高三数学第二轮《数形结合》公开课教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华侨中学高三数学(理科)第二轮复习专题:数形结合思想教学地点:厦门一中集美分校高三(4)班

授课教师:华侨中学王磊2016.03.24

【思想方法概述】

数形结合的思想在每年的高考中都有所体现,它常用来研究方程根的情况,讨论函数

的值域(最值)及求变量的取值范围等.对这类内容的选择题、填空题,数形结合特别有

效.从2015年的高考题来看,数形结合的重点是研究“以形助数”.预测2016年高考中,仍然会沿用以往的命题思路,借助各种函数的图象和方程的曲线为载体,考查数形结合的思想方法,在考题形式上,不但有小题,还会有解答题,在考查的数量上,会有多个小题考查数形结合的思想方法.复习中应提高用数形结合思想解题的意识,画图不能太草,要善于用特殊数或特殊点来精确确定图形间的位置关系.

以形助数(数题形解)借助形的生动性和直观性来阐述数形之间的关系,

把形转化为数,即以形作为手段,数作为目的的解

决数学问题的数学思想.

数形结合思想通过“以形

助数,以数辅形”,使复

杂问题简单化,抽象问

题具体化,能够变抽象

思维为形象思维,有助

于把握数学问题的本质

,它是数学的规律性与

灵活性的有机结合.

以数辅形(形题数解)借助于数的精确性和规范性及严密性来阐明形的某些属性,即以数作为手段,形作为目的的解决问题的数学思想.

1.数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.

2.运用数形结合思想分析解决问题时,要遵循三个原则:

(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.

(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.

(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系、做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线.

3.数形结合思想在高考试题中主要有以下六个常考点

(1)集合的运算及Venn图;

(2)函数及其图象;

(3)数列通项及求和公式的函数特征及函数图象; (4)方程(多指二元方程)及方程的曲线;

(5)对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (6)对于研究函数、方程或不等式(最值)的

问题,可通过函数的图象求解(函数

的零点、顶点是关键点),做好知识的迁移与综合运用.

4.数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:

(1)准确画出函数图象,注意函数的定义域; (2)用图象法讨

论方程(特别是含参数的方程)的解的个数是一种行之有效的方法

,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解;

(3)在解答题中数形结合思想是探究解题的思路时使用的,不可使用形的直观代替相关的计算和推理论证.

【例题1】. 【2015课标全国Ⅰ理15】若,x y 满足约束条件10

040

x x y x y -≥⎧⎪

-≤⎨⎪+-≤⎩

,则y x 的最大值

为 .

【变式】设点P (,)x y 为圆221x y +=上的动点.

(1) 求22(2)(1)x y +++的取值范围 (2)求x y -的取值范围; (3)求1

2

y x ++的取值范围

【规律方法】

如果参数、代数式的结构蕴含着明显的几何特征,一般考虑用数形结合的方法来解题,即所谓的几何法求解,比较常见的对应有:

(1)y =kx +b 中k 表示直线的斜率,b 表示直线在y 轴上的截距. (2)b -n a -m

表示坐标平面上两点(a ,b),(m ,n)连线的斜率. (3)(a -m )2+(b -n )2表示坐标平面上两点(a ,b),(m ,n)之间的距离.

只要具有一定的观察能力,再掌握常见的数与形的对应类型,就一定能得心应手地运用数形

结合的思想方法.

【例题2】已知0 1.a <<则方程|||log |x a a x =的实根个数为

【变式】已知关于x 的方程m x x =+-542有四个不相等的实根,则实数m 的取

值范围为

【规律与总结】抽象的数学问题通过图象的直观性获得解题思路,以形辅数。

【例题3】(2015课标全国Ⅰ理10)已知抛物线C :x y 82

=的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若FQ PF 4=,则=QF ( ) A. 27 B. 3 C. 2

5

D. 2

【规律与总结】1、抛物线的定义;2、抛物线的标准方程;3、向量共线;4、数形结合

【变式】已知P 为抛物线y 2=4x 上的一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小值是( ) A .5 B .8 C.17-1 D.5+2

相关文档
最新文档