人教版九年级下册数学锐角三角函数单元测试

合集下载

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

人教版九年级下数学第二十八章锐角三角函数单元练习题(含答案)

《锐角三角函数》单元练习题一.选择题1.在Rt△ABC中,∠C=90°,如果∠A=α,AB=3,那么AC等于()A.3sinαB.3cosαC.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.B.C.D.3.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米4.如图,护林员在离树8m的A处测得树顶B的仰角为45°,已知护林员的眼睛离地面的距离AC 为1.6m,则树的高度BD为()A.8m B.9.6m C.(4)m D.(8+1.6)m5.如图,P是∠α的边OA上一点,且点P的横坐标为3,sinα=,则tanα=()A.B.C.D.6.如图,网格中小正方形的边长都为1,点A,B,C在正方形的顶点处,则cos∠ACB的值为()A.B.C.D.7.如图,河对岸有铁塔AB,在C处测得塔顶A的仰角为30°,向塔前进14m到达D,在D处测得A的仰角为45°,塔高AB为()A.m B.m C.m D.m8.如图,在Rt△ABC中,∠ACB=90°,AC=24,AB=25,CD是斜边AB上的高,则cos∠BCD 的值为()A.B.C.D.9.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m千米后到达点B处,又测得标志物P的俯角为β,那么此时飞机离地面的高度为()A.千米B.千米C.千米D.千米10.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.1811.已知某条传送带和地面所成斜坡的坡度为1:2,如果它把一物体从地面送到离地面9米高的地方,那么该物体所经过的路程是()A.18米B.4.5米C.米D.米.12.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.cm B.cm C.64 cm D.54cm二.填空题13.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,若3a=4b,则sin B的值是.14.已知∠A是锐角,且cos A=,则tan A=.15.如图,在点A处测得点B处的仰角是.(用“∠1,∠2,∠3或∠4”表示)16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.如图,某兴趣小组用无人机进行航拍测高,无人机从1号楼和2号楼的地面正中间B点垂直起飞到高度为50米的A处,测得1号楼顶部E的俯角为60°,测得2号楼顶部F的俯角为45°.已知1号楼的高度为20米,则2号楼的高度为米(结果保留根号).18.如图,某水库大坝的横假面是梯形ABCD,坝顶宽DC是10米,坝底宽AB是90米,背水坡AD和迎水坡BC的坡度都为1:2.5,那么这个水库大坝的坝高是米.三.解答题19.计算:2cos60°+4sin60°•tan30°﹣6cos245°.20.如图,P点是某海域内的一座灯塔的位置,船A停泊在灯塔P的南偏东53°方向的50海里处,船B位于船A的正西方向且与灯塔P相距海里.(本题参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)(1)试问船B在灯塔P的什么方向?(2)求两船相距多少海里?(结果保留根号)21.如图,已知△ABC中,∠ACB=90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E.(1)如果BC=6,AC=8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PD⊥AB,且CE=2,ED=3,求cos A的值;(3)联结PD,如果BP2=2CD2,且CE=2,ED=3,求线段PD的长.22.如图,已知:R t△ABC中,∠ACB=90°,点E为AB上一点,AC=AE=3,BC=4,过点A 作AB的垂线交射线EC于点D,延长BC交AD于点F.(1)求CF的长;(2)求∠D的正切值.23.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡AF上的D处测得大树顶端B的仰角是30°,在地面上A处测得大树顶端B的仰角是45°.若坡角∠F AE=30°,AD=6m,求大树的高度.(结果保留整数,参考数据:≈1.73)24.“滑块铰链”是一种用于连接窗扇和窗框,使窗户能够开启和关闭的连杆式活动链接装置(如图1).图2是“滑块铰链”的平面示意图,滑轨MN安装在窗框上,悬臂DE安装在窗扇上,支点B、C、D始终在一条直线上,已知托臂AC=20厘米,托臂BD=40厘米,支点C,D之间的距离是10厘米,张角∠CAB=60°.(1)求支点D到滑轨MN的距离(精确到1厘米);(2)将滑块A向左侧移动到A′,(在移动过程中,托臂长度不变,即AC=A′C′,BC=BC′)当张角∠C′A'B=45°时,求滑块A向左侧移动的距离(精确到1厘米).(备用数据:≈1.41,≈1.73,≈2.45,≈2.65)25.被誉为“中原第一高楼”的郑州会展宾馆(俗称“大玉米”)坐落在风景如画的如意湖,是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华同学决定用自己学到的知识测量“大王米”的高度,他们制订了测量方案,并利用课余时间完成了实地测量.测量项目及结果如下表:项目内容课题测量郑州会展宾馆的高度的仰角是α,前进一段距离到达C点用测倾器CF测得楼β,且点A、B、C、D、E、F均在同一竖直平测量数据∠α的度数∠β的度数EC的长度,40°45°53米……请你帮助该小组根据上表中的测量数据,求出郑州会展宾馆的高度(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数)参考答案一.选择题1.【解答】解:∵∠A=α,AB=3,∴cosα=,∴AC=AB•cosα=3cosα,故选:B.2.【解答】解:∵AC=4,BC=3,∴tan A==,故选:A.3.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.4.【解答】解:在Rt△CBH中,∠HCB=45°,CH=8m,∴,∴HB=CH•tan∠HAB=8×tan45°=8m,∴HD=HB+AC=8+1.6=9.6.答:树的高度为9.6m.故选:B.5.【解答】解:如图,由sinα==可设PQ=4a,OP=5a,∵OQ=3,∴由OQ2+PQ2=OP2可得32+(4a)2=(5a)2,解得:a=1(负值舍去),∴PQ=4,OP=5,则tanα==,故选:C.6.【解答】解:如右图所示,∵网格中小正方形的边长都为1,∴CE==2,AC==,AE=3,CD=4,作AH⊥CE于点H,∵,∴,解得,AH=,∵AC=,AH=,∠AHC=90°,∴CH==,∴cos∠ACH=,即cos∠ACB=,故选:D.7.【解答】解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴BC=AB.设AB=x(米),∵CD=14,∴BC=x+14.∴x+14=x∴x=7(+1).即铁塔AB的高为7(+1)米.故选:B.8.【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=24,AB=25,∴BC=7,∵CD是斜边AB上的高,,∴CD==,∵CD⊥AB,∴∠CDB=90°,∴cos∠BCD===,故选:B.9.【解答】解:作PC⊥AB交AB于点C,如右图所示,AC=,BC=,∵m=AC﹣BC,∴m=﹣,∴PC==,故选:A.10.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.11.【解答】解:如图:由题意得:斜坡AB的坡度:i=1:2,AE=9米,AE⊥BD,∵i==,∴BE=18米,∴在Rt△ABE中,AB==9(米).故选:D.12.【解答】解:如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=AC=×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选:C.二.填空题(共6小题)13.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,令b=3x,则a=4x,由勾股定理可得c=5x,所以sin B===,故答案为:.14.【解答】解:∵∠A为锐角,且cos A=,以∠A为锐角作直角三角形△ABC,∠C=90°.∴cos A==.设AC=5k,则AB=13k.根据勾股定理可得:BC=12k.∴tan A==.故答案为:.15.【解答】解:在点A处测得点B处的仰角是∠4,故答案为:∠4.16.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.【解答】解:过点E作EG⊥AB于G,过点F作FH⊥AB于H,则四边形ECBG,HBDF是矩形,∴EC=GB=20,HB=FD,∵B为CD的中点,∴EG=CB=BD=HF,由已知得:∠EAG=90°﹣60°=30°,∠AFH=45°.在Rt△AEG中,AG=AB﹣GB=50﹣20=30米,∴EG=AG•tan30°=30×=10米,在Rt△AHP中,AH=HF•t an45°=10米,∴FD=HB=AB﹣AH=50﹣10(米).答:2号楼的高度为(50﹣10)米.故答案为:(50﹣10).18.【解答】解:如图所示:过点D作DM⊥AB于点M,作CN⊥AB于点N,设DM=CN=x,∵背水坡AD和迎水坡BC的坡度都为1:2.5,∴AM=BN=2.5x,故AB=AM+BN+MN=5x+10=90,解得:x=16,即这个水库大坝的坝高是16米.故答案为:16.三.解答题(共7小题)19.【解答】解:原式=2×+4××﹣6×()2=1+2﹣3=0.20.【解答】解:(1)过P作PC⊥AB交AB于C,在Rt△APC中,∠C=90°,∠APC=53°,AP=50海里,∴PC=AP•cos53°=50×0.60=30海里,在Rt△PBC中,∵PB=20,PC=30,∴cos∠BPC==,∴∠BPC=30°,∴船B在灯塔P的南偏东30°的方向上;(2)∵AC=AP•sin53°=50×0.8=40海里,BC=PB=10,∴AB=AC﹣BC=(40﹣10)海里,答:两船相距(40﹣10)海里.21.【解答】解:(1)∵P为AC的中点,AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=2,∵D是边AB的中点,P为AC的中点,∴点E是△ABC的重心,∴BE=BP=;(2)如图1,过点B作BF∥CA交CD的延长线于点F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,则CD=5,∴EF=8,∴=,∴=,∴=,设CP=k,则P A=3k,∵PD⊥AB,D是边AB的中点,∴P A=PB=3k∴BC=2k,∴AB=2k,∵AC=4k,∴cos A=;(3)∵∠ACB=90°,D是边AB的中点,∴CD=BD=AB,∵PB2=2CD2,∴BP2=2CD•CD=BD•AB,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,∴△DPE∽△DCP,∴PD2=DE•DC,∵DE=3,DC=5,∴PD=.22.【解答】解:(1)∵∠ACB=90°,∴∠ACF=∠ACB=90°,∠B+∠BAC=90°,∵AD⊥AB,∴∠BAC+∠CAF=90°,∴∠B=∠CAF,∴△ABC∽△F AC,∴=,即=,解得CF=;(2)如图,过点C作CH⊥AB于点H,∵AC=3,BC=4,∴AB=5,则CH==,∴AH==,EH=AE﹣AH=,∴tan D=tan∠ECH==.23.【解答】解:延长BD交AE于点G,作DH⊥AE于H,设BC=xm,由题意得,∠DGA=∠DAG=30°,∴DG=AD=6,∴DH=3,GH==3,∴GA=6,在Rt△BGC中,tan∠BGC=,∴CG==x,在Rt△BAC中,∠BAC=45°,∴AC=BC=x,由题意得,x﹣x=6,解得,x=≈14,答:大树的高度约为14m.24.【解答】解:(1)过C作CG⊥AB于G,过D作DH⊥AB于H,∵AC=20,∠CAB=60°,∴AG=AC=10,CG=AG=10,∵BC=BD﹣CD=30,∵CG⊥AB,DH⊥AB,∴CG∥DH,∴△BCG∽△BDH,∴=,∴=,∴DH=≈23(厘米);∴支点D到滑轨MN的距离为23厘米;(2)过C′作C′S⊥MN于S,∵A′C′=AC=20,∠C′A′S=45°,∴A′S=C′S=10,∴BS==10,∴A′B=10+10,∵BG==10,∴AB=10+10,∴AA′=A′B﹣AB≈6(厘米),∴滑块A向左侧移动的距离是6厘米.25.【解答】解:由题意可得:设BN=FN=x,则tan40°==≈0.84,解得:x=278.25,故AB=278.25+1.5≈280(m),答:郑州会展宾馆的高度为280m.。

人教版九年级下册数学 第28章 锐角三角函数 单元测试卷(有答案)

人教版九年级下册数学 第28章 锐角三角函数  单元测试卷(有答案)

2020-2021学年人教新版九年级下册数学《第28章锐角三角函数》单元测试卷一.选择题1.在Rt△ABC中,∠C=90°,各边都扩大5倍,则锐角A的三角函数值()A.不变B.扩大5倍C.缩小5倍D.不能确定2.用计算器求sin28°,cos27°,tan26°的值,它们的大小关系是()A.tan26°<cos27°<sin28°B.tan26°<sin28°<cos27°C.sin28°<tan26°<cos27°D.cos27°<sin28°<tan26°3.已知锐角α满足cosα=,则tanα是()A.B.C.2D.24.在直角三角形中不能求解的是()A.已知一直角边和一锐角B.已知斜边和一锐角C.已知两边D.已知两角5.如图,为测一河两岸相对两电线杆A、B间的距离,在距A点15米处的C点(AC⊥BA)测得∠C=50°,则A、B间的距离应为()A.15sin50°米B.15cos50°米C.15tan50°米D.米6.如图,在高为2m,坡比为1:的楼梯上铺地毯,地毯的长度应为()A.4m B.6m C.m D.m 7.在Rt△ABC中,∠C=90°,cos A=,则sin B的值为()A.B.C.D.28.△ABC中,tan A=1,cos B=,则△ABC为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.在△ABC中,∠C=90°,a=5,c=13,用计算器求∠A约等于()A.14°38′B.65°22′C.67°23′D.22°37′10.如图,在某海岛的观察所A测得船只B的俯角是30°.若观察所的标高(当水位为0m 时的高度)是53m,当时的水位是+3m,则观察所A和船只B的水平距离BC是()A.50m B.50m C.5m D.53m二.填空题11.比较大小:sin87°tan47°.12.在Rt△ABC中,∠C=90°,AB=,BC=1,则tan B=.13.在△ABC中,∠B=74°37′,∠A=60°23′,则∠C=,sin A+cos B+tan C ≈.14.计算:tan45°+sin260°=.15.已知:∠α是锐角,且sinα•cosα=,则sinα+cosα=.16.一船向西航行,上午9时30分在小岛A的南偏东30°,距小岛A60海里的B处,上午11时,船到达小岛A的正南方向,则该船的航行速度为.17.如图,小明想测量南塔的高度.她在A处仰望塔顶,测得仰角为30°,再往塔的方向前进20m至B处,测得仰角为60°,那么塔高约为m.(小明身高忽略不计,≈1.732)18.如图,已知l1∥l2,l1与l2之间的距离为,∠α=60°,则AB=.19.在Rt△ABC中,∠C=90°,若cos B=,则tan A=,若此时△ABC的周长为48,那么△ABC的面积.20.如图,△ABC中,∠C=90°,BC=4,AB的垂直平分线MN交AC于D,且CD:DA =3:5,则sin A=.三.解答题21.在Rt△ABC中,∠C=90°,AC=5cm,BC=2cm.求∠A,∠B的正弦、余弦和正切的值.22.如图,梯子AB的长为2.8m.当α=60°时,求梯子顶端离地面的高度AD和两梯脚之间的距离BC.当α=45°时呢?23.已知∠A为锐角,且cos A=,求sin A、tan A.24.观察下列等式:①sin30°=,cos60°=;②sin45°=,cos45°=;③sin60°=,cos30°=.(1)根据上述规律,计算sin2α+sin2(90°﹣α)=.(2)计算:sin21°+sin22°+sin23°+…+sin289°.25.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m,在点B,C分别测得气球A的仰角∠ABD为45°,∠ACD为56°,求气球A离地面的高度AD(精确到0.1m).26.在直角坐标系中,点P(x,6)在第一象限,且OP与x轴正半轴的夹角α的正切值是.求x的值,及角α的正弦和余弦值.27.用“<”符号连接下列各三角函数cos15°、cos30°、cos45°、cos60°、cos75°.参考答案与试题解析一.选择题1.解:因为三角函数值与对应边的比值有关,所以各边的长度都扩大5倍后,锐有A的各三角函数值没有变化,故选:A.2.解:∵tan26°≈0.488,cos27°≈0.891,sin28°≈0.469.故sin28°<tan26°<cos27°.故选:C.3.解:∵cosα==,∴可设b=x,则c=3x,∵a2+b2=c2,∴a=2x,∴tanα===2.故选:D.4.解:A、已知一直角边和一锐角能够求解;B、已知斜边和一锐角能够求解;C、已知两边能求解;D、已知两角不能求解.故选:D.5.解:因为AC=15米,∠C=50°,在直角△ABC中tan50°=,所以AB=15•tan50°米.故选:C.6.解:如图,根据题意得:AC=2m,i=AC:BC=1:,∴BC=AC=2m,∴地毯的长度应为:AC+BC=2+2(m).故选:D.7.解:在△ABC中,∠C=90°,∠A+∠B=90°,则sin B=cos A=.故选:A.8.解:由tan A=1,cos B=,得A=45°,B=30°,由三角形内角和定理,得C=180°﹣A﹣B=105°,故选:B.9.解:sin A==≈0.385,A=sin﹣10.385=22.64°=22°37′,故选:D.10.解:由题意得,AC=50米,∠ABC=30°,在Rt△ABC中,BC=AC cot∠ABC=50(米).故选:B.二.填空题11.解:∵sin87°<1,tan47°>tan45°=1,∴sin87°<tan47°,故答案为:<.12.解:∵∠C=90°,AB=,BC=1,∴AC==2,∴tan B==2,故答案为:2.13.解;∠C=180°﹣(∠A+∠B)=180°﹣135°=45°.sin A+cos B+tan C≈0.86935+0.26527+1≈2.1346.故答案为:45°;2.1346.14.解:tan45°+sin260°=1+()2=1.故答案为:1.15.解:∵(sinα+cosα)2=sin2α+2sinα•cosα+cos2α=1+2sinα•cosα,∴当sinα•cosα=时,原式=1+=,则sinα+cosα=±=±,∵∠α是锐角,sinα,cosα都为正数,∴sinα+cosα=.故答案为:.16.解:如图在Rt△ABC中,∠BAC=90°﹣60°=30°,AB=60海里,故BC=30海里,11时﹣9时30分=1.5小时,船航行的速度为30÷1.5=20海里/时.故答案为:20海里/时.17.解:∵∠DAB=30°,∠DBC=60°,∴BD=AB=20m.∴DC=BD•sin60°=20×≈17.32(m).故答案为:17.32.18.解:如图,过点B作BC⊥l2于点C,则BC=,在Rt△ABC中,∠BAC=α=60°,BC=,所以AB===2.故答案是:2.19.解:设c=5k,a=3k.由勾股定理得:b===4k.∴tan A==.∵△ABC的周长为48,∴5k+3k+4k=48.解得:k=4.∴3k=3×4=12,4k=4×4=16.∴△ABC的面积==96.故答案为:;96.20.解:如图,连BD,设CD=3x,则DA=5x,又∵MN垂直平分AB,∴DB=DA=5x,在Rt△BCD中,BC=4,∵BD2=CD2+BC2,∴(5x)2=(3x)2+42,∴x=1,∴AC=AD+DC=5x+3x=8x=8,在Rt△ABC中,AB===4.sin A=.故答案为:三.解答题21.解:由勾股定理得:AB===7(cm).∴sin A==,cos A==,tan A==,sin B==,cos B==,tan B===.22.解:∵AB=AC,AD⊥BC,∴BC=2BD,∠ABD=∠ACD.当α=60°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=60°,∴BD=AB•cos∠ABD=1.4m,AD=AB•sin∠ABD=m,∴BC=2BD=2.8m;当α=45°时,在Rt△ABD中,∠ADB=90°,AB=2.8m,∠ABD=45°,∴BD=AB•cos∠ABD=m,AD=AB•sin∠ABD=m,∴BC=2BD=m.23.解:∵sin2A+cos2A=1,即sin2A+()2=1,∴sin2A=,∴sin A=或﹣(舍去),∴sin A=,∵tan A=,∴tan A==.24.解:(1)∵根据已知的式子可以得到sin(90°﹣α)=cosα,∴sin2α+sin2(90°﹣α)=1;(2)sin21°+sin22°+sin23°+…+sin289°=(sin21°+sin289)+(sin22°+sin288°)+…+sin245°=1+1+…1+=44+=.25.解:根据题意,得∠ADB=90°,∠ABD=45°,∴∠DAB=45°,∴AD=BD,∴CD=BD﹣BC=AD﹣20,在Rt△ADC中,∠ACD=56°,∴tan56°=,即1.48≈,解得AD≈61.7(m).答:气球A离地面的高度AD约为61.7m.26.解:如图所示,过点P作PQ⊥x轴于点Q,由P(x,6)且P在第一象限知OQ=x,PQ=6,∵tan∠POQ=tanα=,∴=,即=,解得x=9,则OP===3,∴sinα===,cosα===.27.解:∵75°>60°>30°>15°,∴cos75°<cos60°<cos30°<cos15°.。

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)

人教版九年级数学下第二十八章锐角三角函数单元练习题(含答案解析)
(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,
tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)
23.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求tanB的值.
13.
【分析】
在直角三角形中,将AB的值代入余弦值中,可求出BC边的长.
【详解】
解:在Rt△ABC中,
∵∠C=90°,AB=8,cosB= ,
∴ = ,
∴BC= ,
故答案为 .
【点睛】
本题考查了解直角三角形,应用余弦函数的定义来求直角三角形的边是解题的关键.
14.
【详解】
过P作PA⊥OA,
∵P点坐标为(4,3),
18.在△ABC中,(tanA﹣ )2+| ﹣cosB|=0,则∠C的度数为_____.
19.已知在Rt△ABC中,∠C=90°,tanA= ,则sinA=________.
20.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A、B、C,则sin∠ABC=_____.
三、解答题
21.计算:cos245° + +cos230°.
10.在Rt△ABC中,∠C=90°,若AC=4,AB=5,则cosB的值( )
A. B. C. D.
二、填空题
11.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.
12.比较大小:cos 36°________cos 37°.
13.在Rt△ABC中,斜边AB的长是8,cosB= ,则BC的长是__________.

人教版九年级下《第二十八章锐角三角函数》单元检测卷含答案

人教版九年级下《第二十八章锐角三角函数》单元检测卷含答案

人教版数学九年级下册二十八章锐角三角函数单元检测卷一、选择题1.如图K -16-2,将∠AOB 放置在5×5的正方形网格中,则sin ∠AOB 的值是( D )图K -16-2A.32B.23C.21313D.313132.在Rt △ABC 中,∠C =90°,则tanA ·tanB 的值一定( D ) A .小于1 B .不小于1 C .大于1 D .等于13.在△ABC 中,若⎪⎪⎪⎪⎪⎪cosA -12+(1-tanB)2=0,则∠C 的度数是( C ) A .45° B .60° C .75° D .105°4.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( A )A .csinA =aB .bcosB =cC .atanA =bD .ctanB =b5.在Rt △ABC 中,∠C =90°,BC =5,AC =15,则∠A 的度数为( D ) A .90° B .60° C .45° D .30°6.2017·温州如图K -20-2,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是( A )图K-20-2A.5米 B.6米 C.6.5米 D.12米7.如图K-21-3,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,点E,B,A在一条直线上,则信号塔CD的高度为( C )图K-21-3A.20 3米 B.(20 3-8)米C.(20 3-28)米 D.(20 3-20)米8.2017·重庆B卷如图K-22-2,已知点C与某建筑物底端B相距306米(点C 与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处.斜坡CD的坡度(或坡比)i=1∶2.4,在D处测得该建筑物顶端A 的俯角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( A )图K-22-2A.29.1米 B.31.9米 C.45.9米 D.95.9米9.如图K-17-6,在△ABC中,∠BAC=90°,AB=AC,D为边AC的中点,DE ⊥BC于点E,连接BD,则tan∠DBC的值为( A )图K -17-6A.13B.2-1 C .2- 3 D.1410.如图K -17-4是教学用的直角三角板,边AC 的长为30 cm ,∠C =90°,tan ∠BAC =33,则边BC 的长为(C ) 图K -17-4A .30 3 cmB .20 3 cmC .10 3 cmD .5 3 cm 二、填空题11.如图K -16-5,在△ABC 中,∠C =90°,sinA =45,则sinB =________.图K -16-5[答案] 2312.如图K -16-8,在▱ABCD 中,连接BD ,已知AD ⊥BD ,AB =4,sinA =34,则▱ABCD 的面积是________.图K-16-8[答案] 3 714.如图K-17-8,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tanD=________.图K-17-8[答案] 2 215.2017·烟台在Rt△ABC中,∠C=90°,AB=2,BC=3,则sin A2=________.[答案] 1 216.2017·大连如图K-22-6,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔86 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.此时,B处与灯塔P的距离为________n mile.(结果取整数,参考数据:3≈1.7,2≈1.4)图K-22-6[答案] 102三、解答题17.如图K-16-11,小明将一张矩形纸片ABCD沿CE折叠,点B恰好落在AD边上的点F处,若AB∶BC=4∶5.求sin∠DCF的值.图K-16-11解:∵AB∶BC=4∶5,∴设AB=4x,则BC=5x.由题意,得FC=BC=5x,DC=AB=4x.由勾股定理,得DF=3x.在Rt△CDF中,∠D=90°,DF=3x,FC=5x,∴sin∠DCF=DFFC=35.18.如图K-17-11,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD =1,记∠CAD=α.(1)试写出α的三个三角函数值;(2)若∠B=α,求BD的长.图K-17-11解: (1)∵CD=1,AC=2,∴AD=AC2+CD2=5,∴sinα=CDAD=55,cosα=ACAD=2 55,tanα=12.(2)∵∠B=α,∴tanB=tanα=1 2 .∵tanB=AC BC ,∴BC=ACtanB=212=4.∵CD=1,∴BD=BC-CD=3.19.如图K-18-5,河的两岸l1与l2互相平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20 m到达点E(点E在线段AB上),测得∠DEB=60°,求C,D两点间的距离.图K-18-5解:如图,过点D作l1的垂线,垂足为F.∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB-∠DAB=30°,∴DE=AE=20 m.在Rt△DEF中,EF=DE·cos60°=20×12=10(m).∵DF⊥AF,∴∠DFB=90°,∴AC∥DF.由l1∥l2,可知CD∥AF,∴四边形ACDF为矩形,∴CD=AF=AE+EF=30 m.答:C,D两点间的距离为30 m.20.如图K-19-11,在△ABC中,∠C=150°,AC=4,tanB=1 8 .(1)求BC的长;(2)利用此图形求tan15°的值(精确到0.1,参考数据:2≈1.4,3≈1.7,5≈2.2).图K-19-11解:(1)过点A作AD⊥BC,交BC的延长线于点D,如图①所示.在Rt△ADC中,AC=4.∵∠ACB=150°,∴∠ACD=30°,∴AD=12AC=2,CD=AC·cos30°=4×32=2 3.在Rt△ABD中,tanB=ADBD=2BD=18,∴BD=16,∴BC=BD-CD=16-2 3.(2)在BC边上取一点M,使得CM=AC,连接AM,如图②所示.∵∠ACB=150°,∴∠AMC=∠MAC=15°,tan15°=tan∠AMD=ADMD=24+2 3=12+3≈12+1.7≈0.3.21.2017·安徽如图K-20-11,游客在点A处坐缆车出发,沿A—B—D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600 m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,2≈1.41)图K-20-11解:在Rt△ABC中,∵cosα=BC AB ,∴BC=AB·cosα≈600×0.26=156(m);在Rt△BDF中,∵sinβ=DF BD ,∴DF=BD·sinβ=600×22=300 2≈300×1.41=423(m).又EF=BC,∴DE=DF+EF≈423+156=579(m).22.如图K-21-8,某无人机于空中A处探测到目标B,D的俯角分别是30°,60°,此时无人机的飞行高度AC为60 m,随后无人机从A处继续水平飞行30 3 m到达A′处.(1)求A,B之间的距离;(2)求无人机在A′处看目标D的俯角的正切值.图K-21-8解:(1)∵∠BAC=90°-30°=60°,AC=60 m,∴在Rt△ABC中,AB=ACcos∠BAC=60cos60°=120(m).即A,B之间的距离为120 m.(2)如图,过点D作DE⊥AA′于点E,连接A′D.∵∠DAC=90°-60°=30°,AC=60 m,∴在Rt△ADC中,CD=AC·tan∠DAC=60×tan30°=20 3(m).∵∠AED=∠EAC=∠C=90°,∴四边形ACDE是矩形.∵ED=AC=60 m,EA=CD=20 3 m,∴在Rt△A′ED中,tan∠EA′D=EDEA′=EDEA+AA′=6020 3+30 3=2 3 5.即无人机在A′处看目标D的俯角的正切值为2 3 5.23.2017·河南如图K-22-10所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A 船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C 在其南偏东53°方向,已知A船的航速为30海里/时,B船的航速为25海里/时,则C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41)图K -22-10解:如图,过点C 作CD ⊥AB 于点D ,设BD =x. 在Rt △ACD 中, ∵∠DAC =45°, ∴AD =DC =x +5. 在Rt △BDC 中, 由tan53°=DC BD ,得x +5x =43, ∴x =15,则BC =152+202=25, AC =202+202=20 2, ∴A 到C 所用时间为20 230≈0.94(时); B 到C 所用时间为2525=1(时).∵0.94<1,∴C 船至少要等待0.94小时才能得到救援.11/ 11。

度第二学期人教版九年级数学下册_第28章_锐角三角函数_单元检测试卷

度第二学期人教版九年级数学下册_第28章_锐角三角函数_单元检测试卷

度第二学期人教版九年级数学下册_第28章_锐角三角函数_单元检测试卷第28章 锐角三角函数 单元检测试卷考试总分: 120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题〔共 10 小题 ,每题 3 分 ,共 30 分 〕 1.计算tan60∘−2sin45∘−2cos30∘的结果是〔 〕A.−2B.√32−√2C.−√3D.−√22.如图,△ABC 中,∠ACB =90∘,CD ⊥AB 于点D ,假定CD:AC =2:3,那么sin∠BCD 的值是〔 〕A.2√55B.23C.2√1313D.213 3.如图,小颖应用有一个锐角是30∘的三角板测量一棵树的高度,她与树之间的水平距离BE 为5m ,AB 为1.5m 〔即小颖的眼睛距空中的距离〕,那么这棵树高是〔 〕A.(5√33+32)mB.(5√3+32)mC.5√33m D.4m4.在△ABC 中,∠C =90∘,以下说法正确的个数是〔 〕①0<sinA <1;②cosA <1;③tanA >1;④0<cotA <1;⑤cotA >0. A.1个 B.2个 C.3个 D.4个5.如图,某自然气公司的主输气管道从A 市的北偏西方60∘向直线延伸,测绘员在A 处测得要装置自然气的M 小区在A 市的北偏西方30∘向,测绘员沿主输气管道步行1000米抵达点C 处,测得M 小区位于点C 的北偏西方75∘向,试在主输气管道上寻觅支管道衔接点N ,使到该小区铺设的管道最短,此时AN 的长约是( )√2≈1.4,√3≈1.7. A.350米 B.650米 C.634米D.700米 6.菱形的边长为4,有一个内角40∘,那么较短的对角线是〔 〕 A.4sin40∘ B.4sin20∘ C.8sin20∘ D.8cos20∘7.如图,在△ABC 中,∠C =90∘,sinB =35,那么cosB 等于〔 〕A.√32B.34C.43D.458.α为锐角,且cos(90∘−α)=√32,那么tanα等于〔 〕A.1B.√3C.√33D.39.课外活动小组测量学校旗杆的高度.如图,当太阳光线与空中成30∘角时,测得旗杆AB 在空中上的影长BC 为24米,那么旗杆AB 的高度约是〔 〕 A.12米 B.8√3米 C.24米 D.24√3米10.如下图,河堤横断面迎水坡AB 的坡比是1:2,坡高BC =5m ,那么坡面AB 的长度〔 〕 A.10m B.10√3m C.5√3m D.5√5m 二、填空题〔共 10 小题 ,每题 3 分 ,共 30 分 〕11.一飞机驾驶员在A 基地上空6000m 高度的B 处,测无暇中攻击目的C 处的俯角是30∘,那么AC =________m 〔保管根号〕.12.如图,在Rt △ABC 中,∠ACB =90∘,CD 是高,假设∠B =α,BC =3,那么AD =________.〔用锐角α的三角比表示〕13.如图,某地夏季半夜,当太阳移到屋顶上方偏东时,光线与空中成α角,房屋朝南的窗子高AB =ℎ m ,假设要在窗子外面上方装置一个水平挡光板AC ,使午间光线不能直接射入室内,那么挡光板AC 的宽度为________.14.某景色区改造中,需测量湖两岸游船码头A 、B 间的距离,设计人员由码头A 沿与AB 垂直的方向行进了500米抵达C 处〔如图〕,测得∠ACB =60∘,那么这个码头间的距离AB________米〔答案可带根号〕.15.如图,小刚同窗在广场上观测新华书店楼房墙上的电子屏幕CD ,点A 是小刚的眼睛,测得屏幕下端D 处的仰角为30∘,然后他正对屏幕方向行进了6m 抵达B 处,又测得该屏幕上端C 处的仰角为45∘,延伸AB 与楼房垂直相交于点E ,测得BE =21m ,那么该屏幕上端与下端之间的距离CD 为________m .16.在Rt △ABC 中,假定∠C =90∘,tanA ⋅tan20∘=1,那么∠A =________. 17.在△ABC 中,假定|sinA −√32|+|cosB −12|=0,那么∠C =________.18.如下图,某渔船在海面上朝正西方向匀速飞行,在A 处观测到灯塔M 在北偏西方60∘向上,飞行半小时后抵达B 处,此时观测到灯塔M 在北偏西方30∘向上,那么该船继续飞行________分钟可使渔船抵达离灯塔距离最近的位置.19.如下图,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60∘,在点A 处看这栋电梯楼底部点C 处的俯角为45∘,两栋楼之间的距离为30m ,那么电梯楼的高BC 为________米〔准确到0.1〕.〔参考数据:√2≈1.414,√3≈1.732〕.20.如图,从一运输船的点A 处观测海岸上高为41m 的灯塔BC 〔观测点A 与灯塔底部C 在一个水平面上〕,测得灯塔顶部B的仰角为35∘,那么点A到灯塔BC的距离约为________〔准确到1cm〕.三、解答题〔共 6 小题,每题 10 分,共 60 分〕21.计算以下各式的值:①sin30∘⋅cos45∘+√2⋅cos45∘−sin60∘⋅tan60∘; ②cos230∘+cos260∘tan45∘+tan60∘.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在空中C处和坡面D处各装一根等长的引拉线BC和BD,过点D作空中MN的垂线DH,H为垂足,点C、A、H在不时线上,假定测得AC=5米,AD=13米,坡角为30∘,试求电线杆AB的高度.23.如图,为了求河的宽度,在河对岸岸边恣意取一点A,再在河这边沿河边取两点B、C,使得∠ABC=60∘,∠ACB=45∘,量得BC长为30m.(1)求河的宽度;〔即求△ABC中BC边上的高〕(2)请再设计一种测量河的宽度的方案.(√2≈1.414, √3≈1.732)24.如图,A点、B点区分表示小岛码头、海岸码头的位置,离B点正西方向的7.00km处有一海岸眺望塔C,又用经纬仪测出:A点区分在B点的北偏东57∘处、在C点的西南方向.(1)试求出小岛码头A点到海岸线BC的距离;(2)有一观光客轮K从B至A方向沿直线飞行:①某眺望员在C处发现,客轮K刚好在正南方向的D处,试求出客轮驶出的距离BD的长;②当客轮飞行至E处时,发现E点在C的北偏东27∘处,央求出E点到C点的距离;〔注:tan33∘≈0.65,sin33∘≈0.54,cos33∘≈0.84,结果准确到0.01km〕25.重庆修建多量体裁衣、依山而建,现有以住宅楼如下图,该楼面前为一斜坡,坡角为15∘,为测得该楼的高度,一兴味小组的同窗在C点测得楼顶A点的仰角为45∘,点D点测的仰角为60∘,CD两点之间的距离是20米,C、B在同一水平空中上,CD与AB交于点E.(1)求D点距离空中的垂直距离;(2)求斜坡最高点E点到楼顶A点之间的距离.〔结果保管根号,参考数据:tan15∘=0.27,sin15∘=0.26,cos15∘=0.97,√3=1.732,√2=1.414,√6=2.449〕26.在某段限速公路BC上〔公路视为直线〕,交通管理部门规则汽车的最高行驶速度不能超越60千米/时〔即503米/秒〕,并在离该公路100米处设置了一个监测点A.在如下图的直角坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在A的北偏西方60∘向上,点C在A的北偏西方45∘向上,另外一条初等级公路在y轴上,AO为其中的一段.(1)求点B和点C的坐标;(2)一辆汽车从点B匀速行驶到点C所用的时间是15秒,经过计算,判别该汽车在这段限速路上能否超速?〔参考数据:√3≈1.7〕(3)假定一辆大货车在限速路上由C处向西行驶,一辆小汽车在初等级公路上由A处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶进程中的最近距离是多少?答案1.D2.B3.A4.C5.C6.C7.D8.B9.B10.D11.6000√312.3sinαtanα13.ℎtanαm14.500√315.(21−9√3)16.70∘17.60∘18.1519.82.020.5921.解:(1)原式=12×√22+√2×1−√32×√3=√2+√2−3=5√24−32;(2)原式=(√32)2+(12)21+√3=1+√3.22.电线杆AB的高度是14413米.23.河的宽度为19米;(2)如图,在河对岸找一点F,在河边找到一点A,满足AF与河垂直,画一平行于河的线段AB,使∠B=90∘,找到DF与AB的交点C,那么Rt△BCD∽Rt△ACF,有BC:AC=BD:AF,∴AF=BD×ACBC,测出DB,AC,BC,即可求得河宽AF的值.24.解:(1)过A作AM⊥BC于M,设AM=x,∵∠ACM=45∘,∴CM=x,那么由题意得:tan33∘=x7+CM =x7+x,∴(7+x)tan33∘=x,那么:7×tan33∘=x(1−tan33∘),7×0.65≈0.35x,∴x≈13.00(km),(2)①∵cos33∘=BCBD =7BD,∴BD=7cos33∘≈8.33(km),②过C作CN⊥AB于N,∵∠ABC=33∘,∠BCD=90∘,∴∠BDC=57∘,又∠DCE=27∘,∴∠BEC=57∘−27∘=30∘,∴sin33∘=NCBC ,NCEC=sin30∘=0.5,那么EC=2NC=2BC×sin33∘≈2×7×0.54≈7.56(km).25.解:如图,(1)作DH⊥BC,垂足为H.∵CD=20m,∠DCH=15∘,∴DH=20×sin15∘≈20×0.26=5.2米;(2)由在D点测的仰角为60∘可知∠AFB=60∘,CH=20⋅cos15∘≈20×0.97=19.4米;∵DH=5.2米,∴FH=DHtan60=√3≈3.0米,CF=CH−FH=19.4−3.0=16.4〔米〕.令BC=ℎ,那么AB=BC=ℎ,BF=ℎ−CF=ℎ−16.4米,∵DH⊥BC,AB⊥BC,∴△DHF∽△ABF,∴DHAB=FHBF,即5.2ℎ=3ℎ−16.4,解得ℎ≈38.7〔米〕.∵BE=BC⋅tan15∘≈38.7×0.27≈10.4,∴AE=AB−BE=38.7−10.4=28.3〔米〕.26.解:(1)在Rt△AOB中,OA=100,∠BAO=60∘,∴OB=OAtan∠BAO=100√3米.Rt△AOC中,∵∠CAO=45∘,∴OC=OA=100米.∴B(−100√3, 0),C(100, 0).(2)∵BC=BO+OC=100√3+100米,∴100√3+10015≈18>503米,∴汽车在这段限速路上超速了.(3)设大货车行驶了x米,两车的距离为y=√(100−x)2+(100−2x)2=√5(x−60)2+2000当x=60米时,y有最小值√2000=20√5米.。

人教版九年级数学下册第28章:锐角三角函数 全章测试含答案

人教版九年级数学下册第28章:锐角三角函数  全章测试含答案

人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案

人教版九年级数学下册《28.1锐角三角函数》同步测试题及答案任务一 求锐角三角函数值子任务1 利用参数法求锐角三角函数值母题1 如图,在Rt △ABC 中,∠C=90°,BC=3AC ,则tan B=( )A .13B .3C .√1010 D .3√1010变式练1:在直角三角形ABC 中,若2AB=AC ,则cos C 的值为( )A .12或2√35B .12或2√55 C .√32或2√55 D .√32或2√35子任务2 构造直角三角形求锐角三角函数值母题2 如图,已知钝角三角形ABC ,点D 在BC 的延长线上,连接AD ,若∠DAB=90°,∠ACB=2∠D ,AD=2,AC=32,求tan D 的值.变式练2:如图,△ABC与△BDC均为直角三角形,若∠ACB=30°,∠DBC=45°,求∠ADB的正切值.母题3如图,在△ABC中,CA=CB=4,cos C=14,则sin B的值为()A.√102B.√153C.√64D.√104变式练3:如图,在Rt△BAD中,延长斜边BD到点C,使DC=12BD,连接AC.若tan B=53,则tan∠CAD的值为.子任务3利用等角转换法求锐角三角函数值母题4如图,在半径为3的☉O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则tan D=()A.2√2B.√24C.13D.2√23【关键点拨】变式练4:如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1∠BAC,求sin∠BPC.2子任务4利用网格求锐角三角函数值母题5如图,这是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是.【关键点拨】变式练5:如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.√1313B.√66C.√2613D.√2626子任务5在折叠问题中求锐角三角函数值母题6如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D 处,EF为折痕,若AE=3,则sin∠BFD的值为.【关键点拨】变式练6:直角三角形纸片ABC,两直角边BC=4,AC=8,现将△ABC纸片按图中方式折叠,使点A 与点B重合,折痕为DE,则tan∠CBE的值是()A.12B.34C.1D.43任务二 由一个锐角的三角函数值求三角形的边长母题7 在Rt △ABC 中,∠C=90°,sin A=35,AC=8 cm,则BC 的长度为( )A .3 cmB .4 cmC .5 cmD .6 cm变式练7:已知∠A 是锐角,sin A=35,则cos A 的值为( )A .35B .45C .34D .54任务三 由一个锐角的三角函数值求三角形的面积母题8 已知△ABC 中,tan B=23,BC=6,过点A 作BC 边上的高,垂足为点D ,且满足BD ∶CD=2∶1,则△ABC 面积的所有可能值为 .变式练8:在△ABC 中,AB=3√6,AC=6,∠B=45°,则BC= .任务四 锐角三角函数的探究问题母题9 如图1,在Rt △ABC 中,以下是小亮探究asinA 与bsinB 之间关系的方法:∵sin A=a c ,sin B=b c , ∴c=a sinA ,c=bsinB ∴asinA =bsinB .根据你掌握的三角函数知识,在图2的锐角三角形ABC 中,探究asinA ,bsinB ,csinC 之间的关系,并写出探究过程.图1 图2变式练9:把(sin α)2记作sin 2α,根据图完成下列各题:图1图2(1)如图1,sin 2A 1+cos 2A 1= ,sin 2A 2+cos 2A 2= sin 2A 3+cos 2A 3= .(2)观察上述等式后猜想:在Rt △ABC 中,∠C=90°,总有sin 2A+cos 2A= . (3)如图2,在Rt △ABC 中证明(2)题中的猜想.(4)已知在△ABC 中,∠A+∠B=90°,且sin A=1213,求cos A 的值.参考答案母题1 A 提示:在Rt △ABC 中,∠C=90°,BC=3AC∴tan B=AC BC =AC 3AC =13.故选A .变式练1 C 提示:①当AC 为直角边时∵2AB=AC∴BC=√AB 2+AC 2=√5AB∴cos C=AC BC =2AB √5AB =2√55;②当AC 为斜边时 ∵2AB=AC∴BC=√AC 2-AB 2=√3AB∴cos C=BC AC =√3AB 2AB=√32. 综上,cos C=2√55或√32. 故选C .母题2 解:∵∠ACB=∠D+∠CAD ,∠ACB=2∠D∴∠CAD=∠D∴CA=CD. ∵∠DAB=90°∴∠B+∠D=90°,∠BAC+∠CAD=90° ∴∠B=∠BAC ∴AC=CB∴BD=2AC=2×32=3. 在Rt △ABD 中,∵∠DAB=90°,AD=2∴AB=√32-22=√5∴tan D=AB AD =√52.变式练2解:如图,过点A 作DB 延长线的垂线,垂足为点E 则∠E=90°,∠ABE=45°,AE=BE.设AE=BE=x ,则AB=√2x ,BC=√6x ,BD=CD=√3x∴DE=√3x+x ,∴tan ∠ADB=AE DE =(√3+1)x =√3+1=√3-12.母题3 D 提示:如图,过点A 作AD ⊥BC ,垂足为D在Rt △ACD 中,CD=CA ·cos C=1∴AD=√AC 2-CD 2=√15.在Rt △ABD 中,BD=CB-CD=3,AD=√15.∴AB=√BD 2+AD 2=2√6.∴sin B=AD AB =√104.故选D . 变式练3 15 提示:如图,延长AD ,过点C 作CE ⊥AD ,垂足为E.在Rt △BAD 中,tan B=AD AB =53. 可设AD=5x ,则AB=3x.∵∠CDE=∠BDA ,∠CED=∠BAD ∴△CDE ∽△BDA∴CE AB =DE AD =CD BD =12 ∴CE=32x ,DE=52x ∴AE=AD+DE=152x ∴在Rt △AEC 中,tan ∠CAD=CE AE =15.故答案为15.母题4 A 提示:如图,连接BC.∵AB 是直径,∴∠ACB=90°. ∵☉O 的半径为3,∴AB=6 ∴BC=√AB 2-AC 2=√62-22=4√2∴tan D=tan A=BC AC =4√22=2√2. 故选A .变式练4 解:如图,作AD ⊥BC 于点D.∵AB=AC=5,BC=8∴BD=CD=4,∠BAD=12∠BAC. ∵∠ADB=90°,∴sin ∠BAD=BD AB =45.又∵∠BPC=12∠BAC∴∠BPC=∠BAD ∴sin ∠BPC=45. 母题5 2 提示:如图,过点Q 作QC ∥BA ,连接PC∴∠QMB=∠CQP. 由题意得CQ 2=22+22=8 PC 2=42+42=32 PQ 2=22+62=40∴PC 2+CQ 2=PQ 2∴△PCQ 是直角三角形 ∴∠PCQ=90°∴tan ∠CQP=PC CQ =√22√2=2∴tan ∠QMB=tan ∠CQP=2. 故答案为2.变式练5 D 提示:如图,延长AC 到点D ,连接BE 交CD 于点O∴BE ⊥CD ,AB=√22+32=√13,OB=12BE=12√12+12=√22∴sin ∠BAC=OB AB =√22√13=√2626. 故选D .母题6 13 提示:∵在△ABC 中,∠ACB=90°,AC=BC=4∴∠A=∠B.由折叠的性质得到△AEF ≌△DEF∴∠EDF=∠A ∴∠EDF=∠B∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180° ∴∠CDE=∠BFD. 又∵AE=DE=3∴CE=4-3=1.在直角△ECD 中,sin ∠CDE=CEED =13∴sin ∠BFD=13. 故答案为13.变式练6 B 提示:根据题意,BE=AE.设BE=x ,则CE=8-x. 在Rt △BCE 中,x 2=(8-x )2+42 解得x=5∴CE=8-5=3∴tan ∠CBE=CE CB =34.故选B .母题7 D 提示:∵sin A=BCAB =35∴设BC=3x ,AB=5x. 又∵AC 2+BC 2=AB 2∴82+(3x )2=(5x )2解得x=2或x=-2(舍去)∴BC=3x=6 cm . 故选D .变式练7 B 提示:∵sin 2A+cos 2A=1∴cos A=√1−(35) 2=45. 故选B .母题8 8或24 提示:如图1所示∵BC=6,BD ∶CD=2∶1∴BD=4.∵AD ⊥BC ,tan B=23∴AD BD =23∴AD=23BD=83∴S △ABC =12BC •AD=12×6×83=8. 如图2所示∵BC=6,BD ∶CD=2∶1,∴BD=12.∵AD ⊥BC ,tan B=23,∴AD BD =23,∴AD=23BD=8 ∴S △ABC =12BC •AD=12×6×8=24. 综上所述,△ABC 面积的所有可能值为8或24. 故答案为8或24.图1 图2变式练8 3√3+3或3√3-3 提示:①当△ABC 为锐角三角形时 过点A 作AD ⊥BC 于点D ,如图1.图1∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3,∴BC=BD+CD=3√3+3. ②当△ABC 为钝角三角形时过点A 作AD ⊥BC 交BC 延长线于点D ,如图2.图2∵AB=3√6,∠B=45°∴AD=BD=AB ·sin 45°=3√3∴CD=√AC 2-AD 2=3∴BC=BD-CD=3√3-3.综上,BC 的长为3√3+3或3√3-3.故答案为3√3+3或3√3-3.母题9 解:a sinA =b sinB =c sinC .理由如下:如图,过点A 作AD ⊥BC ,过点B 作BE ⊥AC在Rt △ABD 中,sin B=AD c ,即AD=c sin B 在Rt △ADC 中,sin C=AD b ,即AD=b sin C∴c sin B=b sin C ,即b sinB =c sinC 同理可得a sinA =c sinC则a sinA =b sinB =c sinC .变式练9 解:(1)1;1;1 提示:sin 2A 1+cos 2A 1=122+√322=14+34=1 sin 2A 2+cos 2A 2=1√22+1√22=12+12=1 sin 2A 3+cos 2A 3=352+452=925+1625=1.故答案为1;1;1.(2)1.(3)在题图2中,∵sin A=a c ,cos A=b c ,且a 2+b 2=c 2 则sin 2A+cos 2A=a c 2+b c 2=a 2c 2+b 2c 2=a 2+b 2c 2=c 2c 2=1 即sin 2A+cos 2A=1.(4)在△ABC 中,∠A+∠B=90°,∴∠C=90°. ∵sin 2A+cos 2A=1,∴12132+cos 2A=1 解得cos A=513或cos A=-513(舍去),∴cos A=513.。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

锐角三角函数单元测试题

锐角三角函数单元测试题

人教版数学九年级下学期第28章《锐角三角函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.sin60°的值等于( )A .12 B C D2.已知α为锐角,sin (α﹣20°)α=( ) A .20° B .40°C .60°D .80°3.在正方形网格中,∠α的位置如图所示,则tanα的值是( )A B C .12 D .24.在△ABC 中,∠C=90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,下列各式成立的是( )A .b=a•sinB B .a=b•cosBC .a=b•tanBD .b=a•tanB5.在Rt △ABC 中,各边都扩大5倍,则角A 的三角函数值( )A .不变B .扩大5倍C .缩小5倍D .不能确定6.在△ABC 中,∠C=90°,tanA=13,则cosA 的值为( )A B .23 C .34 D7.在△ABC 中,∠A=120°,AB=4,AC=2,则sinB 的值是( )A B C D8.如图,山顶一铁塔AB 在阳光下的投影CD 的长为6米,此时太阳光与地面的夹角∠ACD=60°,则铁塔AB 的高为( )BAA.3米 B.63米C.33米D.23米9.坡度等于1:3的斜坡的坡角等于()A.30°B.40°C.50°D.60°10.济南大明湖畔的“超然楼”被称作“江北第一楼”,某校数学社团的同学对超然楼的高度进行了测量,如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,3≈1.7,结果精确到1m,则该楼的高度CD为()A.47m B.51m C.53m D.54m二、填空题(共6小题,每小题3分,共18分)11.求值:sin60°﹣tan30°=.12.如图,在直角三角形ABC中,∠C=90°,3AB=10,则∠A=度.C BA13.如图,将∠AOB放置在5×5的正方形网格中,则cos∠AOB的值是.O BA14.△ABC中,∠C=90°,斜边上的中线CD=6,sinA=13,则S△ABC=.15.如图,身高1.6m的小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为6m,那么这棵树高为(其中小丽眼睛距离地面高度近似为身高).16.在我们生活中通常用两种方法来确定物体的位置.如小岛A在码头O的南偏东60°方向的14千米处,若以码头O为坐标原点,正东方向为x轴的正方向,正北方向为y轴的正方向,1千米为单位长度建立平面直角坐标系,则小岛A也可表示成_________________.三、解答题(共8题,共72分)17.(本题8分)已知α为一锐角,sinα=45,求tanα.18.(本题8分)如图,在△ABC中,∠C=90°,BC=1,AB=2,求sinA的值.CBA19.(本题8分)如图,已知AC=4,求AB和BC的长.105°30°CAB于点D,根据三角函数的定义在Rt△ACD中,在Rt△CDB中,即可求出CD,AD,BD,从而求解.20.(本题8分)如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(本题8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为42米.求新传送带AC的长度.22.(本题10分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:3,AB=10米,AE=15米,求这块宣传牌CD的高度.23.(本题10分)如图,在一笔直的海岸线上有A,B两个观测站,A观测站在B观测站的正东方向,有一艘小船在点P处,从A处测得小船在北偏西60°方向,从B处测得小船在北偏东45°的方向,点P到点B的距离是2(注:结果有根号的保留根号)(1)求A,B两观测站之间的距离;(2)小船从点P处沿射线AP3/时的速度进行沿途考察,航行一段时间后到达点C处,此时,从B测得小船在北偏西15°方向,求小船沿途考察的时间.24.(本题12分)如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)第28章《锐角三角函数》单元测试卷解析一、选择题1. 【答案】sin60°.故选C.2.【答案】∵α为锐角,sin(α﹣20°),∴α﹣20°=60°,∴α=80°,故选D.3.【答案】由图可得,tanα=2÷1=2.故选D.4.【答案】A、∵sinB=bc,∴b=c•sinB,故选项错误;B、∵cosB=ac,∴a=c•cosB,故选项错误;C、∵tanB=ba,∴a=btan B,故选项错误;D、∵tanB=ba,∴b=a•tanB,故选项正确.故选D.5.【答案】∵各边都扩大5倍,∴新三角形与原三角形的对应边的比为5:1,∴两三角形相似,∴∠A的三角函数值不变,故选A.6.【答案】如图,A∵tanA=13,∴设BC=x,则AC=3x,∴x,∴故选D.7.【答案】延长BA过点C作CD⊥BA延长线于点D,∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,BD=5,∴sinB=CD BC. 故选:B . D8.【答案】设直线AB 与CD 的交点为点O . ∴BO DO AB CD =.∴AB=BO CD DO⨯.∵∠ACD=60°.∴∠BDO=60°. 在Rt △BDO 中,tan60°=BO DO . ∵CD=6.∴AB=BO DO× 故选B .A9.【答案】坡角α,则tanα=1α=30°.故选A .10.【答案】根据题意得:∠A=30°,∠DBC=60°,DC ⊥AC ,∴∠ADB=∠DBC ﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=6051(m ). 故选B .二、填空题11.【答案】原式12.【答案】∵∠C=90°,AB=10,∴cosA=AC AB, ∴∠A=30°,故答案为:30°.13.【答案】由图可得cos ∠AOB=32. 故答案为:32.B14.【答案】在Rt △ABC 中,∵斜边上的中线CD=6,∴AB=12.∵sinA=13,∴BC=4,S △ABC =1215. 【答案】由题意得:AD=6m ,在Rt △ACD 中,∴AB=1.6m∴CE=CD +DE=CD + 1.6,所以树的高度为( 1.6)m .16.【答案】过点A 作AC ⊥x 轴于C .在直角△OAC 中,∠AOC=90°﹣60°=30°,OA=14千米,则AC=12OA=7千米,因而小岛A 所在位置的坐标是(7).故答案为:(7).三、解答题17.【解答】由sinα=45,设a=4x ,c=5x ,则b=3x ,故tanα=43.αca18.【解答】sinA=BCAB=12.19.【解答】作CD⊥AB于点D,105°30°CD B A在Rt△ACD中,∵∠A=30°,∴∠ACD=90°﹣∠A=60°,CD=12AC=2,AD=AC•cosA=23.在Rt△CDB中,∵∠DCB=∠ACB﹣∠ACD=45°,∴BD=CD=2,∴BC=22,∴AB=AD+BD=2+23.20.【解答】作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180 º-∠BAD=180 º-90 º=90 º, ∠ADF+∠DAF=90 º, ∴∠ADF=36 º.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sinα=BEAB,∴AB=oBEsin36=240.60=40mm在Rt△ADF中,cos∠ADF==DFAD,∴AD=oDFcos36=48600.80=mm.∴矩形ABCD的周长=2(40+60)=200mm.21.【解答】如图,在Rt△ABD中,AD=ABsin45°22=4.在Rt△ACD中,∵∠ACD=30°,∴AC=2AD=8.即新传送带AC的长度约为8米;22.【解答】过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABG中,i=tan∠BAG=3,∴∠BAG=30°,∴BG=12AB=5,AG=53.∴BF=AG+AE=53+15.在Rt△BFC中,∵∠CBF=30°,∴CF:BF=3,∴CF=5+53.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CF+FE﹣DE=5+53+5﹣15=(53﹣5)m.答:宣传牌CD高约(53﹣5)米.23.【解答】(1)如图,过点P作PD⊥AB于点D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=3千米.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=3PD=33千米,PA=6千米.∴AB=BD+AD=3+33(千米);(2)如图,过点B作BF⊥AC于点F.根据题意得:∠ABC=105°,在Rt△ABF中,∠AFB=90°,∠BAF=30°,∴BF=12AB=333+千米,AF=3AB=3+3 千米.在△ABC中,∠C=180°﹣∠BAC﹣∠ABC=45°.在Rt△BCF中,∠BFC=90°,∠C=45°,∴CF=BF=333+千米,∴PC=AF+CF﹣AP=33千米.故小船沿途考察的时间为:33÷3=3(小时).24.【解答】(1)如图,过点E 作EM ⊥AB ,垂足为M .设AB 为x .Rt △ABF 中,∠AFB=45°,∴BF=AB=x ,∴BC=BF +FC=x +25,在Rt △AEM 中,∠AEM=22°,AM=AB ﹣BM=AB ﹣CE=x ﹣2,tan22°=AM ME ,则x 22x 255-=+,解得:x=20. 即教学楼的高20m .(2)由(1)可得ME=BC=x +25=20+25=45. 在Rt △AME 中,cos22°=ME AE .∴AE=oME cos 22, 即A 、E 之间的距离约为48m 第二十八章 锐角三角函数基础知识反馈卡·28.1时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.如图J28­1­1,若cos α=1010,则sin α的值为( )图J28­1­1A.1010B.23C.34D.31010 2.已知∠A 为锐角,且sin A =12,那么∠A =( ) A .15° B.30° C.45° D.60°二、填空题(每小题4分,共8分)3.计算:(1)2cos30°-tan60°=________;(2)用计算器计算:①sin13°15′=________;②cos________°=0.857 2.4.如图J28­1­2,△ABC 是等边三角形,边长为2,AD ⊥BC ,则sin B =________,可得sin60°=________.图J28­1­2三、解答题(共11分)5.在Rt △ABC 中,∠C =90°,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,b =5,c =7,求sin A ,cos A ,tan A 的值.基础知识反馈卡·28.2时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J28­2­1,CD是Rt△ABC斜边上的高,AC=4,BC=3,则cos∠BCD=( )图J28­2­1A.34B.1225C.35D.452.小明由A出发向正东方向走10米到达B点,再由B点向东南方向走10米到达C点,则∠ABC=( ) A.22.5° B.45° C.67.5° D.135°二、填空题(每小题4分,共8分)3.在倾斜角为30°的斜坡上植树,若要求两棵树的水平距离为6 m,则斜坡上相邻两树的坡面距离为________m.4.在Rt△ABC中,∠C=90°,a=3 3,c=6,则b=________,∠B=________.三、解答题(共11分)5.如图J28­2­2,若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是60°,船的速度为5米/秒,求船从A到B处约需时间几分(参考数据:3≈1.7).图J28­2­2基础知识反馈卡·28.1 1.D 2.B 3.(1)0 (2)①0.229 2 ②314.AD AB 325.解:∵∠C =90°,b =5,c =7,∴a =c 2-b 2=2 6.∴sin A =a c =2 67, cos A =b c =57, tan A =a b =2 65. 基础知识反馈卡·28.21.D 2.D 3.4 3 4.3 30°5.解:如图DJ5,过点B 作BC 垂直对岸,垂足为C ,则图DJ5在Rt △ACB 中,有AB =BC sin ∠BAC =900sin60°=600 3. ∴t =600 35×60=2 3≈3.4(分). 答:船从A 处到B 处需时间3.4分.附赠材料:如何提高答题的准确率审题三原则如何提高答题的准确率?这是很多初中生想要解决的一个问题。

人教版九年级下《第二十八章锐角三角函数》单元测试题含答案

人教版九年级下《第二十八章锐角三角函数》单元测试题含答案

第二十八章 锐角三角函数一、选择题(每小题3分,共30分) 1.sin60°的值等于( ) A.12 B.22 C.32 D.332.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( )A.83B .6C .12D .8 3.已知α为锐角,且cos(90°-α)=12,则cos α的值为( )A.33 B.22 C.12 D.324.如图1,点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是( )图1A .1B .1.5C .2D .35.如图2,∠AOB 在正方形网格中,则cos ∠AOB 的值为( )图2A.12B.22C.32D.336.如图3,将△ABC 放在每个小正方形的边长都为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )图3A.55 B.105 C .2 D.127.如图4,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )图4A.53B.2 55C.52 D.238.如图5,某酒店大门的旋转门内部由三块宽为2米,高为3米的玻璃隔板组成,三块玻璃摆放时夹角相同.若入口处两根立柱之间的距离为2米,则两立柱底端中点到转轴底端的距离为( )图5A.3米 B .2米 C .2 2米 D .3米9.如图6,轮船沿正南方向以30海里/时的速度匀速航行,在M 处观测到灯塔P 在南偏西22°方向上.航行2小时后到达N 处,观测灯塔P 在南偏西44°方向上,若该船继续向南航行至离灯塔最近的位置,则此时轮船离灯塔的距离约为(参考数据:sin68°≈0.9272,sin46°≈0.7193,sin22°≈0.3746,sin44°≈0.6947)( )图6A .22.48海里B .41.68海里C .43.16海里D .55.63海里10.如图7,四边形BDCE 内接于以BC 为直径的⊙A ,已知BC =10,cos ∠BCD =35,∠BCE =30°,则线段DE 的长是( )图7A.89 B .7 3 C .4+3 3 D .3+4 3 请将选择题答案填入下表:题号 12345678910总分答案第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.如图8,在△ABC 中,∠B =45°,cos C =35,AC =5a ,则△ABC 的面积用含a 的式子表示是________.图812.为解决停车难的问题,在一段长56米的路段上开辟停车位,如图9,每个车位是长为5米、宽为2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出________个这样的停车位.(参考数据:2≈1.4)图913.如图10,在等腰三角形ABC 中,AB =AC ,BC =4,D 为BC 的中点,点E ,F 在线段AD 上,tan ∠ABC =3,则阴影部分的面积是________.图1014.已知△ABC ,若⎪⎪⎪⎪sin A -12与(tan B -3)2互为相反数,则∠C 的度数是________. 15.如图11,已知四边形ABCD 是正方形,以CD 为一边向CD 两旁分别作等边三角形PCD 和等边三角形QCD ,那么tan ∠PQB 的值为________.图1116.如图12,已知点A(5 3,0),直线y =x +b(b >0)与y 轴交于点B ,连接AB.若∠α=75°,则b =________.图12三、解答题(共52分)17.(5分)计算:cos30°tan60°-cos45°sin45°-sin260°.18.(5分)如图13,在△ABC中,AB=4,AC=6,∠ABC=45°,求BC的长及tan C 的值.图1319.(5分)如图14,在半径为1的⊙O中,∠AOB=45°,求sin C的值.图1420.(5分)如图15,AB是长为10 m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈35,tan37°≈34,sin65°≈910,tan65°≈157)图1521.(7分)如图16,菱形ABCD的对角线AC与BD相交于点O,∠ABC∶∠BAD=1∶2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.图1622.(7分)如图17,市防汛指挥部决定对某水库的水坝进行加高加固,设计师提供的方案是:水坝加高1米(EF=1米),背水坡AF的坡度i=1∶1,已知AB=3米,∠ABE=120°,求水坝原来的高度.图1723.(9分)阅读下面的材料:小凯遇到这样一个问题:如图18①,在四边形ABCD中,对角线AC,BD相交于点O,AC=4,BD=6,∠AOB=30°,求四边形ABCD的面积.小凯发现,分别过点A,C作直线BD的垂线,垂足分别为E,F,设AO为m,通过计算△ABD与△BCD的面积和可以使问题得到解决(如图②).请回答:(1)△ABD 的面积为________(用含m 的式子表示); (2)求四边形ABCD 的面积.参考小凯思考问题的方法,解决问题:如图③,在四边形ABCD 中,对角线AC ,BD 相交于点O ,AC =a ,BD =b ,∠AOB =α(0°<α<90°),则四边形ABCD 的面积为________(用含a ,b ,α的式子表示).图1824.(9分)观察与思考:阅读下列材料,并解决后面的问题.在锐角三角形ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,过点A 作AD ⊥BC 于点D(如图19①),则sin B =AD c ,sin C =ADb ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即b sin B =csin C ,同理有c sin C =a sin A ,a sin A =b sin B ,所以a sin A =b sin B =c sin C. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题:(1)如图②,△ABC 中,∠B =45°,∠C =75°,BC =60,则∠A =________°,AC =________;(2)如图③,在某次巡逻中,渔政船在C 处测得海岛A 在其北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得海岛A 在其北偏西75°的方向上,求此时渔政船距海岛A 的距离AB.(结果精确到0.01海里,6≈2.449)图19详解详析1.C2.B [解析] 由题意可得sin A =23=BCAB.因为BC =4,所以AB =6.3.D [解析] 因为cos(90°-α)=12,α为锐角,所以90°-α=60°,所以α=30°,所以cos α=32. 4.C [解析] ∵点A (t ,3)在第一象限,OA 与x 轴所夹的锐角为α,tan α=32,∴tan α=3t =32,∴t =2. 5.B [解析] 如图,连接AC .由网格图的特点,易得△ACO 是等腰直角三角形,所以∠AOB =45°,所以cos ∠AOB 的值为22.6.D [解析] 如图,连接BD .由网格图的特点可知AD ⊥BD ,由AD =2 2,BD =2,可得tan A 的值为12.7.A [解析] 在Rt △ABC 中,根据勾股定理可得AB 2=AC 2+BC 2=(5)2+22=9,∴AB =3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin B =AC AB =53.故选A. 8.A [解析] 如图,设转轴底端为A ,两立柱底端的点为B ,C ,BC 的中点为D ,则有AB =AC =2米,所以AD ⊥BC ,且CD =1米,所以AD =3米.9.B [解析] 如图,过点P 作P A ⊥MN 于点A ,MN =30×2=60(海里).∵∠PMN =22°,∠PNA =44°, ∴∠MPN =∠PNA -∠PMN =22°, ∴∠PMN =∠MPN , ∴MN =PN =60海里. ∵∠PNA =44°,∴在Rt △NAP 中,P A =PN ·sin ∠PNA ≈60×0.6947≈41.68(海里). 故选B.10.D [解析] 如图,过点B 作BF ⊥DE 于点F .在Rt △CBD 中,∵BC =10,cos ∠BCD =35,∴DC =6,∴BD =8.在Rt △BCE 中,BC =10,∠BCE =30°, ∴BE =5.在Rt △BDF 中,∠BDF =∠BCE =30°,BD =8, ∴DF =BD ·cos30°=4 3.在Rt △BEF 中,∠BEF =∠BCD , 即cos ∠BEF =cos ∠BCD =35,∴EF =BE ·cos ∠BEF =3,∴DE =EF +DF =3+4 3. 11.14a 2 12.1713.6 [解析] 由等腰三角形的轴对称性可知阴影部分的面积等于△ABC 的面积的一半.因为BD =12BC =2,AD ⊥BC ,tan ∠ABC =3,所以AD =6,所以△ABC 的面积为12,所以阴影部分的面积为6.14.90° [解析] 由题意得sin A =12,tan B =3,所以∠A =30°,∠B =60°,所以∠C的度数是90°.15.2-3 [解析] 延长QP 交AB 于点F .∵四边形ABCD 是正方形,△PCD 和△QCD 是以CD 为边的等边三角形, ∴四边形PCQD 是菱形.设正方形ABCD 的边长为a ,则可得PE =QE =32a ,DE =EC =12a ,FB =12a , ∴tan ∠PQB =FBFQ=12a a +32a=2- 3. 16.5 [解析] 设直线y =x +b (b >0)与x 轴交于点C ,易得C (-b ,0),B (0,b ), 所以OC =OB , 所以∠BCO =45°.又因为α=75°,所以∠BAO =30°. 因为OA =5 3,所以OB =5,所以b =5. 17.1418.解:如图,过点A 作AD ⊥BC 于点D .在Rt △ABD 中,∠B =45°, ∵sin B =ADAB,∴AD =AB ·sin B =4×sin45°=4×22=2 2, ∴BD =AD =2 2.在Rt △ADC 中,AC =6,由勾股定理,得DC =AC 2-AD 2=62-(2 2)2=2 7, ∴BC =BD +DC =2 2+2 7,tan C =AD DC =2 22 7=147. 19.解:如图,过点A 作AD ⊥OB 于点D . ∵在Rt △AOD 中,∠AOB =45°, ∴OD =AD =OA ·cos45°=1×22=22, ∴BD =OB -OD =1-22, ∴AB =AD 2+BD 2=(22)2+(1-22)2=2- 2. ∵AC 是⊙O 的直径,∴∠ABC =90°,AC =2,∴sin C =ABAC =2-22.20.解:如图,过点B 作BF ⊥AE 于点F , 则BF =DE .在Rt △ABF 中,sin ∠BAF =BF AB, 则BF =AB ·sin ∠BAF ≈10×35=6(m).在Rt △CDB 中,tan ∠CBD =CD BD ,则CD =BD ·tan65°≈10×157≈21(m). 则CE =DE +CD =BF +CD ≈6+21=27(m).答:大楼CE 的高度约是27 m.21.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∴∠ABC +∠BAD =180°. 又∵∠ABC ∶∠BAD =1∶2, ∴∠ABC =60°.∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°,∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°.∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.22.解:如图所示,过点E 作EC ⊥BD 于点C , 设BC =x 米.∵∠ABE =120°, ∴∠CBE =60°. 在Rt △BCE 中, ∵∠CBE =60°,∴tan60°=CE BC =3,即CE =3x 米. ∵背水坡AF 的坡度i =1∶1,∴CF AC=1. ∵AC =(3+x )米,CF =(1+3x )米, ∴1+3x 3+x=1,解得x =3+1, ∴EC =3x =(3+3)米.答:水坝原来的高度为(3+3)米.23.解:(1)∵AO =m ,∠AOB =30°,∴AE =12m , ∴△ABD 的面积为12×12m ×6=32m . 故答案为32m. (2)由(1)得S △ABD =32m . 同理,CF =12(4-m ), ∴S △BCD =12BD ·CF =6-32m . ∴S 四边形ABCD =S △ABD +S △BCD =6.解决问题:分别过点A ,C 作直线BD 的垂线,垂足分别为E ,F ,设AO 为x .∵∠AOB =α,∴AE =x ·sin α,∴S △ABD =12BD ·AE =12b ·x ·sin α. 同理,CF =(a -x )·sin α,∴S △BCD =12BD ·CF =12b ·(a -x )·sin α. ∴S 四边形ABCD =S △ABD +S △BCD =12b ·x ·sin α+12b ·(a -x )·sin α=12ab ·sin α. 故答案为12ab ·sin α. 24.解:(1)60 20 6(2)依题意,得BC =40×0.5=20(海里).∵CD∥BE,∴∠DCB+∠CBE=180°.∵∠DCB=30°,∴∠CBE=150°.∵∠ABE=75°,∴∠ABC=75°,∴∠A=45°.在△ABC中,ABsin∠ACB=BC sin A,即ABsin60°=20sin45°,解得AB=10 6≈24.49(海里).答:渔政船距海岛A的距离AB约为24.49海里.。

人教版初3数学9年级下册 第28章(锐角三角函数)测试卷(含答案)

人教版初3数学9年级下册 第28章(锐角三角函数)测试卷(含答案)

《第二十八章锐角三角函数》测试卷一、选择题(每小题3分,共8题,共24分)1.如图,在Rt △ABC 中,∠C=90°,AC=4,AB=5,则sinB 的值是( )A .32B .53C .43D .542.若α是锐角,sinα=cos38°,则α 等于( ) A .52°B .62°C .38°D .42°3.在△ABC 中,∠C=90°,如果AB=2,BC=1,那么∠A 的度数为( )A .30°B .45°C .60°D .90°4.在Rt △ABC 中,∠C=90°,若53sin =A ,则B tan =( )A .43B .34C .53D .355.如图,在Rt △ABC 中,CD 是斜边AB 上的高,45A ∠≠︒,则下列比值中不等于sinA 的是( )A .CD ACB .BD CBC .CB ABD .CD CB6.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为( )A .7米B .9米C .12米D .15米7.如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A1B.2C.1D18ABCD 中,E ,F分别为AD ,CD 的中点,BF 与CE 相交于点H ,直线EN交CB 的延长线于点N ,作CM ⊥EN 于点M ,交BF 于点G ,且CM=CD ,有以下结论:①BF ⊥CE ;②ED=EM ;③tan ∠ENC=34;④CHF DEHF S S ∆=4四边形,其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共8题,共24分)9.已知,在Rt △ABC 中,∠C=90°,AC=6,AB=10,则cosB 的值为 .10.已知α、β均为锐角,且满足0)1(tan 21sin 2=-+-βα,则α+β= .第1题第5题第6题第8题第7题第13题11.已知∠A 是锐角,若33)15tan(=- A ,则知∠A= .12.在正方形网格中,△ABC 的位置如图所示,则tan C 的值为  .13.半径为2cm 的⊙O 中,弦长为的弦所对的圆心角度数为.14.ABC ∆中,13AB AC ==,10BC =,则tan B = .15.在△ABC 中,∠B =45°,∠C =75°,AC =6,则AB 的长是 .16.如图,为了测量电线杆AB 的高度,小明将测量仪放在与电线杆的水平距离为9m 的D处.若测角仪CD 的高度为1.5m ,在C 处测得电线杆顶端A 的仰角为36°,则电线杆AB 的高度约为 m .(精确到0.1m ).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).17.平放在地面上的三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B 为36°,边AB 的长为2.1m ,BC 边上露出部分BD 的长为0.6m ,则铁板BC 边被掩埋部分CD 的长是 m .(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).18.如图,折叠矩形ABCD 的一边AD,使点D 落在BC 边的点F 处,已知BF=6cm ,且tan ∠BAF=43,则折痕AE 的长是 .三、解答题(共8题,共66分)19.计算(每小题4分,共8分)(1)45tan 30cos 60tan 30sin 22-+-; (2)30sin 430cos 3445tan 260tan 2+--20.(8分)在直角三角形ABC 中,已知∠C=90°,AB=15,AC=9,分别求出sinA 和tanB的值.第16题第18题21.(8分)如图,在 △ABC 中,∠C=90°,AB=10,53sinB ,点D 为边 BC 的中点.(1) 求 BC 的长;(2) 求 ∠BAD 的正切值.22.(8分)在锐角△ABC 中,AD 与CE 分别是边BC 与AB 的高,AB =12,BC =16,S △ABC =48, 求:(1)∠B 的度数; (2)tanC 的值.23.(8分)如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD 度数;(2)当AC=5时,求AD 的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)24.(8分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD 的高度,他们先在A 处测得古塔顶端点D 的仰角为45°,再沿着BA 的方向后退20m 至C 处,测得古塔顶端点D 的仰角为30°.求该古塔BD 的高度( 3≈1.732 ,结果保留一位小数).25.(8分)如图,AB是⊙O的直径,弦DE交AB于点F,⊙O的切线BC与AD的延长线交于点C,连接AE.(1)试判断∠AED与∠C的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E是半圆AB的中点,求线段AE的长.26.(10分)海中有一小岛P,在以P为圆心、半径为nmile的圆形海域内有暗礁.一轮船自西向东航行,它在A处时测得小岛P位于北偏东60 方向上,且A,P之间的距离为32nmile.若轮船继续向正东方向航行,轮船有无触礁危险?请通过计算加以说明.如果有危险,轮船自A处开始沿南偏东多少度的方向航行,能安全通过这一海域?答案与解析一、选择题(每小题3分,共8题,共24分)1.如图,在Rt △ABC 中,∠C=90°,AC=4,AB=5,则sinB 的值是( )A .32B .53C .43D .54【答案】D【考点】锐角三角函数的定义;【解答】解: ∵在Rt △ABC 中,∠C=90°,AC=4,AB=5,∴54sin ==AB AC B .故答案为:D .【分析】根据正弦函数的定义sinB=斜边的对边A ∠即可直接得出答案.2.若α是锐角,sinα=cos38°,则α 等于( ) A .52°B .62°C .38°D .42°【答案】A【考点】互余两角三角函数的关系;【解答】解:∵sinα=cos38°, ∴α=90°﹣38°=52°.故选A .【分析】一个角的正弦值等于它的余角的余弦值.3.在△ABC 中,∠C=90°,如果AB=2,BC=1,那么∠A 的度数为( )A .30°B .45°C .60°D .90°【答案】A【考点】解直角三角形;【解答】解:∵∠C=90°,AB=2,BC=1∴21sin ==AB BC A ∴∠A=30°.故选A .【分析】先根据正弦的定义可得∠A 的正弦值,再根据特殊角的锐角三角函数值即可得到结果.4.在Rt △ABC 中,∠C=90°,若53sin =A ,则B tan =( )A .43B .34C .53D .35【答案】A【考点】锐角三角形函数的定义;【解答】解:如图,在Rt ABC △中,90C ∠=︒,3sin 5A =第1题3sin 5BC A AB ∴==,设3BC k =,则AB 5k =,由勾股定理可得k BC AB AC 422=-=,44tan 33AC k B BC k ∴===.故选A .【分析】依题意,作出图形,设BC=3k ,则AB=5k 进而求AC ,根据正切的定义求得tanB 即可.5.如图,在Rt △ABC 中,CD 是斜边AB 上的高,45A ∠≠︒,则下列比值中不等于sinA 的是( )A .CD ACB.BDCB C .CB ABD .CD CB【答案】D【考点】锐角三角函数的定义;【解答】解:在Rt ABC ∆中,sin CBA AB= ,在Rt ACD ∆中,sin CDA AC=,90A B ∠+∠=︒ ,90B BCD ∠+∠=︒ ,A BCD ∴∠=∠ ,在Rt BCD ∆中,sin sin BDBCD A BC∠==,故选:D .【分析】利用锐角三角函数定义判断即可.6.某铁路路基的横断面是一个等腰梯形(如图),若腰的坡比为2:3,路基顶宽3米,高4米,则路基的下底宽为( )A .7米B .9米C .12米D .15米【答案】D【考点】解直角三角形的应用---坡度坡角问题;【解答】解:第5题第6题∵腰的坡度为i=2:3,路基高是4米,∴BE=6米,又∵EF=AD=3米,∴BC=6+3+6=15米.故选D .【分析】梯形上底的两个顶点向下底引垂线,得到两个直角三角形和一个矩形.利用相应的性质求解即可.7.如图,用一块直径为4的圆桌布平铺在对角线长为4的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A1B.2C.1D1【答案】B【考点】正方形的性质,垂径定理的应用,特殊角的三角函数值;【解答】如图,正方形ABCD 是圆内接正方形,4BD =,点O 是圆心,也是正方形的对角线的交点,作OF BC ⊥,垂足为F ,∵直径4BD =,∴2OB =,又∵△BOC 是等腰直角三角形,由垂径定理知点F 是BC 的中点,∴△BOF 是等腰直角三角形,∴sin 45OF OB ==°,∴2x EF OE OF ==-=故选:B .【分析】作出图形,把实际问题转化成数学问题,求出弦心距,再用半径减弦心距即可.8.如图,在正方形ABCD 中,E ,F 分别为AD ,CD 的中点,BF 与CE 相交于点H ,直线EN 交CB 的延长线于点N ,作CM ⊥EN 于点M ,交BF 于点G ,且CM=CD,有以下结论:第7题①BF ⊥CE ;②ED=EM ;③tan ∠ENC= 34;④CHF DEHF S S ∆=4四边形,其中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】D【考点】全等三角形的判定与性质,正方形的性质,相似三角形的判定与性质,解直角三角形;【解答】解:∵四边形ABCD 是正方形,∴BC=CD=AD ,∠BCF=∠CDE=90°,∵DE= 12 AD ,CF= 12 CD ,∴DE=CF ,∴△CDE ≌△BCF ,∴∠CBF=∠ECD ,∵∠ECD+∠ECB=90°,∴∠CBF+∠BCE=90°,∴∠BHC=90°,∴BF ⊥CE ,故①正确,∵CM=CD ,∠CME=∠D=90°,CE=CE ,∴Rt △CEM ≌Rt △CED ,∴EM=DE ,故②正确,∴∠CED=∠CEM=∠ECN ,∴NE=NC ,设NE=CN=x ,EM=DE=AE=a ,则CM=CD=2a ,在Rt △CNM 中,(x ﹣a )2+(2a )2 =x 2,解得x =52 a ,tan ∠ENC=34232==a a MN CM ,故③正确,易知△CHF ∽△CDE ,∴51)(2==∆∆CE CF S S CDE CHF ,∴CHF DEHF S S ∆=4四边形,故④正确,故答案为:D .【分析】可证△CDE ≌△BCF ,得出对应角相等可得①正确;易得Rt △CEM ≌Rt △CED ,进而得出②正确;设出参数NE=CN=x ,EM=DE=AE=a ,则CM=CD=2a ,tan ∠ENC=34232==a a MN CM ,故③正确;易知△CHF ∽△CDE,由面积比等于相似比的平方可得结论正确.二、填空题(每小题3分,共8题,共24分)第8题9.已知,在Rt △ABC 中,∠C=90°,AC=6,AB=10,则cosB 的值为 .【答案】54;【考点】勾股定理,锐角三角函数的定义;【解答】∵在Rt △ABC 中,∠C=90°,AC=6,AB=10,∴,86102222=-=-=AC AB BC ∴54108cos ===AB BC B .故答案为:54.10.已知α、β均为锐角,且满足0)1(tan 21sin 2=-+-βα,则α+β= .【答案】75°;【考点】特殊角的三角函数值;非负数的性质:算术平方根;绝对值的非负性;【解答】∵0)1(tan 21sin 2=-+-βα,∴sinα=12,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.【分析】根据非负数的性质求出sinα、tan β的值,然后根据特殊角的三角函数值求出两个角的度数.11.已知∠A 是锐角,若33)15tan(=-A ,则知∠A= .【答案】45°;【考点】特殊角的三角函数值;【解答】∵3330tan =,∴∠A -15°=30°,∴∠A=45°.故答案为:45°.【分析】根据特殊角的三角函数值得出3330tan =,求出∠A -15°=30°,从而求出∠A 的度数.12.在正方形网格中,△ABC 的位置如图所示,则tan C的值为  .【答案】25;【考点】锐角三角函数的定义;【解答】解:过A 作AD ⊥BC 于D ,设AD =5a ,CD =2a ,∴2525tan ===a a CD AD C ,故答案为:25【分析】过A 作AD ⊥BC 于D ,由锐角三角函数tanC=ADCD 和网格图的特征可求解.14.半径为2cm 的⊙O 中,弦长为的弦所对的圆心角度数为.【考点】垂径定理,锐角三角函数;【解答】解:如图,作OD ⊥AB ,由垂径定理知,点D 是AB 的中点,∴AD =12AB (cm ),∵ cos A =AD OA =∴∠A =30︒,∴∠AOD =60°,∴∠AOB =2∠AOD =120°,故答案为:120°.【分析】作OD ⊥AB ,由垂径定理知,点D 是AB 的中点,在直角三角形中,利用cos ADA OA=,根据比值求得 A ∠的度数,从而知道AOD ∠ 的度数,即可进一步求得最后答案.14.ABC ∆中,13AB AC ==,10BC =,则tan B = .【答案】125【考点】勾股定理,等腰三角形的性质,三角函数的应用;【解答】解:如图,等腰ABC ∆中,13AB AC ==,10BC =,过A 作AD BC ⊥于D ,则5BD =,在Rt ABD ∆中,13AB =,5BD =,则,125132222=-=-=BD AB AD ,故12tan 5AD B BD ==.故答案为125.【分析】根据题意画出图形,由等腰三角形的性质求出BD 的长,根据勾股定理求出AD 的长,再根据锐角三角函数的定义即可求出tan B 的值.15.在△ABC 中,∠B =45°,∠C =75°,AC =6,则AB 的长是 .【答案】333+;【考点】直角三角形、等腰直角三角形的判定与性质、含30°角的直角三角形的性质;【解答】解:作CD ⊥AB 于D ,如图所示:则∠BDC =∠ADC =90°,∵∠B =45°,∴△BCD 是等腰直角三角形,∴BD =CD ,∠BCD =45°,∵∠ACB =75°,∴∠ACD =∠ACB -∠BCD =30°,∴AD =12AC =12×6=3,CD =22AD AC- ∴BD =CD ∴AB =BD +AD ;【分析】作CD ⊥AB 于D ,则△BCD 是等腰直角三角形,得BD =CD,∠BCD =45°,求出∠ACD =30°,由直角三角形的性质得AD =12AC =3,BD =CD 16.如图,为了测量电线杆AB 的高度,小明将测量仪放在与电线杆的水平距离为9m 的D 处.若测角仪CD 的高度为1.5m ,在C 处测得电线杆顶端A 的仰角为36°,则电线杆AB的高度约为  m .(精确到0.1m ).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).【考点】解直角三角形的应用﹣仰角俯角问题;【解答】解:如图,在Rt △ACE 中,∴AE=CE•tan36°=BD•tan36°=9×tan36°≈6.57米,第16题∴AB=AE+EB=AE+CD=6.57+1.5≈8.1(米).故答案为:8.1.【分析】根据CE 和tan36°可以求得AE 的长度,根据AB=AE+EB 即可求得AB 的长度,即可解题.17.平放在地面上的三角形铁板ABC 的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B 为36°,边AB 的长为2.1m ,BC 边上露出部分BD 的长为0.6m ,则铁板BC边被掩埋部分CD 的长是 m .(结果精确到0.1m.参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38).【答案】1.1;【考点】解直角三角形的应用;【解答】解:∵ ∠A =54° , ∠B =36°∴ ∠C =180°−54°−36°=90°∴在直角 △ABC 中,sinA = BC AB ,则BC =AB•sinA =2.1sin54°≈2.1×0.81=1.701,则CD =BC ﹣BD =1.701﹣0.6=1.101≈1.1(m ),故答案为:1.1.【分析】首先根据三角形的内角和定理算出∠C 的度数,进而利用正弦三角函数的定义进行求值即可.18.如图,折叠矩形ABCD 的一边AD,使点D 落在BC 边的点F 处,已知BF=6cm ,且tan ∠BAF=43,则折痕AE 的长是 .【考点】矩形的性质,翻折变换,解直角三角形;【解答】解:由折叠得:AF=AD,EF=DE,∵四边形ABCD 为矩形,AF=AD=BC,DC=AB,∠B=∠C=∠D=90°,第17题∵43tan ==∠AB BF BAF ,∵BF=6,∴AB=8,由勾股定理得AF=10cm ,∴AD=BC=10cm ,∴CF=BC -BF=10-6=4cm ,设EF=DE=xcm ,∴CE=DC -DE=AB -DE=(8-x )cm,在Rt △EFC 中,由勾股定理得:222)8(4x x -+=,解得:x =5,∴DE=5cm,在Rt △ADE 中,由勾股定理得:AE 555102222=+=+=DE AD AE cm.【分析】由折叠的性质得AF=AD,EF=DE,由矩形的性质得AF=AD=BC,∠B=∠C=∠D=90°,再根据锐角三角函数的定义得出AB=8,由勾股定理得AF=10cm ,则AD=BC=10cm,CF=BC -BF=10-6=4cm ,设EF=DE=xcm ,则CE=DC -DE=AB -DE=(8-x )cm ,然后在Rt △EFC 中,由勾股定理列出方程,解答即可.三、解答题(共8题,共66分)20.计算(每小题4分,共8分)(1)45tan 30cos 60tan 30sin 22-+-; (2) 30sin 430cos 3445tan 260tan 2+--【答案】(1)23-;(2)0.【考点】特殊角的三角函数值;【解答】解:(1)原式=231233112332122-=-+-=-+-⨯(2)原式=02332233221423341232=+--=⨯+⨯-⨯-【分析】直接利用特殊角的三角函数值分别代入,进而化简计算得出答案.20.(8分)在直角三角形ABC 中,已知∠C=90°,AB=15,AC=9,分别求出sinA 和tanB 的值.【答案】解:如图,∵∠C=90°,AB=15,AC=9,∴BC=AB 2−AC 2=12,∴sinA=BC AB =45,tanB=AC BC =43.【考点】锐角三角函数的定义;【分析】利用勾股定理得出BC 的长,再利用锐角三角函数关系得出答案.21.(8分)如图,在 △ABC 中,∠C=90°,AB=10,53sin =B ,点D 为边 B C 的中点.(1) 求 BC 的长; (2) 求 ∠BAD 的正切值.【解答】解:(1)∵,10,53sin ==AB B ∴,5310=AC ∴AC=6,∴在Rt △ABC 中,86102222=-=-=AC AB BC .(2)如图,过点D 作DE ⊥AB ,垂足为E,∵∠C=∠BED=90°,∠B=∠B,∴△BED ∽△BCA,∴CA ED BA BD BC BE ==,∴61048ED BE ==,解得:512,516==ED BE ,∴AE=AB=BE=10-516=534,∴176tan ==∠AE DE BAD .【考点】解直角三角形;【分析】(1)首先根据锐角三角函数的定义求出AC 的长,然后根据勾股定理求出BC 的长即可.(2)过点D 作DE ⊥AB ,垂足为E,在证明△BED ∽△BCA ,利用相似三角形的性质可求出BE 和ED,最后利用锐角三角函数的定义求出tan ∠BA D 的值.22.(8分)在锐角△ABC 中,AD 与CE 分别是边BC 与AB 的高,AB =12,BC =16,S △ABC =48, 求:(1)∠B 的度数; (2)tanC 的值.【答案】解:(1)∵S △ABC = 12BC•AD =48,BC =16, ∴AD =6,在Rt △ABD 中,AB =12,∴BD =36,sinB =612 = 12,∴∠B =30°(2)∵BC =16,BD =36 ,∴CD =16﹣36 ,在Rt △ACD 中,∵CD =16﹣36 ,AD =6,∴tanC = 616−63 = 24+9337 .【考点】三角形的面积,锐角三角函数的定义;【分析】(1)根据S △ABC =48以及BC =6,可求出AD 的长度,然后由勾股定理可求出BD 的长度,然后根据锐角三角函数的定义即可求出角B 的度数,(2)由于BC =16,BD =36, 从而可知CD 的长度,在Rt △ACD 中,根据AD 与CD 的长度比即可求出tanc 的值.23.(8分)如图,已知∠MON=25°,矩形ABCD 的边BC 在OM 上,对角线AC ⊥ON .(1)求∠ACD度数;(2)当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)【答案】(1)解:延长AC交ON于点E,如图,∵AC⊥ON,∴∠OEC=90°,在Rt△OEC中,∵∠O=25°,∴∠OCE=65°,∴∠ACB=∠OCE=65°,∴∠ACD=90°﹣∠ACB=25°(2)解:∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC,,在Rt△ABC中,∵cos∠ACB= BCAC∴BC=AC•cos65°=5×0.42=2.1,∴AD=BC=2.1【考点】解直角三角形;【分析】(1)在矩形ABCD中可知∠DCB=90°,要求∠ACD度数,只需求出∠ACB的度数,延长AC交ON于点E,在Rt△OEC∠O=25°,AC⊥ON,可求出∠OCE=65°,再利用对顶角相等可求∠ACD度数。

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章《锐角三角函数》单元练习题(含答案)一、选择题1.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.3.已知∠A为锐角,且tan A=,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°4.把Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,则锐角A、A′的余弦值之间的关系是()A.cos A=cos A′B.cos A=5cos A′C.5cos A=cos A′D.不能确定5.Rt△ABC中,∠C=90°,tan A=,AC=6 cm,那么BC等于()A.8 cmB.cmC.cmD.cm6.在△ABC中,∠C=90°,已知tan A=,则cos B的值等于()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.B.4C.2D.58.已知∠A为锐角,且sin A<,那么∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<90°分卷II二、填空题9.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.10.若tan (x+10°)=1,则锐角x的度数为__________.11.在△ABC中,∠C=90°,如果tan B=3,则cos A=__________.12.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以20海里/小时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船,我渔政船的航行路程是________海里.13.如图,某电视塔AB和楼CD的水平距离为100 m,从楼顶C处及楼底D处测得塔顶A的仰角分别为45°和60°,试求塔高为__________,楼高为__________.14.在Rt△ABC中,∠C=90°,且tan A=3,则cos B的值为__________.15.如图,将△ABC放在每个小正方形边长为1的网格中,点A,B,C均在格点上,则tan A 的值是__________.16.△ABC中,∠C=90°,cos ∠A=0.3,AB=10,则AC=__________.三、解答题17.如图,某公园内有座桥,桥的高度是5米,CB⊥DB,坡面AC的倾斜角为45°,为方便老人过桥,市政部门决定降低坡度,使新坡面DC的坡度为i=∶3.若新坡角外需留下2米宽的人行道,问离原坡角(A点处)6米的一棵树是否需要移栽?(参考数据:≈1.414,≈1.732)18.课堂上我们在直角三角形中研究了锐角的正弦,余弦和正切函数,与此类似,在Rt△ABC 中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cot A=.(1)若∠A=45°,则cot 45°=__________;若∠A=60°,则cot 60°=__________;(2)探究tan A·cot A的值.19.已知Rt△ABC中,角A,B,C对应的边分别为a,b,c,∠C=90°,a:c=2:3,求tan A 的值.20.在Rt△ABC中,∠C=90°,∠A=30°,a=5,解这个直角三角形.21.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)第二十八章《锐角三角函数》单元练习题答案解析1.【答案】D【解析】∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.∴cos A==,故选D.2.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.3.【答案】C【解析】∵tan 45°=1,tan 60°=,锐角的正切值随角增大而增大,又1<<,∴45°<∠A<60°.故选C.4.【答案】【解析】∵Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,∴Rt△ABC∽Rt△A′B′C′,∴∠A=∠A′,∴cos A=cos A′.故选A.5.【答案】A【解析】∵Rt△ABC中,∠C=90°,tan A=,AC=6 cm,∴tan A===,解得BC=8,故选A.6.【答案】A【解析】设BC=2x,∵tan A=,∴AC=x,∴AB=3,∴cos B==,故选A.7.【答案】B【解析】∵cos B=,∴BC=AB·cos B=6×=4.故选B.8.【答案】A【解析】∵∠A为锐角,且sin 30°=,又∵当∠A是锐角时,其正弦随角度的增大而增大,∴0°<A<30°,故选A.9.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.10.【答案】20°【解析】∵tan (x+10°)=1,∴tan (x+10°)==,∴x+10°=30°,∴x=20°.11.【答案】【解析】由tan B=3,可以设∠B的对边是3k,邻边是k,则根据勾股定理,得斜边是k=k,故cos A=.12.【答案】30【解析】作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=20×1.5=30(海里),∠CBD=45°,∴CD=BC·sin 45°=30×=15(海里),则在Rt△ACD中,AC==15×2=30(海里).13.【答案】100m(100-100)m【解析】设CD=x m,则∵CE=BD=100,∠ACE=45°,∴AE=CE·tan 45°=100.∴AB=100+x.在Rt△ADB中,∵∠ADB=60°,∠ABD=90°,∴tan 60°=,∴AB=BD,即x+100=100,∴x=100-100,即楼高100-100 m,塔高100m.14.【答案】【解析】解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tan A=3,设a=3x,b=x,则c=x,∴cos B===.解法2:利用同角、互为余角的三角函数关系式求解.又∵tan A==3,∴sin A=3cos A.又sin2A+cos2A=1,∴cos A=.∵A、B互为余角,∴cos B=sin (90°-B)=sin A=.15.【答案】【解析】作BD⊥AC于点D,∵BC=2,AC==3,点A到BC的距离为3,AB==,∴=,即=,解得BD=,∴AD===2,∴tan A===.16.【答案】3【解析】∵∠C=90°,AB=10,∴cos A===0.3,∴AC=3.17.【答案】解不需要移栽,理由:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=5米,在Rt△BCD中,新坡面DC的坡度为i=∶3,即∠CDB=30°,∴DC=2BC=10米,BD=BC=5米,∴AD=BD-AB=(5-5)米≈3.66米,∵2+3.66=5.66<6,∴不需要移栽.【解析】根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度角所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB的长,由DB-AB求出AD的长,然后将AD+2与6进行比较,若大于则需要移栽,反之不需要移栽.18.【答案】解(1)由题意得:cot 45°=1,cot 60°=;(2)∵tan A=,cot A=,∴tan A·cot A=·=1.【解析】(1)根据题目所给的信息求解即可;(2)根据tan A=,cotA=,求出tan A·cot A的值即可.19.【答案】解设a=2k,c=3k.由勾股定理得b===k.则tan A===.【解析】设a=2k,c=3k,依据勾股定理可求得b的长度,然后依据锐角三角函数的定义解答即可.20.【答案】解在Rt△ABC中,∠B=90°-∠A=60°,∵tan B=,∴b=a×tan B=5×tan 60°=5,由勾股定理,得c==10.【解析】直角三角形的两个锐角互余,并且Rt△ABC中,∠C=90°则∠A=90-∠B=60°,解直角三角形就是求直角三角形中出直角以外的两锐角,三边中的未知的元素.21.【答案】解(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CD sin ∠DCP=40×sin 76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CD cos ∠DCP=40×cos 76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54 cm.【解析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知,∠DCP=∠ADE=76°,根据DP=CD sin ∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.人教版数学九年级下册第二十八章锐角三角函数 章末专题训练人教版数学九年级下册第二十八章锐角三角函数 章末专题训练一、选择题1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( D )A .扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2. 下列式子错误的是( D )A .cos40°=sin50°B .tan15°·tan75°=1 C.sin 225°+cos 225°=1 D .sin60°=2sin30°3. 如图所示,AB 为斜坡,D 是斜坡AB 上一点,斜坡AB 的坡度为i ,坡角为α,AC ⊥BM 于C ,下列式子:①i =AC ∶AB ;②i =(AC -DE)∶EC ;③i =tan α=DE BE;④AC =i ·BC.其中正确的有( C )A .1个B .2个C .3个D .4个4.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡度是(坡度是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是 ( A ) A.米B.米C. 15米D. 10米5.△ABC 在网格中的位置如图K -17-2所示(每个小正方形的边长都为1),AD ⊥BC 于点D ,下列选项中,错误..的是( C )图K-17-2A.sinα=cosα B.tanC=2C.sinβ=cosβ D.tanα=16.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,那么锐角∠A、∠A′的余弦值的关系是( B )A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定7. 如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直。

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。

人教版九年级下册 第二十八章 锐角三角函数单元练习题(含答案)

人教版九年级下册  第二十八章 锐角三角函数单元练习题(含答案)

人教版九年级下册第二十八章锐角三角函数单元练习题(含答案)一、选择题1.如图,P是∠α的边OA上一点,点P的坐标为(12,5),则tanα等于()A.B.C.D.2.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是()A.sin B=B.sin B=C.sin B=D.sin B=3.如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60 cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是()A.144 cmB.180 cmC.240 cmD.360 cm4.在Rt△ABC中,∠C=90°,BC=1,AC=,则∠A的度数是()A.30°B.45°C.60°D.70°5.如图,P是∠α的边OA上一点,且点P的坐标为(3,4),则tanα的值是()A.B.C.D.6.如图,一枚运载火箭从地面L处发射,当火箭到达A点时,从位于地面R处的雷达站观测得知AR的距离是6 km,仰角∠ARL=30°,又经过1 s后火箭到达B点,此时测得仰角∠BRL =45°,则这枚火箭从A到B的平均速度为()A.(3-3) km/sB.(3) km/sC.(3+3) km/sD.3 km/s7.在△ABC中,若tan A=1,sin B=,你认为最确切的判断是()A.△ABC是等腰三角形B.△ABC是等腰直角三角形C.△ABC是直角三角形D.△ABC是一般锐角三角形8.在Rt△ABC中,∠C=90°,AB=5,BC=3,则tan A的值是()A.B.C.D.9.如图,在△ABC中,∠ACB=90°,BC=2,AC=1,则下列三角函数值正确的是()A.sin A=B.tan B=C.sin B=D.cos A=10.在Rt△ABC中,∠C=90°,cos A=,则tan B等于()A.B.C.D.2二、填空题11.如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为20 m,则电梯楼的高BC为____________米(精确到0.1).(参考数据:≈1.414≈1.732)12.在△ABC中,已知两锐角A、B,且cos=,则△ABC是_____ 三角形.13.在△ABC中,∠C=90°,cos A=,则tan A等于________.14.已知△ABC,若有|sin A-|与(tan B)2互为相反数,则∠C的度数是__________.15.一个人由山脚爬到山顶,须先爬倾斜角为30度的山坡300米到达D,再爬倾斜角为60度的山坡200米,这座山的高度为______________(结果保留根号)16.在等腰△ABC中,∠C=90°,则cos A=__________.17.如图,在Rt△ABC中,∠C=90°,AB=13,AC=7,则sin B=____________.18.如图,在Rt△ABC中,∠C=90°,若a=4,c=5,则tan A=__________.19.比较大小:tan 50°________tan 48°.20.比较大小:tan 36°________tan 37°.三、解答题21.在Rt△ABC中,∠C=90°,sin B=,求cos A的值.22.在△ABC中,∠C=90°,tan A=,求cos B.23.同学们,在我们进入高中以后,将还会学到下面三角函数公式:sin (α-β)=sinαcosβ-cosαsinβ,cos (α-β)=cosαcosβ+sinαsinβ例:sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30°=(1)试仿照例题,求出cos 15°的准确值;(2)我们知道,tanα=,试求出tan 15°的准确值.24.某课桌生产厂家研究发现,倾斜12°~24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1,AB可绕点A 旋转,在点C处安装一根可旋转的支撑臂CD,AC=30 cm.(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长;(2)如图3,当∠BAC=12°时,求AD的长.(结果保留根号)(参考数据:sin 24°≈0.40,cos 24°≈0.91,tan 24°≈0.46,sin 12°≈0.20)25.计算:cos245°+cot230°.26.计算:sin 45°+cos230°+2sin 60°.27.小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140 cm,小梅的连衣裙穿在衣架后的总长度为122 cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin 59°≈0.86,cos 59°≈0.52,tan 59°≈1.66)28.如图,一垂直于地面的灯柱AB被一钢线CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin 53°≈0.80,cos 53°≈0.60,tan 53°≈1.33)答案解析1.【答案】C【解析】过P作PE⊥x轴于点E,∵P(12,5),∴PE=5,OE=12,∴tanα==,故选C.2.【答案】C【解析】在Rt△ABC中,∠BAC=90°,sin B=,∵AD⊥BC,∴sin B=,sin B=sin ∠DAC=,综上,只有C不正确故选C.3.【答案】B【解析】如图:根据题意可知:△AFO∽△ACD,OF=EF=30 cm,∴=,∴=,∴CD=72 cm,∵tanα=,∴=,∴AD=×72=180 cm.故选B.4.【答案】A【解析】由图可得:tan A===,则∠A=30°.故选A.5.【答案】B【解析】tanα=,故选B.6.【答案】A【解析】LR=AR·cos 30°=6×=3(km),AL=AR·sin 30°=3(km),BL=LR·tan 45°=3(km),则BA=3-3(km).故选A.7.【答案】B【解析】∵tan A=1,sin B=,∴∠A=45°,∠B=45°.又∵三角形内角和为180°,∴∠C=90°.∴△ABC是等腰直角三角形.故选B.8.【答案】A【解析】由勾股定理,得AC==4,由正切函数的定义,得tan A==,故选A.9.【答案】B【解析】∵∠ACB=90°,BC=2,AC=1,∴AB===,A、sin A===,故本选项错误;B、tan B==,故本选项正确;C、sin B===,故本选项错误;D、cos A===,故本选项错误,故选B.10.【答案】C【解析】∵∠C=90°,cos A=,∴∠A=60°,得∠B=30°,所以tan B=tan 30°=.故选C.11.【答案】54.6【解析】作AD⊥BC于点D.∵∠DAC=45°,∴CD=AD=20.∵∠BAD=60°,∴BD=AD×tan 60°=20≈34.6(米).∴BC=BD+CD=34.64+20≈54.6(米).12.【答案】直角【解析】由两锐角A、B,且cos=,得=45°,两边都乘以2,得A+B=90°,∠C=180°-(∠A+∠B)=90°,所以△ABC是直角三角形.13.【答案】【解析】∵cos A=,设b=3x,则c=5x,根据a2+b2=c2,得a=4x.∴tan A===.14.【答案】90°【解析】∵|sin A-|与(tan B)2互为相反数,∴sin A-=0,tan B=0,则sin A=,tan B=,∴∠A=30°,∠B=60°,则∠C的度数是90°.15.【答案】(150+100)米【解析】过D作DF⊥AC.在Rt△ADF中,易得CE=DF=AD×sin 30°=150米,在Rt△BDE中,易得BE=BD×sin 60°=100米,故山高BC=CE+BE=(150+100)米.16.【答案】【解析】∵∠C=90°,△ABC是等腰直角三角形,∴∠A=∠B=45°,∴cos A=.17.【答案】【解析】∵在Rt△ABC中,∠C=90°,AB=13,AC=7,∴sin B==.18.【答案】【解析】∵∠C=90°,a=4,c=5,∴根据勾股定理得b===3,∴tan A==.19.【答案】>【解析】根据锐角三角函数的增减性:正切值随着角度的增大(或减小)而增大(或减小),∵50°>48°,∴tan 50°>tan 48°.20.【答案】<【解析】tan 36°<tan 37°.故答案为<.21.【答案】解在△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cos A=sin B=.【解析】先根据三角形内角和定理得出∠A+∠B=90°,再根据互余两角的三角函数的关系求解.22.【答案】解∵tan A=,∴∠A=60°,∵∠A+∠B=90°,∴∠B=90°-60°=30°,∴cos B=.【解析】先根据正切值求出∠A的度数,根据直角三角形的性质得到∠B的度数,再根据余弦的定义即可求解.23.【答案】解(1)cos 15°=cos 45°cos 30°+sin 45°sin 30°=×+×=;(2)tan 15°===2-.【解析】从题中给出的信息进行答题:(1)把15°化为45°-30°直接代入三角函数公式:cos (α-β)=cosαcosβ+sinαsinβ计算即可;(2)把tan 15°代入tanα=,再把(1)及例题中的数值代入即可.24.【答案】解(1)∵∠BAC=24°,CD⊥AB,∴sin 24°=,∴CD=AC sin 24°=30×0.40=12 cm;∴支撑臂CD的长为12 cm;(2)过点C作CE⊥AB,于点E,当∠BAC=12°时,∴sin 12°==,∴CE=30×0.20=6 cm,∵CD=12,∴DE=6,∴AE==12cm,∴AD的长为(12+6)cm或(12-6) cm.【解析】(1)利用锐角三角函数关系得出sin 24°=,进而求出即可;(2)利用锐角三角函数关系得出sin 12°=,进而求出DE,AE的长,即可得出AD的长.25.【答案】解原式=2+()2=+3=.【解析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.26.【答案】解原式=×+2+2×=++=1+.【解析】先把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可.27.【答案】解这件连衣裙垂挂在晒衣架上会拖落到地面,理由:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA·sin ∠OAB=140×sin 59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.【解析】过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin ∠OAB=,求得OE,即可作出判断.28.【答案】解设BD=x米,则BC=x米,BE=(x+2)米,在Rt△BDE中,tan ∠EDB==,即≈1.33,解得x≈6.06,∵sin ∠EDB=,即0.8=,解得ED≈10,即钢线ED的长度约为10米.【解析】根据题意,可以得到BC=BD,由∠CDB=45°,∠EDB=53°,由三角函数值可以求得BD的长,从而可以求得DE的长.人教版数学九年级下册第二十八章锐角三角函数单元提优训练人教版数学九年级下册第二十八章锐角三角函数单元提优训练一、选择题1.在中,,,,则AC等于(B).A. 18B. 2C.D.2.某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为( B )A.3.5sin29° B.3.5cos29° C.3.5tan29° D.3.5 cos29°3. 在Rt△ABC,∠ACB=90°,BC=1,AB=2,则下列结论正确的是( C )A.sinA=32B.tanA=12C.cosA=32D.以上都不对4.如图K-16-3,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,则下列结论不正确的是(C )图K-16-3A.sinB=ADABB.sinB=ACBCC.sinB=ADACD.sinB=CDAC5.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是(A).A. 15mB. 60mC. 20mD.6. 如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=1213,则小车上升的高度是( B )A.5米 B.6米 C.6.5米 D.12米7. 在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( B )A.154B.14C.1515D.417178.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( A )A.154B.14C.1515D.417179.在Rt△ABC中,∠C=90°,∠A、∠B的对边分别是a、b,且满足a2-ab-b2=0,则tan A等于( B )A. 1B.C.D.10.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB 的坡度i=1∶1.5,则坝底AD的长度为( D )A.26米 B.28米 C.30米 D.46米二、填空题11.如图,在菱形ABCD中,AE⊥DC于E,AE=8cm,sin D=,则菱形ABCD的面积是______.【答案】96cm212.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为_____米.【答案】513.△ABC中,∠C=90°,AB=8,cosA=34,则BC的长______.【答案】 2714.已知对任意锐角α,β均有cos(α+β)=cosα·cosβ-sinα·sinβ,则cos75°=________.【答案】6-2 415.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB =500米,则这名滑雪运动员的高度下降_______米(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67).【答案】280三、解答题16.如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=a.(1)求sin a、cos a、t a na的值;(2)若∠B=∠CAD,求BD的长.解:在Rt△ACD中,∵AC=2,DC=1,∴AD==.(1)sinα===,cosα===,tanα==;(2)在Rt△ABC中,tan B=,即tanα==,∴BC=4,∴BD=BC-CD=4-1=3.17. 如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼,已知点A到MN的距离为15米,BA的延长线与MN相交于点D,且∠BDN=30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音(XRS)的影响.(1)过点A作MN的垂线,垂足为点H,如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板,当汽车行驶到点Q时,它与这一排居民楼的距离QC为39米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长(精确到1米)(参考数据:3≈1.7)?解:(1)连接AP,由题意得AH⊥MN,AH=15,AP=39,在Rt△APH中,由勾股定理得PH=36.答:此时汽车与点H的距离为36米;(2)由题意可知,PQ段高架道路旁需要安装隔音板,QC⊥AB,∠QDC=30°,QC =39.在Rt△DCQ中,DQ=2QC=78,在Rt△ADH中,DH=AH·cot30°=15 3.∴PQ=PH-DH+DQ≈114-15×1.7=88.5≈89(米)。

九年级数学单元检测卷—锐角三角函数(含答案)

九年级数学单元检测卷—锐角三角函数(含答案)

九年级数学单元检测卷—锐角三角函数(含答案)一、选择题(每小题3分,共24分)1.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A 等于().A.43 B.34 C.53 D.352.若10)1α+︒=,则锐角a 的度数是().A .20°B .30°C .40°D .50°3.如图所示,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取∠ABD =145°,BD =500m ,∠D =55°,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是().A .500sin 55°mB .500cos 55°mC .500tan 55°m D.500cos55︒m 4.小明沿着坡度为1∶2的山坡向上走了1000m ,则他升高了().A .B .500mC .mD .1000m5.已知在△ABC 中,∠C =90°,设sin B =n ,当∠B 是最小的内角时,n 的取值范围是().A .0<n <22B .0<n <12C .0<n <33D .0<n <326.某个水库大坝的横断面为梯形,迎水坡的坡度是1,背水坡为1∶1,那么两个坡的坡角和为().A.90°B.75°C.60°D.105°7.计算6tan45°-2cos60°的结果是()A.43B.4C.5D.538.野外生存训练中,第一小组从营地出发向北偏东60°方向前进了3km,第二小组向南偏东30°方向前进了3km,第一小组准备向第二小组靠拢,则行走方向和距离分别为().A.南偏西15°,B.北偏东15°,C.南偏西15°,3km D.南偏西45°,9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC=23,AB=42,则tan∠BCD 的值为()A.2B.153C.155D.3310.如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,3≈1.73).A.3.5m B.3.6mC.4.3m D.5.1m二、填空题(每小题4分,24共分)11.长为4m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了__________m.12.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的投影BC的长为24米,则旗杆AB的高度是__________米.13.如图,正方形ABCD的边长为4,点M在边DC上,M,N两点关于对角线AC对称,若DM=1,则tan∠ADN=__________.14.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tan A的值为__________.15.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________.16.如图,△ABC的顶点都在方格纸的格点上,则cosA=.三、解答题(共46分)17.(10分)计算:(1)sin245°+tan60°cos30°-tan45°;(2)||+(cos60°-tan30°)0.18.(7分)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=163.3(1)求∠B的度数;(2)求边AB与BC的长.19.(7分)如图,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度≈1.732,结果保留一位小数).20.(7分)我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40m,坡角∠BAD=60°,为防夏季因暴雨引发山体滑坡,保障安全,学校决定对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米(结果保留根号)?21.(7分)已知:如图,△ABC中,AB=9,BC=6,△ABC的面积等于9,求sin B.22.(8分)已知:如图,△ABC中,∠B=30°,P为AB边上一点,PD⊥BC于D.(1)当BP∶PA=2∶1时,求sin∠1、cos∠1、tan∠1;(2)当BP∶PA=1∶2时,求sin∠1、cos∠1、tan∠1.答案一、选择题1、D2、A3、B4、A5、A6、B7、C8、A9、B 10、D二、填空题11、-12、8313、4314、13或2415、75°或15°16、55三、解答题17.解:(1)原式=2122⎛+- ⎪⎝⎭=1322+-1=1.(2)||+(cos 60°-tan 30°)0+1+=1+.18.解:(1)在Rt △ACD 中,∵cos ∠CAD=32AC AD ==,∠CAD 为锐角,∴∠CAD =30°,∠BAD =∠CAD =30°,即∠CAB =60°.∴∠B =90°-∠CAB =30°.(2)在Rt △ABC 中,∵sin B =AC AB ,∴AB =8sin sin 30AC B =︒=16.又cos B =BC AB,∴BC =AB ·cos B =16×2=.19.解:根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得BC.又BC -AB =AC-BD =20,∴BD∴古塔BD 的高度约为27.3m.20.解:作BG ⊥AD 于点G ,作EF ⊥AD 于点F 在Rt △ABG 中,∠BAD =60°,AB =40,∴BG =AB ·sin 60°=AG =AB ·cos 60°=20.同理,在Rt △AEF 中,∠EAD =45°,∴AF =EF =BG=BE =FG =AF -AG =1).因此BE 至少是-1)m.21.sin B=1322提示:作AE ⊥BC 于E ,设AP =2.(1)当BP ∶P A =2∶1时,求sin ∠1=23;cos ∠1=21;tan ∠(2)当BP ∶P A =1∶2时,sin ∠1=721;cos ∠1=772;tan ∠1=23.。

精品解析:人教版九年级下册数学第28章锐角三角函数单元检测卷(解析版).docx

精品解析:人教版九年级下册数学第28章锐角三角函数单元检测卷(解析版).docx

人教版九年级下册数学第28章锐角三角函数单元检测卷->选择题(每小题3分;共33分)1. 计算5sin30o+2cos245°-tan260°的值是()厂 1 1A. &B. -C.-—D.1v 2 2【答案】B【解析】试题分析:根据特殊角的锐角三角函数值计算即可得到结果.5sin30°+2cos245°-tan260°一丄十2x(2^':一"岳:-l-b2xl-3 -丄■ ■ ■ ■ ■故选B.考点:特殊角的锐角三角函数值点评:计算能力是学生必须具备的基本能力,中考中各种题型中均会涉及到计算问题,因而学生应该努力提升白己的计算能力.2. 如图,河堤横断面迎水坡AB的坡比是1:不,堤高BC=10m,则坡面AB的长度是()BA. 15mB. 20^3mC. 20mD. logm【答案】C【解析】试题分析:RtZ\ABC中,BC=10m, tanA=l:^3;AC=BC-rta nA=10^/3 m, ・・.AB二Jio' + UO 间2 = 20m. 故选:C 考点:解直角三角形 3.在RtAABC中,ZC=90°,当已知ZA和a时,求c,应选择的关系式是() a a aA. c = -------B. c = ----------------------------C. ata nAD. c = -------------------sinA cosA tanA【答案】A【解析】在RtAABC中,ZC=90°,. aAsinA=-,a/• c ——sinA故选A.【点睛】本题主要考查解三角形,解题的关键是熟练运用三角函数的定义求解.4. 在RtAABC 中,ZC=90^, c=5, a=4,则sinA 的值为( )3 4 3 4A. —B.—C. —D. -5 5 4 3【答案】BQ 4【解析】由锐角三角函数的定义,sin/! = - = -,所以选B学壬科¥网…学¥科¥网…学¥科¥网…学¥科c 5¥网…学¥科¥网…学¥科¥网…学¥科¥网…学¥科¥网…5. 在RtAABC 中,ZC=90°,下列等式:(1) sin A=sin B; (2) a=c sin B; (3) sin A=tan A cos A; (4) sin2A+cos2A =1.其中一定能成立的有( )A. 1个B. 2个C. 3个D. 4个【答案】B・・A計• n P人打 4 A甜• sinA= —, sinB= — , cosA= — , tanA二一, <•r r h.•.sinAHsinB,所以(1)错误;a=c-sinA,所以(2)错误;VtanA-cosA= —• — =sinA,所以(3)正确;h rsin2A+cos2A= ( — ) 2+ ( — ) 2= =1,所以(4)正确.故选B.6.如图,在边长为1的小正方形组成的网格中,点A、B、0为格点,贝ij tanZAOB=( )【答案】A【解析】过点A 作AD 丄0B 垂足为D, 如图,在直角AABD 屮,AD=1, 0D=2,则 tanZAOB —=-, OD 27.如图,在RtAABC 中,ZC=90°, AM 是BC 边上的中线,sinZCAM=-,则tanB 的值为(4 D. 3【答案】B设 CM=3x,则 AM=5x,根据勾股定理得:AC=^AM 2-CM 2^4x,又M 为BC 的中点,/. BC=2CM=6x,z z |AC 4x 2在 RtAABC 中,tanB=——=—=一,BC 6x 3 故选B.8.如图,一艘轮船在B 处观测灯塔A 位于南偏东50。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数 单元测试
一、选择题(本题共8小题,每小题4分,共32分) 1. 60cos 的值等于( )
A

2
1
B .22
C .
2
3
D .1
2.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则tanA 的值是( )
A .154
B .1
4
C .15
D .4
3.已知α为锐角,且2
3
)10sin(=
︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80
4.已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( )
A .sin 40m
B .cos 40m
C .tan 40m
D .
tan 40
m
5.在Rt ABC △中,90C ∠=,5BC =,15AC =,则A ∠=( )
A .90
B .60
C .45
D .30
6.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)位于她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( )
A .250m.
B . 250.3 m.
C .500.33 m.
D .3250 m.
7.直角三角形纸片的两直角边长分别为6,8,现将ABC △如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan CBE ∠的值是( ) A .
24
7
B .
73
C .
724
D .
13
8.因为1
sin 302=
,1sin 2102
=-,所以sin 210sin(18030)sin 30=+=-;因为2sin 452
=
,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )
6
8
C
E
A
B
D
(第7题)
第6题
(第10题)
(图1)
(图2) A
B C A .12
-
B .22
-
C .32
-
D .3-
二、填空题(本题共5小题,每小题4分,共20分) 9.2cos45°-
2
1
tan60°= ; 10.如图是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼 成一个正三角形(图2),那么在Rt △ABC 中,sin B ∠的值是 ;
11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为
_________米;(结果精确到0.1米)
12.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为 ;
13.如图,梯形ABCD 是拦水坝的横断面图,(图中1:3i =是指坡面的铅直高度DE 与水平宽度CE 的比),60B ∠=,6AB =,4AD =,拦水坝的横断面ABCD 的面积 是 (结果保留三位有效数字,参考数据:3 1.732=,2 1.414=) 三、解答题(共48分)
14.(8分)在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=3,b=3,解这个三角形.
A B
C
D
E 第13题
1:3i =
第12题
A
B
O
C
第11题
15. (8分)如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈,cos 400.77≈,tan 400.84≈)
16.(10分)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)
17.(10分)如图是某宾馆大厅到二楼的楼梯设计图,已知6BC =米,9AB =米,中间平台宽度DE 为2米,DM EN ,为平台的两根支柱,DM EN ,垂直于AB ,垂足分别为M N ,,30EAB ∠=,45CDF ∠=.求DM 和BC 的水平距离BM .(精确到0.1米,参考数据:2 1.41≈,3 1.73≈)
A
N M B
F
C
E
D
C A
B
40︒
E D C
B
A
(第19题)
18.(12分)为了加强视力保护意识,小明想在长为3.2米,宽为4.3米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计方案新颖,构思巧妙.
(1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立在对角线AC 上,问:甲生的设计方案是否可行?请说明理由.
(2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处.
(3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视力表.如果大视力表中“E ”的长是3.5cm ,那么小视力表中相应“E ”的长是多少cm ?
(附加题5分)19.如图,正方形ABCD 中,E 是BC 边上一点,
H
H
(图1)
(图2) (图3)
(第18题)
3.5㎝
A
C
F
3m
B
5m
D
的值以E为圆心、EC为半径的半圆与以A为圆心,AB为半径的圆弧外切,则sin EAB
为。

(写明理由)
答案:
1.A
2.C
3.C
4.A
5.D
6.A
7.B
8.C
9.231-
, 10.23 11. 0.5 12.2
2 13. 52.0 14.32=c ,∠A=30°,∠B=60° 15.9.9
16.2.152388≈ 17.4.1 18.(1)可行 (2)1.8米 (3)2.1厘米 19.5
3。

相关文档
最新文档