出结论.解答:解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,其中4条长度为1,4条长度为,两条长度为,满足这2个点之间的距离不小于该正方形边长的有4+2=6条,∴所求概率为P==.故选:A点评:本题考查概率的计算,列举出满足条件的基本事件是关键.5.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3考点:正态分布曲线的特点及曲线所表示的意义.专题:数形结合.分析:正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.解答:解:∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,故选D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.6.已知双曲线﹣=1(a>0,b>0)的离心率e∈[,2],则一条渐近线与实轴所成角的取值范围是()A. B. C. D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:由及c2=a2+b2,得的取值范围,设一条渐近线与实轴所成的角为θ,可由tanθ=及0<θ<探求θ的取值范围.解答:解:∵e,∴2≤≤4,又∵c2=a2+b2,∴2≤≤4,即1≤≤3,得1≤≤.由题意知,为双曲线的一条渐近线的方程,设此渐近线与实轴所成的角为θ,则,即1≤tanθ≤.∵0<θ<,∴≤θ≤,即θ的取值范围是.故答案为:C.点评:本题考查了双曲线的离心率及正切函数的图象与性质等,关键是通过c2=a2+b2将离心率的范围转化为渐近线的斜率的范围.7.如图1,已知点E、F、G分别是棱长为a的正方体ABCD﹣A1 B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,点P到平面MNQ的距离为()A. a B. a C. a D. a考点:点、线、面间的距离计算.专题:空间位置关系与距离.分析:可先由俯视图的特征判断出M,Q的位置,再求点到平面MNQ的距离即可.解答:解:∵点E、F、G分别是棱长为a的正方体ABCD﹣A1B1C l D1的棱AA1、CC1、DD1的中点,点M、N、Q、P分别在线段DF、AG、BE、C1B1上运动,∴当以M、N、Q、P为顶点的三棱锥P﹣MNQ的俯视图是如图2所示的等腰三角形时,M与D重合,Q与E重合,N在线段AG上,此时点P到平面MNQ的距离等于点P到侧面AA1D1D的距离,∴点P到平面MNQ的距离等于正方体的棱长a.故选:D.点评:本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.8.数列{a n}满足a n+1=,若a1=,则a2015=()A. B. C. D.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:根据数列的递推关系得到数列为周期数列即可得到结论.解答:解:由递推数列可得,a1=,a2=2a1﹣1=2×﹣1=,a3=2a2=2×=,a4=2a3=2×=,a5=2a4﹣1=2×﹣1=,…∴a5=a1,即a n+4=a n,则数列{a n}是周期为4的周期数列,则a2015=a503×4+3=a3=,故选:B点评:本题主要考查递推数列的应用,根据递推关系得到数列{a n}是周期为4的周期数列是解决本题的关键.9.己知函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.若对于任一实数x0,函数值f(x0)与g(x0)中至少有一个为正数,则实数t的取值范围是()A.(﹣∞,﹣2)∪(0,2] B.(﹣2,0)∪(﹣2,2] C.(﹣2,2] D.(0,+∞)考点:二次函数的性质.专题:函数的性质及应用.分析:不论t为何值,对于任一实数x,f(x)与g(x)的值至少有一个为正数,所以对t分类讨论,即t=0、t=2、t>2,t<﹣2 讨论f(x)与g(x)的值的正负,排除即可得出答案.解答:解:函数f(x)=tx,g(x)=(2﹣t)x2﹣4x+l.△=16﹣4×(2﹣t)×1=8+4t,①当t=0时,f(x)=0,△>0,g(x)有正有负,不符合题意,故排除C.②当t=2时,f(x)=2x,g(x)=﹣4x+1,符合题意,③当t>2时,g(x)=(2﹣t)x2﹣4x+l.f(x)=tx,当x取﹣∞时,f(x0)与g(x0)都为负值,不符合题意,故排除D④当t<﹣2时,△<0,∴g(x)=(2﹣t)x2﹣4x+l>0恒成立,符合题意,故B不正确,故选:A点评:本题考查一元二次方程的根的分布与系数的关系,考查分类讨论思想,排除转化思想,是中档题.10.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集M与N,且满足M∪N=Q,M∩N=∅,M中的每一个元素都小于N中的每一个元素,则称(M,N)为戴德金分割试判断,对于任一戴德金分割(M,N),下列选项中,不可能成立的是() A. M没有最大元素,N有一个最小元素B. M没有最大元素,N也没有最小元素C. M有一个最大元素,N有一个最小元素D. M有一个最大元素,N没有最小元素考点:集合的表示法.专题:计算题;集合.分析:由题意依次举例对四个判断,从而确定答案.解答:解:若M={x∈Q|x<0},N={x∈Q|x≥0};则M没有最大元素,N有一个最小元素0;故A正确;若M={x∈Q|x<},N={x∈Q|x≥};则M没有最大元素,N也没有最小元素;故B正确;M有一个最大元素,N有一个最小元素不可能,故C不正确;若M={x∈Q|x≤0},N={x∈Q|x>0};M有一个最大元素,N没有最小元素,故D正确;故选C.点评:本题考查了学生对新定义的接受与应用能力,属于基础题.三、填空题(本大题共5小题,每小题5分,共25分把答案填在答题卡的相应位置上)11.在极坐标系中,点P(2,)到极轴的距离为.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:本题可以利用公式求出点的平面直角坐标,从而得到它在平面直角坐标系中与x轴的距离,即得到点P(2,)到极轴的距离.解答:解:∵在极坐标系中,点P(2,),∴ρ=2,.将极点与平面直角坐标系的原点重合,极轴与x轴重合,正方向一致,建立平面直角坐标系,设P(x,y),则,.∴它在平面直角坐标系中与x轴的距离为:.∴到点P(2,)到极轴的距离为:.故答案为:.点评:本题考查了极坐标化成平面直角坐标,本题难度不大,属于基础题.12.已知两点A(1,0),B(l,1),O为坐标原点,点C在第二象限,且∠AOC=135°,设=+λ(λ∈R),则λ的值为.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:由已知条件设出C点坐标(x0,﹣x0),所以求出向量的坐标带入即可求出λ.解答:解:根据已知条件设C(x0,﹣x0);∴由得:(x0,﹣x0)=(1,0)+λ(1,1);∴;∴解得.故答案为:.点评:考查根据∠AOC=135°能设出C(x0,﹣x0),由点的坐标求出向量的坐标,以及向量坐标的加法及数乘的坐标运算.13.已知x>0,y>0,且2y+x﹣xy=0,若x+2y﹣m>0恒成立,则实数m的取值范围是m <8 .考点:基本不等式.专题:不等式的解法及应用.分析:变形利用基本不等式的性质可得x+2y==2(y﹣1)++4≥8,而x+2y﹣m>0恒成立,可得m<(x+2y)min.即可得出.解答:解:∵x>0,y>0,且2y+x﹣xy=0,∴x=>0,解得y>1.∴x+2y==2(y﹣1)++4≥+4=8,当且仅当y=2,x=4时取等号.∴(x+2y)min=8.∵x+2y﹣m>0恒成立,∴m<(x+2y)min=8.故答案为:m<8.点评:本题考查了变形利用基本不等式的性质、恒成立问题的等价转化方法,属于基础题.14.执行如图所示的程序框图,则输出结果S的值为﹣.考点:程序框图.专题:计算题;算法和程序框图.分析:算法的功能是求S=cos+cos+…+cos的值,根据条件确定最后一次循环的n值,再利用余弦函数的周期性计算输出S的值.解答:解:由程序框图知:算法的功能是求S=cos+cos+…+cos的值,∵跳出循环的n值为2015,∴输出S=cos+cos+…+cos,∵cos+cos+cos+cos+cos+cos=cos+cos+cos﹣cos﹣cos﹣cos=0,∴S=cos+cosπ=﹣.故答案为:﹣.点评:本题考查了循环结构的程序框图,关键框图的流程判断算法的功能是关键.15.在直角坐标系中,定义两点P(x1,y l),Q(x2,y2)之间的“直角距离为d(P,Q)=|x1﹣x2|+|y1﹣y2|.现有以下:①若P,Q是x轴上两点,则d(P,Q)=|x1﹣x2|;②已知两点P(2,3),Q(sin2α,cos2α),则d(P,Q)为定值;③原点O到直线x﹣y+l=0上任意一点P的直角距离d(O,P)的最小值为;④若|PQ|表示P、Q两点间的距离,那么|PQ|≥d(P,Q);其中为真的是①②④(写出所有真的序号).考点:的真假判断与应用.专题:简易逻辑.分析:先根据直角距离的定义分别表示出所求的问题的表达式,然后根据绝对值的性质进行判定即可.解答:解:①若P,Q是x轴上两点,则y1=y2=0,所以d(P,Q)=|x1﹣x2|,正确;②已知P(2,3),Q(sin2α,cos2α)(a∈R),则d(P,Q)=|2﹣sin2α|+|3﹣cos2α|=1+cos2α+2+sin2α=4为定值,正确;③设P(x,y),O(0,0),则d(0,P)=|x1﹣x2|+|y1﹣y2|=|x|+|y|=|x|+|x+1|,表示数轴上的x到1和0的距离之和,其最小值为1,故不正确;④若|PQ|表示P、Q两点间的距离,那么|PQ|=,d(P,Q)=|x1﹣x2|+|y1﹣y2|,因为2(a2+b2)≥(a+b)2,所以|PQ|≥2d(P,Q),正确;.故答案为:①②④.点评:本题考查两点之间的“直角距离”的定义,绝对值的意义,关键是明确P(x1,y1)、Q(x2,y2)两点之间的“直角距离”的含义.三、解答题(本大题共6小题,共75分解答应写出文字说明、证明过程或演算步骤解答写在答题卡上的指定区域内)16.己知=(sin(θ﹣),﹣1),=(﹣1,3)其中θ∈(0,),且∥.(1)求sinθ的值;(2)已知△ABC中,∠A=θ,BC=2+1,求边AC的最大值.考点:平面向量共线(平行)的坐标表示;正弦定理.专题:平面向量及应用.分析:(1)利用向量共线定理由∥,可得=.由于θ∈(0,),∈,即可得出.变形sinθ=.(2)在△ABC中,由正弦定理可得:,代入可得AC=3sinB,利用sinB≤1,即可得出.解答:解:(1)∵∥,∴=1,即=.∵θ∈(0,),∴∈.∴=.∴sinθ==+==.(2)在△ABC中,由正弦定理可得:,∴=,∴AC=3sinB,当且仅当sinB=1,即时取等号,∴边AC的最大值是3.点评:本题考查了向量共线定理、正弦定理、三角函数的单调性,考查了计算能力,属于基础题.17.四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点(1)求证:QP⊥AC;(2)当二面角Q﹣AC﹣P的大小为120°时,求QB的长.考点:二面角的平面角及求法;棱锥的结构特征.专题:空间位置关系与距离;空间角.分析:(1)由已知得PD⊥AC,AC⊥BD,从而AC⊥平面PDBQ,由此能证明AC⊥PQ.(2)设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,∠POQ 是二面角P﹣AC﹣Q的平面角,∠POQ=120°,由此利用余弦定理能求出QB.解答:(1)证明:∵PD⊥面ABCD,AC⊂面ABCD,∴PD⊥AC,又菱形ABCD中,两对角线垂直,即AC⊥BD,又BD∩PD=D,∴AC⊥平面PDBQ,∴AC⊥PQ.(2)解:△PAC和△QAC都是以AC为底的等腰三角形,设AC和BD的交点为O,连结OP,OQ,则∠POD是二面角P﹣AC﹣D的平面角,由tan,得二面角P﹣AC﹣B大小120°,∴点Q与点P在平面ABCD的同侧,如图所示,∴∠POQ是二面角P﹣AC﹣Q的平面角,∴∠POQ=120°,在Rt△POD中,OP=,设QB=x,则Rt△OBQ中,OQ=,在直角梯形PDBQ中,PQ==,在△POQ中,由余弦定理得PQ==6﹣4x,故6﹣4x>0,且3x2﹣16x+5=0,解得x=,即QB=.点评:本题考查异面直线垂直的证明,考查线段长的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.18.甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都是,乙只能答对其中的5道题,规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,得分低于o分时记为0分(即最低为0分),至少得15分才能入选.(1)求乙得分的分布列和数学期望;(2)求甲、乙两人中至少有一人入选的概率.考点:互斥事件的概率加法公式;相互独立事件的概率乘法公式;离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:概率与统计.分析:(1)确定乙答题所得分数的可能取值,求出相应的概率,即可得到乙得分的分布列和数学期望;(2)由已知甲、乙至少答对2题才能入选,求出甲、乙入选的概率,利用对立事件,即可求得结论.解答:解:(1)乙答题所得分数为X,则X的可能取值为0,15,30.P(X=0)=+=P(X=15)==P(X=30)==乙得分的分布列如下X 0 15 30PEX=0×+15×+30×=(2)由已知甲、乙至少答对2题才能入选,记甲入选为事件A,乙入选为事件B,则P(A)=+=+=,P()=1﹣=由(1)知:P(B)=P(X=15)+P(X=30)=,P()=1﹣=,所求概率为P=1﹣P()=点评:本题考查概率的计算,考查互斥事件的概率,考查离散型随机变量的分布列与期望,确定变量的取值,计算其概率是关键.19.已知函数f(x)=lnx+cosx﹣(﹣)x的导数为f′(x),且数列{a n}满足a n+1+a n=nf′()+3(n∈N*).(1)若数列{a n}是等差数列,求a1的值:(2)若对任意n∈N*,都有a n+2n2≥0成立,求a1的取值范围.考点:数列与函数的综合;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:点列、递归数列与数学归纳法.分析:(1)求函数的导数,得到数列的递推关系式,根据数列{a n}是等差数列的通项公式进行求解即可求a1的值:(2)求出数列{a n}的通项公式,利用不等式a n+2n2≥0恒成立.利用参数分离法进行求解即可.解答:解:f′(x)=﹣sinx﹣+,则f′()=4;故a n+1+a n=πf′()+3=4n+3,(1)若数列{a n}是等差数列,则a n=a1+(n﹣1)d,a n+1=a1+nd,则a n+1+a n=a1+(n﹣1)d+a1+nd=2a1+(2n﹣1)d=4n+3,解得d=2,a1=.(2)由a n+1+a n=4n+3,a n+2+a n+1=4n+7,两式相减得a n+2﹣a n=4,故数列{a2n﹣1}是首项为a1,公差为4的等差数列,数列{a2n}是首项为a2,公差为4的等差数列,又a1+a2=7,∴a2=7﹣a1,∴a n=.①当n为奇数时,a n=2n﹣2+a1,由a n+2n2≥0成立,即2n﹣2+a1+2n2≥0,转化为a1≥﹣2n2﹣2n+2,恒成立,设f(n)=﹣2n2﹣2n+2=﹣(n+)2+,∴f(n)max=f(1)=﹣2,∴a1≥﹣2.②当n为偶数时,a n=2n+3﹣a1,由a n+2n2≥0成立,即2n+3﹣a1+2n2≥0,转化为﹣a1≥﹣2n2﹣2n﹣3,恒成立,设g(n)=﹣2n2﹣2n﹣3=﹣(n+)2﹣,∴g(n)max=g(2)=﹣15,∴﹣a1≥﹣15.即a1≤15,综上﹣2≤a1≤15,即a1的取值范围是[﹣2,15].点评:本题主要考查等差数列的通项公式的应用已经递推数列的应用,考查学生的运算和推理能力,求出数列的递推关系是解决本题的关键.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)根据离心率,短轴右端点为A,M(1,0)为线段OA的中点,求出几何量,即可求椭圆Γ的方程;(Ⅱ)分类讨论,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简,若∠PNM=∠QNM,则k PN+k QN=0,即可得出结论.解答:解:(Ⅰ)由已知,b=2,又,即,解得,所以椭圆方程为.…(4分)(Ⅱ)假设存在点N(x0,0)满足题设条件.当PQ⊥x轴时,由椭圆的对称性可知恒有∠PNM=∠QNM,即x0∈R;…(6分)当PQ与x轴不垂直时,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2k2x+k2﹣8=0设P(x1,y1),Q(x2,y2),则则==…(10分)若∠PNM=∠QNM,则k PN+k QN=0即=0,整理得4k(x0﹣4)=0因为k∈R,所以x0=4综上在x轴上存在定点N(4,0),使得∠PNM=∠QNM…(12分)点评:本题考查椭圆的几何性质与标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.21.已知函数f(x)=ax﹣1﹣1n x.(1)若f(x)≥0对任意的x∈(0,+∞)恒成立,求实数a的取值范围;(2)求证:对任意的x∈N*,<e(其中e为自然对数的底,e≈2.71828).考点:利用导数求闭区间上函数的最值.专题:计算题;证明题;函数的性质及应用;导数的综合应用.分析:(1)f(x)≥0可化为a≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);求g′(x)=﹣,从而求最值;(2)由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,从而可得ln(1+)<对任意k∈N*成立,从而可得到kln(1+k)﹣klnk<1,从而化简求得.解答:解:(1)由f(x)≥0得,a≥对任意的x∈(0,+∞)恒成立,令g(x)=,x∈(0,+∞);∵g′(x)=﹣,∴当x∈(0,1)时,g′(x)>0,g(x)为增函数;当x∈(1,+∞)时,g′(x)<0,g(x)为减函数;故g max(x)=g(1)=1;∴a≥1;∴实数a的取值范围是[1,+∞);(2)证明:由(1)知,lnx≤x﹣1对任意的x∈(0,+∞)恒成立,当且仅当x=1时取等号,∴ln(1+)<对任意k∈N*成立,即ln(1+k)﹣lnk<;即kln(1+k)﹣klnk<1,∴(1+k)ln(1+k)﹣klnk<1+ln(1+k);故2ln2﹣1ln1<1+ln2,3ln3﹣2ln2<1+ln3,…,(1+n)ln(1+n)﹣nlnn<1+ln(1+n);累加得,(1+n)ln(1+n)<n+ln2+ln3+…+ln(n+1),即nln(n+1)<n+ln(n!),∴ln(n+1)<1+ln(n!),即ln(n+1)﹣ln<1;∴ln<1,即<e.点评:本题考查了导数的综合应用及恒成立问题的应用,属于中档题.。
2018年高考数学(理科)模拟试卷一含答案解析.doc
2018年高考数学(理科)模拟试卷(一) (本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016年四川)设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是() A.6 B.5C.4D.31.B解析:由题意,A∩Z={1,2,3,4,5},故其中的元素的个数为5.故选B.2.(2016年山东)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A.1+2i B.1-2iC.-1+2i D.-1-2i2.B解析:设z=a+b i(a,b∈R),则2z+z=3a+b i=3-2i,故a=1,b=-2,则z=1-2i.故选B.3.(2015年北京)某四棱锥的三视图如图M1-1,该四棱锥最长棱的棱长为()图M1-1A.1 B.2 C.3D.23.C解析:四棱锥的直观图如图D188:由三视图可知,SC⊥平面ABCD,SA是四棱锥最长的棱,SA=SC2+AC2=SC2+AB2+BC2=3.故选C.图D1884.曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A. B. C. D.4.C解析:f′(x)=3x2-2,f′(1)=1,所以切线的斜率是1,倾斜角为.进入循环体,a=-,否,k=1,a=-2,否,k=2,a=1,ππππ6342π4 5.设x∈R,[x]表示不超过x的最大整数.若存在实数t,使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是() A.3B.4C.5D.65.B解析:因为[x]表示不超过x的最大整数.由[t]=1,得1≤t<2,由[t2]=2,得2≤t2<3.由[t3]=3,得3≤t3<4.由[t4]=4,得4≤t4<5.所以2≤t2<5.所以6≤t5<45.由[t5]=5,得5≤t5<6,与6≤t5<45矛盾,故正整数n的最大值是4.6.(2016年北京)执行如图M1-2所示的程序框图,若输入的a值为1,则输出的k值为()图M1-2A.1B.2C.3D.46.B解析:输入a=1,则k=0,b=1;12此时a=b=1,输出k,则k=2.故选B.7.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()7.C解析:由题意,得=88,n=9.所以m+n=12.⎪⎩x≥0,图M1-3A.10B.11C.12D.1378+88+84+86+92+90+m+957故选C.8.(2015年陕西)某企业生产甲、乙两种产品均需用A,B两种原料.已知分别生产1吨甲、乙产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()项目A/吨B/吨甲31乙22原料限额128A.12万元B.16万元C.17万元D.18万元8.D解析:设该企业每天生产甲、乙两种产品分别为x吨、y吨,则利润z=3x+4y.⎧⎪3x+2y≤12,由题意可得⎨x+2y≤8,y≥0.其表示如图D189阴影部分区域:图D189当直线3x+4y-z=0过点A(2,3)时,z取得最大值,所以zmax=3×2+4×3=18.故选D.9.(2016年新课标Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,ak中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个9.C解析:由题意,必有a1=0,a8=1,则具体的排法列表如下:10.(2016 年 天 津 )已知函数f(x)=sin 2ω x + sin ωx - (ω>0),x ∈ ⎛ 1⎤ ⎛ 1⎤ ⎡5 ⎫ A. 0, ⎥ B. 0, ⎥∪⎢ ,1⎪ ⎛5⎤ ⎛ 1⎤ ⎡1 5⎤ C. 0, ⎥ D. 0, ⎥∪⎢ , ⎥ 1-cos ω x sin ω x 1 2 ⎛ ⎛π ⎫ 10.D 解析:f(x)= + - = sin ω x - ⎪,f(x)=0⇒sin ω x - ⎪ k π +⎛1 1⎫ ⎛5 5⎫ ⎛9 9⎫ ⎛1 1⎫ ⎛5 ⎫ ⎛ 1⎤ ⎡1 5⎤因此 ω , ⎪∪ , ⎪∪ , ⎪∪…= , ⎪∪ ,+∞⎪⇒ω∈ 0, ⎥∪⎢ , ⎥.故选4 ⎭ A .3 B. C .23 D. ∥PA ,所以 OE ⊥底面 ABCD ,则 O 到四棱锥的所有顶点的距离相等,即 O 为球心, PC =1 1 4 ⎛1 ⎫ 243π 7 PA2+AC2= PA2+8,所以由球的体积可得 π PA2+8⎪3= ,解得 PA = .故选1 12 2 2R.若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()⎝ 8⎦ ⎝ 4⎦ ⎣8 ⎭⎝ 8⎦ ⎝ 8⎦ ⎣4 8⎦2 2 2 2 ⎝ ⎝ 4 ⎭ =0,π4所以 x = (π,2π),(k ∈Z).ω⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 4⎭ ⎝8 ⎭ ⎝ 8⎦ ⎣4 8⎦D.11.四棱锥P-ABCD 的底面ABCD 为正方形,PA底面ABCD ,AB =2,若该四棱锥的所有顶点都在体积为⊥243π 16的同一球面上,则P A =()729211.B 解析:如图 D190,连接 AC ,BD 交于点 E ,取 PC 的中点 O ,连接 OE ,则 OE122 23 ⎝2 ⎭ 16 2B.12.已知F 为抛物线y 2=x 的焦点,点A 、B 在该抛物线上且位于x 轴两侧,若 OA ·OBA .4 B. C. D. 10OA · OB =6,所以 x 1· x 2+y 1· y 2=6,从而(y 1· y 2)2+y 1· y 2-6=0,因为点 A ,B 位于 x 轴的两侧, 所以 y 1· y 2=-3,故 m =3,不妨令点 A 在 x 轴上方,则 y 1>0,又 F ,0⎪,所以 △S ABO +△S ⎝4⎭8 2 y1 2 8×3×(y 1-y 2)+ × y 1= y 1+,即 y 1= 时取等号,故其最小值为 .故选 B.|c|·|a| |c|·|b| 5a2 -y214.设F 是双曲线C :x2b图D190→→=6(O 为坐标原点△),则 ABO 与△AOF 面积之和的最小值为()3 1317 2 2412.B 解析:设直线 AB 的方程为 x =ty +m ,点 A(x 1,y 1),B(x 2,y 2),直线 AB 与 x轴的交点为 M (m,0),将直线方程与抛物线方程联立,可得 y 2-ty -m =0,根据韦达定理有 y 1· y 2=-m ,因为 →→⎛1 ⎫AFO 1 1 1 13 9 =2 2 4 8 2y1 ≥213 9 1 313 13y1 ·y1· · = ,当且仅当 =9 6 13 3 132y1 13 2第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第 13~21 题为必考题,每个试题考生必须作答.第22~23 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分.13.平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.13.2 解析:a =(1,2),b =(4,2),则 c =m a +b =(m +4,2m +2),|a |= 5,|b |=2 5,c·a c·b 5m +8a · c =5m +8,· c =8m +20.∵c 与 a 的夹角等于 c 与b 的夹角,∴ = .∴8m +20 = .解得 m =2.2 5b2=1的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为__________.16.在区间[0,π]上随机地取一个数x ,则事件“sin x ≤ ”发生的概率为________.⎛π ⎫ ⎛5π ⎫ 6⎝ 6 ⎭ 1-0 + π - ⎪ ⎪17.解:(1)设{a n }的公比为 q ,{b n }的公差为 d ,由题意知 q >0.由已知,有⎨c,2b )在双曲线上,有 - =1,则 e 2=5,e = 5. 11⎡ ⎤0,16.解析:由正弦函数的图象与性质知,当 x ∈⎢∪⎢ ,π ⎥时,sin x ≤ .⎥π 36 ⎦ ⎣ 6 ⎩14. 5 解析:根据双曲线的对称性,不妨设 F(c,0),虚轴端点为(0,b ),从而可知点(-c2 4b2a2 b215.(2016 年北京)在(1-2x)6的展开式中,x 2的系数为________.(用数字作答)15.60 解析:根据二项展开的通项公式 T r +1=C r6·(-2)r x r 可知,x 2 的系数为 C 26(-2)2=60,故填 60.123⎣ ⎦ 2⎭ ⎝ 所以所求概率为 = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分 )已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5 -3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.⎧⎪2q2-3d =2, ⎪q4-3d =10. 消去 d ,得 q 4-2q 2-8=0.解得 q =2,d =2.所以{a n }的通项公式为 a n =2n -1,n ∈N *, {b n }的通项公式为 b n =2n -1,n ∈N *.(2)由(1)有 c n =(2n -1)2n -1,设{c n }的前 n 项和为 S n , 则 S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n .两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以 S n =(2n -3)·2n +3,n ∈N *.18.( 本 小 题 满 分 12 分 )(2014 年 大纲 )设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人 是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.18.解:记 A 1 表示事件:同一工作日乙、丙中恰有 i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少 3 人需使用设备.(1)因为 P(B)=0.6,P(C)=0.4,P(A i )=C i2×0.52,i =0,1,2,∠P AB=90°,BC=CD=AD,E为边AD的中点,异面直线P A与CD所成的角为90°.所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A·C+B·A·C+B·A1·C)=P(B)P(A)P(C)+P(B)P(A)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,所以E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.19.(本小题满分12分)(2016年四川)如图M1-4,在四棱锥P-ABCD中,AD∥BC,∠ADC=12(1)在平面P AB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线P A与平面PCE所成角的正弦值.图M1-419.解:(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面P AB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED,所以四边形BCDE是平行四边形.所以CD∥EB.从而CM∥EB.又EB平面PBE,CM平面PBE,所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)方法一,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.所以AH=.在△Rt P AH中,PH=PA2+AH2=,所以sin∠APH==.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图D192所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2)PEEC→则sinα==|n|·|AP|2×22+-+123所以直线PA与平面PCE所成角的正弦值为.设BC=1,则在Rt△P AD中,P A=AD=2.如图D191,过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知P A⊥平面ABCD,从而P A⊥CE.于是CE⊥平面P AH.所以平面PCE⊥平面P AH.过A作AQ⊥PH于Q,则AQ⊥平面PCE.所以∠APH是PA与平面PCE所成的角.在△Rt AEH中,∠AEH=45°,AE=1,22322AH1PH3图D191图D192方法二,由已知,CD⊥P A,CD⊥AD,PA∩AD=A,所以CD⊥平面P AD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在△Rt P AD中,P A=AD=2.→→所示的空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0),→→→设平面PCE的法向量为n=(x,y,z),⎧⎪n·→=0,由⎨⎪⎩n·→=0,⎧⎪x-2z=0,得⎨⎪⎩x+y=0.设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,|n·AP|2→1=.1320.(本小题满分12分)(2016年新课标Ⅲ)设函数f(x)=ln x-x+1.(2)证明当x ∈(1,+∞)时,1< <x ;20.解:(1)由题设,f(x)的定义域为(0,+∞),f ′(x)= -1,令 f ′(x)=0,解得 x =1.故当 x ∈(1,+∞)时,ln x <x -1,ln < -1,即 1< <x.ln c 令 g ′(x)=0,解得 x 0= .21.解:(1)设椭圆 C 的方程为 + =1(a >b >0),因为点 B(2, 2)在椭圆 C 上,所以 + =1.②所以椭圆 C 的方程为 + =1.因为直线 y =kx(k ≠0)与椭圆 + =1 交于两点 E ,F ,(1)讨论f(x)的单调性;x -1ln x(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x .1x当 0<x <1 时,f ′(x)>0,f(x)单调递增; 当 x >1 时,f ′(x)<0,f(x)单调递减.(2)由(1)知,f(x)在 x =1 处取得最大值,最大值为 f(1)=0. 所以当 x ≠1 时,ln x <x -1.1 1 x -1x x ln x(3)由题设 c >1,设 g (x)=1+(c -1)x -c x , 则 g ′(x)=c -1-c x ln c.c -1 lnln c当 x <x 0 时,g ′(x)>0,g (x)单调递增; 当 x >x 0 时,g ′(x)<0,g (x)单调递减.c -1由(2)知,1<ln c <c ,故 0<x 0<1.又 g (0)=g (1)=0,故当 0<x <1 时,g (x)>0. 所以 x ∈(0,1)时,1+(c -1)x >c x .21.( 本 小 题 满 分 12 分 )(2016 年 广 东 广 州 综 合 测 试一)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B(2, 2 )在椭圆C 上,直线y =kx(k ≠0)与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理 由.x2 y2a2 b2因为椭圆的左焦点为 F 1(-2,0),所以 a 2-b 2=4.①4 2a2 b2由①②,解得 a =22,b =2. x2 y28 4(2)因为椭圆 C 的左顶点为 A ,则点 A 的坐标为(-2 2,0).x2 y28 4设点 E(x 0,y 0)(不妨设 x 0>0),则点 F(-x 0,-y 0).⎪⎩ 84 .所以 x 0= 2,则 y 0= .- ⎝ 2⎫2⎫2⎪ ,即 x 2+y 2+ y =4.⎛ 4π ⎫(2,π)、B 2, ⎪.⎛4π 4π ⎫ 22.解:(1)将 A 、B 化为直角坐标为 A(2cos π,2sin π),B 2cos ,2sin ⎪,即 A ,⎪⎨ d = =⎧⎪y =kx ,联立方程组⎨x2 y2+ =1消去 y ,得 x 2=81+2k22 1+2k2 2 2k 1+2k2k所以直线 AE 的方程为 y = (x +2 2).1+ 1+2k2因为直线 AE ,AF 分别与 y 轴交于点 M ,N ,2 2k ⎛ 2 2k ⎫令 x =0 得 y = ,即点 M 0, ⎪.1+ 1+2k2 ⎝ 1+ 1+2k2⎭ ⎛ 2 2k ⎫同理可得点 N 0, ⎪.⎝ 1- 1+2k2⎭⎪ 2 2k 2 2k ⎪ 2 所以|MN |=⎪ ⎪=⎪1+ 1+2k2 1- 1+2k2⎪⎛ 设 MN 的中点为 P ,则点 P 的坐标为 P 0,- ⎝+|k|2⎫⎪.k ⎭.⎛ ⎛ 则以 MN 为直径的圆的方程为 x 2+ y + ⎪ =k ⎭ ⎝+ |k| 2 2⎭ k令 y =0,得 x 2=4,即 x =2 或 x =-2.故以 MN 为直径的圆经过两定点 P 1(2,0),P 2(-2,0),请考生在第(22)(23)两题中任选一题作答.注意:只能作答在所选定的题目上.如果多做,则按所做的第一个题目计分.22.(本小题满分 10 分)选修4-4:极坐标与参数方程已知曲线C 的参数方程是⎧x =2cos θ , ⎪⎩y =sin θ(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A 、B 的极坐标分别为A⎝ 3 ⎭(1)求直线AB 的直角坐标方程;(2)设M 为曲线C 上的动点,求点M 到直线AB 距离的最大值.⎝ 3 3 ⎭ B 的直角坐标分别为 A(-2,0),B(-1,- 3),k AB = - 3-0 -1+2=- 3,∴直线 AB 的方程为 y -0=- 3(x +2), 即直线 AB 的方程为 3x +y +2 3=0.(2)设 M (2cos θ,sin θ),它到直线 AB 的距离|2 3cos θ +sin θ +2 3| | 13 2θ +φ2+2 3|,2 ⎧⎪x≤ , ⎩ 解得 1<x ≤ ,或 <x < . ⎧⎪ ⎪ 5 所以原不等式的解集为⎨x ⎪1<x< ⎪⎩ ⎪∴d max =13+2 3 .23.(本小题满分 10 分)选修4-5:不等式选讲已知函数f(x)=|x -2|-|2x -a|,a ∈R .(1)当a =3时,解不等式f(x)>0;(2)当x ∈(-∞,2)时,f(x)<0恒成立,求a 的取值范围. 23.解:(1)当 a =3 时,f(x)>0,即|x -2|-|2x -3|>0, 3 等价于⎨ 2 ⎪⎩x -1>0, ⎧⎪3<x<2, 或⎨2 ⎪⎩-3x +5>0,⎧⎪x≥2, 或⎨ ⎪-x +1>0. 3 3 5 2 2 33 ⎫⎪ ⎬. ⎪⎭ (2)f(x)=2-x -|2x -a|,所以 f(x)<0 可化为|2x -a|>2-x , ①即 2x -a >2-x ,或 2x -a <x -2.①式恒成立等价于(3x -2)min >a 或(x +2)max <a , ∵x ∈(-∞,2),∴a ≥4.。
广州市普通高中2017届高三第一次模拟数学备考试题精选:数列
广州市普通高中2017届高三第一次模拟数学备考试题精选:数列1、若函数()f x 满足)9(2)10(+=+x f x f ,且1)0(=f ,则=)10(f _ 【答案】102【 解析】令9x t +=,则9x t =-,所以由)9(2)10(+=+x f x f 得(1)2()f t f t +=,即(1)2()f t f t +=,即数列{()}f t 的公比为 2 不设1(0)a f =,则有11(10)a f =,所以由10111a a q =,即10112a =,所以10(10)2f =。
2、等差数列{}n a 中,67812a a a ++=,则该数列的前13项的和13S = 【答案】52【解析】在等差数列,67812a a a ++=得7312a =,即74a =。
所以11371313()1321345222a a a S +⨯===⨯=。
3、若等差数列}{n a 的前n 项和为n S ,1442=+a a ,770S =,则数列}{n a 的通项公式为【答案】32n a n =-(*N n ∈)【 解析】在等差数列中,设公差为d ,则由2414a a +=,770S =得12414a d +=,71767702S a d ⨯=+=,即1310a d +=,解得11,3a d ==,所以13(1)n a n n =+-=-*N n ∈。
4、若三个互不相等的实数成等差数列,适当交换这三个数的位置后变成一个等比数列,则此等比数列的公比为 (写出一个即可). 【答案】21-2或- 【 解析】设三个互不相等的实数为,,a d a a d -+。
(d≠0) 交换这三个数的位置后:①若a 是等比中项,则222()()a a d a d a d =-+=-,解得d=0,不符合; ②若a d -是等比中项则2()()a d a a d -=+,解得3d a =,此时三个数为,2,4a a a -,公比为﹣2或三个数为4,2,a a a -,公比为12-. ③若a+d 是等比中项,则同理得到公比为2-,或公比为12-. 所以此等比数列的公比是2-或12-5、正六边形111111F E D C B A 的边长为1,它的6条对角线又围成了一个正六边形222222F E D C B A ,如此继续下去,则所有这些六边形的面积和是 .【 解析】在Rt △A 1B 1A 2中,∠A 1B 1A 2=30︒,A 1B 1=1,∴A 1A 2=31= A 2F 2,又易知这些正六边形的边长组成等比数列,公比为31=q ,故所有所有这些六边形的面积和=211qs -=43911631243=-⨯⨯。
浙江省温州市2017-2018学年高考数学一模试卷(理科) Word版含解析
2017-2018学年浙江省温州市高考数学一模试卷(理科)一、选择题:本大题共8小题,每小题5分.共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)2.已知a,b为异面直线,下列结论不正确的是()A.必存在平面α使得a∥α,b∥αB.必存在平面α使得a,b与α所成角相等C.必存在平面α使得a⊂α,b⊥αD.必存在平面α使得a,b与α的距离相等3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣34.已知直线l:y=kx+b,曲线C:x2+y2﹣2x=0,则“k+b=0”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设函数y=f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+f(3),则满足上述条件的f(x)可以是()A.f(x)=cos B.C.f(x)=2cos2D.f(x)=2cos26.如图,已知F1、F2为双曲线C:(a>0,b>0)的左、右焦点,点P在第一象限,且满足=,()•=0,线段PF2与双曲线C交于点Q,若=5,则双曲线C的渐近线方为()A.y=±B.y=±C.y=±D.y=±7.已知集合M={(x,y)|x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是()A.{(λ,μ)|λ+μ=4} B.{(λ,μ)|λ2+μ2=4} C.{(λ,μ)|λ2﹣4μ=4} D.{(λ,μ)|λ2﹣μ2=4}8.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D﹣EC﹣B的余弦值为()A.B.C.D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知f(x)=,则f(f(﹣2))=,函数f(x)的零点的个数为.10.已知钝角△ABC的面积为,AB=1,BC=,则角B=,AC=.11.某几何体的三视图如图所示,则该几何体的体积为,表面积为.12.已知公比q不为1的等比数列{a n}的首项a1=,前n项和为S n,且a2+S2,a3+S3,a4+S4成等差数列,则q=,S6=.13.已知f(x)=ln(x+﹣a),若对任意的m∈R,均存在x0>0使得f(x0)=m,则实数a 的取值范围是.14.已知△ABC中,||=1,•=2,点P为线段BC的动点,动点Q满足=+ +,则•的最小值等于.15.已知斜率为的直线l与抛物线y2=2px(p>0)交于x轴上方的不同两点A、B,记直线OA,OB的斜率分别为k1,k2,则k1+k2的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.17.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.18.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当t>0时,若f(x)在区间[﹣1,2]上的最大值为M(t),最小值为m(t),求M(t)﹣m(t)的最小值.19.如图,已知椭圆C:+=1(a>b>0)经过点(1,),且离心率等于.点A,B分别为椭圆C的左、右顶点,M,N是椭圆C上非顶点的两点,且△OMN的面积等于.(Ⅰ)求椭圆C的方程;(Ⅱ)过点A作AP∥OM交椭圆C于点P,求证:BP∥ON.20.如图,已知曲线C1:y=(x>0)及曲线C2:y=(x>0),C1上的点P1的横坐标为a1(0<a1<).从C1上的点P n(n∈N+)作直线平行于x轴,交曲线C2于点Q n,再从点Q n作直线平行于y轴,交曲线C1于点P n+1.点P n(n=1,2,3,…)的横坐标构成数列{a n}(Ⅰ)试求a n+1与a n之间的关系,并证明:a2n<;﹣1(Ⅱ)若a1=,求证:|a2﹣a1|+|a3﹣a2|+…+|a n+1﹣a n|<.2016年浙江省温州市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分.共40分.在每小题给出的四个选项中,只有一项符合题目要求的.1.已知集合A={x|y=lgx},B={x|x2﹣2x﹣3<0},则A∩B=()A.(﹣1,0)B.(0,3)C.(﹣∞,0)∪(3,+∞)D.(﹣1,3)【考点】交集及其运算.【分析】分别求出集合A,B,从而求出其交集即可.【解答】解:∵集合A={x|y=lgx}={x|x>0|,B={x|x2﹣2x﹣3<0}={x|﹣1<x<3},则A∩B=(0,3),故选:B.2.已知a,b为异面直线,下列结论不正确的是()A.必存在平面α使得a∥α,b∥αB.必存在平面α使得a,b与α所成角相等C.必存在平面α使得a⊂α,b⊥αD.必存在平面α使得a,b与α的距离相等【考点】空间中直线与直线之间的位置关系.【分析】在C中,当a,b不垂直时,不存在平面α使得a⊂α,b⊥α.其它三种情况都成立.【解答】解:由a,b为异面直线,知:在A中,在空间中任取一点O,过O分别作a,b的平行线,则由过O的a,b的平行线确一个平面α,使得a∥α,b∥α,故A正确;在B中,平移b至b'与a相交,因而确定一个平面α,在α上作a,b'交角的平分线,明显可以做出两条.过角平分线且与平面α垂直的平面α使得a,b与α所成角相等.角平分线有两条,所以有两个平面都可以.故B正确;在C中,当a,b不垂直时,不存在平面α使得a⊂α,b⊥α,故C错误;在D中,过异面直线a,b的公垂线的中点作与公垂线垂直的平面α,则平面α使得a,b与α的距离相等,故D正确.故选:C.3.已知实数x,y满足,则x﹣y的最大值为()A.1 B.3 C.﹣1 D.﹣3【考点】简单线性规划.【分析】令z=x﹣y,从而化简为y=x﹣z,作平面区域,结合图象求解即可.【解答】解:令z=x﹣y,则y=x﹣z,由题意作平面区域如下,,结合图象可知,当过点A(3,0)时,x﹣y取得最大值3,故选B.4.已知直线l:y=kx+b,曲线C:x2+y2﹣2x=0,则“k+b=0”是“直线l与曲线C有公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】联立方程组,得到(1+k2)x2+(2kb﹣2)x+b2=0,根据△=(2kb﹣2)2﹣4(1+k2)b2≥0,得到b(k+b)﹣1≤0,结合充分必要条件判断即可.【解答】解:由直线l:y=kx+b,曲线C:x2+y2﹣2x=0,得:,∴(1+k2)x2+(2kb﹣2)x+b2=0,若直线和曲线有公共点,则△=(2kb﹣2)2﹣4(1+k2)b2≥0,∴b(k+b)﹣1≤0,则“k+b=0”是“直线l与曲线C有公共点”的充分不必要条件,故选:A.5.设函数y=f(x)是定义在R上的偶函数,对任意的x∈R都有f(x+6)=f(x)+f(3),则满足上述条件的f(x)可以是()A.f(x)=cos B.C.f(x)=2cos2D.f(x)=2cos2【考点】抽象函数及其应用.【分析】根据抽象函数关系结合函数奇偶性的性质求出f(3)=0,从而得到函数的周期是6,结合三角函数的周期性进行判断即可.【解答】解:∵f(x+6)=f(x)+f(3),∴f(﹣3+6)=f(﹣3)+f(3),∴f(﹣3)=0,函数f(x)是偶函数,∴f(3)=0.∴f(x+6)=f(x)+0=f(x),∴f(x)是以6为周期的函数,A.函数的周期T==6,f(3)=cosπ=﹣1,不满足条件f(3)=0.B.是奇函数,不满足条件.C.f(x)=2cos2=1+cos,则函数的周期是T==6,f(3)=1+cosπ=1﹣1=0,满足条件.D.f(x)=2cos2=1+cos,则函数的周期是T==12,不满足条件.故选:C.6.如图,已知F1、F2为双曲线C:(a>0,b>0)的左、右焦点,点P在第一象限,且满足=,()•=0,线段PF2与双曲线C交于点Q,若=5,则双曲线C的渐近线方为()A.y=±B.y=±C.y=±D.y=±【考点】双曲线的标准方程.【分析】由题意,|PF1|=|F1F2|2c,|QF1|=a,|QF2|=a,由余弦定理可得=,确定a,b的关系,即可求出双曲线C的渐近线方程.【解答】解:由题意,()•=0,∴|PF1|=|F1F2|=2c,|QF1|=a,|QF2|=a,∴由余弦定理可得=,∴c=a,∴b=a,∴双曲线C的渐近线方程为y=x.故选:B.7.已知集合M={(x,y)|x2+y2≤1},若实数λ,μ满足:对任意的(x,y)∈M,都有(λx,μy)∈M,则称(λ,μ)是集合M的“和谐实数对”.则以下集合中,存在“和谐实数对”的是()A.{(λ,μ)|λ+μ=4} B.{(λ,μ)|λ2+μ2=4} C.{(λ,μ)|λ2﹣4μ=4} D.{(λ,μ)|λ2﹣μ2=4}【考点】曲线与方程.【分析】由题意,λ2x2+μ2y2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得结论.【解答】解:由题意,λ2x2+μ2y2≤λ2+μ2≤1,问题转化为λ2+μ2≤1与选项有交点,代入验证,可得C符合.故选:C.8.如图,在矩形ABCD中,AB=2,AD=4,点E在线段AD上且AE=3,现分别沿BE,CE将△ABE,△DCE翻折,使得点D落在线段AE上,则此时二面角D﹣EC﹣B的余弦值为()A.B.C.D.【考点】二面角的平面角及求法.【分析】在折叠前的矩形中连接BD交EC于O,得到BD⊥CE,从而得到折起后,∴∠BOD 是二面角D﹣EC﹣B的平面角,利用余弦定理进行求解即可.【解答】解:在折叠前的矩形中连接BD交EC于O,∵BC=4,CD=2,CD=2,DE=1,∴,即△BCD∽△CDE,∴∠DBC=∠ECD,∴∠DBC=∠ECD,∴∠ECD+∠ODC=90°,即BD⊥CE,折起后,∵BD⊥CE,DO⊥CE,∴∠BOD是二面角D﹣EC﹣B的平面角,在△BOD中,OD=,OB=BD﹣OD=2﹣=,BD==2,由余弦定理得cos∠BDO==,故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知f(x)=,则f(f(﹣2))=14,函数f(x)的零点的个数为1.【考点】函数零点的判定定理;函数的值.【分析】根据x<0与x≥0时f(x)的解析式,确定出f(f(﹣2))的值即可;令f(x)=0,确定出x的值,即可对函数f(x)的零点的个数作出判断.【解答】解:根据题意得:f(﹣2)=(﹣2)2=4,则f(f(﹣2))=f(4)=24﹣2=16﹣2=14;令f(x)=0,得到2x﹣2=0,解得:x=1,则函数f(x)的零点个数为1,故答案为:14;1.10.已知钝角△ABC的面积为,AB=1,BC=,则角B=,AC=.【考点】正弦定理.【分析】利用已知及三角形面积公式可求sinB,可求B=或,分类讨论:当B=时,由余弦定理可得AC=1,可得AB2+AC2=BC2,为直角三角形,舍去,从而利用余弦定理可得AC的值.【解答】解:∵钝角△ABC的面积为,AB=1,BC=,∴=1××sinB,解得:sinB=,∴B=或,∵当B=时,由余弦定理可得AC===1,此时,AB2+AC2=BC2,可得A=,为直角三角形,矛盾,舍去.∴B=,由余弦定理可得AC===,故答案为:;.11.某几何体的三视图如图所示,则该几何体的体积为12,表面积为36.【考点】由三视图求面积、体积.【分析】根据三视图作出棱锥的直观图,根据三视图数据计算体积和表面积.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示:其中底面ABCD是边长为3正方形,EA⊥底面ABCD,EA=4.∴棱锥的体积V=.棱锥的四个侧面均为直角三角形,EB=ED=5,∴棱锥的表面积S=32++=36.故答案为12;36.12.已知公比q不为1的等比数列{a n}的首项a1=,前n项和为S n,且a2+S2,a3+S3,a4+S4成等差数列,则q=,S6=.【考点】等比数列的前n项和;等比数列的通项公式.【分析】由a2+S2,a3+S3,a4+S4成等差数列,可得2(a3+S3)=a4+S4+a2+S2,化为:3a3=2a4+a2,利用等比数列的通项公式解得q.再利用等比数列的前n项和公式即可得出.【解答】解:∵a2+S2,a3+S3,a4+S4成等差数列,∴2(a3+S3)=a4+S4+a2+S2,∴2(2a3+a2+a1)=2a4+a3+3a2+2a1,化为:3a3=2a4+a2,∴,化为2q2﹣3q+1=0,q≠1,解得q=.S6===.故答案分别为:;.13.已知f(x)=ln(x+﹣a),若对任意的m∈R,均存在x0>0使得f(x0)=m,则实数a的取值范围是[4,+∞).【考点】对数函数的图象与性质.【分析】令t=x+﹣a,求出t的范围,于是函数y=lnt,根据对数函数的性质,求出a的范围即可.【解答】解:令t=x+﹣a,易知t∈[4﹣a,+∞)于是函数y=lnt,t≥4﹣a,显然当4﹣a≤0时便有t≥0恒成立,即a≥4,故答案为:[4,+∞).14.已知△ABC中,||=1,•=2,点P为线段BC的动点,动点Q满足=++,则•的最小值等于﹣.【考点】平面向量数量积的运算.【分析】建立平面直角坐标系,根据||=1,•=2得出B,C坐标,设P(a,0),A(0,b),使用坐标求出的表达式,根据a的范围求出最小值.【解答】解:以BC所在直线为x轴,以BC边的高为y轴建立平面直角坐标系,如图.∵,∴B(﹣2,0),C(﹣1,0),设P(a,0),A(0,b),则﹣2≤a≤﹣1.∴=(﹣a,b),=(﹣2﹣a,0),=(﹣1﹣a,0).∴=(﹣3﹣3a,b),∴=(﹣2﹣a)(﹣3﹣3a)=3a2+9a+6=3(a+)2﹣.∴当a=﹣时,取得最小值﹣.故答案为:.15.已知斜率为的直线l与抛物线y2=2px(p>0)交于x轴上方的不同两点A、B,记直线OA,OB的斜率分别为k1,k2,则k1+k2的取值范围是(2,+∞).【考点】抛物线的简单性质.【分析】直线方程为y=x+b,即x=2y﹣2b,代入抛物线y2=2px,可得y2﹣4py+4pb=0,利用韦达定理,结合斜率公式,即可求出k1+k2的取值范围.【解答】解:设直线方程为y=x+b,即x=2y﹣2b,代入抛物线y2=2px,可得y2﹣4py+4pb=0,△=16p2﹣16pb>0,∴p>b设A(x1,y1),B(x2,y2),得y1+y2=4p,y1y2=4pb,k1+k2=+====>2.故答案为:(2,+∞).三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.已知2sinαtanα=3,且0<α<π.(I)求α的值;(Ⅱ)求函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【考点】两角和与差的余弦函数.【分析】(Ⅰ)由已知推导出2cos2α+3cosα﹣2=0,由此能求出α.(Ⅱ)f(x)=4cosxcos(x﹣α)=2sin(2x+)+1,由,得2x+∈[],由此能求出函数f(x)=4cosxcos(x﹣α)在[0,]上的值域.【解答】解:(Ⅰ)∵2sinαtanα=3,且0<α<π.∴2sin2α=3cosα,∴2﹣2cos2α=3cosα,∴2cos2α+3cosα﹣2=0,解得或cosα=﹣2(舍),∵0<α<π,∴α=.(Ⅱ)∵α=,∴f(x)=4cosxcos(x﹣α)=4cosx(cosxcos+sinxsin)=2cos2x+2sinxcosx=+cos2x+1=2sin(2x+)+1,∵,∴2x+∈[],∴2≤2sin(2x+)+1≤3,∴函数f(x)=4cosxcos(x﹣α)在[0,]上的值域为[2,3].17.如图,在三棱锥D﹣ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于F(Ⅰ)求证:平面ABD⊥平面DEF(Ⅱ)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(I)由DE⊥平面得出DE⊥AB,又DF⊥AB,故而AB⊥平面DEF,从而得出平面ABD⊥平面DEF;(II)以E为坐标原点建立空间直角坐标系,求出和平面DAB的法向量,则|cos<>|即为所求.【解答】证明:(Ⅰ)∵DE⊥平面ABC,AB⊂平面ABC,∴AB⊥DE,又AB⊥DF,DE,DF⊂平面DEF,DE∩DF=D,∴AB⊥平面DEF,又∵AB⊂平面ABD,∴平面ABD⊥平面DEF.(Ⅱ)∵DA=DC,DE⊥AC,AC=4,AD⊥CD,∴E为AC的中点,DE==2.∵AB⊥BC,AC=4,∠BAC=60°,∴AB=.以E为原点建立如图所示的空间直角坐标系,则E(0,0,0),A(0,﹣2,0),D(0,0,2),B(,﹣1,0).∴=(0,﹣2,﹣2),=(,﹣1,﹣2),=(,﹣1,0).设平面DAB的法向量为=(x,y,z).则,∴,令z=1,得=(,﹣1,1).∴=2,||=,||=2,∴cos<>==.∴BE与平面DAB所成的角的正弦值为.18.已知函数f(x)=(x﹣t)|x|(t∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)当t>0时,若f(x)在区间[﹣1,2]上的最大值为M(t),最小值为m(t),求M(t)﹣m(t)的最小值.【考点】函数的最值及其几何意义;函数的单调性及单调区间.【分析】(Ⅰ)根据分段函数的表达式,结合一元二次函数的性质即可求函数y=f(x)的单调区间;(Ⅱ)讨论t的范围,结合一元二次函数的性质求出函数的最值进行求解即可.【解答】(Ⅰ)解:(1),…当t>0时,f(x)的单调增区间为,单调减区间为[0,]…当t=0时,f(x)的单调增区间为(﹣∞,+∞)…当t<0时,f(x)的单调增区间为[0,+∞),,单调减区间为…(Ⅱ)由(Ⅰ)知t>0时f(x)在(﹣∞,0)上递增,在上递减,在上递增从而当即t≥4时,M(t)=f(0)=0,…,m(t)=min{f(﹣1),f(2)}=min{﹣1﹣t,4﹣2t}…所以,当4≤t≤5时,m(t)=﹣1﹣t,故M(t)﹣m(t)=1+t≥5…当t>5时,m(t)=4﹣2t,故M(t)﹣m(t)=2t﹣4>6…当<2≤t,即2≤t<4时,M(t)=f(0)=0,m(t)=min{f(﹣1),f()}=min{﹣1﹣t,﹣}=﹣1﹣t,…所以,M(t)﹣m(t)=t+1≥3…当0<t<2时,M(t)=f(2)=4﹣2t…m(t)=min{f(﹣1),f()}=min{﹣1﹣t,﹣}=﹣1﹣t,…所以,M(t)﹣m(t)=5﹣t>3…综上所述,当t=2时,M(t)﹣m(t)取得最小值为3.…19.如图,已知椭圆C:+=1(a>b>0)经过点(1,),且离心率等于.点A,B分别为椭圆C的左、右顶点,M,N是椭圆C上非顶点的两点,且△OMN的面积等于.(Ⅰ)求椭圆C的方程;(Ⅱ)过点A作AP∥OM交椭圆C于点P,求证:BP∥ON.【考点】椭圆的简单性质.【分析】(Ⅰ)运用椭圆的离心率公式和点满足椭圆方程,以及a,b,c的关系,解得a,b,即可得到椭圆方程;(Ⅱ)解法一、设直线OM,ON的方程为y=k OM x,y=k ON x,代入椭圆方程,求得M,N的坐标,求出△OMN的面积,由条件可得.设P(x P,y P),则,又已知k AP=k OM,即证k BP=k ON即可;解法二、设直线AP的方程为y=k OM(x+2),代入x2+2y2=4,求出P的坐标和BP的斜率,所以只需证,即,即可得到证明.【解答】解:(Ⅰ)由题意得,e==,a2﹣b2=c2,代入点(1,),可得+=1,解得,a=2,b=,故椭圆C的方程为+=1;(Ⅱ)解法一:如图所示,设直线OM,ON的方程为y=k OM x,y=k ON x,联立方程组,解得,同理可得,作MM'⊥x轴,NN'⊥x轴,M',N'是垂足,S△OMN=S﹣S△OMM'﹣S△ONN'=梯形MM'N'N===,已知S△OMN=,化简可得.设P(x P,y P),则,又已知k AP=k OM,所以要证k BP=k ON,只要证明,而,所以可得BP∥ON.(M,N在y轴同侧同理可得).解法二:设直线AP的方程为y=k OM(x+2),代入x2+2y2=4,得,它的两个根为﹣2和x P,可得,,从而,所以只需证,即,设M(x1,y1),N(x2,y2),若直线MN的斜率不存在,易得,从而可得,若直线MN的斜率存在,设直线MN的方程为y=kx+m,代入得(2k2+1)x2+4kmx+2m2﹣4=0,则,,△=8(4k 2+2﹣m 2)>0,,化得m 4﹣(4k 2+2)m 2+(2k 2+1)2=0,得m 2=2k 2+1,.故BP ∥ON .20.如图,已知曲线C 1:y=(x >0)及曲线C 2:y=(x >0),C 1上的点P 1的横坐标为a 1(0<a 1<).从C 1上的点P n (n ∈N +)作直线平行于x 轴,交曲线C 2于点Q n ,再从点Q n 作直线平行于y 轴,交曲线C 1于点P n+1.点P n (n=1,2,3,…)的横坐标构成数列{a n }(Ⅰ)试求a n+1与a n 之间的关系,并证明:a 2n ﹣1<;(Ⅱ)若a 1=,求证:|a 2﹣a 1|+|a 3﹣a 2|+…+|a n+1﹣a n |<.【考点】等比关系的确定;数列的求和.【分析】(Ⅰ)由已知,P n,从而有,由Q n 在y=上,代入可得,由a 1>0,及,知a n >0,下证:解法一:由=,可得a n+1与异号,即可证明.解法二:由,可得=, =,可得,利用等比数列的通项公式可得a n ,进而证明.(Ⅱ)由a 2n+1===,可得a 2n+1﹣a 2n ﹣1=﹣a 2n ﹣1=,由,可得a 2n+1>a 2n ﹣1,可得>a 2n ﹣1>a 2n ﹣3>…>a 1.可知a n ≥a 1,因此|a n+2﹣a n+1|===,利用递推关系及其等比数列的前n 项和公式即可证明.【解答】解:(Ⅰ)由已知,P n,从而有,因为Q n 在y=上,所以有=,解得,…由a 1>0,及,知a n >0,下证:解法一:因为=,所以a n+1与异号,注意到<0,知<0,>0,即…解法二:由,可得=,=,所以有,即是以为公比的等比数列;设,则解得,…从而有由可得,所以,.所以.…(Ⅱ)证明:因为a2n+1===,所以a2n+1﹣a2n﹣1=﹣a2n﹣1=,因为,所以a2n+1>a2n﹣1,所以有>a2n﹣1>a2n﹣3>…>a1.从而可知a n≥a1…故|a n+2﹣a n+1|====…所以…所以|a2﹣a1|+|a3﹣a2|+|a4﹣a3|+…+|a n+1﹣a n|==…2016年6月20日。
2017-2018学年上学期高三数学(理)第一次模拟考试Word版含解析
2017-2018学年上学期高三数学(理)第一次模拟考试一、选择题:1.若“01x <<”是“()[(2)]0x a x a --+≤”的充分不必要条件,则实数a 的取值范围是 A .(,0][1,)-∞+∞ B .(1,0)- C .[1,0]-D .(,1)(0,)-∞-+∞ ( ) 2.复数21ii -=-()A .322i -B .322i +C .322i -+ D .322i-- 3.若整数x ,y 满足不等式组0,2100,0,x y x y y ⎧->⎪--<⎨+- 则2x +y 的最大值是( )A .11B .23C .26D .30 4.在△ABC 中,“sin 1B =”是“△ABC 为直角三角形”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.下列命题中错误..的是( )A. 如果平面⊥α平面γ,平面⊥β平面γ,l =βα ,那么γ⊥lB. 如果平面⊥α平面β,那么平面α内一定存在直线平行于平面βC. 如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD. 如果平面⊥α平面β,过α内任意一点作交线的垂线,那么此垂线必垂直于β 6.已知()sin (0)f x x x ωωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为( )A .(,)43ππ B . (,)44ππ- C . (0,)3π D .(,0)3π- 7.已知函数2||()2x f x kx x =-+(x R ∈)有四个不同的零点,则实数k 的取值范围是( ) A .0k <B .1k <C .01k <<D .1k >8.已知双曲线C :()0,012222>>=-b a by a x 的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于P 、Q 两点,若∠PAQ=60°,且4=,则双曲线的离心率为( )A .5132 B .27 C .9392 D .3 9.已知函数()c bx ax x x f +++=23(c b a ,,均为非零整数),满足()3a a f =,()()b a b b f ≠=3,则=c ( )A .16B .8C .4D .110.在△ABC 中,已知9,sin cos sin ,6ABC AB AC B A C S ∆⋅==⋅=,P 为线段AB 上的点,且,||||CA CBCP x y xy CA CB =⋅+⋅则的最大值为( )A .1B .2C .3D .4二、填空题:11.某三棱锥的三视图如图所示,则该三棱锥体积是 ,四个面的面积中最大的是 .12.设等差数列{}n a 的前n 项和为n S ,已知316a =,610a =, 则公差d = ;n S 为最大值时的n = .13.若x >0,y >0,且x+2y=1,那么+的最小值是 ,2x+3y 2的取值范围是 .14.已知点P 在抛物线x y 42=上,则点P 到点Q (2,-1)的距离与点P 到抛物线的焦点距离之和的最小值为______,此时点P 的坐标为 .15.已知函数()2xf x x e =,若()f x 在[],1t t +上不单调...,则实数t 的取值范围是 . 16.已知数列{}n a 满足:n n n a a a a +==+211,21,用[x]表示不超过x 的最大整数,则122012111111a a a ⎡⎤+++⎢⎥+++⎣⎦的值等于 . 17.三棱锥O ABC -中,,OA OB OC ,两两垂直且相等,点P ,Q 分别是BC 和OA 上的动点,且满足1233BC BP BC ≤≤,1233OA OQ OA ≤≤,则PQ 和OB 所成角余弦值的取值范围是 . 三、解答题:16.已知函数.3cos 33cos 3sin)(2xx x x f += (Ⅰ)求函数)(x f 图象对称中心的坐标;俯视图侧(左)视图正(主)视图(Ⅱ)如果ABC Δ的三边c b a ,,满足ac b =2,且边b 所对的角为B ,求)(B f 的取值范围。
2017-2018学年高三第一次模拟考试数学(理)试题Word版含答案
2017-2018学年第一次模拟考试数学(理)试题第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,0,1A =-,21|sin,2k B x x k Z π+⎧⎫==∈⎨⎬⎩⎭,则A B =ð( ) A .∅ B .0 C .{}0 D .{}1,1-2.61()x x-的展开式中含2x 的项的系数是( ) A .20- B .20 C .15- D .15 3.已知122ii a bi+=-+(i 为虚数单位,a ,b R ∈),在||a bi -=( ) A .i - B .1 C .2 D .54.某三棱锥的三视图如图所示,该三棱锥的体积是( )A .43 B .83 C .4 D .623+5.11()e x dx x+⎰=( )A .2e B .212e + C .212e - D .232e +6.设数列{}n a 满足1a a =,2121n n n a a a +-=+(*n N ∈),若数列{}n a 是常数列,则a =( )A .2-B .1-C .0D .(1)n-7.设向量(cos ,sin )a x x =-r ,(cos(),cos )2b x x π=--r ,且a tb =r r ,0t ≠,则sin 2x 的值等于( )A .1B .1-C .1±D .08.已知双曲线221x y -=,点1F ,2F 为其两个焦点,点P 为双曲线上一点,若1260F PF ∠=︒,则三角形12F PF 的面积为( )A .2B ..9.设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回的抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X 表示三次中红球被摸中的次数,每个小球被抽取的几率相同,每次抽取相对立,则方差()D X =( ) A .2 B .1C .23 D .3410.下列四个结论:①若0x >,则sin x x >恒成立;②命题“若sin 0x x -=,则0x =”的逆否命题为“若0x ≠,则sin 0x x -≠”; ③“命题p q ∧为真”是“命题p q ∨为真”的充分不必要条件; ④命题“x R ∀∈,ln 0x x ->”的否定是“0x R ∃∈,00ln 0x x -<”. 其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个11.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的“徽率”.如果是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( )1.732≈,sin150.2588︒≈,sin7.50.1305︒≈)A .12B .24C .36D .4812.若直线0ax y -=(0a ≠)与函数22cos 1()2ln2x f x x x +=+-图象交于不同的两点A ,B ,且点(6,0)C ,若点(,)D m n 满足DA DB CD +=u u u r u u u r u u u r,则m n +=( )A .1B .2C .3D .a第Ⅱ卷二、填空题:(本大题共4小题 ,每小题5分,满分20分)13.如图所示,某货场有两堆集装箱,一堆2个,一堆3个,现需要全部装运,每次只能从其中一堆取最上面的一个集装箱,则在装运的过程中不同取法的种数是 ____________(用数字作答).14.已知直线:(0)l y kx k =>,圆221:(1)1C x y -+=与222:(3)1C x y -+=.若直线l 被圆1C ,2C 所截得两弦的长度之比是3,则实数k =____________.15.已知函数2()(,)f x x ax b a b R =++∈在区间(0,1)内有两个零点,是3a b +的取值范围是________. 16.曲线C 是平面内到直线l 1:x=﹣1和直线l 2:y=1的距离之积等于常数k 2(k >0)的点的轨迹,下列四个结论:①曲线C 过点(﹣1,1);②曲线C 关于点(﹣1,1)成中心对称;③若点P 在曲线C 上,点A 、B 分别在直线l 1、l 2上,则|PA|+|PB|不小于2k ;④设P 0为曲线C 上任意一点,则点P 0关于直线l 1:x=﹣1,点(﹣1,1)及直线f (x )对称的点分别为P 1、P 2、P 3,则四边形P 0P 1P 2P 3的面积为定值4k 2;其中, 所有正确结论的序号是 .三、解答题 (解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且满足()2cos cos 0a b C c B ++=. (Ⅰ)求角C 的大小;(Ⅱ)求sin cos A B 的取值范围.18.张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如下表:(Ⅰ)求身高y 关于年龄x 的线性回归方程;(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()()()111211ni ni xx y y b x x==--=-∑∑),a y b x =-).19.已知()f x 是定义在R 上的奇函数,当0x >时,()()313f x x ax a R =+∈,且曲线()f x 在12x =处的切线与直线314y x =--平行.(Ⅰ)求a 的值及函数()f x 的解析式;(Ⅱ)若函数()y f x m =-在区间⎡-⎣上有三个零点,求实数m 的取值范围. 20.设各项均为正数的数列{}n a 的前n 项和为n S ,且满足()1n a n N =+∈︒. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若()12n n n b a =+⋅,求数列{}n b 的前n 项和n T .21.已知函数()()x f x ae x a R =-∈,其中e 为自然对数的底数, 2.71828e =…. (Ⅰ)判断函数()f x 的单调性,并说明理由;(Ⅱ)若[]1,2x ∈,不等式()x f x e -≥恒成立,求a 的取值范围. 22.选修4-4:坐标系与参数方程在平面直角坐标系中,曲线133cos :2sin x C y αα=+⎧⎨=⎩(α为参数)经过伸缩变换32x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩,后的曲线为2C ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求2C 的极坐标方程;(Ⅱ)设曲线3C 的极坐标方程为sin 16πρθ⎛⎫-= ⎪⎝⎭,且曲线3C 与曲线2C 相交于P ,Q 两点,求PQ 的值.23.选修4-5:不等式选讲已知函数()21f x x b x =+--+,()2222g x x a c x b =+++-,其中a ,b ,c 均为正实数,且1ab bc ac ++=. (Ⅰ)当1b =时,求不等式()1f x ≥的解集;(Ⅱ)当x R ∈时,求证()()f x g x ≤.2017-2018学年第一次模拟考试数学(理)试题答案一、1-12:CDBAB ACCCD BB 二、 13、10. 14、13. 15、(5,0)-. 16、②③④ 三、17、(Ⅰ)首先利用正弦定理将已知条件等式中的边化为角,然后利用两角和的正弦公式结合三角形内角和定理求得cos C 的值,从而求得角C 的大小;(Ⅱ)首先结合(Ⅰ)得到角B 与角A 间的关系,然后利用两角和与差的正弦与余弦公式将sin cos A B 化为关于角A 的关系式,由此求得其取值范围. 试题解析:(Ⅰ)因为()2cos cos 0a b C c B ++=,所以()2cos cos cos a C b C c B =-+, 由正弦定理得()()2sin cos sin cos sin cos sin sin A C B C C B B C A =-+=-+=-,因为在ABC ∆中sin 0A ≠,所以1cos 2C =-,(以上也可这样解:由cos cos b C c B a +=,所以2cos a C a =-,所以1cos 2C =-)所以23C π=.(Ⅱ)由(Ⅰ)知3A B π+=,所以033B A A ππ⎛⎫=- ⎪⎝⎭<<,所以1sin cos sin cos sin cos 32A B A A A A A π⎛⎫⎛⎫=-= ⎪ ⎪ ⎪⎝⎭⎝⎭11sin 22sin 2423A A A π⎛⎫==- ⎪⎝⎭,因为03A π<<,所以2333A πππ--<<,此时1sin 223A π⎛⎫- ⎪⎝⎭,则10sin 223A π⎛⎫-+ ⎪⎝⎭< 所以sin cos A B的取值范围为⎛ ⎝⎭.18、(Ⅰ)首先根据表格与公式求得相关数据,然后代入线性回归方程求得$a ,由此求得线性回归方程;(Ⅱ)将15x =代入(Ⅰ)中的回归方程即可求得张三同学15岁时的身高. 试题解析:(Ⅰ)由题意得()178910111213107x =++++++=, ()11211281351411481541601417y =++++++=. ()721941014928i i x x=-=++++++=∑,()()()()()()()()71320213160017213319182ii i xx y y =--=-⨯-+-⨯-+-⨯-+⨯+⨯+⨯+⨯=∑,所以()()()12118213282iii ii x x y y b x x ππ==--===-∑∑),$1314110762a y b x =-=-⨯=),所求回归方程为13762y x =+).(Ⅱ)由(Ⅰ)知,1302b =)>,故张三同学7岁至13岁的身高每年都在增高,平均每年增高6.5cm .将15x =代入(Ⅰ)中的回归方程,得131576173.52y =⨯+=),故预测张三同学15岁的身高为173.5cm .19、(Ⅰ)首先求得导函数,然后利用导数的几何意义结合两直线平行的关系求得a 的值,由此求得函数()f x 的解析式;(Ⅱ)将问题转化为函数()f x 的图象与y m =有三个公共点,由此结合图象求得m 的取值范围. 试题解析:(Ⅰ)当0x >时,()2f x x a '=+,因为曲线()f x 在12x =处的切线与直线314y x =--平行, 所以113244f a ⎛⎫'=+=- ⎪⎝⎭,解得1a =-,所以()313f x x x =-.(Ⅱ)由(Ⅰ)知()36f -=-,()213f -=,()213f =-,0f =,所以函数()y f x m =-在区间⎡-⎣上有三个零点,等价于函数()f x 在⎡-⎣上的图象与y m =有三个公共点.结合函数()f x 在区间⎡-⎣上大致图象可知,实数m 的取值范围是2,03⎛⎤- ⎥⎝⎦.20、(Ⅰ)首先利用n S 与n a 的关系结合已知条件等式推出数列{}n a 是等差数列,由此求得数列{}n a 的通项公式;(Ⅱ)首先结合(Ⅰ)求得n b 的表达式,然后利用错位相减法求解即可.试题解析:(Ⅰ)当1n =时,有11a =+,解得11a =;当2n ≥时,由1n a =+得2421n n n S a a =++,2111421n n n S a a -=--++,两式相减得()221142n n n n n a a a a a --=-+-,所以()()1120n n n n a a a a --+--=,因为数列{}n a 的各项为正,所以120n n a a ---=, 所以数列{}n a 是以1为首项,2为公差的等差数列, 所以数列{}n a 的通项公式为21n a n =-.(Ⅱ)由(Ⅰ)知()212122224an n n n n n b a n n n -=+⋅=⋅=⋅=⋅. 所以231424344n n T n =⨯+⨯+⨯++⋅L ,()23414142434144n n n T n n +=⨯+⨯+⨯++-⋅+⋅L ,两式相减得()2311414344444414n n n n n T n n ++--=++++-⋅=-⋅-L 141433n n +⎛⎫=-+-⋅ ⎪⎝⎭,所以1431499n n n T +-=+⋅.21、(Ⅰ)首先求出导函数,然后分0a ≤、0a >求得函数的单调区间;(Ⅱ)首先将问题转化为[]1,2x ∈,21x x xe a e +≥恒成立,由此令()21xx xe g x e+=,然后通过求导研究其单调性并求得其最大值,从而求得a 的取值范围.试题解析:(Ⅰ)由题可知,()x f x ae x =-,则()1x f x ae '=-, (i )当0a ≤时,()0f x '<,函数()x f x ae x =-为R 上的减函数, (ii )当0a >时,令10x ae -=,得ln x a =-,①若(),ln x a ∈-∞-,则()0f x '<,此时函数()f x 为单调递减函数; ②若()ln ,x a ∈-+∞,则()0f x '>,此时函数()f x 为单调递增函数. (Ⅱ)由题意,问题等价于[]1,2x ∈,不等式x x ae x e --≥恒成立, 即[]1,2x ∈,21xx xe a e+≥恒成立,令()21xx xe g x e+=,则问题等价于a 不小于函数()g x 在[]1,2上的最大值.由()()()()221214212x xx xxe exe e x e xxx e g x e '+-+--'==,当[]1,2x ∈时,()0g x '<,所以函数()g x 在[]1,2上单调递减, 所以函数()g x 在[]1,2x ∈的最大值为()2111g e e=+, 故[]1,2x ∈,不等式()x f x e -≥恒成立,实数a 的取值范围为11,2e e ⎡⎫++∞⎪⎢⎣⎭.22、(Ⅰ)由题意得曲线2C 的参数方程为1cos sin x y αα'=+⎧⎨'=⎩(α为参数),则曲线2C 的直角坐标方程为()2211x y ''-+=, 所以曲线2C 的极坐标方程为2cos ρθ=.(Ⅱ)由(Ⅰ)知曲线2C 是以()1,0为圆心,半径为1的圆,而曲线3C 为直线,直角坐标方程为20x --=.曲线2C 的圆心()1,0到直线3C 的距离12d ==,所以弦PQ 的值为=.23、(Ⅰ)由题意,当1b =时,()2,1,2,11,2, 1.x f x x x x --⎧⎪=-⎨⎪⎩≤<<≥当1x -≤时,()21f x =-<,不等式()1f x ≥无解;当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<.当1x ≥时,()21f x =≥恒成立, 所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(Ⅱ)当x R ∈时,()()22221111f x x b x x b x b b =+--+++-+=+=+≤;()()222222222222g x x a c x b x a c x b a c b =+++-++--=++≥. 而()2222222211a c b b a c b ++-+=++-()222222112a b b c c a =+++++-()122212ab bc ac ++-≥ 1ab bc ac =++-0=当且仅当a b c ==222221a c b b +++≥, 因此,当x R ∈时,()()222212f x b a c b g x +++≤≤≤, 所以,当x R ∈时,()()f x g x ≤.。
2018年普通高等学校招生全国统一考试高中数学模拟测试试题一理【word版】.doc
2018年普通高等学校招生全国统一考试模拟卷理科数学一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A ={x |x 2-2x <0},B ={x ||x |<2},则 A .A ∩B =∅ B .A ∩B =AC .A ∪B =AD .A ∪B =R2.下面是关于复数2z i =-的四个命题:1:||5p z =;2:p z 的共轭复数为2+i ;23:34p z i =-;4121:33p i z =+.其中真命题为 A. 12p p , B. 23p p , C. 24p p , D. 34p p ,3.已知双曲线()221my x m R -=∈与抛物线28x y =有相同的焦点,则该双曲线的渐近线方程为A .13y x =± B .3y x =±C .3y x =±D .33y x =±4.甲、乙、丙、丁四位同学高考之后计划去A B C 、、三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为A . 8B .7 C. 6 D .55.已知ABC ∆中,10=AB ,6=AC ,8=BC ,M 为AB 边上的中点,则=⋅+⋅CB CM CA CM A .0B .25C .50D .1006.已知函数f (x )=32x x +4,则f (x )的大致图象为7.已知数列{a n}为等比数列,S n是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为54,则S5=A. 35B. 33C. 31D. 298.根据如下程序框图,运行相应程序,则输出S的值为A.32B.3C.23D.39.一个几何体的三视图如图所示,则该几何体的体积为A.83B.163C.203D.810.如果6314ax xx x⎛⎫⎛⎫-+⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为16,则展开式中3x项的系数为A. 392B.392- C.212- D.21211.已知直三棱柱ABC—A1B1C1的底面为等边三角形,且底面积为34,体积为34,点P,Q分别为线段A1B,B1C上的动点,若直线PQ∩平面ACC1A1=∅,点M为线段PQ的中点,则点M的轨迹长度为A.24B.34C.22D.3212.已知点P(x0,y0)(x0≠a±)在椭圆C:22221x ya b+=(a>b>0)上,若点M为椭圆C的右顶点,且PO⊥PM (O为坐标原点),则椭圆C的离心率e的取值范围是A .(0) B .1) C .,1) D .(0) 二、填空题: 本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.13.若实数x ,y 满足不等式组0,2,0,x x ⎧⎪⎨⎪⎩≥y ≤-y ≤则x +y 的最小值等于____________.14.在△ABC 中,A ,B ,C 所对应的边分别是a 、b 、c ,若其面积S =14(b 2+c 2-a 2),则A =____________.15.已知关于x 的不等式21log ()2m mx x -+>0在[1,2]上恒成立,则实数m 的取值范围为___________16.已知首项为2的正项数列{n a }的前n 项和为n S ,且当n≥2时,3n S -2=2na -31n S -.若12nn S +≤m 恒成立,则实数m 的取值范围为_______________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数()1cos cos 223f x x x x π⎛⎫=-- ⎪⎝⎭. (Ⅰ)求函数()f x 图象的对称轴方程; (Ⅱ)将函数()f x 图象向右平移4π个单位,所得图象对应的函数为()g x .当0 2x π⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.18. (本小题满分12分)某理财公司有两种理财产品A 和B ,这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立): 产品A投资结果 获利40%不赔不赚亏损20%概率131216产品B投资结果 获利20%不赔不赚亏损10%概率p13q注:p >(Ⅰ)已知甲、乙两人分别选择了产品A 和产品B 投资,如果一年后他们中至少有一人获利的概率大于35,求实数p 的取值范围;(Ⅱ)若丙要将家中闲置的10万元人民币进行投资,以一年后投资收益的期望值为决策依据,则选用哪种产品投资较理想?19. (本小题满分12分)如图,在空间四边形PABC 中,AC PA ⊥,AC PA =22=PC ,2=BC ,ο90=∠ACB ,且平面⊥PAC 平面ABC(Ⅰ)求证:BC PA ⊥;(Ⅱ)若直线PC 与平面ABM 所成角的余弦值为33,求PM .20. (本小题满分12分)设动圆P (圆心为P )经过定点(0,2)、(t +2,0)、(t -2,0)三点,当t 变化时,P 的轨迹为曲线C (Ⅰ) 求C 的方程(Ⅱ) 过点(0,2)且不垂直于坐标轴的直线l 与C 交于A 、B 两点,B 点关于y 轴的对称点为D ,求证:直线AD 经过定点.20. (本小题满分12分)已知函数()()()2212ln 21f x x a x ax x a a R =-++++∈. (Ⅰ)2a =-时,求()f x 在()0,2上的单调区间; (Ⅱ)0x ∀>且1x ≠,2ln 211ax xa x x >+--均恒成立,求实数a 的取值范围.请考生在第22、23题中任选一题做答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列07
14、数列{}n a 的前n 项和记为n S ,且满足21n n S a =-
(1)求数列{}n a 的通项公式;
(2)求和:0121231n n n n n n
S C S C S C S C +++++ ;
(3)设有m 项的数列{}n b 是连续的正整数数列,并且满足:
()212111lg 2lg 1lg 1lg 1lg log m m a b b b ⎛⎫⎛⎫⎛⎫+++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
试问数列{}n b 最多有几项?并求这些项的和.
【答案】解:(1)由12-=n n a S 得1211-=++n n a S ,相减得n n n a a a 2211-=++,即n n a a 21=+. 又1211-=a S ,得011≠=a ,∴数列{}n a 是以1为首项2为公比的等比数列,∴12-=n n a . ………………………………………………5分
(2)由(1)知12-=n n S .
∴n n n n n n n n n n n n C C C C C S C S C S C S ⋅-+⋅-+⋅-+⋅-=⋅++⋅+⋅+⋅++)12()12()12()12(12312011231201 n n n n n n n n n n n n n n n C C C C C C C C 2322)21(2)()222(22102210-⋅=-+=++++-++++= ………………………………………………10分
(3)由已知得111122211-=+⋅⋅+⋅+⋅m b b b b b b m
m . 又{}n b 是连续的正整数数列,∴11+=-n n b b .∴上式化为
1)1(21-=+m b b m .…… 又)1(1-+=m b b m ,消m b 得02311=--m b mb .
2
6323111-+=-=b b b m ,由于*∈N m ,∴21>b ,∴31=b 时,m 的最大值为9. 此时数列的所有项的和为6311543=++++ ……………………16分
15、已知数列{a n }满足7
61-=a ,12110n n a a a a +++++-λ= (其中λ≠0且λ≠–1,n ∈N*),n S 为数列{a n }的前n 项和.
(1) 若3122a a a ⋅=,求λ的值;
(2) 求数列{a n }的通项公式n a ;
(3) 当13
λ=时,数列{a n }中是否存在三项构成等差数列,若存在,请求出此三项;若不存在,
请说明理由.
【答案】(1) 令1=n ,得到λ712=a ,令2=n ,得到237171λ
λ+=a 。
…………2分 由3122a a a ⋅=,计算得6
7-=λ.……………………………………………………4分 (2) 由题意01121=-+⋅⋅⋅++++n n a a a a λ,可得:
)2(01121≥=-+⋅⋅⋅+++-n a a a a n n λ,所以有
0)1(1=-++n n a a λλ)2(≥n ,又1,0-≠≠λλ,……………………5分 得到:)2(11≥+=
+n a a n n λλ,故数列}{n a 从第二项起是等比数列。
……………7分 又因为λ712=a ,所以n ≥2时,2)1(71-+=n n a λ
λλ……………………………8分 所以数列{a n }的通项⎪⎪⎩⎪⎪⎨⎧≥+=-=-.2)1(71,1762n n a n n λ
λλ…………………………………10分 (3) 因为31=λ 所以⎪⎪⎩⎪⎪⎨⎧≥⋅=-=-.247
3,1762n n a n n ……………………………………11分 假设数列{a n }中存在三项a m 、a k 、a p 成等差数列,
①不防设m >k >p ≥2,因为当n ≥2时,数列{a n }单调递增,所以2a k =a m +a p
即:2⨯(37)⨯4k –2 = 37⨯4m –2 + 37
⨯4p –2,化简得:2⨯4k - p = 4m –p +1 即22k –2p +1=22m –2p +1,若此式成立,必有:2m –2p =0且2k –2p +1=1,
故有:m=p=k ,和题设矛盾………………………………………………………………14分
②假设存在成等差数列的三项中包含a 1时,
不妨设m =1,k >p ≥2且a k >a p ,所以2a p = a 1+a k ,
2⨯(3
7
)⨯4p–2 = –
6
7
+ (
3
7
)⨯4k–2,所以2⨯4p–2= –2+4k–2,即22p–4 = 22k–5 – 1
因为k > p ≥2,所以当且仅当k=3且p=2时成立………………………………………16分因此,数列{a n}中存在a1、a2、a3或a3、a2、a1成等差数列……………………………18分。