高三数学试题不等式专题练习及答案

合集下载

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知且,若恒成立,(1)求的最小值;(2)若对任意的恒成立,求实数的取值范围.【答案】(1)3;(2)或【解析】(1)且,若恒成立.即要求出的最大值.由柯西不等式可求得.(2)因为对任意的恒成立.所以等价于的最大值小于或等于.由(1)可得.所以等价于恒成立.通过讨论即求得x的范围.本小题的关键是关于恒成立的问题的正确理解.试题解析:(1),,(当且仅当,即时取等号)又∵恒成立,∴.故的最小值为3.(2)要使恒成立,须且只须.∴或或∴或.【考点】1.柯西不等式.2.绝对值不等式.2.设a>b>1,c<0,给出下列三个结论:①>;②a c<b c;③logb (a-c)>loga(b-c).其中所有的正确结论的序号是()A.①B.①②C.②③D.①②③【答案】D【解析】由a>b>1可得0<<,又c<0,故>,①正确;结合幂函数y=x c的单调性可知,a>b>1时,若c<0则a c<b c;②正确;又a-c>b-c>1,故logb (a-c)>loga(a-c)>loga(b-c),③也正确,因此选D.3.若不等式a·4x-2x+1>0对一切x∈R恒成立,则实数a的取值范围是.【答案】a>【解析】不等式可变形为a>=()x-()x,令()x=t,则t>0,且y=()x-()x=t-t2=-(t-)2+,因此当t=时,y取最大值,故实数a的取值范围是a>.4.已知x>0,y>0,若不等式恒成立,则实数m的最大值为() A.10B.9C.8D.7【答案】B【解析】m≤ (2x+y)=5+2 ,=9,所以m的最大值为9.5.已知平面区域, (是常数),,记为事件,则使的常数有A.个B.个C.个D.个以上【答案】C【解析】平面区域表示的是图中边长为3的正方形内部及边界;正方形面积为9.事件表示在正方形内且在过定点的直线上方的平面区域;且该区域的面积为由图形可知:这样的直线存在两条;故选C6.不等式对任意实数恒成立,则实数的取值范围为()A.B.C.D.【答案】B【解析】略7.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】A【解析】由题意得:垂直,因此选A.【考点】线性规划8.设,,,则()A.B.C.D.【答案】A【解析】,,,故选A.【考点】比较大小.9.已知是定义在的函数,对任意两个不相等的正数,都有,记,则()A.B.C.D.【答案】C【解析】设.由得,即,故函数是定义在的单调递减函数.又因为,所以.【考点】构造函数利用函数的单调性比大小.10.设实数满足则的最大值为.【答案】4【解析】不等式组表示的平面区域如图三角形及其内部,且A(4,0).目标函数可看作直线在y轴上的截距的-2倍,显然当截距越小时,z越大.易知,当直线过点A时,z最大,且最大值为4-2×0=4.【考点】线性规划求最值.11.(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若存在实数x,使得,求实数a的取值范围.【答案】(Ⅰ)不等式的解集为;(Ⅱ).【解析】(Ⅰ)解绝对值不等式的思路是利用零点法去绝对值,根据零点对变量x进行分类,分别求不等式的解最后对几种情况的解集求并集;(Ⅱ)存在性问题常转化为最值问题,本题转化为.试题解析:(Ⅰ)①当时,,所以,②当时,,所以为,③当时,,所以,综合①②③不等式的解集为.(Ⅱ)即,由绝对值的几何意义,只需.【考点】•解绝对值不等式;‚存在性问题求参数.12.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.13.设,实数满足若的最大值是0,则实数=_______,的最小值是_______.【答案】,【解析】作出实数表示的平面区域如图所示,由图知当目标函数经过点时取得最大值,即,解得;当目标函数经过点时取得最小值,所以.【考点】简单的线性规划问题.【技巧点睛】平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的半平面的交集.线性目标函数中的不是直线在轴上的截距,把目标函数化可知是直线在轴上的截距,要根据的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.14.若对于一切实数,不等式恒成立,则的取值范围是_____.【答案】【解析】将不等式变形为,因为在区间上单调递减,在区间上单调递增,且,即,若,不等式显然成立,若,则须,即,综上所述,即的取值范围是;故填.【考点】1.不等式恒成立;2.函数的单调性.【易错点睛】本题考查“对号”函数的单调性和不等式恒成立问题,属于中档题;本题的易错点有两处:一是利用基本不等式求最值导致错误(因为利用基本不等式只能求的最小值,而不能求的最大值),二是易忽视对实数的讨论(忘记的情形),导致解题过程不严密.15.已知正数满足,则的最小值为_________.【答案】9【解析】,的最小值是9.【考点】基本不等式求最值.【易错点晴】本题主要考查基本不等式的应用,属中档题.利用基本不等式求最值时一定要牢牢把握住“一正、二定、三相等”这一基本原则,才能减少出错.本题最易用以下错误方法解答:(出错原因是同时成立时原式没有意义).16.设变量满足约束条件,若目标函数的最大值为14,则值为()A.1B.或C.D.【答案】C【解析】首先根据已知约束条件画出其所表示的平面区域,如下图所示,然后由目标函数的最大值为14,此时目标函数经过点,所以,所以,故应选.【考点】1、简单的线性规划问题.17.已知,满足约束条件,若的最大值为,则()A.B.C.1D.2【答案】C【解析】根据题意作出满足约束条件下的平面区域,如图所示,由图知,当目标函数经过点时取得最大值,所以,解得,故选C.【考点】简单的线性规划问题.18.选修4-5:不等式选讲设函数.(Ⅰ)解不等式;(Ⅱ)若对一切实数均成立,求实数的取值范围.【答案】(1);(2).【解析】(Ⅰ)通过对x的取值范围的分类讨论,去掉绝对值符号,解相应的一次不等式,最后取并集即可;(Ⅱ)利用绝对值的三角不等式可求得的最小值,从而可得m的取值范围.试题解析:(I)当x时, f(x)=2x+1-(x-4)=x+5>0,得x>-5,所以x成立.当时,f(x)=2x+1+x-4=3x-3>0,得x>1,所以1<x<4成立.当时, f(x)=-x-5>0,得x<-5,所以x<-5成立.综上,原不等式的解集为.(II)f(x)+=|2x+1|+2|x-4|.当时等号成立,所以.【考点】绝对值不等式的解法.19.若满足不等式组,且的最大值为2,则实数的值为()A.-2B.C.1D.【答案】D【解析】作出题设不等式组表示的可行域,只有如图情形都能有封闭的区域,作直线,当直线向上平移时,增大,由题意可知当过点时取最大值2,由得,所以,解得.故选D.【考点】含参数的简单线性规划问题.20.已知实数,满足,则目标函数的最大值为______.【答案】.【解析】作出可行域如图所示:作直线,再作一组平行于的直线,当直线经过点时,取得最大值,由得:,∴点的坐标为,∴,故填:.【考点】线性规划.21.选修4-5:不等式选讲已知函数(Ⅰ)当时,解不等式;(Ⅱ)若存在实数,使得不等式成立,求实数的取值范围.【答案】(Ⅰ).;(Ⅱ).【解析】含绝对值的函数,由绝对值定义去掉绝对值符号化为分段函数形式,解不等式时,只要分段求解,最后合并即可;(Ⅱ)若存在使不等式恒成立,即小于等于的最大值,由绝对值的性质可有,从而只要解不等式即得.试题解析:(Ⅰ)当时,,等价于或或,解得或,不等式的解集为.(Ⅱ)由不等式性质可知,若存在实数,使得不等式成立,则,解得,实数的取值范围是.【考点】解含绝对值的不等式,不等式恒成立,绝对值的性质.22.选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若关于的不等式的解集为,求参数的取值范围.【答案】(1);(2).【解析】含绝对值的函数与不等式工,可根据绝对值定义,令每个绝对值里式子为0,求得的值,这些的值把实数分成若干区间,在每个区间内去绝对值符号可得解,(1)在每个区间求得不等式的解后,要求并集;(2)求出函数的最小值就可得到结论.试题解析:(1)当时,,得到,当时,,得到,当时,,得到,综上,不等式解集为.(2)由题意知,对一切实数恒成立,当时,,当时,,当时,.综上,.故.【考点】解绝对值不等式,不等式恒成立,函数的最值.23.若关于的不等式至少有一个负数解,则实数的取值范围是()A.B.C.D.【答案】D【解析】关于的不等式,即,且,在同一坐标系中,画出和函数的图象,当函数的图象则左支经过点时,求得,当函数的图象则右支和图象相切时,方程组有唯一的解,即有唯一的解,故,解得,所以实数的取值范围是,故选D.【考点】函数的图象与性质的应用.24.实数x、y满足条件,则z=x﹣y的最小值为()A.1B.﹣1C.D.2【答案】B【解析】由题意作出其平面区域,将z=x﹣y化为y=x﹣z,﹣z相当于直线y=x﹣z的纵截距,由几何意义可得.解:由题意作出其平面区域,将z=x﹣y化为y=x﹣z,﹣z相当于直线y=x﹣z的纵截距,则过点(0,1)时,z=x﹣y取得最小值,则z=0﹣1=﹣1,故选B.【考点】简单线性规划.25.设为坐标原点,,若点满足,则的最大值是.【答案】【解析】的可行域如图,,由图可知,当直线与圆相切与时,可以取到最大值,原点到直线的距离等于,所以,即,故答案为.【考点】线性规划和向量数量积的坐标运算.【方法点晴】本主要考查线性规划中已知可行域求目标函数的最值,属于容易题.本题关键是将目标函数转化成坐标:,利用数形结合的方法求出目标函数的最大值.在直角坐标系画可行域时注意“直线定界,点定域”的原则.26.运行如下图所示的程序框图,当输入时的输出结果为,若变量,满足,则目标函数的最大值为 .【答案】5【解析】由程序框图,得;将化为,作出表示的平面区域和目标函数基准直线,当直线向右上方平移时,直线在轴上的截距增大,由图象,得当直线过点时,取得最大值;故填5.【考点】1.程序框图;2.简单的线性规划.【方法点睛】本题考查程序框图的循环结构、简单的线性规划问题,属于基础题;处理简单的线性规划问题,一般是先画出不等式组表示的平面区域和目标函数基准直线,通过目标函数的几何意义找出最优解,要注意目标函数基准直线和可行域边界的倾斜程度,另外,还可以将可行域的顶点坐标代入目标函数求值,比较求出最值即可.27.已知x,y满足不等式组则函数z=2x+y取得最大值与最小值之和是()A.3B.9C.12D.15【答案】D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合求出最值即可.解:由约束条件作出可行域如图,由图可知,使目标函数z=2x+y取得最大值时过点B,联立,解得,故z的最大值是:z=12,取到最小值时过点A,联立,解得,故z的最小值是:z=3,∴最大值与最小值之和是15,故选:D.【考点】简单线性规划.28.设实数满足不等式组,则的最大值为 .【答案】【解析】当,取最大值.【考点】线性规划.29.设中变量满足条件,则的最小值为()A.2B.4C.8D.16【答案】C【解析】作出约束条件表示的可行域,如图所示,由,得,令,则,由可行域可知当直线经过点时截距最小,即最小,解方程组,得,所以的最小值为,的最小值为.【考点】简单的线性规划.30.已知函数.(1)试求的值域;(2)设,若对,,恒有成立,试求实数的取值范围.【答案】(1);(2).【解析】(1)这是含绝对值的函数,可以利用绝对值的性质求得最大值和最小值,也可利用绝对值的定义去绝对值符号后再求得最值,还可利用绝对值的几何意义得结论;(2)题意中不等式恒成立,实际上就是,由基本不等式性质知,即,列出不等式可解得的范围.试题解析:(1)∵∴,∴的值域为(2)∴,由题意知,∴【考点】含绝对值的函数的值域,不等式恒成立.31.【选修4-5,不等式选讲】设,(Ⅰ)若的解集为,求实数的值;(Ⅱ)当时,若存在,使得不等式成立,求实数m的取值范围.【答案】(1);(2).【解析】本题主要考查绝对值不等式的解法、恒成立问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力. 第一问,先解不等式,得到的不等式的解集和已知解集相同,对应系数相等,求出a的值;第二问,先将存在,使得不等式成立,转化为,再求m的取值范围.试题解析:(Ⅰ)显然,当时,解集为,,无解;当时,解集为,令,,综上所述,.(Ⅱ)当时,令由此可知,在单调减,在单调增,在单调增,则当时,取到最小值,由题意知,,则实数的取值范围是【考点】本题主要考查:1.绝对值不等式;2.恒成立问题.32.已知实数x,y满足条件,则使不等式成立的点(x,y)的区域的面积为()A.1B.C.D.【答案】A【解析】因为实数满足条件,所以画出其表示的可行域,在直线上方部分即是的区域,如图所示,面积为,故选A.【考点】1、可行域的画法;2、二元一次不等式的几何意义.33.选修4-5:不等式选讲已知函数同时满足或.(1)求实数的值;(2)记函数的最小值为,若,求的最小值.【答案】(1);(2).【解析】(1)运用绝对值不等式的性质推证求解;(2)借助题设条件基本不等式进行求解.试题解析:(1)由,得,即,由,得,即,因为和同时成立, 所以.(2),且当且仅当即时取等号, 所以,由得,所以,当且仅当,且,即时取等号. 所以的最小值为.【考点】不等式的相关知识及运用.34.选修4-5:不等式选讲已知函数。

不等式练习题及讲解高中答案

不等式练习题及讲解高中答案

不等式练习题及讲解高中答案### 不等式练习题及讲解#### 一、基础不等式练习题1. 题目一:若 \( a, b, c \) 均为正数,证明不等式 \( a + b\geq 2\sqrt{ab} \) 成立。

2. 题目二:已知 \( x \) 和 \( y \) 均为实数,且 \( x^2 + y^2 = 1 \),求证 \( x + y \leq \sqrt{2} \)。

3. 题目三:若 \( a, b \) 均为正整数,证明 \( a^2 + b^2 \geq 2ab \)。

4. 题目四:对于任意实数 \( x \),证明 \( \frac{x^2}{2} +\frac{1}{2x^2} \geq 1 \)。

5. 题目五:若 \( x, y, z \) 均为正数,证明 \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq \frac{9}{xy + yz + zx} \)。

#### 二、不等式练习题讲解题目一讲解:利用算术平均数-几何平均数不等式(AM-GM不等式):\[ a + b \geq 2\sqrt{ab} \]这是因为对于任意非负实数 \( a \) 和 \( b \),它们的算术平均数总是大于或等于它们的几何平均数。

题目二讲解:由于 \( x^2 + y^2 = 1 \),我们有 \( (x + y)^2 \leq 2(x^2 +y^2) = 2 \),从而 \( x + y \leq \sqrt{2} \)。

题目三讲解:同样使用AM-GM不等式:\[ a^2 + b^2 \geq 2\sqrt{a^2b^2} = 2ab \]当且仅当 \( a = b \) 时,等号成立。

题目四讲解:利用AM-GM不等式:\[ \frac{x^2}{2} + \frac{1}{2x^2} \geq 2\sqrt{\frac{x^2}{2}\cdot \frac{1}{2x^2}} = 1 \]等号成立条件是 \( x^2 = 1 \),即 \( x = \pm 1 \)。

(完整)高中数学不等式习题及详细答案

(完整)高中数学不等式习题及详细答案

第三章 不等式一、选择题1.已知x ≥25,则f (x )=4-25+4-2x x x 有( ).A .最大值45B .最小值45C .最大值1D .最小值12.若x >0,y >0,则221+)(y x +221+)(xy 的最小值是( ).A .3B .27 C .4 D .29 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b +ab1≥22B .(a +b )(a 1+b1)≥4 C22≥a +bD .ba ab+2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式xx f x f )()(--<0的解集为( ).A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)5.当0<x <2π时,函数f (x )=x xx 2sin sin 8+2cos +12的最小值为( ).A .2B .32C .4D .346.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18B .6C .23D .2437.若不等式组⎪⎩⎪⎨⎧4≤ 34 ≥30 ≥y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ).A .73B .37C .43D .348.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为35,则点P 的坐标是( ).A .(-5,1)B .(-1,5)C .(-7,2)D .(2,-7)9.已知平面区域如图所示,z =mx +y (m >0)在平面区域内取得最优解(最大值)有无数多个,则m 的值为( ).A .-207B .207 C .21D .不存在10.当x >1时,不等式x +11-x ≥a 恒成立,则实数a 的取值范围是( ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]二、填空题11.不等式组⎩⎨⎧ 所表示的平面区域的面积是 .12.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧ 若目标函数z =ax +y (a >0)仅在点(3,0)处取得最大值,则a 的取值范围是 .13.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 . 14.设a ,b 均为正的常数且x >0,y >0,xa+y b =1,则x +y 的最小值为 .15.函数y =log a (x +3)-1(a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则m 1+n2的最小值为 . 16.某工厂的年产值第二年比第一年增长的百分率为p 1,第三年比第二年增长的百分率为p 2,若p 1+p 2为定值,则年平均增长的百分率p 的最大值为 .(x -y +5)(x +y )≥00≤x ≤3 x +2y -3≤0 x +3y -3≥0, y -1≤0(第9题)三、解答题17.求函数y =1+10+7+2x x x (x >-1)的最小值.18.已知直线l 经过点P (3,2),且与x 轴、y 轴正半轴分别交于A ,B 两点,当△AOB 面积最小时,求直线l 的方程.(第18题)19.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨,B 原料2吨;生产每吨乙产品要用A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A 原料不超过13吨,B 原料不超过18吨.那么该企业可获得最大利润是多少?20.(1)已知x <45,求函数y =4x -1+5-41x 的最大值; (2)已知x ,y ∈R *(正实数集),且x 1+y 9=1,求x +y 的最小值;(3)已知a >0,b >0,且a 2+22b =1,求2+1b a 的最大值.参考答案1.D解析:由已知f (x )=4-25+4-2x x x =)()(2-21+2-2x x =21⎥⎦⎤⎢⎣⎡2-1+2-x x )(, ∵ x ≥25,x -2>0, ∴21⎥⎦⎤⎢⎣⎡2-1+2-x x )(≥21·2-12-2x x ⋅)(=1, 当且仅当x -2=2-1x ,即x =3时取等号. 2.C 解析:221+)(y x +221+)(xy =x 2+22241+++41+x x y y yy x =⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫⎝⎛x y y x +. ∵ x 2+241x ≥22241x x ⋅=1,当且仅当x2=241x ,x =22时取等号; 41+22y y ≥22241y y ⋅=1,当且仅当y 2=241y ,y =22时取等号; x yy x +≥2x y y x ⋅=2(x >0,y >0),当且仅当y x =xy,y 2=x 2时取等号. ∴⎪⎭⎫ ⎝⎛2241+x x +⎪⎪⎭⎫ ⎝⎛2241+y y +⎪⎪⎭⎫ ⎝⎛x y y x +≥1+1+2=4,前三个不等式的等号同时成立时,原式取最小值,故当且仅当x =y =22时原式取最小值4. 3.D 解析:方法一:特值法,如取a =4,b =1,代入各选项中的不等式,易判断只有ba ab+2≥ab 不成立.方法二:可逐项使用均值不等式判断 A :a +b +ab1≥2ab +ab1≥2abab 12⋅=22,不等式成立.B :∵ a +b ≥2ab >0,a 1+b 1≥2ab 1>0,相乘得 (a +b )( a 1+b1)≥4成立.C :∵ a 2+b 2=(a +b )2-2ab ≥(a +b )2-222⎪⎭⎫ ⎝⎛+b a =222⎪⎭⎫⎝⎛+b a ,又ab ≤2b a +⇒ab1≥b a +222≥a +b 成立. D :∵ a +b ≥2ab ⇒b a +1≤ab 21,∴b a ab +2≤ab ab 22=ab ,即ba ab+2≥ab 不成立.4.D解析: 因为f (x )是奇函数,则f (-x )=-f (x ),x x f x f )()(--<0x x f )(2⇔<0⇔xf (x )<0,满足x 与f (x )异号的x 的集合为所求.因为f (x )在(0,+∞)上是增函数,且f (1)=0,画出f (x )在(0,+∞)的简图如图,再根据f (x )是奇函数的性质得到f (x ) 在(-∞,0)的图象.由f (x )的图象可知,当且仅当x ∈(-1,0)∪(0,1)时,x 与f (x )异号. 5.C解析:由0<x <2π,有sin x >0,cos x >0. f (x )=x x x 2sin sin 8+2cos +12=x x x x cos sin 2sin 8+cos 222=xx sin cos +x x cos sin 4≥2x x x x cos sin 4sin cos· =4,当且仅当xx sin cos =x xcos sin 4,即tan x =21时,取“=”. ∵ 0<x <2π,∴ 存在x 使tan x =21,这时f (x )min =4.6.B解析:∵ a +b =2,故3a +3b ≥2b a 33⋅=2b a +3=6,当且仅当a =b =1时取等号.(第4题)故3a +3b 的最小值是6.7.A解析:不等式组表示的平面区域为如图所示阴影部分 △ABC .由⎩⎨⎧4343=+=+y x y x 得A (1,1),又B (0,4),C (0,43).由于直线y =k x +43过点C (0,43),设它与直线 3x +y =4的交点为D ,则由S △BCD =21S △ABC ,知D 为AB 的中点,即x D =21,∴ y D =25, ∴ 25=k ×21+34,k =37.8.A解析:设P 点的坐标为(x 0,y 0),则⎪⎪⎩⎪⎪⎨⎧解得⎩⎨⎧. 1=, 5=-00y x∴ 点P 坐标是(-5,1). 9.B解析:当直线mx +y =z 与直线AC 平行时,线段AC 上的每个点都是最优解.∵ k AC =1-5522-3=-207, ∴ -m =-207,即m =207. 10.D 解析:由x +1-1x =(x -1)+1-1x +1, ∵ x >1,∴ x -1>0,则有(x -1)+1-1x +1≥21-11-x x )·(+1=3,则a ≤3.. 53=56+2, 0<1--, 0=3+2+000000-y x y x y x二、填空题 11.24.解析:不等式(x -y +5)(x +y )≥0可转化为两个 二元一次不等式组. ⎩⎨⎧⎪⎩⎪⎨⎧⇔ 或⎪⎩⎪⎨⎧这两个不等式组所对应的区域面积之和为所求.第一个不等式组所对应的区域如图,而第二个不等式组所对应的区域不存在.图中A (3,8),B (3,-3),C (0,5),阴影部分的面积为25+113)(⨯=24. 12.⎭⎬⎫⎩⎨⎧21 >a a .解析:若z =ax +y (a >0)仅在点(3,0)处取得最大值,则直线z =ax +y 的倾斜角一定小于直线x +2y -3=0的倾斜角,直线z =ax +y 的斜率就一定小于直线x +2y -3=0的斜率,可得:-a <-21,即a >21.13.a b ≥9.解析:由于a ,b 均为正数,等式中含有ab 和a +b 这个特征,可以设想使用2+ba ≥ab 构造一个不等式.∵ ab =a +b +3≥ab 2+3,即a b ≥ab 2+3(当且仅当a =b 时等号成立), ∴ (ab )2-ab 2-3≥0,∴ (ab -3)(ab +1)≥0,∴ab ≥3,即a b ≥9(当且仅当a =b =3时等号成立). 14.(a +b )2. 解析:由已知xay ,y bx 均为正数,(x -y +5)(x +y )≥0 0≤x ≤3x -y +5≥0 x +y ≥0 0≤x ≤3 x -y +5≤0 x + y ≤0 0≤x ≤3(第11题)∴ x +y =(x +y )(x a+y b )=a +b +x ay +y bx ≥a +b +ybx x ay ·2 =a +b +2ab , 即x +y ≥(a +b )2,当且仅当1=+ =yb x a y bxx ay 即 ab b y ab a x +=+=时取等号. 15.8.解析:因为y =log a x 的图象恒过定点(1,0),故函数y =log a (x +3)-1的图象恒过定点A (-2,-1),把点A 坐标代入直线方程得m (-2)+n (-1)+1=0,即2m +n =1,而由mn >0知mn ,n m 4均为正,∴m 1+n2=(2m +n )(m 1+n 2)=4+m n +n m 4≥4+n m m n 42⋅=8,当且仅当1=+24=n m n m m n 即 21=41=n m 时取等号. 16.221p p +. 解析:设该厂第一年的产值为a ,由题意,a (1+p )2=a (1+p 1)(1+p 2),且1+p 1>0, 1+p 2>0,所以a (1+p )2=a (1+p1)(1+p 2)≤a 2212+1++1⎪⎭⎫ ⎝⎛p p =a 2212++1⎪⎭⎫ ⎝⎛p p ,解得p ≤2+21p p ,当且仅当1+p 1=1+p 2,即p 1=p 2时取等号.所以p 的最大值是2+21pp . 三、解答题17.解:令x +1=t >0,则x =t -1,y =t t t 10+1-7+1-2)()(=t t t 4+5+2=t +t4+5≥t t 42⋅+5=9,当且仅当t =t4,即t =2,x =1时取等号,故x =1时,y 取最小值9.18.解:因为直线l 经过点P (3,2)且与x 轴y 轴都相交, 故其斜率必存在且小于0.设直线l 的斜率为k , 则l 的方程可写成y -2=k (x -3),其中k <0. 令x =0,则y =2-3k ;令y =0,则x =-k2+3. S △AOB =21(2-3k )(-k 2+3)=21⎥⎦⎤⎢⎣⎡)()(k k 4-+9-+12≥⎥⎦⎤⎢⎣⎡⋅)()(k k 4-9-2+1221=12,当且仅当(-9k )=(-k 4),即k =-32时,S △AOB 有最小值12,所求直线方程为 y -2=-32(x -3),即2x +3y -12=0. 19.解:设生产甲产品x 吨,生产乙产品y 吨,则有关系:A 原料用量B 原料用量甲产品x 吨 3x 2x 乙产品y 吨y3y则有⎪⎪⎩⎪⎪⎨⎧++>> 18≤3213≤ 30 0y x y x y x ,目标函数z =5x +3y作出可行域后求出可行域边界上各端点的坐标,可知 当x =3,y =4时可获得最大利润为27万元.20.解:(1)∵ x <45,∴ 4x -5<0,故5-4x >0. y =4x -1+541x -=-(5-4x +x-451)+4.∵ 5-4x +x-451≥x -x -451452)(=2,∴ y ≤-2+4=2, 当且仅当5-4x =x -451,即x =1或x =23(舍)时,等号成立, 故当x =1时,y max =2.xOAy P (3,2)B(第18题)(第18题)第 11 页 共 11 页 (2)∵ x >0,y >0,x1+y 9=1, ∴ x +y =(x 1+y 9)(x +y )=x y +y x 9+10≥2yx x y 9 · +10=6+10=16. 当且仅当x y =y x 9,且x 1+y 9=1,即⎩⎨⎧12=, 4=y x 时等号成立, ∴ 当x =4,y =12时,(x +y )min =16.(3)a 2+1b =a ⎪⎪⎭⎫ ⎝⎛2+2122b =2·a 2+212b ≤22⎪⎪⎭⎫ ⎝⎛2+21+22b a =423, 当且仅当a =2+212b ,即a =23,b =22时,a 2+1b 有最大值423.。

高中不等式试题和答案

高中不等式试题和答案

不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14 15.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析

高三数学不等式试题答案及解析1.已知,则A.n<m<1B.1<n<m C.1<m<n D.m<n<1【答案】B【解析】函数是减函数,所以故选B2.现将一个质点随即投入区域中,则质点落在区域内的概率是【答案】【解析】略3.不等式的解集为或,则实数的取值范围.【答案】【解析】略4.如果实数满足条件,那么的最大值为()A.B.C.D.【答案】B【解析】解:当直线过点(0,-1)时,最大,故选B5.一元二次不等式的解集为,则的最小值为.【答案】【解析】由已知得,解得,又,则。

【考点】一元二次不等式的解法及基本不等式的应用。

6.设,则函数的最小值是()A.2B.C.D.3【答案】C【解析】因为,所以,令,则,由于,故知函数是减函数,因此;故选C.【考点】1.换元法;2.函数的最值.7.若变量x,y满足约束条件,则的最小值为.【答案】-6【解析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由与的交点得到,∴,故答案为:﹣6.【考点】简单线性规划.8.已知的大小关系是()A.a<c<b B.b<a<e C.c<a<b D.a<b<c【答案】D【解析】因为.所以,故D正确.【考点】指数函数,对数函数.9.设,则,,的大小关系是__________________.(用“<”连接)【答案】【解析】令,则,∴函数为增函数,∴,∴,∴,∴,又,∴.【考点】利用导数研究函数的单调性、作差比较大小.10.对一切实数x,不等式恒成立,则实数a的取值范围是()A.(-,-2)B.[-2,+)C.[-2,2]D.[0,+)【答案】B【解析】对一切实数x,不等式恒成立,等价于对任意实数,恒成立,因此有或,解得,故选B.【考点】不等式恒成立,二次函数的性质.【名师点晴】本题考查不等式恒成立问题,由于题中含有绝对值符号,因此解题的关键是换元思想,设,这样原来对一切实数恒成立,转化为对所有非负实数,不等式恒成立,也即二次函数在区间上的最小值大于或等于0,最终问题又转化为讨论二次函数在给定区间的最值问题,解题中始终贯彻了转化与化归的数学思想.11.设不等式组所表示的区域为,函数的图象与轴所围成的区域为,向内随机投一个点,则该点落在内的概率为.【答案】【解析】如图所示区域是及其内部.即,所以其面积为.区域是图中阴影部分,面积为.所以所求概率为.【考点】1几何概型概率;2定积分的几何意义.12.已知实数x、y满足,如果目标函数的最小值为-1,则实数m=().A.6B.5C.4D.3【答案】B【解析】将化为,作出可行域和目标函数基准直线(如图所示),当直线向左上方平移时,直线在轴上的截距增大,即变小,所以当直线过点时,取得最小值,即,解得;故选B.【考点】简单的线性规划.13.已知正数满足,则的最小值为()A.2B.0C.-2D.-4【答案】D【解析】作出题设约束条件表示的可行域,如图内部(含边界),作直线,直线的纵截距是,因此向上平移直线,当过点时,取得最小值,故选D.【考点】简单的线性规划问题.14.已知,满足约束条件若的最小值为,则()A.B.C.D.【答案】B【解析】先根据约束条件画出可行域,设,将最大值转化为轴上的截距,当直线经过点时,最小,由得:,代入直线,解得故答案选【考点】线性规划.15.选修4-5:不等式选讲已知函数.(1)当时,解不等式;(2)若时,,求实数的取值范围.【答案】(1)(2)【解析】(1)把要解的不等式等价转化为与之等价绝对值不等式,再求出此不等式的解集,即得所求(2)当时,即由此得讨论即可得到实数的取值范围试题解析:(1)当时,不等式为当时,不等式化为,不等式不成立;当时,不等式化为,解得;当时,不等式化为,不等式必成立.综上,不等式的解集为.(2)当时,即由此得当时,的最小值为7,所以的取值范围是【考点】绝对值不等式16.已知函数,其中且.(1)当时,若无解,求的范围;(2)若存在实数,(),使得时,函数的值域都也为,求的范围.【答案】(1);(2).【解析】(1)分析题意可知,不等式无解等价于恒成立,参变分离后即再进一步等价为,即可求解;(2)分析函数的单调性,可知其为单调递增函数,换元令,从而可将问题等价转化为二次方程根的分布,列得关于的不等式即可求解.试题解析:(1)∵,∴无解,等价于恒成立,即恒成立,即,求得,∴;(2)∵是单调增函数,∴,即,问题等价于关于的方程有两个不相等的解,令,则问题等价于关于的二次方程在上有两个不相等的实根,即,即,得.【考点】1.恒成立问题;2.二次方程的根的分布;3.转化的数学思想.17.选修4-5:不等式选讲已知函数(1)解不等式(2)若不等式对任意的恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)解绝对值不等式,主要是分类讨论,分类标准由绝对值的定义确定;(2)不等式对任意的恒成立,即的最小值满足,由(1)的讨论,可得.试题解析:(1),当时,由,此时无解当时,由当时,由综上,所求不等式的解集为(2)由(1)的函数解析式可以看出函数在区间上单调递减,在区间上单调递增,故在处取得最小值,最小值为,不等式,对任意的恒成立即,解得故的取值范围为.【考点】解绝对值不等式,不等式恒成立问题,函数的最值.18.若不等式组表示的平面区域为,不等式表示的平面区域为.现随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【答案】.【解析】不等式组表示的平面区域为,不等式表示的平面区域为.的面积为,其中满足的图形面积为,所以随机向区域内撒下一粒豆子,则豆子落在区域内的概率为.【方法点晴】本题属于几何概型的问题,通常在几何概型中,事件的概率计算公式为:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行相应的几何度量.因此本题解题思路清晰,作出图形,计算相关三角形的面积,代入上述公式便得答案.19.实数满足,则的最大值是()A.2B.4C.6D.8【答案】B【解析】试题解析:依题画出可行域如图,可见及内部区域为可行域,令,则为直线在轴上的截距,由图知在点处取最大值是4,在处最小值是-2,所以,所以的最大值是4,故选B.【考点】简单线性规划20.选修4-5:不等式选讲已知命题“,”是真命题,记的最大值为,命题“,”是假命题,其中.(Ⅰ)求的值;(Ⅱ)求的取值范围.【答案】(Ⅰ).(Ⅱ).【解析】试题解析:(Ⅰ)因为“,”是真命题,所以,恒成立,又,所以恒成立,所以,.又因为,“”成立当且仅当时.因此,,于是.(Ⅱ)由(Ⅰ)得,因为“,”是假命题,所以“,”是真命题.因为(),因此,,此时,即时.即,,由绝对值的意义可知,.【考点】不等式选讲21.已知实数满足不等式组则的最小值为______.【答案】【解析】由得,则当直线在y轴上的截距最大时取得最小值,所以当直线经过A(2,3)时,z最小,即当x=2,y=3,取得最小值-4.【考点】线性规划22.若关于的不等式组,表示的平面区域是直角三角形区域,则正数的值为()A.1B.2C.3D.4【答案】B【解析】如图,易知直线经过定点,又知道关于的不等式组,表示的平面区域是直角三角形区域,且,所以,解得,故选B.【考点】线性规划.23.已知函数,且关于的不等式的解集为R.(1)求实数的取值范围;(2)求的最小值.【答案】(1);(2)9【解析】(1)由绝对值的性质可知,由此解不等式即可求出结果;(2)由(1),根据基本不等式的性质,即可求出结果.试题解析:解:(1)依题意,(2)时,当且仅当,即时等号成立。

高中不等式的试题及答案

高中不等式的试题及答案

高中不等式的试题及答案一、选择题1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),则下列不等式中解集为 \( (-∞, -2) ∪ (1, +∞) \) 的是()。

A. \( 2ax^2 + 2bx + c < 0 \)B. \( 2ax^2 - bx + c < 0 \)C. \( ax^2 - bx + c < 0 \)D. \( 2ax^2 + bx + 2c < 0 \)答案:B解析:已知不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( (-1, 2) \),说明 \( a < 0 \) 且 \( -1 \) 和 \( 2 \) 是方程 \( ax^2 + bx + c = 0 \) 的根。

因此,\( -b/a = -1 + 2 = 1 \) 和 \( c/a = -1 \times 2 = -2 \)。

将这些值代入选项中,只有选项 B 满足条件。

2. 若 \( x^2 - 4x + m < 0 \) 的解集非空,则实数 \( m \) 的取值范围是()。

A. \( m < 4 \)B. \( m > 4 \)C. \( m < 16 \)D. \( m > 16 \)答案:C解析:要使不等式 \( x^2 - 4x + m < 0 \) 的解集非空,需要判别式 \( \Delta = b^2 - 4ac > 0 \),即 \( 16 - 4m > 0 \),解得 \( m < 4 \)。

但因为 \( m \) 必须使得不等式有实数解,所以 \( m \) 必须小于\( x^2 - 4x \) 的最小值,即 \( m < 4 \)。

因此,\( m \) 的取值范围是\( m < 16 \)。

二、填空题3. 若 \( a > 0 \),\( b > 0 \),且 \( a + b = 2 \),则 \( \frac{1}{a} + \frac{1}{b} \) 的最小值为 ______。

高中数学不等式性质专项训练(含答案)

高中数学不等式性质专项训练(含答案)

高中数学不等式性质专项训练1.设a,b,c,d ∈R,若a+d=b+c,且|a-d|<|b-c|,则有 ( )A. ad=bcB. ad<bcC. ad>bcD. ad≤bc2.若当P(m,n)为圆上任意一点时,不等式恒成立,则c 的取值范围是( ) A.B.C.D. 3.若,,a b c 为实数,则下列命题正确的是( )A .若a b >,则22ac bc >B .若0a b <<,则22a ab b >>C .若0a b <<,则11a b <D .若0a b <<,则b a a b> 4.设11a b >>>-,则下列不等式中一定成立的是C. 2a b >D. 22a b > 5.设,0,0>>b a 则以下不等式中不恒成立....的是 ( )A .2332ab b a ≥+C .b a b a 22222+≥++D 6.设a,b,c,d ∈(0,+∞),若a+d=b+c 且|a-d|<|b-c|,则有( )(A)ad=bc (B)ad<bc(C)ad>bc (D)ad ≤bc7.已知a,b,c 满足c<b<a 且ac<0,则下列选项中不一定能成立的是( )8.若实数x ,y 满足不等式xy >1,x +y≥-2,则( )A .x >0,y >0B .x <0,y <0C .x >0,y <0D .x <0,y >09.若实数a,b 满足a+b<0,则( )(A)a,b 都小于0(B)a,b 都大于0(C)a,b 中至少有一个大于0(D)a,b 中至少有一个小于010.如果a<0,b<0,则必有( )(A)a 3+b 3≥ab 2+a 2b (B)a 3+b 3≤ab 2+a 2b(C)a 3+b 3>ab 2+a 2b (D)a 3+b 3<ab 2+a 2b11.已知a ,b ,c 是实数,给出下列四个命题:①若a >a >b ,且k ∈N *,则a k >b k ;③若ac 2>bc 2,则a >b ;④若c >a >b >0的序号是( ).A .①④B .①②④C .③④D .②③12.若,,a b c ∈R ,且a b >,则下列不等式一定成立的是( )A .a c b c +≥-B .2()0a b c -≥C .ac bc > 13.已知1(,1)x e -∈,( )A .c b a >>B 14.设,,a b c 都是正数, ( ).A .M N ≥B .M N <C .M N =D .M N ≤15.若不等式x 2+ax +1≥0对于一切x a 的取值范围是A .a ≥0B .a ≥-2C .aD .a ≥-316.已知,则ab 应满足的条件是 . 17.已知-3<b<a<-1,-2<c<-1,则(a-b)c 2的取值范围是 .18.已知a >b >0,给出下列四个不等式:①a 2>b 2;②2a >2b -1;④a 3+b 3>2a 2b .其中一定成立的不等式序号为________.19.若至少存在一个0x >,使得关于x 的不等式22||x x a <--成立,则实数a 的取值范围为 .20.已知a≥b>0,求证:2a 3-b 3≥2ab 2-a 2b.21.已知f(x)=|x+1|+|x-1|,不等式f(x)的解集为M.(1).求M;(2).当a,b ∈M 时,证明:2|a+b|<|4+ab|.22.(设函数f(x)=|x +a |-|x -4|,x ∈R(1)当a=1时,解不等式f (x )<2;(2)若关于x 的不等式f(x)≤5-|a +l |恒成立,求实数a 的取值范围.23,且(2)0f x -≤的解集为[3,1]-.(1)求m 的值;(2)已知c b a ,,都是正数,且a b c m ++=,求证:答案第1页,总1页 参考答案1.C2.D3.B4.A5.B6.C7.C8.A9.D10.B11.C12.D13.B14.A15.C16.ab>0或ab<-117.(0,8)18.①②③1920.见解析21.(1){}22|<<-=x x M ;(2)证明过程详见解析.22.(1(2)50a -≤≤. 23.(1)2;(2)参考解析。

不等式高考试题及答案

不等式高考试题及答案

不等式高考试题及答案一、选择题1. 若不等式3x+2>7成立,则x的取值范围是:A. x < -1B. x > -1C. x < 1D. x > 1答案:D2. 已知不等式2(x-1) > 3(x+2),则x的取值范围是:A. x < -7/5B. x > -7/5C. x < -1D. x > -1答案:C3. 若x<y,则对x+y,下列不等式成立的是:A. x + y < 2xB. x + y < 2yC. x + y > 2xD. x + y > 2y答案:C4. 若不等式5x+3y > 6成立,下列不等式中一定成立的是:A. 10x + 6y > 12B. 5x + 6y > 12C. 5x + 3y > 6D. 10x + 3y > 6答案:D5. 下列不等式组中,解集与其他三个不同的是:A. {x | -2 < x < 3}B. {x | 0 < x < 5}C. {x | 1 < x < 4}D. {x | -3 < x < 2}答案:B二、填空题1. 若不等式2x - 1 > 5成立,则x的取值范围为________。

答案:x > 32. 若不等式-3(x - 1) < 2(x + 3)成立,则x的取值范围为________。

答案:x < 13/53. 已知不等式2x - 3 < 5x + 4,则x的取值范围为________。

答案:x > -7/34. 若不等式x + 5 > 2x - 3成立,则x的取值范围为________。

答案:x < 85. 若不等式3x - 2 > 5成立,则x的取值范围为________。

答案:x > 7/3三、解答题1. 解不等式组{x | 2x + 3 > 5, x - 1 < 4},并将解表示在数轴上。

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023

高中数学不等式练习题及参考答案2023不等式是高中数学中重要的概念之一,也是很多考试中必考的内容。

为帮助大家复习巩固,本文整理了十道高中数学不等式练习题及参考答案,供大家练习参考。

1. 已知 $x>0$,求证:$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}>1$【参考答案】$\frac{1}{1+x}+\frac{1}{1+\frac{1}{x}}=\frac{1}{1+x}+\frac{x}{x+1}=\frac{x+1}{x+1}=1$。

2. 解不等式 $\frac{2-x}{x+1}\geq 1$。

【参考答案】$\frac{2-x}{x+1}\geq 1$,移项得 $\frac{1-x}{x+1}\geq 0$,即$\frac{x-1}{x+1}\leq 0$。

因此,$x\in(-\infty,-1]\cup[1,+\infty)$。

3. 解不等式 $\log_{\frac{1}{2}}(x^2-3x+2)<2$。

【参考答案】$\log_{\frac{1}{2}}(x^2-3x+2)<2$,移项得 $x^2-3x+2>4$。

解得 $x\in(-\infty,1)\cup(3,+\infty)$。

4. 已知 $a+b=1$,$a>0$,$b>0$,求证:$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

【参考答案】By Jensen 不等式,$\frac{1}{2}(a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}) \geq\log_{\frac{1}{2}}(\frac{1}{2}(a+b))=\log_{\frac{1}{2}}\frac{1}{ 2} =1$。

所以,$a\cdot\log_{\frac{1}{a}}+b\cdot\log_{\frac{1}{b}}>2$。

高中数学基本不等式专题50练(含答案)

高中数学基本不等式专题50练(含答案)

高中数学基本不等式(含答案)【习题1】已知实数0,>y x 且2=xy ,则8482233+++y x y x 的最小值是 .【答案】1【习题2】若实数0>y ,x 且1=xy ,则y x 2+的最小值是 ,yx y x 2422++的最小值是 . 【答案】 22,2【习题3】已知,x y 满足方程210x y --=,当x >时,则353712x y x y m x y +-+-=+--的最小值为_______. 【答案】8【习题4】已知y x ,为实数,且1)2)((=-+y x y x ,则222y x +的最小值为_______. 【答案】3322+【习题5】已知a b ∈R ,,45222=+-b ab a ,则a b +的取值范围为 . 【答案】]22,22[-【习题6】已知a b ∈R ,,45222=+-b ab a ,则ab 的最小值为 .【答案】12-【习题7】若实数y x ,满足02422=+++y y x x ,则y x +2的范围是 . 【答案】]0,2[-【习题8】ABC ∆的三边,,a b c 成等差,且22221a b c ,则b 的取值范围是 . 【答案】]7,6(【习题9】已知,a b <二次不等式20ax bx c ++≥对任意实数x 恒成立,则24a b cM b a++=-的最小值为___________【答案】8 【习题10】实数,x y 满足224545x xy y -+=,设22S x y =+,则maxmin11S S += .【答案】85【习题11】非零向量,a b 夹角为60,且1a b -=,则a b +的取值范围为 . 【答案】]3,1(【习题12】已知0,0<>b a ,且9)12)(14(-=+-b a ,若06)2(2≥---abx x b a 总成立,则正实数x 的取值范围是_______. 【答案】),1[+∞【习题13】正实数y x ,满足111=+yx ,则2210x y xy +-的最小值为 .【答案】36-【习题14】已知实数y x ,满足,32,0,0=+>>y x y x 则xyyx +3的最小值为 ,xy y x ++224 的最小值为 . 【答案】3627+;845【习题15】已知直线21ax by +=(其中0ab ≠)与圆221x y +=相交于A 、B 两点,O 为坐标原点,且0120AOB ∠=,则2212a b +的最小值为 .【答案】2【习题16】设R b a ∈,,满足43=+-ab b a ,则33-+b a 的最小值是______. 【答案】332-【习题17】已知正实数a ,b 满足:1a b +=,则222a ba b a b+++的最大值是 . 【答案】3332+ 【习题18】已知正数y x ,满足1≤xy ,则yx M 21111+++=的最小值为________. 【答案】222-【习题19】已知0>a ,0>b ,且12122=+++ba a ,则b a +的最小值是_______,此时=a _______.【答案】212+;2【习题20】已知0,0a b >>,且1a b +=,则1122a b ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值是 ;221aba +的最大值是 . 【答案】16;413- 【习题21】已知实数x ,y 满足3xy x y -+=,且1x >,则(8)y x +的最小值是 ( ) A .33 B .26 C .25 D .21 【答案】C【习题22】若实数,x y 满足2x y xy -+≥,则x y +的最小值是 . 【答案】2【习题23】已知实数a ,b 满足:1,2a b R ≥∈,且||1a b +≤,则12b a +的取值范围是 .【答案】]23,12[-【习题24】实数y x ,满足22222=+-y xy x ,则222y x +的最小值是________. 【答案】224-【习题25】已知实数R b a ∈,,若322=+-b ab a ,则1)1(222+++b a ab 的值域为 .【答案】]716,0[【习题26】设b a ,为正实数,则ba bb a a +++2的最小值为 . 【答案】222-【习题27】若正数,x y 满足35x y xy +=,则34x y +的最小值是 . 【答案】5【习题28】若存在正实数y ,使得yx x y xy 451+=-,则实数x 的最大值为_________. 【答案】51【习题29】若0x >,0y >,则xyy x x ++2的最小值为___________. 【答案】212-【习题30】已知正数y x ,满足yx yx xy 3+-=,则y 的最大值为__________,当且仅当___________.【答案】31;1=x【习题31】已知,1,0=+>>b a b a 则bb a 214+-的最小值等于 . 【答案】9【习题32】已知)0,0(24122<<-+=y x xy y x ,则y x 2+的取值范围为__________. 【答案】)1,2[--【习题33】已知实数y x ,满足322=++y xy x ,则xy 的最小值为________,22y xy x +-的最小值为_______.【答案】3-,1【习题34】已知实数b a ,满足122=+-b ab a ,则)(|2|b a b a +-的取值范围是________. 【答案】]3,3[-【习题35】已知0>a ,0>b ,且满足ab a b a +=+23,则b a +2的最小值为________. 【答案】223+【习题36】已知非负实数y x ,满足92422222=+++y x y xy x ,则xy y x ++)(22的最大值为 . 【答案】241+【习题37】若164622=++xy y x ,R y x ∈,,则22y x -的最大值为_______.【答案】51【习题38】设正实数y x ,,则21||y xy x ++-的最小值为( )A. 47B. 2233C. 2D. 32【答案】A【习题39】已知b a ,均为正数,且1=+b a ,1>c ,则12)121(2-+⋅-+c c ab a 的最小值为_________. 【答案】23【习题40】设实数0,0>>y x 且满足k y x =+,则使不等式2)22()1)(1(kk y y x x +≥++恒成立的k 的最大值为______.【答案】522+【习题41】若1≥≥≥z y x ,且4=xyz ,则222222)(log )(log )(log z y x ++的取值范围是______.【答案】]4,34[【习题42】已知正实数y x ,满足4232=++y x xy ,则y x xy 45++的最小值为________. 【答案】55【习题43】已知实数y x ,满足yxyx9933+=+,则yx yx 332727++的取值范围是_________.【答案】9[1,]8【习题44】已知实数b a ,满足1=ab ,且32≥>b a ,则22b a ba +-的最大值为___________.【答案】3097【习题45】若正数b a ,满足111a b +=,则1911a b +--的最小值为( ) A .1 B .6 C .9 D .16【答案】B 【习题46】若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .【答案】(]5,3,2⎡⎫-∞-+∞⎪⎢⎣⎭【习题47】已知y x ,为正实数,若12=+y x ,则xyxy x ++22的最小值为 .【答案】222+【习题48】若正数y x ,满足12422=+++y x y x ,则xy 的最大值为_________. 【答案】432- 【习题49】若实数a 和b 满足132923242++=⨯+⋅-⨯b a b b a a , 则b a 32+的取值范围为__________________. 【答案】]2,1(【习题50】设+∈R b a ,,4222=-+b a b a ,则ba 11+的最小值是 【答案】24。

高中不等式练习题及答案

高中不等式练习题及答案

高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。

不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。

在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。

1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。

首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案

高考数学《基本不等式》真题练习含答案一、选择题1.函数y =2x +22x 的最小值为( )A .1B .2C .22D .4 答案:C解析:因为2x >0,所以y =2x +22x ≥22x ·22x =22 ,当且仅当2x =22x ,即x =12时取“=”.故选C.2.若a >0,b >0且2a +b =4,则1ab的最小值为( )A .2B .12C .4D .14答案:B解析:∵a >0,b >0,∴4=2a +b ≥22ab (当且仅当2a =b ,即:a =1,b =2时等号成立),∴0<ab ≤2,1ab ≥12 ,∴1ab 的最小值为12.3.下列结论正确的是( )A .当x >0且x ≠1时,lg x +1lg x≥2B .当x ∈⎝⎛⎦⎤0,π2 时,sin x +4sin x的最小值为4 C .当x >0时,x +1x ≥2D .当0<x ≤2时,x -1x无最大值答案:C解析:当x ∈(0,1)时,lg x <0,故A 不成立,对于B 中sin x +4sin x≥4,当且仅当sinx =2时等号成立,等号成立的条件不具备,故B 不正确;D 中y =x -1x在(0,2]上单调递增,故当x =2时,y 有最大值,故D 不正确;又x +1x ≥2x ·1x=2(当且仅当x =1x即x =1时等号成立).故C 正确. 4.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a 2+b 2≥-2abC .a +b ≥2|ab |D .a +b ≥-2|ab | 答案:B解析:对于A ,C ,D ,当a =0,b =-1时,a 2+b 2>2ab ,a +b <2ab ,a +b <-2|ab | ,故A ,C ,D 错误;对于B ,因为a 2+b 2=|a |2+|b |2≥2|a |·|b |=2|ab |≥-2ab ,所以B 正确.故选B.5.若x >0,y >0,x +2y =1,则xy2x +y的最大值为( )A .14B .15C .19D .112答案:C解析:x +2y =1⇒y =1-x 2 ,则xy2x +y =x -x 23x +1 .∵x >0,y >0,x +2y =1,∴0<x <1.设3x +1=t (1<t <4),则x =t -13,原式=-t 2+5t -49t =59 -⎝⎛⎭⎫t 9+49t ≤59 -2481 =19 ,当且仅当t 9 =49t ,即t =2,x =13 ,y =13 时,取等号,则xy 2x +y 的最大值为19 ,故选C.6.已知a >0,b >0,c >0,且a 2+b 2+c 2=4,则ab +bc +ac 的最大值为( )A .8B .4C .2D .1 答案:B解析:∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,b 2+c 2≥2bc ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca ),∴ab +bc +ca ≤a 2+b 2+c 2=4.7.若直线x a +yb=1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5 答案:C解析:因为直线x a +y b =1(a >0,b >0)过点(1,1),所以1a +1b=1.所以a +b =(a +b )·⎝⎛⎭⎫1a +1b =2+a b +b a ≥2+2a b ·b a =4,当且仅当a b =b a 即a =b =2时取“=”,故选C.8.若向量a =(x -1,2),b =(4,y ),a 与b 相互垂直,则9x +3y 的最小值为( ) A .12 B .2 C .3 D .6 答案:D解析:∵a ⊥b ,∴a ·b =(x -1,2)·(4,y )=4(x -1)+2y =0,即2x +y =2, ∴9x +3y =32x +3y ≥232x +y =232 =6,当且仅当2x =y =1时取等号,∴9x +3y 的最小值为6.9.用一段长8 cm 的铁丝围成一个矩形模型,则这个模型面积的最大值为( ) A .9 cm 2 B .16 cm 2 C .4 cm 2 D .5 cm 2 答案:C解析:设矩形模型的长和宽分别为x cm ,y cm ,则x >0,y >0,由题意可得2(x +y )=8,所以x +y =4,所以矩形模型的面积S =xy ≤(x +y )24 =424 =4(cm 2),当且仅当x =y =2时取等号,所以当矩形模型的长和宽都为2 cm 时,面积最大,为4 cm 2.故选C.二、填空题10.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.答案:14解析:∵a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b=22-6 =14 .当且仅当2a =2-3b ,即a =-3,b =1时,2a +18b 取得最小值为14.11.已知函数f (x )=4x +ax(x >0,a >0)在x =3时取得最小值,则a =________.答案:36解析:∵x >0,a >0,∴4x +a x ≥24x ·ax=4 a ,当且仅当4x =a x ,即:x =a 2 时等号成立,由a2 =3,a =36.12.[2024·山东聊城一中高三测试]已知a >0,b >0,3a +b =2ab ,则a +b 的最小值为________.答案:2+3解析:由3a +b =2ab , 得32b +12a=1, ∴a +b =(a +b )⎝⎛⎭⎫32b +12a =2+b 2a +3a2b ≥2+2b 2a ·3a 2b =2+3 (当且仅当b 2a =3a2b即b =3 a 时等号成立).[能力提升]13.[2024·合肥一中高三测试]若a ,b 都是正数,则⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4ab 的最小值为( ) A .7 B .8C .9D .10 答案:C解析:⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4a b =9(当且仅当b a =4ab即b =2a 时等号成立).14.(多选)已知a >0,b >0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D . a + b ≤2 答案:ABD解析:对于选项A ,∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2=1,∴a 2+b 2≥12,正确;对于选项B ,易知0<a <1,0<b <1,∴-1<a -b <1,∴2a -b >2-1=12,正确;对于选项C ,令a =14 ,b =34 ,则log 214 +log 234 =-2+log 234 <-2,错误;对于选项D ,∵2 =2(a +b ) ,∴[2(a +b ) ]2-( a + b )2=a +b -2ab =( a - b )2≥0,∴ a + b ≤2 ,正确.故选ABD.15.(多选)已知a ,b ,c 为正实数,则( )A .若a >b ,则ab <a +c b +cB .若a +b =1,则b 2a +a 2b 的最小值为1C .若a >b >c ,则1a -b +1b -c ≥4a -cD .若a +b +c =3,则a 2+b 2+c 2的最小值为3 答案:BCD解析:因为a >b ,所以a b -a +c b +c =c (a -b )b (b +c ) >0,所以ab >a +c b +c ,选项A 不正确;因为a +b =1,所以b 2a +a 2b =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫a 2b +b -(a +b )≥2b +2a -(a +b )=a +b =1,当且仅当a =b =12 时取等号,所以b 2a +a 2b的最小值为1,故选项B 正确;因为a >b >c ,所以a -b >0,b -c >0,a -c >0,所以(a -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =[](a -b )+(b -c )⎝ ⎛⎭⎪⎫1a -b +1b -c =2+b -c a -b +a -b b -c≥2+2b -c a -b ·a -bb -c=4,当且仅当b -c =a -b 时取等号,所以1a -b +1b -c ≥4a -c,故选项C 正确;因为a 2+b 2+c 2=13 [(a 2+b 2+c 2)+(a 2+b 2)+(b 2+c 2)+(c 2+a 2)]≥13(a 2+b 2+c 2+2ab +2bc +2ca )=13 [(a +b )2+2(a +b )c +c 2]=13 (a +b +c )2=3,当且仅当a =b =c =1时等号成立,所以a 2+b 2+c 2的最小值为3,故选项D 正确.16.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案:30解析:一年的总运费为6×600x =3 600x(万元).一年的总存储费用为4x 万元. 总运费与总存储费用的和为⎝⎛⎭⎫3 600x +4x 万元.因为3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时取得等号,所以当x =30时,一年的总运费与总存储费用之和最小.。

高中不等式试题及答案

高中不等式试题及答案

高中不等式试题及答案1. 若不等式\(2x-1 > 5\)成立,求\(x\)的取值范围。

答案:首先将不等式\(2x-1 > 5\)进行移项,得到\(2x > 6\)。

然后将不等式两边同时除以2,得到\(x > 3\)。

因此,\(x\)的取值范围是\(x > 3\)。

2. 已知\(a > 0\),求不等式\(\frac{1}{a} < \frac{1}{2}\)的解集。

答案:将不等式\(\frac{1}{a} < \frac{1}{2}\)进行交叉相乘,得到\(2 < a\)。

因为已知\(a > 0\),所以解集为\(a > 2\)。

3. 已知\(x\)和\(y\)满足\(x + y = 10\),且\(y > 0\),求\(x\)的取值范围。

答案:由\(x + y = 10\)可得\(x = 10 - y\)。

因为\(y > 0\),所以\(10 - y > 0\),即\(y < 10\)。

因此,\(x\)的取值范围是\(0 < x< 10\)。

4. 已知不等式\(3x - 2 > 7\),求\(x\)的取值范围。

答案:将不等式\(3x - 2 > 7\)进行移项,得到\(3x > 9\)。

然后将不等式两边同时除以3,得到\(x > 3\)。

因此,\(x\)的取值范围是\(x > 3\)。

5. 已知\(a\)和\(b\)满足\(a + b = 12\),且\(a > 0\)和\(b > 0\),求\(a\)的取值范围。

答案:由\(a + b = 12\)可得\(b = 12 - a\)。

因为\(a > 0\)和\(b > 0\),所以\(12 - a > 0\),即\(a < 12\)。

同时,\(a > 0\)。

因此,\(a\)的取值范围是\(0 < a < 12\)。

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案

完整版)高中数学不等式习题及详细答案第三章不等式一、选择题1.已知 $x\geq 2$,则 $f(x)=\frac{x^2-4x+5}{2x-4}$ 的取值范围是()。

A。

最大值为 5,最小值为 1B。

最大值为 5,最小值为 $\frac{11}{2}$C。

最大值为 1,最小值为 $\frac{11}{2}$D。

最大值为 1,最小值为 02.若 $x>0$,$y>0$,则$(x+\frac{1}{y})^2+(y+\frac{1}{x})^2$ 的最小值是()。

A。

3B。

$\frac{7}{2}$C。

4D。

$\frac{9}{2}$3.设 $a>0$,$b>0$,则下列不等式中不成立的是()。

A。

$a+b+\frac{1}{ab}\geq 2\sqrt{2}$B。

$(a+b)(\frac{1}{a}+\frac{1}{b}+\frac{1}{2})\geq 4$C。

$\sqrt{a^2+b^2}\geq a+b-\sqrt{2ab}$D。

$\frac{2ab}{a+b}\geq \sqrt{ab}$4.已知奇函数 $f(x)$ 在 $(-\infty,+\infty)$ 上是增函数,且$f(1)=3$,则不等式 $f(x)-f(-x)<0$ 的解集为()。

A。

$(-1,+\infty)$B。

$(-\infty,-1)\cup (1,+\infty)$C。

$(-\infty,-1)\cup (1,+\infty)$D。

$(-1,1)$5.当 $0<x<\frac{\pi}{2}$ 时,函数 $f(x)=\frac{1+\cos^2 x+8\sin^2 x}{2\sin^2 x}$ 的最小值为()。

A。

2B。

$\frac{2}{3}$C。

4D。

$\frac{3}{2}$6.若实数 $a,b$ 满足 $a+b=2$,则 $3a+3b$ 的最小值是()。

A。

18B。

高三数学不等式练习题及答案

高三数学不等式练习题及答案

高三数学不等式练习题及答案1. 求解以下不等式,并将解集表示在数轴上:a) 3x - 5 > 7b) 2x + 1 ≤ 9c) 4 - 3x ≥ 1解析:a) 首先将不等式转化成等式:3x - 5 = 7解这个等式可以得到 x = 4,所以 x 大于 4。

因此解集表示在数轴上为(4, +∞)。

b) 将不等式转化成等式:2x + 1 = 9解这个等式可以得到 x = 4,所以 x 小于等于 4。

因此解集表示在数轴上为 (-∞, 4]。

c) 不等式已经是等式形式:4 - 3x = 1解这个等式可以得到 x = 1,所以 x 小于等于 1。

因此解集表示在数轴上为 (-∞, 1]。

2. 计算以下不等式的解集,并将解集表示在数轴上:a) 2x + 3 > 10 - xb) 5 - 3x ≤ 2x + 4c) 3(2x - 1) ≥ 2(x + 3)解析:a) 通过整理不等式,得到 3x > 7,解为 x > 7/3,即解集为(7/3, +∞)。

b) 整理不等式可以得到8 ≤ 5x,解为x ≥ 8/5,即解集为[8/5, +∞)。

c) 展开括号得到 6x - 3 ≥ 2x + 6,然后整理不等式可以得到4x ≥ 9,解为x ≥ 9/4,即解集为[9/4, +∞)。

3. 解以下含有绝对值的不等式,并将解集表示在数轴上:a) |3x + 1| < 5b) |2x - 1| ≥ 3c) |x - 4| > 2解析:a) 当 3x + 1 > 0 时,原不等式可以化简为 3x + 1 < 5,解为 x < 4/3。

当 3x + 1 < 0 时,原不等式可以化简为 -(3x + 1) < 5,解为 x > -6/3。

综合起来,解集为 (-∞, -6/3)∪(4/3, +∞)。

b) 当 2x - 1 ≥ 0 时,原不等式可以化简为 2x - 1 ≥ 3,解为x ≥ 4/2。

高中数学不等式专题训练7套含答案

高中数学不等式专题训练7套含答案

不等式单元试卷一班级 姓名 座号 成绩一、选择题(每题正确答案只有一个,共8题,每小题5分)1.若a <b <0,则 ( )A . b 11<aB . 0<b a <1C . a b >b 2D . bb a a >2.若|a +c|<b ,则 ( )A . |a |<|b|-|c|B . |a |>|c|-|b|C . |a |>|b|-|c|D . |a |<|c|-|b| 3.设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bdB . db>c a C . a +c >b +d D . a -c >b -d4.下列命题中正确的一个是 ( ) A .ba ab +≥2成立当且仅当a ,b 均为正数B .2222ba b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a1|≥2成立当且仅当a ≠0 5函数y =log ⎪⎭⎫⎝⎛-+⋅+-2134223x x x x 的定义域是 ( )A .x ≤1或x ≥3B .x <-2或x >1C .x <-2或x ≥3D .x <-2或x >36.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A 甲是乙的充分条件,但不是乙的必要条件 B 甲是乙的必要条件,但不是乙的充要条件 C 甲是乙的充要条件 D 甲不是乙的充分条件,也不是乙的必要条件7.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43D .最小值1 8.函数y =xx x +++132(x >0)的最小值是( )A .23B .-1+23C .1+23D .-2+23二、填空题(请将正确的答案填到横线上,共4题,每小题4分)9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=_____________.10.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________.11.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 .12.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造价为__________元. 三、解答题(本大题共4小题,共44分)13.(10分)已知.))((,1,0,xy bx ay by ax b a b a ≥++=+>求证:且14 (10分)解关于x 的不等式:0122<++x ax (其中R a ∈).15.(12分)设f(x)是定义在上]1,1[-的奇函数,g(x)的图象与f(x)的图象关于直线x =1对称,而当]3,2[∈x 时,44)(2-+-=x x x g .(1)求f(x)的解析式;(2)对于任意的,]1,0[,2121x x x x ≠∈且求证:;2)()(1212x x x f x f -<- (3)对于任意的,]1,0[,2121x x x x ≠∈且求证:.1)()(12≤-x f x f16.(12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?参考答案二、填空题9.-14 10.1,2,1 11.)1,21()0,21(⋃- 12. 1760 三、解答题13.[解析]: 左边=)()(22222222y x ab xy b a aby abx xy b xy a +++=+++,xy xy b a xy ab b a xy y x =+=++≥∴≥+22222)()2(,2左边 .15.[解析]:(1)由题意知f(x+1)=g(1-x))2()(x g x f -=⇒当224)2(4)2()(,32201x x x x f x x -=--+--=≤-≤≤≤-时,当2)(0110x x f x x -=-∴<-≤-≤<时,,由于f(x)是奇函数2)(x x f =∴ ⎪⎩⎪⎨⎧≤<≤≤--=∴)10()01()(22x x x x x f(2)当,20]1,0[,212121<+<≠∈x x x x x x 时,且 1212122122122))(()()(x x x x x x x x x f x f -<+-=-=-∴(3)当1110,10]1,0[,212222212121≤-≤-∴≤≤≤≤≠∈x x x x x x x x 时,且.12122≤-x x 即 .1)()(212212≤-=-∴x x x f x f16.[解析]:由题意得 x y+41x 2=8,∴y=xx 482-=48xx-(0<x <42). 于定, 框架用料长度为 l =2x +2y+2(x 22)=(23+2)x +x16≥4246+. 当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343, y=22≈2.828.故当x 为2.343m, y 为2.828m 时, 用料最省.不等式基本性质二一,不等式的8条基本性质补充1,b a b a ab 110<⇔>>且2,)(0+∈>⇒>>R x b a b a x x 3, )(0-∈<⇒>>R x b a b a x x二,基本练习( )1, 2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是A.a +c >b +dB.a -c >b -dC.ac >bdD.cb d a >( )2,(2001上海春)若a 、b 为实数,则a >b >0是a 2>b 2的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件( )3,若,011<<ba 则下列结论正确..的是A .22b a <B .2b ab <C .ab a <2D .b a >( )4,“a>b”是“ac 2>bc 2”成立的A .必要不充分条件B .充分不必要条C .充要条件D .以上均错( )5,若b a , 为任意实数且b a >,则( ) A ,22b a > B ,1>b a C ,0)lg(>-b a D ,b a )21()21(<( )6,“1>a ”是“11<a”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件( )7,设10<<<a b ,则下列不等式成立的是A .12<<b abB .0log log 2121<<a b C .222<<a b D .12<<ab a( )8,1>ab是0)(<-b a a 成立的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分不必要条件( )9,若0,0,0><>+ay a y x ,则y x -的值A ,小于0B ,大于0C ,等于0D ,正负不确定( )10,若a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④ba 22>中,正确的有 A.1个 B.2个 C.3个 D.4个( )11,(04高考试题)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 A .ab ac >B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac( )12,(04高考试题)若011<<ba ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④02<-ab a 中,正确的不等式有A .1个B .2个C .3个D .4个二,填空题13,设01,0<<-<b a ,则2,,ab ab a 三者的大小关系为14,设R x x x B x A ∈+=+=,2,21234且1≠x ,则B A ,的大小关系为15,如果01<<<-b a ,则22,,1,1a b ab 的大小关系为16,设,则b a >是bb a a 11->-成立的 条件17,若53,42≤<<≤b a ,则b a -3的取值范围为 ,bba +2的取值范围为18,若a b a a 231,63<<<≤,则b a +的取值范围为三,解答题19,证明:若0>>b a >0>m ,则ma mb a b m a m b ++<<--不等式的性质三A 卷一、选择题1、下列命题中,正确的是( )A 若ac >bc,则a >bB 、若a 2>b 2,则a >bC 、若,则a <bD 、若b a <,则a <b2、 若a >b,则( ) A 、b a 33>B 、b a >C 、a 3>b 2D 、a 2>b 33、不等式a >b 和同时成立的充分且必要条件是( ) A 、a >b >0 B 、a >0>b C 、011<<a b D 、 011>>ba4、若a <b <0,则下列不等式中不能成立的是( )A 、B 、ab a 11>- C 、| a | > | b | D 、a 2>b 25、设a 、b 、c 、d 都是正数,a >b ,c >d ,a + b > c + d ,ab = cd ,那么a 、b 、c 、d 之间的大小关系是( )A 、a >b >c >dB 、a >c >b >dC 、c >a >d >bD 、a >c >d >b 6、已知a <0 ,-1<b <0,那么( )A 、a >ab >ab 2B 、ab 2>ab >aC 、ab >a >ab 2D 、ab >ab 2>a 7、若x + y = 2,b <x <a ,则下列不等式正确的是( )A 、b + 2<y <a + 2B 、a + 2<y <b + 2C 、2-a <y <2-bD 、2-b <y <2-a8、给定命题(1) a >b 且ab <0,(2)b a > b,(3)| a | <b b <a < 2a >b ,其中真命题的个数是( ) A 、3 B 、2 C 、1 D 、0 二、填空题9、已知a <b <0,c >0,在下列空白处填上恰当的不等号。

高考数学专题03 不等式(解析版)

高考数学专题03 不等式(解析版)

专题03 不等式一、单选题1.(2022·江苏宿迁·高三期末)不等式10x x->成立的一个充分条件是( ) A .1x <- B .1x >- C .10x -<< D .01x <<【答案】C 【分析】 首先解不等式10x x->得到1x >或10x -<<,再根据充分条件定理求解即可. 【详解】()()211001101x x x x x x x x-->⇒>⇒+->⇒>或10x -<<, 因为{}{|01x x x x ≠<<⊂或}10x -<<, 所以不等式10x x->成立的一个充分条件是01x <<. 故选:C2.(2022·江苏如皋·高三期末)已知a b =3-ln4,c =32,则下列选项正确的是( )A .a <b <cB .a <c <bC .c <b <aD .c <a <b【答案】C 【分析】由e 2.718,ln 20.69≈≈及不等式性质,进行计算即可得出结果. 【详解】 229e, 2.254a c ===,∴22a c >,即a c >, 2222(3ln 4) 1.62 2.6244b a =-==<,∴a b >,331e 1193ln 4 1.52ln 2ln ln 02216216b =--=-=>>,∴b c >,∴a b c >>,故选:C3.(2022·江苏苏州·高三期末)已知11a b >+> 则下列不等式一定成立的是( ) A .b ab B .11a b a b+>+ C .1e 1ln bb a a+<- D .ln ln a b b a +<+【答案】C 【分析】错误的三个选项ABD 可以借助特殊值法进行排除,C 可以利用求导得出证明. 【详解】取10,8a b ==,则b a b ,故A 选项错误;取3a =,13b =,11a b a b+=+,则B 选项错误; 取3a =,1b =,则ln 3a b ,2ln 1ln31ln 3b a e ,即ln ln a b b a +>+,故D 选项错误;关于C 选项,先证明一个不等式:e 1x x ≥+,令e 1x y x =--,e 1xy '=-, 于是0x >时0y '>,y 递增;0x <时0y '<,y 递减; 所以0x =时,y 有极小值,也是最小值0e 010--=, 于是e 10x y x =--≥,当且仅当0x =取得等号,由e 1x x ≥+,当1x >-时,同时取对数可得,ln(1)x x ≥+, 再用1x -替换x ,得到1ln x x -≥,当且仅当1x =取得等号, 由于11a b >+>,得到e 1bb ,ln 1a a <-,111ln e b a b a ,即1e 1ln bb a a+<-, C 选项正确. 故选:C.4.(2022·湖南郴州·高三期末)已知函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,则2m n +的最小值是( ) A.6 B .C .8 D .【答案】D 【分析】有()()f x f x =-可得m 、n 的关系,再用均值不等式即可. 【详解】因为函数()()0,0,1,1x xf x m n m n m n =+>>≠≠是偶函数,所以()()f x f x =-,xxxxm n m n --+=+,x xxxx xm n m n m n ++=因为0,0,1,1m n m n >>≠≠,所以1x x m n =,即1mn =,2m n +≥m n =. 故选:D.5.(2022·湖北武昌·高三期末)已知实数a ,b 满足28log 3log 6a =+,6810a a b +=,则下列判断正确的是( ) A .2a b >> B .2b a >> C .2a b >> D .2b a >>【答案】C 【分析】根据对数和指数的单调性可判断2a >,2b >;在构造函数()6810x x xf x =+-,2x >,再根据换元法和不等式放缩,可证明当2x >时,()68100x x xf x =+-<,由此即可判断,a b 的大小.【详解】因为()28221log 3log 6log 3log 233a =+=+⨯2241414317log 3log 233333233=+>=⨯+=>,所以2a >; 由6810a a b +=且2a >,所以683664100a a +>+=,所以2b >,令()6810x x xf x =+-,2x >,令20t x =-> ,则2x t =+,则()6810x x x f x =+-,2x >等价于()36664810010t t tg t =⨯+⨯-⨯,0t >;又()366648100101008100100t t t t tg t =⨯+⨯-⨯<⨯-⨯<,所以当2x >时,()68100x x xf x =+-<,故681010a a b a +=<,所以2a b >>. 故选:C .6.(2022·湖北武昌·高三期末)已知正数x ,y 满足115x y x y+++=,则x y +的最小值与最大值的和为( ) A .6 B .5C .4D .3【答案】B 【分析】利用基本不等式进行变形得4x y xy x y+≥+,然后将115x y x y +++=进行代换得45x y x y++≤+,继而解不等式可得答案. 【详解】 因为0,0x y >>,所以x y +≥,即2()2x y xy +≤ , 所以214()xy x y ≥+,即4x y xy x y+≥+, 又因为115x yx y x y x y xy++++=++=, 所以45x y x y++≤+,即2()5()40x y x y +-++≤ , 解得14x y ≤+≤ ,故x y +的最小值与最大值的和为5, 故选:B7.(2022·山东青岛·高三期末)已知2319,sin ,224a b c ππ===,则( ) A .c b a << B .a b c << C .a <c <b D .c <a <b【答案】D 【分析】先通过简单的放缩比较c 和a 的大小,再通过构造函数,利用图像特征比较b 和a 的大小,由此可得答案. 【详解】 293334π2π2π2πc a ==⨯<= c a ∴<3132π2a π==⨯, 设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯= ()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点 ∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x x π> 10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a > ∴c a b <<故选:D.8.(2022·山东枣庄·高三期末)已知1x >,则11x x +-的最小值是( ). A .6 B .5 C .4D .3【答案】D 【分析】 由于1x >,把11x x +-转化为11++11x x --,再利用基本不等式求出最小值即可得到答案. 【详解】1x >,故110,01x x ->>-,111121=31x x ∴-++≥=+-,当且仅当1121x x x -=⇒=-时,等号成立,故11x x +-的最小值是3. 故选:D.9.(2022·河北张家口·高三期末)已知102,105x y ==,则( ) A .1x y +< B .14xy >C .2212x y +> D .25y x ->【答案】C 【分析】结合指数运算、基本不等式、对数运算、比较大小等知识对选项进行分析,由此确定正确选项. 【详解】因为10101010x y x y +⋅==,所以1x y +=,所以A 错误;又102,105x y ==,所以0,0x y >>,又,1x y x y ≠+=>,所以14xy <,所以B 错误; 因为222()12x y x y xy +==++,所以2212x y xy +=-,又14xy <,所以2212x y +>,故C 正确; 因为lg5,lg2y x ==,所以2552lg ,lg1025y x -==,故只要比较52和2510的大小即可,又55255312510010232⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,所以52lg 25y x -=<,故D 错误.故选: C二、多选题10.(2022·江苏无锡·高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确; 2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD11.(2022·广东·铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2< C .111a b+≥D .22118a b ≤+ 【答案】CD 【分析】结合基本不等式对选项进行分析,由此确定正确选项. 【详解】22222a b a bab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b+⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD12.(2022·广东汕尾·高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案. 【详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号,又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD13.(2022·湖南常德·高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【分析】利用基本不等式及指对数函数的性质逐项分析即得. 【详解】∵0a >,0b >,111a b +=≥∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b aa b =,即2a b ==时取等号,故B 正确;因为228a b ≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确. 故选:BD.14.(2022·湖北襄阳·高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行分析即可. 【详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>,(1b >,等号不成立)所以422a b >==+. 从而可知选项ACD 正确. 故选:ACD15.(2022·山东泰安·高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD【分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【详解】 选项A :()()11()a a b b a b a a b a a b a ---==---,由0a b <<,可知0a <,0b <,0a b -<,则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b a a b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b aab ->,即11a b>.选项B 判断正确;选项C :当0a b <<时,2a b b a +>=.选项C 判断正确;选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD16.(2022·山东德州·高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( ) A.a b +的最小值为3+B .22a b +的最小值为16C D .lg lg a b +的最小值为3lg 2【答案】ACD 【分析】利用“1”的代换结合基本不等式判断AD C ,由对数的运算结合基本不等式判断B. 【详解】由2a b ab +=可得,211b a +=,212()3322a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭(当且仅当2b =等号),故A 正确;214(2)44248a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab (当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;2212112b a b =+++=≤1212a b ==时,取等号),故C 正确; 故选:ACD17.(2022·山东烟台·高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【分析】利用基本不等式逐项判断. 【详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确; 故选:ABD18.(2022·山东济南·高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC三、填空题19.(2022·江苏扬州·高三期末)已知正实数x ,y 满足x +y =1,则23x y xy++的最小值为__________.【答案】9+ 【分析】利用基本不等式来求得最小值. 【详解】 由题意可知,23x y xy ++=233x y x y xy +++=45x y xy +=4y +5x =(4y +5x)(x +y )=4+5+4x y +5y x ≥9+9+,当且仅当4x y =5yx,2x =时取等号, 此时54x y =-=,故23x y xy++的最小值为9+故答案为:9+20.(2022·广东罗湖·高三期末)已知存在实数(),0,1x y ∈,使得不等式21121y yt x x-+<+-成立,则实数t 的取值范围是______. 【答案】(3,)+∞ 【分析】根据基本不等式求得111x x+-的最小值为4,将问题转化为只需存在实数(0,1)y ∈,使得224y y t -+>成立即可,即242y yt ->-,再根据二次函数和指数函数的性质可求得答案.【详解】解:∵11111(1)()224111x x x x x x x x x x -+=+-+=++≥+=---,当且仅当11x x x x -=-,即()01x =,时取等号, ∴111x x+-的最小值为4, ∴只需存在实数(0,1)y ∈,使得224yyt -+>成立即可,即242yyt ->-,又当01y <<时,20y y -<,所以20221y y -<=,∴2423y y -->,∴3t >,∴实数t 的取值范围为(3,)+∞, 故答案为:(3,)+∞.21.(2022·湖南娄底·高三期末)已知a ,b 为正实数,且21a b +=,则22aa b+的最小值为______.【答案】6 【分析】利用已知化简可得24224222a a b a b a a b a b a b +⎛⎫+=+=++ ⎪⎝⎭,根据基本不等式计算即可. 【详解】由已知条件得,2422446222a a b a b a a b a b a b +⎛⎫+=+=++≥= ⎪⎝⎭, 当且仅当22b a a b =,即25a =,15b =时取等号. 故答案为:6.22.(2022·湖北·黄石市有色第一中学高三期末)设0x >,0y >,且2116yx y x ⎛⎫-= ⎪⎝⎭,则当1x y +取最小值时,221x y +=______. 【答案】12 【分析】当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取最小值,变形可得21416=x y x y y x ⎛⎫++ ⎪⎝⎭,由基本不等式和等号成立的条件可得答案. 【详解】解析:∵0x >,0y >,∴当1x y +取最小值时,21x y ⎛⎫+ ⎪⎝⎭取得最小值,∵222112x x x y y y ⎛⎫+=++ ⎪⎝⎭,又2116yx y x ⎛⎫-= ⎪⎝⎭,∴221216x y x y y x +=+,∴21416x y x y y x ⎛⎫+=+ ⎪⎝⎭16≥=, ∴14x y+≥,当且仅当416x y y x=,即2x y =时取等号, ∴当1x y +取最小值时,2x y =,221216x x y y++=, ∴2212216y x y y ⋅++=,∴22116412x y +=-=. 【点睛】本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属中档题. 23.(2022·山东日照·高三期末)已知54x >,则函数1445y x x =+-的最小值为_______.【答案】7 【分析】 由54x >,得450x ->,构造导数关系,利用基本不等式即可得到. 【详解】 法一:54x >,450x ∴->, 114(45)52574545y x x x x =+=-++≥+=--, 当且仅当14545x x -=-,即32x =时等号成立,故答案为:7. 法二:54x >,令2440(45)y x '=-=-得1x =或32x =, 当5342x <<时'0y <函数单调递减, 当32x >时'0y >函数单调递增, 所以当32x =时函数取得最小值为:314732452⨯+=⨯-, 故答案为:7. 【点晴】此题考基本不等式,属于简单题.24.(2022·河北深州市中学高三期末)已知正实数a ,b 满足321a b +=,则6a +1b 的最小值为______. 【答案】32 【分析】利用“1"的代换,将6a +1b 转化为6a +1b =(6a +1b )(3a +2b),然后化简整理,利用均值不等式即可求出结果. 【详解】由0a >,0b >且321a b +=,得 6a+1b =(6a +1b )(3a +2b)=18+12b a+3a b+2≥20+2√12b a⋅3a b=32,当且仅当12b a =3a b ,即2a b =时,取等号,此时{a =14b =18,则6a +1b 的最小值为32.故答案为:32.25.(2022·河北保定·高三期末)22244x x x+++的最小值为___________.【答案】9 【分析】由222224445x x x x x+++=++结合基本不等式得出答案.【详解】因为22222444559x x x x x +++=++≥=,当且仅当224x x =,即22x =时,等号成立,所以22244x x x+++的最小值为9. 故答案为:9。

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习(附答案)

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习(附答案)

2024届新高考数学复习:专项(不等式的概念及基本性质)好题练习[基础巩固]一、选择题1.如果a <b <0,那么下列各式一定成立的是( ) A .a -b >0 B .ac <bcC .a 2>b 2D .1a <1b2.下列不等式中,正确的是( ) A .若ac 2>bc 2,则a >b B .若a >b ,则a +c <b +c C .若a >b ,c >d ,则ac >bdD .若a >b ,c >d ,则a c >bd3.使得a >b >0成立的一个充分不必要条件是( )A .1b >1a B .e a >e bC .a b >b aD .ln a >ln b >04.已知x ,y ∈R ,且x >y >0,则( )A .1x -1y >0 B .sin x -sin y >0C .⎝⎛⎭⎫12 x -⎝⎛⎭⎫12 y <0D .ln x +ln y >05.若a ,b ∈R ,且a >|b |,则( ) A .a <-b B .a >bC .a 2<b 2D .1a >1b6.若a >b >c 且a +b +c =0,则下列不等式一定成立的是( ) A .ac >bc B .ab >bc C .ab <bc D .ac <bc7.若α,β满足-π2 <α<β<π2 ,则2α-β的取值范围是( ) A .-π<2α-β<0 B .-π<2α-β<πC .-3π2 <2α-β<π2 D .0<2α-β<π8.已知实数a ,b ,c ,满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b9.(多选)[2023ꞏ山东淄博实验中学检测]若a >b >0,则下列不等式中一定不成立的是( )A .b a >b +1a +1B .a +1a >b +1bC .a +1b >b +1a D .2a +b a +2b >a b二、填空题10.若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为________.11.若实数a ,b 满足0<a <2,0<b <1,则a -b 的取值范围是________. 12.[2023ꞏ山东济南外国语学校检测]已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则ca -db >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b >0,则ab >0.其中正确的命题是________.[强化练习]13.已知下列四个条件:①b >0>a ;②0>a >b ;③a >0>b ;④a >b >0,能推出1a <1b 成立的有( )A .1个B .2个C .3个D .4个14.(多选)若a <b <-1,c >0,则下列不等式一定成立的是( )A .a -1a >b -1b B .a -1b <b -1aC .ln (b -a )>0D .(ab )c >(b a )c15.已知有三个条件:①ac 2>bc 2;②a c >bc ;③a 2>b 2,其中能成为a >b 的充分条件是________.(填序号)16.已知2b <a <-b ,则ab 的取值范围是________.参考答案1.C ∵a <b <0,∴a 2>b 2.2.A ∵ac 2>bc 2,c 2>0,∴a >b .A 正确.3.D 当a >b >0时,1b >1a ,e a >e b 成立,即1b >1a ,e a >eb 是a >b >0的必要条件,不符合题意,排除A ,B.当a b >b a 时,可取a =1,b =-1,但a >b >0不成立,故a b >b a 不是a >b >0的充分条件,排除C.函数y =ln x 在(0,+∞)上单调递增,当ln a >ln b >0时,a >b >1>0;当a >b >0时,取a =1e ,b =1e 2 ,则ln b <ln a <0.综上,ln a >ln b >0是a >b >0的充分不必要条件.4.C 方法一 (取特殊值进行验证)因为x >y >0,选项A ,取x =1,y =12 ,则1x -1y=1-2=-1<0,排除A ;选项B ,取x =π,y =π2 ,则sin x -sin y =sin π-sin π2 =-1<0,排除B ;选项D ,取x =2,y =12 ,则ln x +ln y =ln (xy )=ln 1=0,排除D.方法二 (利用函数的单调性)因为函数y =⎝⎛⎭⎫12 x 在R 上单调递减,且x >y >0,所以⎝⎛⎭⎫12x<⎝⎛⎭⎫12 y ,即⎝⎛⎭⎫12 x -⎝⎛⎭⎫12 y <0.故选C.5.B 可取a =2,b =±1逐一验证,B 正确. 6.D ∵a >b >c 且a +b +c =0 ∴a >0,c <0,b 不确定 ∴ac <bc .7.C ∵-π2 <α<β<π2 ,∴-π2 <α<π2 ,-π<α-β<0,∴-3π2 <2α-β<π2 .8.A 因为c -b =4-4a +a 2=(a -2)2≥0, 所以c ≥b .又b +c =6-4a +3a 2,所以2b =2+2a 2,b =a 2+1,所以b -a =a 2-a +1=(a -12 )2+34 >0, 所以b >a , 所以c ≥b >a .9.AD ∵a >b >0,则b a -b +1a +1 =b (a +1)-a (b +1)a (a +1) =b -a a (a +1) <0,∴b a >b +1a +1一定不成立;a +1a -b -1b =(a -b )⎝⎛⎭⎫1-1ab ,当ab >1时,a +1a -b -1b >0,故a +1a >b +1b 可能成立;a +1b -b -1a =(a -b )⎝⎛⎭⎫1+1ab >0,故a +1b >b +1a 恒成立;2a +b a +2b -a b=b 2-a 2b (a +2b ) <0,故2a +b a +2b >ab一定不成立.故选AD.10.p ≤q答案解析:p -q =(b 2a +a 2b )-(a +b )=(b 2a -a )+(a 2b -b )=(1a -1b )(b 2-a 2)=(b -a )2(b +a )ab,又a <0,b <0,所以b +a <0,ab >0,(b -a )2≥0,所以(b 2a +a 2b )-(a +b )≤0,所以p ≤q . 11.(-1,2)答案解析:∵0<b <1,∴-1<-b <0 又∵0<a <2 ∴-1<a -b <2. 12.①②③答案解析:对于①,若ab >0,bc -ad >0,不等式两边同时除以ab 得c a -db >0,所以①正确;对于②,若ab >0,ca -db >0,不等式两边同时乘以ab 得bc -ad >0,所以②正确;对于③,若ca -db >0,当两边同时乘以ab 时可得bc -ad >0,所以ab >0,所以③正确.13.C ①中,因为b >0>a ,所以1b >0>1a ,因此①能推出1a <1b 成立,所以①正确;②中,因为0>a >b ,所以ab >0,所以aab >b ab ,所以1b >1a ,所以②正确;③中,因为a >0>b ,所以1a >0>1b ,所以1a >1b ,所以③不正确;④中,因为a >b >0,所以a ab >b ab ,所以1b >1a ,所以④正确.故选C.14.BD 利用取特殊值法,令a =-3,b =-2,代入各选项,验证可得正确的选项为BD.15.①答案解析:①由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.16.(-1,2)答案解析:∵2b <a <-b ,∴2b <-b ,∴b <0,∴1b <0,∴-b b <a b <2bb ,即-1<a b <2.。

高中数学不等式练习题(附答案)

高中数学不等式练习题(附答案)

高中数学不等式练习题(附答案) 高中数学不等式练题一.选择题(共16小题)1.若a>b>0,且ab=1,则下列不等式成立的是()A。

a+log2(a+b)<2aB。

log2(a+b)<a+bC。

a+log2(a+b)<a+bD。

log2(a+b)<a+b<2a2.设x、y、z为正数,且2x=3y=5z,则()A。

2x<3y<5zB。

5z<2x<3yC。

3y<5z<2xD。

XXX<2x<5z3.若x+2y=k,且k<5,则x+2y的最大值为()A。

1B。

3C。

5D。

94.设x+y=1,且z=2x+y,则z的最小值是()A。

﹣15B。

﹣9C。

1D。

95.已知x+2y=3,且z=x+2y,则z的最大值是()A。

3B。

4C。

5D。

66.设x+y=1,且z=x+y,则z的最大值为()A。

1B。

2C。

3D。

47.设x+y=2,且x﹣y<3,则z=x﹣y的取值范围是()A。

[﹣3,3]B。

[﹣3,2]C。

[2,3]D。

[3,+∞)8.已知变量x,y满足约束条件x+y<1,则z=x﹣y的最小值为()A。

﹣3B。

﹣1C。

1D。

39.若变量x,y满足约束条件x+y<1,则目标函数z=﹣2x+y的最大值为()A。

1B。

﹣1C。

﹣2D。

﹣310.若a,b∈R,且ab>0,则a+b+2/(1/a+1/b)的最小值是()A。

1B。

2C。

3D。

411.已知0<c<1,a>b>1,下列不等式成立的是()A。

ca>cbB。

ac<bcC。

loga c>logb cD。

logb c>loga c的最小值是()12.已知x>0,y>0,lg2x+lg8y=lg2,则xy的最小值是()A。

2B。

4C。

8D。

1613.设a>2,b>2,且a+b=3,则a2+b2的最小值是()A。

6B。

8C。

9D。

1014.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是()A。

35B。

105C。

140D。

21015.设正实数x,y满足x>1,y>1,不等式(x+1/y)(y+1/x)≥XXX成立,则m的最小值为()A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(上海理15)若a,b R ,且ab 0 ,则下列不等式中,恒成立的是
2 2 A. a b 2ab C. D a b . ab x 2
3、(江西理数)3.不等式 x x 的解集是( )
A. (0,2)
B. ( ,0)
C. (2,)
D. (- , 0) (0,)
【答案】A 【解析】考查绝对值不等式的化简 .绝对值大于本身, 值为负数 得A 。

或者选择x=1和x=-1,两个检验进行排除。

4、( 2010全国卷1文数)(10)设a log 3 2,b In 2,c 1
5 2则
(A ) a b c (B ) b c a (C) cab (D) c b a
2 6 5、(全国卷2)不等式x x 6 >0 x 1 的解集为( )
(A ) x x v 2,或 x > 3
(B ) x x v 2,或 1v x v 3
(C ) x 2v x v 1 或 x >3
(D ) x 2v x v 1 或 1v x v 3
;"-^>0 0 WA o (x-3)(r-2)(.v-1) > 0 ・
【答案】C 【解析】 卞一1 (工一1)
利用 数轴穿根法解得-2 v X V 1或x > 3,故选C
21 x ,x 1
1 log
2 X, X 1,则满足f (x) 2的x 的取值范围是
(B ) [0 , 2] (C ) [1 , + ) (D ) [0 , + )
【答案】D
3 2x y 9
B. a b ^/ab
b a
D. a b
1 4
2. 已知a >0, b >0, a+b=2,则 y= a b 的最小值是
7
9
A. 2
B. 4
C. 2
D. 5 f (x) 6.(辽宁)设函数 (A ) [ 1 , 2] 7.(全国新课标) 若变量x , y 满足约束条件 6 x y 9,则z x 2y 的最小值是
【答案】-6
1
X —【答案】X 0或2
9. (广东理9)不等式X 1 X 3 0
的解集是 ________________
【答案】
[1,)
10、(2010全国卷2文数)(本小题满分12分)
3 2
已知函数 f (x)=x -3ax +3x+1。

(I)设a=2,求f (x)的单调期间;
(n)设f (x)在区间(2,3 )中至少有一个极值点,求a的取值范围。

【解析】(1)求出函数的导数,由导数大于0,可求得增区间由导数小于0,可求得减区间。

(2)求出函数的导数f(
X),在(2, 3)内有极值,即为
f(
X)在(2, 3)内有一个零点,
即可根据f(2)f(3)0
,即可求出A的取值范围。

x 1
8. 不等式x 3
的解为。

相关文档
最新文档